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ABSTRACT

A fundamental requirement for intelligent systems is the ability to learn contin-
uously under changing environments. However, models trained in this regime
often suffer from catastrophic forgetting. Leveraging pre-trained models has re-
cently emerged as a promising solution, since their generalized feature extractors
enable faster and more robust adaptation. While some earlier works mitigate for-
getting by fine-tuning only on the first task, this approach quickly deteriorates as
the number of tasks grows and the data distributions diverge. More recent research
instead seeks to consolidate task knowledge into a unified backbone, or adapting
the backbone as new tasks arrive. However, such approaches may create a (po-
tential) mismatch between task-specific classifiers and the adapted backbone. To
address this issue, we propose a novel Local Classifier Alignment (LCA) loss to
better align the classifier with backbone. Theoretically, we show that this LCA
loss can enable the classifier to not only generalize well for all observed tasks, but
also improve robustness. Furthermore, we develop a complete solution for con-
tinual learning, following the model merging approach and using LCA. Extensive
experiments on several standard benchmarks demonstrate that our method often
achieves leading performance, sometimes surpasses the state-of-the-art methods
with a large margin.

1 INTRODUCTION

In real-world scenarios, data arrives continuously, requiring deployed models to adapt to evolving
distributions while preserving previously learned knowledge. This challenge, known as the stabil-
ity–plasticity dilemma in continual learning, captures the difficulty of balancing adaptation with
retention. A widely adopted benchmark approximates this setting by partitioning a dataset into dis-
joint tasks and training a model sequentially without access to earlier data (Wang et al., 2024). At
test time, the model must handle all tasks without being given the task identity. This setup is referred
to as Class-Incremental Learning (CIL) (Van de Ven et al., 2022).

Pre-trained models (PTMs) have recently emerged as a strong foundation for this setting, in contrast
to earlier methods that trained networks from scratch (Li & Hoiem, 2017; Kirkpatrick et al., 2017).
PTMs can be obtained through supervised or self-supervised training, and include large multimodal
models such as CLIP Radford et al. (2021) as well as vision backbones like the Vision Transformer
(Dosovitskiy et al., 2020). Their broad generalization ability makes them effective feature extrac-
tors, requiring only lightweight adaptation and thereby reducing forgetting compared to traditional
training.

Nevertheless, naive sequential adaptation still leads to degradation on past tasks. Restricting updates
to the first task avoids forgetting but blocks useful transfer to later ones. Since each task introduces
unique information, the final model must capture both shared and task-specific components. A
natural approach is to incrementally adapt on each task and then merge the resulting models into
a unified backbone. Insights from Linear Mode Connectivity and the Lottery Ticket Hypothesis
(Frankle et al., 2020) suggest that task-specific solutions can be connected through low-loss paths
and rely on sparse, critical parameters, making them amenable to combination. Advances in model
merging (Ilharco et al., 2022; Yadav et al., 2023) further support this strategy, with both theoretical
guarantees (Li et al., 2025) and empirical evidence on adaptation tasks (Akiba et al., 2025) showing
that merged models can preserve and even enhance knowledge. Thus, it is reasonable to treat each
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task-specific model as a standalone expert containing complementary knowledge, whose consoli-
dation yields a stronger overall backbone. However, merging backbones across tasks introduces a
new challenge: classifiers trained independently may no longer align with the integrated backbone.
Because these classifiers cannot be retrained without access to past data, even small parameter shifts
can lead to severe drops in performance on earlier tasks. Addressing this misalignment is the central
focus of our work.
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Figure 1: A comparison between IM and IM with LCA.
IM is the result after only done the Incremental Merging
step, while IM+LCA has Local Classifier Alignment as
the last step.

Our contributions in this work are as follows:

• We introduce a novel loss, Local Clas-
sifier Alignment (LCA), for training
CIL classifiers. We provide theoreti-
cal analysis showing that LCA ensures
both high generalization and robust-
ness. Such a theory is crucial to sup-
port reliability of LCA and trustwor-
thy CIL.

• We propose a new CIL framework in
which LCA serves as the main align-
ment loss to reduce mismatches be-
tween classifiers and the backbone af-
ter learning new tasks. In our frame-
work, each class is represented as a
Gaussian in the latent space, and LCA
jointly optimizes all classifiers.

• We conduct extensive experiments on
seven benchmark datasets. Our results
show that LCA consistently improves
performance over baselines, enhances robustness under diverse scenarios, and can be inte-
grated with other CIL methods to further boost their effectiveness. Figure 1 shows superi-
ority of LCA on seven benchmark datasets.

2 RELATED WORKS

Representation-Based Methods. This line of research leverages the representational power of
large pre-trained models for continual learning (Wang et al., 2024). Trained on massive and diverse
datasets, these models provide strong transferability and inherent robustness against forgetting. One
prominent direction adapts prompting techniques from natural language processing, where prompts
are modeled as learnable parameters attached to the inputs (Wang et al., 2022b;a; Tran et al., 2025).
These prompts act as additional instructions that guide model predictions during continual learn-
ing. Another direction adapts the pre-trained backbone only once during the first task by using
parameter-efficient fine-tuning (PEFT) modules and then relies on class prototypes for inference
(Panos et al., 2023; Zhou et al., 2025; McDonnell et al., 2023; Perez et al., 2018). Such prototype-
based approaches classify via cosine similarity can avoid forgetting because accumulated prototypes
across tasks are tasks order-invariant. However, empirical evidence shows that adaptation only in
the first task is insufficient, since data distributions in real-world scenarios vary substantially across
tasks, which limits this method’s applicability in long training horizons.

Incremental Backbone Evolution. A complementary line of research updates the backbone
throughout the task sequence. For example, SLCA (Zhang et al., 2023) reduces forgetting by apply-
ing a smaller learning rate to the backbone than to the classifier, while methods such as MagMax
(Marczak et al., 2024), EASE (Zhou et al., 2024), and MOS (Sun et al., 2025b) focus on integrat-
ing task-specific components into a unified backbone. In all cases, past classifiers are typically
frozen to avoid bias toward the current task’s data, which inevitably creates a mismatch between the
evolving backbone and the fixed classifiers. To mitigate this issue, EASE reweights old classifiers
using semantic similarity between new and old prototypes, while MOS dynamically selects suitable
backbone adapters at inference time. Our approach differs in that we retrain all classifiers after the
unification step using a novel loss that emphasizes local robustness, thereby directly reducing the
mismatch between backbone and classifiers and improving the stability of the overall model.
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Model Merging. Another related direction is model merging, which has recently gained attention
for constructing a unified model from independently trained task-specific ones. Early methods such
as FisherMerging (Matena & Raffel, 2022) use the Fisher Information Matrix to weight parameter
importance, while Task Arithmetic (Ilharco et al., 2022) represents task updates as vectors, enabling
explicit addition or subtraction of knowledge. More advanced approaches like TIES-Merge (Yadav
et al., 2023) address task interference by resolving sign conflicts across task vectors. Although these
methods show strong performance in out-of-domain generalization (Rame et al., 2022), applying
them directly to continual learning often introduces a mismatch between the merged backbone and
fixed classifiers, and incurs storage overhead since parameters from all past tasks must be retained.
In contrast, our approach builds on the spirit of model merging by incrementally consolidating PEFT
modules, which reduces memory requirements, and coupling this with a continuous training scheme
that solidifies accumulated knowledge across tasks.

3 METHODOLOGY

This section presents our methodology for continual learning, which consists of two complemen-
tary components. The first focuses on incrementally merging task-specific backbones into a unified
model, while maintaining proximity across tasks by initializing new training from the latest merged
backbone. The second addresses the mismatch that arises when frozen task-specific classifiers inter-
act with the consolidated backbone, introducing an alignment mechanism based on class-wise local
regions. Together, these components enable the model to effectively retain past knowledge while
adapting to new tasks.

3.1 PROBLEM FORMULATION

In class-incremental learning (CIL), the objective is to train a single model sequentially on a series
of (potentially infinite number of) tasks. Each task i is associated with a dataset

Di = {(x, y) | x ∈ Xi, y ∈ Yi},
where x denotes an input sample and y its corresponding label. Here, Xi represents the input space
and Yi the label space for task i. A defining characteristic of the CIL setting is that the label spaces
of different tasks are strictly disjoint:

∀i ̸= j, Yi ∩ Yj = ∅.
This assumption implies that each new task introduces a set of novel classes that the model has not
encountered before. Consequently, the model must continuously expand its knowledge while pre-
serving performance on previously learned classes, making the prevention of catastrophic forgetting
a central challenge in CIL.

There are different strategies for constructing classifiers in continual learning, such as Nearest Class
Mean (NCM) classifiers, which assign labels by comparing test features to stored class prototypes.
In this work, however, we focus on the more general and widely used setup of progressively ex-
panding Multi-Layer Perceptrons (MLPs) on top of the feature extractor. Instead of training a single
unified classifier over all classes, a new MLP head is added for each task, with its output dimension
matching the number of classes introduced by that task. This approach not only reduces storage but
also mitigates forgetting, since earlier classifiers remain frozen and are not modified during subse-
quent training. After t tasks, the classifier consists of a set of task-specific heads {θcls

1 , θcls
2 , . . . , θcls

t },
and inference is performed by evaluating each head separately and concatenating their outputs:

h(x) = concat
(
h(x; θcls

1 ), h(x; θcls
2 ), . . . , h(x; θcls

t )
)
.

3.2 INCREMENTAL KNOWLEDGE CONSOLIDATION

Although pre-trained models possess strong generalization, they still lack the domain-specific
knowledge needed to serve as effective feature extractors. As a result, a fine-tuning stage is required.
To prevent forgetting during continuous fine-tuning, early methods often assume that task distribu-
tions remain close and restrict adaptation to the first task. However, as the number of tasks grows
and their distributions diverge, performance on earlier tasks inevitably deteriorates. Inspired by re-
search on model merging, we propose an incremental integration scheme that unifies task-specific
backbones into a single consolidated backbone.
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Algorithm 1 Incremental Merging (IM)

Input: Datasets {D1, . . . ,DT }, pretrained model θpretrained, base PEFT θpeft0
Output: Merged PEFT module θmerged

1: τ ← 0 ▷ Task vector accumulator
2: for i = 1 to T do ▷ Sequentially process tasks
3: θpefti ← finetune(θpefti−1

,Di) ▷ Task-i adaptation
4: τcurr ← θpefti − θpeft0 ▷ Task vector
5: for k = 1 to d do ▷ d = number of parameters
6: if |τ (k)curr | ≥ |τ (k)| then
7: τ (k) ← τ

(k)
curr ▷ Keep larger magnitude, preserve sign

8: end if
9: end for

10: θmerged ← θpeft0 + α · τ ▷ Update merged PEFT
11: end for

To avoid excessive growth in stored parameters across tasks, we only keep the previously merged pa-
rameters and the current task’s parameters at each step. We construct task vectors by subtracting the
base PEFT parameters, then perform element-wise selection based on absolute magnitude. Specif-
ically, we flatten both vectors and, for each coordinate, retain the value with the larger absolute
magnitude while preserving its sign. If all task parameters were merged simultaneously, the pro-
cedure would resemble sign-based selection using the summed contributions, as in TIES-Merging
(Yadav et al., 2023). The incremental merging scheme is summarized in Algorithm 1.

To further limit drift between tasks, training proceeds sequentially by using the latest merged back-
bone as the initialization for each new task, instead of reinitializing from the base parameters.
This practice keeps successive solutions close in parameter space, a property emphasized in model-
merging theory (Li et al., 2025) as important for stable and effective merging.

3.3 LOCAL CLASSIFIER ALIGNMENT

In contrast with a generalized feature extractor, task-specific classifiers should remain well separated
to achieve strong classification performance. Because datasets from previous tasks are unavailable,
updating earlier classifiers during new training would move them away from their previously opti-
mized values. The standard pipeline therefore trains and merges the backbone while freezing the old
classifiers, which introduces a mismatch between the unified backbone and those fixed heads. We
address this discrepancy with an alignment step that bridges the two components.

Consider the CIL approach where we use a pretrained model such as VIT to produce high-quality
embeddings of the input samples, a Gaussian distribution (or prototype) to represent a class, and a
classifier. This approach has been investigated heavily and often high-performing CIL methods. At
each time step t, one can use a learning method to train a classifier ht based on the classifier ht−1

which already fitted for prior tasks and a dataset Dt for the current task. The overall performance
of ht depends heavily on the employed learning algorithm. A good algorithm can well align the
prototypes and classifier. However, this might not be always the case, and hence can degrade the
overall CIL performance.

We propose a simple finetuning step, called Local Classifier Alignment (LCA), to better align the
classifier and prototypes. Specifically, LCA minimizes the following loss

L(D, ht) =
1

Ct

Ct∑
i=1

Li (1)

Li = Ex∼Di
[ℓ(ht,x)] + λEx,x′∼Di

[∣∣ℓ(ht,x)− ℓ(ht,x
′)
∣∣] (2)

where Di contains i.i.d. samples from distribution Ni, and D = {D1, ...,Dt}.
Basically, LCA tries to simultaneously minimize the loss for each class and keep the loss less sensi-
tive to a small change in the input samples around the class prototypes. The class loss can be seen
from the first term Ex∼Di [ℓ(ht,x)], while the sensitivity comes from the second term in each Li.
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Such a term can be seen as a regularizer to penalize the classifier for unstable predictions. A larger
value for λ suggests a stronger penalty for sensitivity of the loss.

It is worth noting that the novelty of LCA comes from the regularization term. It not only helps
improve robustness of the classifier, but also can reduce overlapping between classes. Indeed, when
using the first term as the main objective for training the classifier, some samples randomly generated
by Ni of one class can lie far from the i-th class prototype and hence can be closer to some other
class prototypes. This can harm the training for the classifier. The second term can help us reduce the
negative effect from those potentially harmful samples, under a suitable choice of the regularization
constant.

3.4 THEORETICAL ANALYSIS

We next analyze the generalization ability of the classifier ht. Until time step t, the classifier ht

already has learned from Ct classes. We want to estimate its test error for those learned tasks. To this
end, the classical tradition is to estimate L(P,h) = 1

Ct

∑Ct

i=1 Ex∼Ni [ℓ(ht,x)], which represents the
overall expected error for the learned tasks.

Let
⋃t

i=1Zi be the decomposition of the data space into non-overlapping local areas, with Zi as the
local area with centroid µi, where µi is the mean of the Gaussian distribution Ni, for each index i.
We have the following bound for the expected error of the overall classifier up to time step t, whose
proof appears in Appendix A.
Theorem 3.1. Consider a model ht learned from a dataset D = {D1, ...,Dt}, where Di con-
tains ni i.i.d. samples from distribution Ni for each i ≤ Ct, and a bounded loss ℓ. De-
note P = 1

Ct

∑Ct

i=1Ni as the overall distribution, n =
∑Ct

i=1 ni, ℓmax = supz ℓ(h, z), and
ϵ̄i(ht) = Ez∼Ni,s∼Di

[|ℓ(ht, z) − ℓ(ht, s)| : z, s ∈ Zi] for each index i. For any δ > 0, the
following holds with probability at least 1− δ:

L(P, ht) ≤ L(D, ht) +

Ct∑
i=1

ni

n
ϵ̄i(ht) + ℓmax

√
Ct ln 4 + 2 ln(1/δ)

n
(3)

This result shows that the test error of the classifier ht can be controlled by both the training error and
the robustness term ϵ̄ =

∑Ct

i=1
ni

n ϵ̄i(ht), which tells how robust is the loss w.r.t. to a small change in
the input of the samples around the class prototypes. A stronger robustness (i.e., smaller ϵ̄) can lead
to a tighter bound on the test error, suggeting a better model. When both L(D, ht) and ϵ̄ are small,
the model must have small test error and hence generalize well on unseen data. On the other hand,
a bad model will exhibit a large training error L(D, ht) or large ϵ̄. Therefore, Theorem 3.1 plays as
the theoretical foundation for our LCA loss (1). Training by this loss would arguably improve both
performance and robustness of the classifier, which is crucial for real-world CIL tasks.
Corollary 1. Given the notations and assumptions as in Theorem 3.1, if ni = m for all i, then the
following holds with probability at least 1− δ:

L(P, ht) ≤ L(D, ht) +
1

Ct

Ct∑
i=1

ϵ̄i(ht) + ℓmax

√
ln 4

m
+

2 ln(1/δ)

mCt
(4)

This is a direct consequence of Theorem 3.1. It suggests that, to assure high generalization, the
number m of samples for each class should not be too small when doing alignment. If one use a
small m, the uncertainty part in (4) will be large, meaning some randomness (by noise) can harm
the alignment step.
Remark 1. Although the LCA loss (1) is introduced to the CIL context, the loss is general enough to
be employed in many other contexts. Indeed, one can use LCA loss to train a CIL classifier. Also,
one can easily plug LCA to do a finetuning step for the existing CIL methods. In those cases, the
theoretical benefits of LCA shown in Theorem 3.1 may remain valid.

It is worth noting that the result in Theorem 3.1 holds when the class distributions (or prototypes)
are fixed. This means Theorem 3.1 applies to the cases that learning a new task does not change the
latent features of the examples from old classes. For the cases of prototype changes, our theoretical
results do not directly apply.
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Table 1: Final average accuracy comparison on seven datasets with ViT-B/16-IN1K as the pretrained
backbone. The best result is highlighted in bold, while the second best is highlighted in italic.

Method CIFAR100 IN-R IN-A CUB OB VTAB CARS Overall
APER+Adapter 90.8 ± 0.5 78.8 ± 0.6 58.9 ± 1.3 89.7 ± 1.3 80.3 ± 0.4 90.7 ± 0.6 50.6 ± 1.1 77.1
APER+Finetune 81.7 ± 0.9 72.1 ± 0.8 58.7 ± 3.7 89.5 ± 1.4 77.8 ± 1.2 91.8 ± 1.4 53.2 ± 1.4 75.0
APER+SSF 89.5 ± 1.0 78.1 ± 1.1 61.6 ± 0.5 89.6 ± 1.1 80.3 ± 0.6 91.8 ± 1.5 51.3 ± 1.1 77.5
APER+VPT-Deep 89.0 ± 0.9 78.8 ± 0.7 57.0 ± 0.4 89.0 ± 1.2 79.8 ± 0.4 91.9 ± 1.4 50.6 ± 3.0 76.6
APER+VPT-Shallow 88.1 ± 0.9 67.3 ± 3.5 56.9 ± 1.4 89.5 ± 1.4 79.7 ± 0.9 91.5 ± 0.8 50.9 ± 0.8 74.8
CODA-Prompt 91.0 ± 0.2 78.2 ± 0.4 48.1 ± 0.9 75.6 ± 1.2 71.0 ± 0.1 65.6 ± 2.6 26.3 ± 0.6 65.1
DualPrompt 86.7 ± 0.6 74.6 ± 0.5 55.3 ± 1.5 78.9 ± 1.0 74.4 ± 1.2 84.0 ± 5.9 49.4 ± 2.1 71.9
EASE 91.7 ± 0.3 82.4 ± 0.5 67.8 ± 1.8 89.5 ± 1.2 80.8 ± 0.2 93.3 ± 0.1 48.1 ± 1.2 79.1
L2P 87.7 ± 1.4 77.3 ± 0.6 52.6 ± 1.7 75.8 ± 1.8 73.8 ± 1.2 82.4 ± 2.8 53.4 ± 1.2 71.9
MOS 94.3 ± 0.3 83.3 ± 0.6 67.6 ± 2.0 92.3 ± 0.6 86.1 ± 0.7 92.4 ± 0.5 71.4 ± 19.6 83.9
SLCA 93.7 ± 0.3 85.1 ± 0.3 45.1 ± 19.8 90.2 ± 0.9 82.7 ± 0.6 91.1 ± 3.4 74.6 ± 2.2 80.4

IM 92.8 ± 0.1 84.3 ± 1.0 66.5 ± 1.1 86.7 ± 0.8 81.1 ± 0.8 84.6 ± 4.9 70.1 ± 1.5 80.9
IM+LCA 94.8 ± 0.3 85.8 ± 0.2 75.0 ± 0.5 90.8 ± 0.3 81.4 ± 0.5 95.2 ± 1.1 76.2 ± 1.4 85.6

4 EXPERIMENTS

This section presents the details of our experiments on seven benchmark datasets, along with an
ablation study to examine some design aspects of our method.

4.1 EXPERIMENT SETUP

Dataset. We follow the setup in (McDonnell et al., 2023) to select datasets and define the number
of classes in each incremental task. Specifically, we evaluate on CIFAR100 (Krizhevsky & Hinton,
2009), ImageNet-R (IN-R) (Hendrycks et al., 2021a), ImageNet-A (IN-A) (Hendrycks et al., 2021b),
CUB-200 (CUB) (Welinder et al., 2010), OmniBenchmark (OB) (Zhang et al., 2022), VTAB (Zhai
et al., 2019), and StanfordCars (CARS) (Krause et al., 2013). All datasets are split into 10 tasks,
except VTAB which is divided into 5.

Baselines. the following methods are used for comparison:

• Ours: We consider two variants: IM (Incremental Merging) and IM+LCA, where the
latter incorporates LCA in the alignment phase.

• Pre-trained based CIL methods: CODA-Prompt (Smith et al., 2023), DualPrompt (Wang
et al., 2022a), L2P (Wang et al., 2022b), EASE (Zhou et al., 2024), MOS (Sun et al., 2025b),
SLCA (Zhang et al., 2023), APER (Zhou et al., 2025).

For fair comparison and reproducibility, we adopt the implementation from (Sun et al., 2025a) for
all baseline methods and use the same pre-trained backbone, ViT-B/16 trained on ImageNet-1K
(ViT-B/16-IN1K) (Dosovitskiy et al., 2020).

Training. We apply LoRA (Hu et al., 2022) and ensure a consistent computational budget by fixing
the low-rank dimension to 64. All experiments are carried out on a single NVIDIA RTX 4090 GPU
running Ubuntu 22.04. Detail on hyperparameters is mentioned in Appendix B.

Evaluation Metrics. Following standard practice, we report the final average accuracy, defined as
AA = 1

T

∑T
i=1 AT,i, where AT,i denotes the accuracy on task i after training on the final task T .

4.2 EXPERIMENT RESULTS

4.2.1 OVERALL BENCHMARK

Table 1 reports the mean and standard deviation of accuracy across three random seeds (1993, 1994,
1995). With LCA, the final model achieves the highest performance on five out of seven benchmark
datasets, yielding an overall improvement of nearly 2%. Unlike methods such as EASE (Zhou et al.,
2024) and MOS (Sun et al., 2025b), which either expand the backbone to integrate new tasks or rely
on complex inference procedures, our approach requires no additional mechanism. The backbone is
incrementally merged without storing past parameters or samples, and the only extra storage is the
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Figure 2: Performance curves of different methods across all tasks and datasets. All methods use
ViT-B/16-IN1K as the pre-trained backbone without any additional exemplars.
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Figure 3: Effect of λ on the accuracy on two datasets.

mean and covariance of each encountered class, which scales as O(n) with the number of classes.
Figure 2 further shows that LCA consistently outperforms other methods across most datasets, with
a notable improvement of 8% on ImageNet-A compared to the runner-up.

4.2.2 ROBUSTNESS MEASUREMENT

Following the standard (Hendrycks & Dietterich, 2019; Taori et al., 2020), we measure the per-
formance of IM and IM+LCA on two robustness benchmarks, CIFAR100-C and CIFAR100-P.
CIFAR100-C is constructed by applying 19 types of common corruptions (e.g., noise, blur, weather,
and digital distortions) at 5 severity levels to the original CIFAR-100 test set, thereby evaluating
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Figure 4: (a) Complementary evaluation of LCA when using LCA for MOS and SLCA. (b) Robust-
ness performance of IM and IM+LCA on corruption and perturbation benchmarks.
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Figure 5: Accuracy performance of IM and IM+LCA under different corruption and perturbation
types. The relative difference between IM and IM+LCA is highlighted.

model robustness under distribution shift. The final corruption robustness accuracy is computed as

AccC =
1

19× 5

19∑
c=1

5∑
s=1

Ac,s,

where Ac,s is the accuracy under corruption type c with severity s.

CIFAR100-P, in contrast, focuses on prediction stability under perturbations. Each image is per-
turbed by transformations such as translations, rotations, or noise, and the model’s consistency is
measured across perturbed versions. The perturbation robustness accuracy is defined as

AccP =
1

|P|
∑
p∈P

1

Np

Np∑
i=1

Ap,i,

where P denotes the set of perturbation types, Np is the number of perturbed samples for type p,
and Ap,i is the accuracy on the i-th perturbed sample.
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Finally, to summarize robustness across both benchmarks, we report an overall robustness score:

Robustness = 1
2 (AccC + AccP) .

Together, these benchmarks evaluate both accuracy under distributional corruption and resilience of
predictions under small perturbations.

Figures 4b and 5 summarize the robustness results. Figure 4b shows that when being trained with
LCA, the model obtains a clear improvement on robustness, with more than +2% gain in mean
accuracy on CIFAR100-C and a +2.5% gain on CIFAR100-P. The radar plots in Figure 5 further
reveal that LCA consistently improves accuracy across all corruption and perturbation types. These
results confirm that LCA strengthens robustness both on average and across diverse perturbations.

4.2.3 ABLATION STUDY

LCA as a complementary component. We further evaluate the applicability of LCA on SLCA
(Zhang et al., 2023) and MOS (Sun et al., 2025b), two methods that also update the backbone
progressively. To asses the impact of our proposed method, we construct two baselines by omitting
the final step of these methods, and retaining only the update backbone part. From these, we build
their counterparts, SLCA-LCA and MOS-LCA, which include the aligment step as the final step. We
measure the average accuracy and report in Figure 4a. We do not find the optimal hyperparameters
but fixing the value of λ at 0.1, yet the variants with LCA show improvements on all scenerios,
notably in IN-A, CUB, VTAB, and CARS, in some cases even matching the reported results of the
original methods (SLCA-LCA achieves 89.0% in CUB compare to 90.0% of the original, MOS-
LCA achieves 93.1% in CIFAR100 compare to 94.3%).

Hyperparameter sensitivity. In our method, λ controls the strength of the robustness penalty in
the loss function. While an appropriate choice of λ is important for achieving strong performance
as Figure 3 shows that overly strong regularization can degrade results. In practice, we find that
λ = 0.1 provides stable and reliable performance across all datasets.

5 CONCLUSION

This paper investigates the mismatch that may arise between a continuously updated backbone and
the task-specific classifiers in continual learning. We propose a theoretically grounded loss function,
with a provable bound on classification error, which enables the training of all classifiers using fea-
tures generated from a Gaussian distribution. Extensive experiments on seven benchmark datasets
confirm the effectiveness of our method, and additional robustness evaluations under various noisy
conditions demonstrate consistent improvements. While this work primarily focuses on addressing
the alignment phase, future research will explore integrating the proposed loss into the end-to-end
training pipeline. Such an approach has the potential to further enhance the robustness of the back-
bone itself and the performance of the overall CIL method.

Despite having significant contributions, our work still remains some limitations. For example, we
have not investigated the proposed LCA loss in other contexts. Furthermore, although providing a
theoretical foundation and novel insights, the developed theory does not work with the cases when
the whole backbone changes over time. Addressing those limitations can open interesting directions
for future research.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. The hyperparameters re-
quired for both training and inference are explicitly reported in Appendix B. The complete source
code is provided as supplementary material, where users can download and unzip the package, fol-
low the installation instructions, and run the main script to reproduce our experiments. All datasets
used in this work are publicly available, implementation details and evaluation protocols are de-
scribed in Section 4.1. Together, these resources are intended to make it straightforward for others
to replicate and build upon our work.
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aging model merging for seamless continual learning. In European Conference on Computer
Vision, pp. 379–395. Springer, 2024.

10

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://ai.stanford.edu/~jkrause/cars/car_dataset.html
https://ai.stanford.edu/~jkrause/cars/car_dataset.html


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances
in Neural Information Processing Systems, 35:17703–17716, 2022.

Mark D McDonnell, Dong Gong, Amin Parvaneh, Ehsan Abbasnejad, and Anton Van den Hengel.
Ranpac: Random projections and pre-trained models for continual learning. Advances in Neural
Information Processing Systems, 36:12022–12053, 2023.

Aristeidis Panos, Yuriko Kobe, Daniel Olmeda Reino, Rahaf Aljundi, and Richard E Turner. First
session adaptation: A strong replay-free baseline for class-incremental learning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 18820–18830, 2023.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari,
and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. Advances in
Neural Information Processing Systems, 35:10821–10836, 2022.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. Advances in neural information processing systems, 30, 2017.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim,
Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual de-
composed attention-based prompting for rehearsal-free continual learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 11909–11919, 2023.

Hai-Long Sun, Da-Wei Zhou, De-Chuan Zhan, and Han-Jia Ye. Pilot: A pre-trained model-based
continual learning toolbox. SCIENCE CHINA Information Sciences, 68(4):147101, 2025a. doi:
https://doi.org/10.1007/s11432-024-4276-4.

Hai-Long Sun, Da-Wei Zhou, Hanbin Zhao, Le Gan, De-Chuan Zhan, and Han-Jia Ye. Mos: Model
surgery for pre-trained model-based class-incremental learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 39, pp. 20699–20707, 2025b.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig
Schmidt. Measuring robustness to natural distribution shifts in image classification. Advances
in Neural Information Processing Systems, 33:18583–18599, 2020.

Quyen Tran, Tung Lam Tran, Khanh Doan, Toan Tran, Dinh Phung, Khoat Than, and Trung Le.
Boosting multiple views for pretrained-based continual learning. In The Thirteenth International
Conference on Learning Representations, 2025.

Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning.
Nature Machine Intelligence, 4(12):1185–1197, 2022.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE transactions on pattern analysis and machine
intelligence, 46(8):5362–5383, 2024.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European conference on computer vision, pp. 631–648.
Springer, 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 139–149,
2022b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and
Pietro Perona. Caltech-ucsd birds 200. Technical report, California Institute of Technology, 2010.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models. Advances in Neural Information Processing Systems,
36:7093–7115, 2023.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, and Yunchao Wei. Slca: Slow learner
with classifier alignment for continual learning on a pre-trained model. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 19148–19158, 2023.

Yuanhan Zhang, Zhenfei Yin, Jing Shao, and Ziwei Liu. Benchmarking omni-vision representation
through the lens of visual realms. In European Conference on Computer Vision, pp. 594–611.
Springer, 2022.

Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for
pre-trained model-based class-incremental learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 23554–23564, 2024.

Da-Wei Zhou, Zi-Wen Cai, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-
incremental learning with pre-trained models: Generalizability and adaptivity are all you need.
International Journal of Computer Vision, 133(3):1012–1032, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF OF THEOREM 3.1

Proof of Theorem 3.1. Let pi = P (Zi) be the probability measure of area Zi, and note that∑t
i=1 pi = 1.

We first observe that

L(P, ht) = L(P, ht)−
Ct∑
i=1

ni

n
L(Ni, ht) +

Ct∑
i=1

ni

n
L(Ni, ht)− L(D, ht) + L(D, ht) (5)

Since L(P, ht) =
∑Ct

i=1 piL(Ni, ht) and L(Ni, ht) ≤ ℓmax, we observe that

L(P, ht)−
Ct∑
i=1

ni

n
L(Ni, ht) =

Ct∑
i=1

piL(Ni, ht)−
Ct∑
i=1

ni

n
L(Ni, ht) (6)

=

Ct∑
i=1

(
pi −

ni

n

)
L(Ni, ht) (7)

≤ ℓmax

Ct∑
i=1

∣∣∣pi − ni

n

∣∣∣ (8)

Note that (n1, ..., nCt
) is a multinomial random variable with parameters n and (p1, ..., pCt

). For any
ϵ > 0, Bretagnolle-Huber-Carol inequality shows Pr

(∑Ct

i=1

∣∣pi − ni

n

∣∣ ≥ 2ϵ
)
≤ 2Ct exp(−2nϵ2).

In other words, for any δ > 0, taking ϵ =
√

Ct ln 2−ln δ
2n , the following holds true with probability at

least 1− δ:

L(P, ht)−
Ct∑
i=1

ni

n
L(Ni, ht) ≤ C

√
Ct ln 4− 2 ln δ

n
(9)

Next we observe the second term:
Ct∑
i=1

ni

n
L(Ni, ht)− L(D, ht) =

Ct∑
i=1

ni

n
L(Ni, ht)−

Ct∑
i=1

ni

n
L(Di, ht) (10)

=

Ct∑
i=1

ni

n
[L(Ni, ht)− L(Di, ht)] (11)

=

Ct∑
i=1

ni

n
(Ez∼Ni

[ℓ(ht, z)− L(Di, ht) : z ∈ Zi]) (12)

=

Ct∑
i=1

ni

n
(Ez∼Ni,s∼Di [ℓ(ht, z)− ℓ(ht, s) : z, s ∈ Zi]) (13)

≤
Ct∑
i=1

ni

n
(Ez∼Ni,s∼Di

[|ℓ(ht, z)− ℓ(ht, s)| : z, s ∈ Zi])(14)

=

Ct∑
i=1

ni

n
ϵ̄i(ht) (15)

Combining (5) and (9) and (15) completes the proof.
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B TRAINING DETAILS

Table 2: Training and merging hyperparameters used in all experiments of LCA.

Hyperparameter Value
Training epochs 10
Batch size 64
Base learning rate 1× 10−2

Weight decay 5× 10−4

Optimizer SGD (momentum = 0.9)
Learning rate scheduler CosineAnnealing (eta-min = 1× 10−6)
Merging coefficient α 1.0
Alignment classifier epochs 10
Number of samples per class 512
Alignment batch size 128
LoRA rank 64
LoRA alpha 128
LoRA dropout 0.0
LoRA initialization Gaussian

C DETAILS OF EXAMPLE GENERATION

In this section, we provide details on how Gaussian distributions are used to align the classifiers
during the incremental training process. Pre-trained models typically produce well-structured rep-
resentations, which allows us to approximate each class distribution using its empirical mean and
covariance.

Storing class statistics. For each class c at training stage t, we extract features using the backbone
parameters θt. The empirical mean µc ∈ Rd and covariance Σc ∈ Rd×d are computed as

µc =
1

K

|Dt|∑
i=1

1(yi = c)ϕ(xi; θt), (16)

Σc =
1

K

|Dt|∑
i=1

(
ϕ(xi; θt)− µc

)(
ϕ(xi; θt)− µc

)⊤
, (17)

where ϕ(·; θt) denotes the feature extractor with backbone parameters θt, and K =
∑|Dt|

i=1 1(yi = c).

Feature replay via Gaussian sampling. Before each alignment step, we regenerate features for
every class c ∈ Yt by sampling from a multivariate Gaussian distribution:

ẑc ∼ N (µc,Σc). (18)

We generate approximately five times the batch size of synthetic features per class, which provides
sufficient diversity for classifier alignment.
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D FURTHER ANALYSIS
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Figure 6: Ablation study on different PEFT strategies with two backbones, ViT-B/16-1K and ViT-
B/16-21K.

Results with different fine-tuning strategies. We further examine the adaptability of incremental
merging and LCA with different parameter-efficient fine-tuning (PEFT) strategies on the VTAB
dataset. The strategies include SSF (Lian et al., 2022), Adapters (Rebuffi et al., 2017), VPT (Jia
et al., 2022), and LoRA (Hu et al., 2022), evaluated with ViT-B/16 pretrained on both ImageNet-1K
and ImageNet-21K.

Figure 6 shows that LCA consistently improves performance across all PEFT methods. In particular,
VPT without LCA suffers a sharp performance drop, suggesting that incremental merging alone is
insufficient to prevent forgetting in some cases. Adding LCA, however, proves beneficial across all
methods, demonstrating its adaptability. Notably, despite having relatively few trainable parameters,
Adapters emerge as a strong candidate within our pipeline, achieving the highest accuracy when
combining with LCA.
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