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Abstract

The proliferation of 2D foundation models has sparked research into adapting them
for open-world 3D instance segmentation. Recent methods introduce a paradigm
that leverages superpoints as geometric primitives and incorporates 2D multi-view
masks from Segment Anything model (SAM) as merging guidance, achieving
outstanding zero-shot instance segmentation results. However, the limited use
of 3D priors restricts the segmentation performance. Previous methods calculate
the 3D superpoints solely based on estimated normal from spatial coordinates,
resulting in under-segmentation for instances with similar geometry. Besides, the
heavy reliance on SAM and hand-crafted algorithms in 2D space suffers from
over-segmentation due to SAM’s inherent part-level segmentation tendency. To
address these issues, we propose SA3DIP, a novel method for Segmenting Any 3D
Instances via exploiting potential 3D Priors. Specifically, on one hand, we generate
complementary 3D primitives based on both geometric and textural priors, which
reduces the initial errors that accumulate in subsequent procedures. On the other
hand, we introduce supplemental constraints from the 3D space by using a 3D
detector to guide a further merging process. Furthermore, we notice a considerable
portion of low-quality ground truth annotations in ScanNetV2 benchmark, which
affect the fair evaluations. Thus, we present ScanNetV2-INS with complete ground
truth labels and supplement additional instances for 3D class-agnostic instance
segmentation. Experimental evaluations on various 2D-3D datasets demonstrate the
effectiveness and robustness of our approach. Our code and proposed ScanNetV2-
INS dataset are available HERE.

1 Introduction

3D instance segmentation is a fundamental task pivotal to 3D understanding across various domains
such as autonomous driving, robotics navigation, and virtual reality applications. State-of-the-
art methods [1, 2] are predominantly supervised and rely heavily on precise 3D annotations for
training, thus constraining their applications in open-world scenes. Compared to scarce 3D labeled
data, the acquisition and annotation of 2D images are more convenient. Recently, 2D foundation
models [3–6] trained on large-scale annotated 2D data show impressive performance and strong
generalization capabilities in zero-shot scenarios. Recent efforts have sought to leverage Segment
Anything Model (SAM) by lifting its class-agnostic 2D segmentation results to 3D tasks [7–10].
Specifically, some methods [7, 8] propose a pipeline that decomposes the 3D scene into geometric
primitives and leverages 2D multi-view masks from SAM to calculate pairwise similarity scores as
merging guidance. Further well-designed algorithms or Graph Neural Networks (GNNs) are included
to ensure multi-view consistency.
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Figure 1: Comparison of our SA3DIP with other methods. Methods like SAI3D (bottom) fail to
distinguish instances with similar normals when computing superpoints, which accumulate to the
final segmentation. Moreover, the part-level 2D segmentation transfers to 3D space, resulting in
over-segmented 3D instances. We present a novel pipeline for segmenting any 3D instances, which
overcomes the limitations by exploiting additional 3D priors, specifically by incorporating both
geometric and textural prior on superpoints computing, and supplementing 3D space constraint
provided 3D prior by utilizing a 3D detector.

However, the geometric rudimentary pre-segmentation initialization impedes their ability to group
superpoints on points with highly similar normals, such as boards on walls and books on tabletops.
As shown in Fig. 1 bottom left, the blackboard and the wall are wrongly allocated within the same
superpoint using previous methods. Owing to the coarse-to-fine pattern of the pipeline, errors at
this stage propagate to subsequent stages, which the sophisticated merging algorithms fail to rectify.
Furthermore, current approaches heavily rely on 2D foundation models and design algorithms or
GNNs within 2D space, neglecting the inherent 3D priors of the data. Part-level segmentation in the
generated 2D masks by SAM transfers to 3D space and leads to over-segmented 3D instances. As
illustrated in Fig. 1 bottom right, the sofa and chairs are segmented at the part level in 2D space,
causing over-segmentation in the final results. These limitations primarily stem from the under-
exploitation of 3D priors: (1) Complete point cloud data encompasses not only spatial coordinates
but also color channels; (2) Constraints provided by 3D space prior to the merging process cannot be
neglected.

In this paper, we present SA3DIP (Segment Any 3D Instance with potential 3D Priors), a novel
method for segmenting high-quality 3D instances. Specifically, we observe that distinct instances
with similar normals often exhibit different colors. Therefore, we incorporate both geometric and
textural priors to generate finer-grained complementary primitives. As shown in Fig. 1 top right, our
method identifies the boundary between the blackboard and the wall clearly. In this way, the initial
errors are minimized, which reduces error accumulation in the subsequent process. Moreover, we
exploit the 3D prior at the merging stage to provide constraints on the over-segmented 3D instances,
which is implemented by incorporating a 3D detector. This additional 3D prior enables rectification
on the over-segmented 3D instances, while preserving the capability in handling fine-grained objects.
Therefore, the sofa and chairs maintain their integrity in 3D space by our approach, which is illustrated
in Fig. 1 top right. Additionally, we notice that the widely-used benchmark, ScanNet [11], contains a
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considerable portion of low-quality ground truth annotations for instance segmentation, which leads
to biases in assessing model performance. Thus, we propose ScanNetV2-INS, a point-level enhanced
version tailored for 3D class-agnostic instance segmentation. The revised dataset contains fewer
incomplete labels and fewer missing instances, which better showcases real-world scenarios.

Our contributions are three-fold: (1) We present SA3DIP, a novel pipeline for segmenting any 3D
instances by exploiting potential 3D priors, which includes incorporating both geometric and color
priors on computing 3D superpoints, and introducing constraints provided by 3D prior at the merging
stage; (2) We propose a point-level enhanced version of ScanNetV2, specifically for 3D class-agnostic
instance segmentation by rectifying incomplete annotations and incorporating more instances; (3)
Extensive experiments are conducted on ScanNetV2, ScanNetV2-INS and ScanNet++ [12] datasets,
and the competitive results demonstrate the effectiveness and robustness of our method.

2 Related Work

Close-set 3D segmentation. 3D semantic segmentation aims to classify each point into a specific
semantic class [13–21]. 3D instance segmentation, on the other hand, assigns unique masks to
each distinct instance within the same semantic category [2, 22–26]. Prior research, categorized
as Grouping-based [23, 27, 28], Kernel-based [29], and Transformer-based [2, 30, 31] methods,
has primarily relied on labeled datasets in a supervised manner. Mask3D [2] proposes the first
Transformer-based model for 3D semantic instance segmentation that uses instance queries and
Transformer decoders. Spherical Mask [1] achieves state-of-the-art 3D instance segmentation perfor-
mance on the ScanNetV2 dataset by leveraging a novel coarse-to-fine approach [32, 33] based on
spherical representation. However, they all necessitate a significant corpus of annotated 3D data for
network training, which is financially burdensome and poses challenges for extending the method to
open-world scenarios featuring novel objects from unobserved categories.

Open-set 3D segmentation. 2D foundation models [3–6] have exhibited remarkable efficacy
across various tasks. Training on the SA-1B dataset with 11 million images and 1.1 billion masks,
Segment Anything model (SAM) serves as a cornerstone for image segmentation, allowing strong
zero-shot transfer ability and diverse prompts such as points, boxes, and texts to generate high-quality
segmentation masks. Inspired by the generalization capabilities of foundation models, certain works
[7–10, 34–37] explore the feasibility of bridging the gap between 2D and 3D, enabling various open-
vocabulary 3D tasks. OpenScene [38] and OpenMask3D [25] both rely on transferring knowledge
from CLIP, where the former infers CLIP features for each 3D point and classifies them embeddings
of class labels, and the latter uses additional pre-trained 3D segmentation model to produce class-
agnostic 3D proposals and classifies them based on CLIP scores. SAM3D [10] pioneers the extension
of SAM into 3D perception by transferring segmentation information from 2D images to 3D space.
SAMPro3D [9] attempts to locate 3D points as natural prompts to align their projected pixel prompts
across frames, while its segmentation quality heavily relies on the accuracy of 2D segmentation
results. Several other works [7, 8] follow the idea that segments each frame individually and devises
a merging algorithm or graph neural network (GNN) to guide the merging process of pre-segmented
superpoints. However, the limited use of 3D priors restricts the performance in both superpoints
computing and region growth, which results in substandard 3D segmentation. In this paper, we
present SA3DIP, which incorporates more priors and constraints to minimize error accumulation and
over-segmentation, by a thorough exploitation of 3D priors.

3 Methodology

3.1 SA3DIP

Overview. Our overall pipeline is shown in Fig. 2. Given a point cloud P ∈ RN×6 and corre-
sponding 2D data {Im, Dm,Km, Em}Mm=1, which denote the RGB, depth images, camera intrinsic
and extrinsic parameters, respectively, the masks of 3D instances in the scene are desired as output.
First, we generate complementary 3D primitives of the given point cloud via performing 3D over-
segmentation on both geometric and textural priors. Then, we construct the superpoint graph by
treating the 3D primitives and their relations as nodes and edges of the graph, respectively. Leveraging
the 2D masks generated by 2D foundation segmentators like SAM, we create the affinity matrix which
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Figure 2: Overall pipeline. Our approach first integrates both geometric and textural priors for
grouping 3D primitives (step A). Corresponding posed masks are generated using SAM. An affinity
matrix is then computed based on these 2D-3D results serving as edge weights (step B). Region
growing and instance-aware refinement are conducted on the constructed scene graph, utilizing 3D
box constraint to address over-segmentation while maintaining the fine-grained outcomes (step C).

contains the node features and edge weights. Finally, we perform affinity- and distance-aware region
growing to merge the 3D primitives. Further merging is introduced by considering the supplemental
prior from 3D space, which is implemented using a 3D detector.

Complementary primitives generation. Following the graph-cut algorithm in [39], we calculate
complementary primitives by employing over-segmentation on both geometric and textural priors.
Previous methods [7, 8] only consider the geometry information during the primitive generation
process. As shown in the middle example in Fig. 2-A, under-segmentation occurs in regions
where the door, wall, and board exhibit similar normals. Errors at this initial stage propagate and
accumulate, adversely affecting the final segmentation. In contrast, we propose to incorporate
additional textural prior, as illustrated in the right example in Fig. 2-A, which leads to finer-grained
primitives. Specifically, for a 3D scene P , we first treat each point pa ∈ P as a node va and calculate
the edge weights w(va, vb) for each pair of nodes va and vb. We begin by estimating the normal na

for all pa using corresponding 3D coordinates fa. Next, we extract the additional color information
ca, which previous methods fail to exploit. Note that the combination of fa ∈ R3 and ca ∈ R3

represents the complete point pa ∈ R6. We compute the cosine similarity between normals na and
nb, and normalized Euclidean distance between colors ca and cb. The final edge weights w(va, vb)
are obtained by a weighted sum of these two dissimilarities:

w(va, vb) = wn ·
na · nb

∥na∥∥nb∥
+ wc ·

√√√√ 3∑
k=1

(cak − cbk)2. (1)

Subsequently, we cluster points to the finer-grained primitives {Ui}NU

i=1 based on each pair of
w(va, vb).

Scene graph construction. As shown in Fig. 2-B, we follow the paradigm to construct a superpoint
graph for the given scene. The generated primitives serve as nodes and the affinity scores obtained
through a matching algorithm serve as edge weights. Specifically, we first obtain the 2D projection
Um
i ∈ RH×W×2 of the i-th 3D primitive Ui ∈ RNi×3 on the m-th image by utilizing the common

pinhole camera matrix:
(Um

i , 1)T = Km · Em · (Ui, 1)
T . (2)
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We feed the m-th RGB-image Im into the 2D foundation segmentator, e.g. SAM, to obtain its masks
Sm. The primitive-mask matching algorithm is then performed on 2D projections Um

i and the masks
Sm for computing affinity scores. To be specific, we calculate a normalized histogram vector ei,m to
collect the 2D masks in Sm covered by rendered Um

i , since multiple labels may be covered due to
the ambiguity or inaccuracy in 2D masks. The affinity score between i- and j-th superpoints on the
m-th frame is obtained by computing the cosine similarity of their histogram vectors:

Am
i,j =

ei,m · ej,m
∥ei,m∥∥ej,m∥

. (3)

Traversing all M images yields all affinity scores between Ui and Uj . However, primitives may not be
visible in all frames, which leads to invalid affinity scores. To address this, we apply a visibility-based
filter on the obtained scores. The visibility Vm

i ∈ (0, 1) is defined as the ratio of the visible point
number of Ui on m-frame to the total point number of that in the scene. Thus, the final affinity score
Aij is calculated in a weighted-sum manner as:

Ai,j =

∑M
m=1

(
γm
i,jA

m
i,j

)∑M
m=1 γ

m
i,j

, (4)

where the weight γm
i,j is calculated as the product of Vm

i and Vm
j . Iteratively processing through all

superpoints and 2D frames yields the adjacency matrix A ∈ RNU×NU . Thus, the superpoint graph of
the scene is constructed with primitives {Ui}NU

i=1 as nodes and adjacency matrix A as edge weights.

Region growing and instance-aware refine-
ment. We perform affinity- and distance-aware
region growing on the constructed graph. Previ-
ous methods inherit the part-level segmentation
tendency from 2D masks output by SAM, often
leading to over-segmentation in 3D space. For
instance, the chair of the primary segmentation
shown in Fig. 2-C is segmented as two distinct
parts. To address this issue, we propose to ex-
ploit supplemental prior from 3D space by the
integration of a 3D detector [40–42] for further
merging. As shown in Fig. 2-Output, the con-
straint provided by additional 3D prior rectifies
the over-segmented instances while preserving
the capability to handle detailed objects.

At the primary merging stage, we incorporate not
only the affinity scores Ai,j but also the Euclidean
distances Di,j between nodes Ui and Uj , thus to

Algorithm 1 Instance-aware refinement

1: Input: bounding boxes {bbi}Nbb
i=1 in ascend-

ing order of volume, primary 3D segmenta-
tion masks l ∈ RN , threshold δ2

2: Output: Updated 3D segmentation l′

3: Oi ← ∅, l′ ← l
4: L← {max instance ID in l} + 1
5: for each bbi in {bbi}Nbb

i=1 do
6: Oi ← l ∩ bbi
7: for each instance ID O′

i in Oi do
8: σi← points in O′

i

points in {l′=O′
i}

9: if σi > δ2 then
10: {l′ = O′

i} ← L
11: end if
12: end for
13: L← L+ 1
14: end for

introduce a certain level of global awareness. Dynamic thresholds δ1 ∈ RNt are applied to reduce
the initial erroneous merges and subsequent error accumulation. Specifically, we multiply Ai,j with
decay factor ϵD to get the merging confident score δi,j between Ui and Uj :

δi,j = ϵD ·Ai,j =
1

Di,j
·Ai,j , (5)

where ϵD is the reciprocal of the Euclidean distance. Then we compare the confident score δi,j with
the threshold δ1 to judge whether to merge the nodes Ui and Uj . Therefore, the primary segmentation
results are obtained through iterating all pairs of nodes Nt times.

We further introduce supplemental prior from 3D space by employing a detection-based instance-
aware refinement. As shown in Algorithm 1, we gather all points Oi within the bounding box bbi, and
assess the proportion σi of points belong to instance ID O′

i in Oi to that of the entire scene P . If the
ratio σi exceeds a specified threshold δ2, it indicates high confidence that the points with instance ID
O′

i represent a portion of an over-segmented instance. We assign a new label to all points that exceed
the threshold, thereby rectifying the over-segmented instance. However, there is a possibility that
smaller objects which are in close proximity to or situated on larger objects are false-corrected. To
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Figure 3: Overview of our proposed ScanNetV2-INS. We present the new benchmark for 3D
class-agnostic instance segmentation, which rectifies incomplete annotations and incorporates more
instances based on ScanNetV2. Row (a) shows the comparison before and after revision, and row (b)
illustrates the object counts per scene between the two benchmarks.

mitigate this issue, we opt to pre-sort the bounding boxes based on size. In this way, the corrections
are performed in descending order of bounding box size to ensure that smaller objects retain their
independence in the final output.

3.2 ScanNetV2-INS

ScanNetV2 has served as a standard benchmark for evaluating model performance. However, it
includes a notable proportion of low-quality ground truth labels, potentially leading to misleading
results. To address this issue, we introduce a refined version of the dataset, termed ScanNetV2-INS,
wherein annotations are enhanced at the point level.

Imperfection in vanilla ScanNetV2. The original ScanNetV2 exhibits imperfections in its ground
truth annotations, primarily manifesting in two aspects. Firstly, certain obvious instances remain
unmarked. For example, as illustrated in Fig. 3-a top row, the board on the wall and papers on the
desk are neglected. Secondly, some instances are incompletely annotated. For instance, doors and
boards in Fig. 3-a bottom row that are clearly visible in clean point clouds feature large areas of black
(indicating "unlabeled") in the annotations. The prevalence of these significantly impacts the accuracy
of evaluation metrics and leads to erroneous estimations of model performance. Thus, corrective
measures are imperative.

Revision of ScanNetV2. With the aid of a recently released annotation tool AGILE3D proposed
in [43], we perform point-level updates on the ground truth annotations for all 312 scenes in the
validation set efficiently. The revision primarily addresses two aforementioned deficiencies, as shown
in Fig. 3-a right column. Firstly, we re-label the instances where the ground truth was obscured
by unlabeled black points, such as the door and boards. Secondly, we assign class-agnostic labels
to certain instances that were clearly discernible to the human perception but were not originally
annotated in the ground truth, such as the papers on the desk and the poster on the wall.
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Table 1: Instance number within varying point range of ScanNetV2 and ScanNetV2-INS dataset.

Dataset Point number of the instance

<500 500-1000 1000-2000 2000-5000 5000-10000 >10000

ScanNetV2 252 452 1119 1690 567 284
ScanNetV2-INS 692 748 1366 1873 626 291

Statistic analysis and limitation of ScanNetV2-
INS. Fig. 3-b demonstrates how many scenes
hold more than (10, 20, ..., 100) instances. In Tab.
1 we show the number of instances with vary-
ing point counts within specified ranges for two
datasets. ScanNetV2-INS dataset features more
smaller objects, which requires the model to have
finer-grained instance perception capabilities. As

Table 2: Instance count of ScanNetV2 and
ScanNetV2-INS dataset.

Dataset Instance Count

Min Max Avg Total

ScanNetV2 2 47 14 4364
ScanNetV2-INS 2 54 17 5596

a result, the instance count of our new dataset, as shown in Tab. 2, significantly increases. Therefore,
it better reflects and poses more challenges on the model performance. However, our dataset consists
of only the revised version of 312 scenes in the validation set, focusing on the evaluation use of 3D
class-agnostic instance segmentation in the context of no-training methods.

4 Experiments

In this section, we quantitatively evaluate our SA3DIP on ScanNet series (including the vanilla
ScanNetV2 [11], our ScanNetV2-INS, and more challenging ScanNet++ [12]), Matterport3D [44]
and Replica [45] datasets to demonstrate its effectiveness and robustness in 3D instance segmentation.
Qualitative visualizations for ScanNet series datasets are also provided for a more intuitive comparison
with other methods.

4.1 Experiment settings

Datasets. ScanNet [11] integrates a comprehensive array of 2D and 3D data sourced from indoor
environments, facilitated by an iPad application in tandem with depth sensors. This dataset includes
RGB and depth images, along with 3D point cloud data, all meticulously annotated with semantic
and instance labels. It encompasses an extensive collection of over 2.5 million views derived from
more than 1500 scans. In contrast, ScanNet++ [12] represents a recently introduced indoor dataset
exhibiting a similar composition to ScanNet but boasting higher-resolution 3D geometry and more
detailed data annotations. ScanNet++ data is captured using advanced equipment, including the Faro
Focus Premium laser scanner, iPhone 13 Pro, and a DSLR camera equipped with a fisheye lens. Our
proposed ScanNet-INS encompasses a revised version of all 312 validation scenes in ScanNetV2,
while maintaining consistency with ScanNetV2 in terms of data and label format. It provides a more
accurate metric and fairer comparison between methods.

Parameter settings. We conduct all experiments on a single RTX4090. The weights for geometry
and texture used in the complementary primitives generation are set as wn = 0.96 and wc = 0.04.
This is because texture prior such as RGB values are not robust enough when being used solely due to
lighting conditions, reflections, shadows, and noise collected by sensors. We conduct detailed ablation
study on the choice of the two weights in the later section. The threshold δ1 in the region growing
is empirically set as [0.9, 0.8, 0.7, 0.6, 0.5] for ScanNetV2 and ScanNetV2-INS, [0.9, 0.8, 0.7] for
ScanNet++, and the threshold δ2 in instance-aware refinement is set as 0.75 experimentally.

Evaluation metrics. We evaluate the quantitative results with the widely used Average Precision
score. Following [2, 7, 8, 25], we report AP with thresholds of 25% and 50% (denoted as AP25,
AP50) and averaged over all overlaps between [50% and 95%] at 5% steps (mAP). Since the 2D
foundation segmentation model produces class-agnostic masks, we ignore semantic class labels in
the evaluation and consider only the accuracy of the instance masks themselves.
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Table 3: Class-agnostic 3D instance segmentation comparison on ScanNetV2, ScanNetV2-INS, and
ScanNet++ datasets.

Method ScanNetV2 ScanNetV2-INS ScanNet++

mAP AP50 AP25 mAP AP50 AP25 mAP AP50 AP25

Closed-vocabulary
Mask3D [2] 31.1 44.9 58.0 29.1 43.9 56.3 9.9 17.3 25.8

Open-vocabulary
Felzenszwalb [39] 5.0 12.7 38.9 2.8 6.5 24.0 4.1 9.2 25.3

SAM3D [10]
(w/o ensemble) 12.4 28.7 57.4 12.5 28.9 57.8 1.1 4.5 15.4

SAM3D [10]
(w/ ensemble) 20.1 33.3 52.1 20.0 33.2 52.2 7.2 14.2 29.4

SAM-graph [7] 24.1 40.3 65.9 23.1 39.5 64.1 12.9 25.3 43.6
SAI3D [8] 30.8 50.5 70.6 28.9 49.2 69.7 17.1 31.1 49.5

SAMPro3D [9] 33.7 56.2 75.3 32.5 54.8 73.4 18.9 33.7 51.6

SA3DIP (ours) 41.6 64.6 81.3 36.1 58.6 76.3 21.4 36.4 53.6

Baselines. We compare our approach with both closed-vocabulary and open-vocabulary methods.
Mask3D [2] trained on ScanNetV2 serves as the closed-vocabulary baseline. Recent methods based
on leveraging 2D foundation models, including SAM3D [10] (with and without ensemble process),
SAM-graph [7], SAI3D [8], and SAMPro3D [9] are compared as open-vocabulary methods. In
addition, we compare with the traditional point grouping method proposed by Felzenszwalb [39].

4.2 Results on ScanNet series

Tab. 3 shows the quantitative results of our approach in comparison with other methods on ScanNetV2,
ScanNetV2-INS, and ScanNet++ datasets. Our method achieves the best performance among all
three datasets, showing the effectiveness of our approach. Specifically, our SA3DIP outperform 7.9%
mAP, 8.4% AP50, and 6.0% AP25 on ScanNetV2, 3.6% mAP, 3.8% AP50, and 2.9% AP25

on ScanNetV2-INS. On the challenging ScanNet++, our method still obtains 2.5% mAP, 2.7%
AP50, and 2.0% AP25 gain. Note that all methods except SAM3D experience a drop in precision
on ScanNetV2-INS dataset compared with the vanilla ScanNetV2. This indicates that our proposed
ScanNetV2-INS poses more challenges in identifying fine-grained objects and yields fairer metrics.
SAM3D, due to its limited segmentation capability, tends to produce a significantly higher number
of instances than the actual objects in the scene. Consequently, its metrics do not show noticeable
changes on finer-grained ScanNetV2-INS.

We also present qualitative results in Fig. 4. The visual comparison further proves the effectiveness
of our method. As shown in the first two rows of Fig. 4, our method maintains a better instance
awareness and is capable of identifying the tables as a whole. Moreover, by utilizing more accurate
3D primitives, our approach is the only one able to segment the door out from the wall, as shown in
the third row of Fig. 4. This showcases the significance of exploiting the potential 3D priors.

4.3 Ablation studies

We conduct detailed ablation studies on prior with varying weights wn and wc. We report the metrics
in Tab. 4. We assigned several weights for geometry and texture to test their contribution. Specifically,
we conduct one with configuration of wn = 0.4 and wc = 0.6 which yields the similar number of 3D
primitives as the primitives used in SAM3D, SAI3D and others, for a fair comparison.

It can be observed that texture prior are not robust enough when being used solely due to the influence
of shadows, reflection and so on. Therefore, we choose to assign less weight to the textural prior,
thus to exploit it while minimizing its negative impact. The experiments show that the setting with
wn = 0.96 and wc = 0.04 suits best for our approach.

However, it is noticed that incorporating only complementary primitives yields a slight drop in
average precision on both datasets. It is related to the definition of the metric AP (ratio of correctly
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Figure 4: Visual comparison between our method with SAM3D [10], SAMPro3D [9], and SAI3D [8]
on ScanNetV2, ScanNetV2-INS, and ScanNet++ dataset. Among all datasets, our method shows the
most robust and accurate segmentation.

Table 4: Ablation studies on prior we exploit with varying weights.

wn wc 3D Space Prior ScanNetV2 ScanNetV2-INS

mAP AP50 AP25 mAP AP50 AP25

1 0 × 30.8 50.5 70.6 28.9 49.2 69.7
0 1 × 10.4 18.1 32.5 9.5 17.0 31.1

0.4 0.6 × 27.3 47.4 69.8 25.6 46.3 69.4
0.96 0.04 × 29.3 49.2 70.5 27.4 48.3 70.4

1 0 ✓ 40.8 63.6 80.7 35.9 57.8 75.4
0 1 ✓ 12.7 22.1 37.2 11.0 19.7 34.1

0.4 0.6 ✓ 39.1 62.7 80.2 33.5 56.3 75.0
0.96 0.04 ✓ 41.6 64.6 81.3 36.1 58.6 76.3

identified instances to the total number of identified instance). This AP metric is more in favor of
under-segmentation rather than over-segmentation, since the former yields high precision and fewer
false positive cases, while the latter gives fewer precision and higher recall.

4.4 More experiments

We conduct further experiments and corresponding ablation studies on both Matterport3D [44] and
Replica [45] dataset to test the robustness and generalization ability of our method. Matterport3D
dataset contains 194,400 RGB-D images of 90 building-scale indoor scenes and exhibits more view
changes on its 2D frames compared to ScanNet. Replica dataset incorporates 18 highly photo-realistic
3D indoor scene reconstructions with dense geometry, high resolution and dynamic range textures.
Our method clearly gives better quantitative results, as shown in Tab. 5.
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Table 5: Experiments on Matterport3D and Replica datasets.

wn wc 3D Space Prior AP AP25 AP50

Matterport3D dataset [44]
OpenMask3D [25] / / × 15.3 28.3 43.3

OVIR-3D [37] / / × 6.6 15.6 28.3
SAM3D w/ ensemble [10] 1 0 × 10.1 19.4 36.1

SAI3D [8] 1 0 × 18.9 35.6 56.5

Ablation of ours
Ours #1 1 0 ✓ 19.8 36.6 56.2
Ours #2 0.9 0.1 × 18.1 35.7 62.3
Ours #3 0.9 0.1 ✓ 20.6 38.3 61.0

Replica dataset [45]
SAM3D w/o ensemble [10] / / × 11.9 22.9 38.4
SAM3D w/ ensemble [10] 1 / × 12.4 20.0 32.0

SAMPro3D [9] 1 0 × 13.1 25.2 44.7
SAI3D [8] 1 0 × 20.4 30.7 42.9

Ablation of ours
Ours #1 1 0 ✓ 21.0 31.5 43.6
Ours #2 0.9 0.1 × 20.8 32.8 46.2
Ours #3 0.9 0.1 ✓ 22.6 34.2 47.1

4.5 Limitations

Due to the trade-off between efficiency and accuracy, we choose to compute 3D superpoints based
on only 3D priors. This yields an extremely short time of execution within a few seconds, while it
may lead to an overwhelming number of superpoints which introduces challenges in the merging
process. Moreover, for high-resolution point clouds with vivid light and shade effects, the superpoints
generated based on geometric and texture is not enough yet. One approach is to design a more
sophisticated pre-segmentation model with semantic awareness. Besides, though constraints provided
by 3D prior are introduced, the affinity matrix based on 2D masking still relies heavily on the accuracy
of 2D foundation segmentators. Designing a more robust merging algorithm or better leveraging
various 2D foundation models shows promise in the future.

5 Conclusion

In this paper, we introduce a novel method for segmenting any 3D instances by exploiting the
potential 3D priors. The key idea is to incorporate more 3D priors into the 2D foundation model
guided pipeline and leverage not only knowledge transferred from 2D space but also features in
3D space. We first generate complementary 3D superpoint primitives based on both geometric
and textural priors to reduce the initial errors that accumulate in subsequent procedures. Then
we introduce supplemental constraints from the 3D space by using a 3D detector. Along with
the constructed affinity matrix by using 2D masks, the region growing and refinement process is
performed on the 3D primitives. Furthermore, we propose ScanNetV2-INS with complete ground
truth labels and supplement additional instances for 3D class-agnostic instance segmentation, which
produces unbiased metrics on comparing different methods. Experimental evaluations on ScanNetV2,
ScanNetV2-INS, and ScanNet++ datasets demonstrate the effectiveness of our approach. We believe
that we pioneer at exploiting the importance of 3D priors in the 2D foundation model guided pipeline,
and it should draw attention toward future research that methods trying to extend 2D foundation
models into 3D space should not overlook the role of inherent 3D priors.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The research topic of our work is 3D instance segmentation by exploit addi-
tional 3D priors. In the introduction, we have clearly presented the existing problems in this
field and outlined our contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitation and promising solutions of our method in
Section 4.4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: There is no theory assumptions or theoretical results in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present all the information needed to reproduce the results. The formulas
and experimental settings are listed in Section 3.1 and 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and newly proposed dateset will be available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings are listed in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The overall pipeline described in the paper requires no training, thus the
experimental results are consistent for each time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resource used is described in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impact at the end of the conclusion section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our research conducts experiment on widely-used datasets. Therefore, it poses
no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credited the codes and data used in this paper at the reference
section.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The proposed method and dataset is well documented as Section 3.1, 3.2, and
4.1.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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