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Figure 1: Novel views generated from a single source image (far left column) at a specific target view
angle (with different seeds), compared between Zero123-XL [27] and our Zero-to-Hero method. Op-
erating during inference, our method achieves significantly higher fidelity and maintains authenticity
to the original image, all while ensuring realistic variation in the results (e.g. variations in chair backs
in the top row). The ground-truth target view is displayed in the far right column.

Abstract

Generating realistic images from arbitrary views based on a single source image
remains a significant challenge in computer vision, with broad applications rang-
ing from e-commerce to immersive virtual experiences. Recent advancements in
diffusion models, particularly the Zero-1-to-3 model, have been widely adopted for
generating plausible views, videos, and 3D models. However, these models still
struggle with inconsistencies and implausibility in new views generation, especially
for challenging changes in viewpoint. In this work, we propose Zero-to-Hero, a
novel test-time approach that enhances view synthesis by manipulating attention
maps during the denoising process of Zero-1-to-3. By drawing an analogy between
the denoising process and stochastic gradient descent (SGD), we implement a fil-
tering mechanism that aggregates attention maps, enhancing generation reliability
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and authenticity. This process improves geometric consistency without requiring
retraining or significant computational resources. Additionally, we modify the
self-attention mechanism to integrate information from the source view, reducing
shape distortions. These processes are further supported by a specialized sampling
schedule. Experimental results demonstrate substantial improvements in fidelity
and consistency, validated on a diverse set of out-of-distribution objects. Addition-
ally, we demonstrate the general applicability and effectiveness of Zero-to-Hero in
multi-view, and image generation conditioned on semantic maps and pose.

1 Introduction

The pursuit of realistic image synthesis at arbitrary views, given only a single source image, has
long been a cornerstone challenge in computer vision and graphics. This technology can cater to
countless applications, such as interactive product inspection, robot-scene interaction, and immersive
virtual experiences. In this work, we aim to advance this important line of research by improving
the generation of novel views that are plausible and faithful to the input image. A recent, promising
approach, Zero-1-to-3 [27] has developed a foundation model to synthesize novel views based on a
single source image and a target view angle. By leveraging a pre-trained, image-conditioned stable
diffusion model backbone [3], fine-tuned with target camera poses, and trained on paired source
and target views from a vast collection of 3D models [10, 9], Zero-1-to-3 can generalize beyond its
training set and generate plausible novel views. As a result, this model has quickly gained popularity,
inspiring subsequent work in 3D and 4D scene generation [8, 24, 39, 28, 26, 25, 57, 33, 45, 35, 20].

Despite its remarkable ability, Zero-1-to-3 has been observed to generate views that are implausible,
or inconsistent with the input object in terms of shape and appearance [24, 8]. Previous works
have tried to mitigate these issues by retraining diffusion models with more data [9] or to generate
multiple views [39, 25, 26, 24, 8, 28, 56]. Despite substantial improvement, both approaches are
resource-intensive due to the required re-training on large-scale 3D datasets. Another line of work
attempts to consolidate inconsistencies across multiple generated views through a 3D representation
like NeRF [14, 30]. However, direct aggregation often results in blurry outputs, as observed by [24].
Instead, ViVid-1-to-3 [24] employed a multiview representation that naturally supports the use of a
video foundation model. Nevertheless, this approach requires generating the entire trajectory from
the source to the target view, adding significant complexity and computational overhead. Notably, the
denoising process in Zero-1-to-3 remains unchanged.

In this work, we propose Zero-to-Hero, a novel test-time technique that addresses view synthesis
artifacts through attention map manipulation. Recognizing attention maps as crucial for latent
predictions, we hypothesize that enhancing robustness in attention maps predictions can significantly
reduce generation misalignment. To achieve this, we draw an analogy between the denoising
process in diffusion models and stochastic gradient descent (SGD) optimization of neural networks.
Specifically, we relate network weights that predict local gradients at each optimization step, based
on sampled training examples and labels, to the denoising network’s attention maps that predict latent
representations from sampled noise at each denoising step. In this work, we view the generation
(denoising) process as an unrolled optimization, with attention maps as parameters of a score
prediction model. Inspired by gradient aggregation and weight-averaging techniques that improve
prediction robustness (e.g., consistency training [47]), we propose a filtering mechanism to enhance
attention map reliability. This mechanism comprises iterative map aggregation within denoising steps
and map averaging across denoising steps. The result is more reliable maps, particularly during the
early denoising stages when coarse output shapes are determined, leading to more plausible and
realistic views.

To further promote consistency with the input, we modify the self-attention operation by running a
parallel generation branch using the identity pose, incorporating its keys and values into the attention
layer of the target view. Unlike previous applications of this technique [29, 5, 1]), we find it beneficial
in view synthesis to limit its use to the early denoising stages, preventing shape distortions. Our
unique denoising procedure is further complemented by a novel sampling schedule that emphasizes
early and late denoising stages, maximizing performance. Our main contributions are as follows:

• To address the main limitations of the Zero-1-to-3 model, we perform an in-depth analysis and
identify self-attention maps as the main candidate for correcting generation artifacts.
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• We establish a conceptual analogy between model weights in stochastic gradient descent-based
network training and the role of attentions map updates during generation of a denoising diffusion
model. Based on this, we propose a simple yet powerful attention map filtering process resulting
in enhanced target shape generation. We supplement our filtering technique with identity view
information injection and a specialized sampling schedule.

• Our method requires no additional training, and it avoids the overhead of external models or
generating multiple views.

Through comprehensive experiments on out-of-distribution objects, we demonstrate that our technique
robustifies Zero-1-to-3 and its extended version, Zero123-XL, leading to views that are more faithful to
both the input image and desired camera transformation. Our results show significant and consistent
improvements across both appearance and shape evaluation metrics. Additionally, we find that
Zero-to-Hero naturally generalizes to additional tasks including multi-view, and image generation
conditioned on semantic maps and pose. In all cases, we observed significant improvement in
condition following and visual quality.

2 Related Work
2.1 Novel View Synthesis with Diffusion Models

Diffusion models have dominated various generative applications [17, 11, 38, 36, 41]. Particularly,
novel-view synthesis, as a core of applications like augmented reality and simulations, naturally
enjoys the benefits of high-fidelity zero-shot synthesis with diffusion models. One line of works
[51, 27, 44, 22, 54, 24] is to generate a novel-view image given a source image (i.e., image-to-image).
These approaches typically involve training a diffusion model conditioned on both an arbitrary
camera pose and the source view. For instance, the representative work, Zero-1-to-3, fine-tunes a
pre-trained Stable Diffusion model [36] by replacing the text prompt with camera pose and CLIP
features[34]. Moreover, another research trajectory [32, 21, 14, 7, 46] proposes generating a 3D
representation from a single image (i.e., image-to-3D), which allows for sampling desired views from
these 3D models. Our method, Zero-to-Hero, builds on the first approach (specifically Zero-1-to-3
and Zero123-XL) and distinguishes itself by eliminating the need for extensive training. Instead, it
offers a test-time, plug-and-play approach that significantly enhances visual quality and consistency.

2.2 Test-Time Refinement in Diffusion-Based Generation

A common test-time refinement strategy in diffusion generation is leveraging guidance [29, 2, 18] to
direct the sampling process with additional conditions. For example, Repaint [29] utilizes a mask-
then-renoise strategy to refine the generation results. Repaint also introduces a per-step resampling
technique, where given a horizon-size h, a latent zt is re-noised to zt+h and then denoised again to
zt multiple times. They observe that resampling helps to generate more harmonized outputs, given
an external guidance or condition. Restart [55] offers a sampling algorithm based on a variation
of resampling within a chosen interval of steps. Our method is inspired by the strategy of per-step
resampling. We show that it serves as a powerful correction mechanism throughout the generation
process, even when no external guidance or condition is provided.

2.3 Attention Map Manipulation in Diffusion Models

Stable Diffusion [36] utilizes attention to enforce the condition information onto the generated results.
Previous works demonstrate that manipulating the attention operation can achieve new capabilities
[49, 5, 1, 57]. For example, MasaCtrl [5] uses Mutual Self-Attention where source and target images
are generated jointly while sharing information, by injecting source image keys and values to the
target through self-attention. Here we employ Mutual Self-Attention in the context of novel view
synthesis. Differently to prior works we find it beneficial to limit its use to the early denoising stages.

3 Background

3.1 Zero-1-to-3: Challenges and Limitations

Zero-1-to-3 is a pioneering method for novel view synthesis based on a diffusion model, which
has gained significant popularity. This model is built upon the image-conditioned variant of Stable
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Diffusion (SD) [36], fine-tuned specifically for novel view synthesis. Zero-1-to-3 is conditioned
on a source image and relative transformation to the desired view angle [R|T ]. Maintaining the
SD architecture, these conditions are integrated in two ways. First, a CLIP [34] embedding of
the input image is concatenated with the relative transformation [R|T ] and mapped to the original
CLIP dimension to form a global pose-CLIP embedding, interacting with the UNet layers through
cross-attention, enriching the generation with high-level semantic information. In parallel, the input
image is channel-concatenated with the denoised image, helping the model preserve the identity and
details of the synthesized object.

While Zero-1-to-3 [27] has achieved substantial progress in novel view synthesis, several common
issues limit its practical application. Firstly, the generated images might not fit real-world distributions,
resulting in implausible and unrealistic outputs (e.g., first row in Fig.1). Secondly, the target image
may appear plausible but be inconsistent with the input image in terms of shape or appearance (e.g.,
fifth row in Fig.1).

In this work, we identify the critical role of self-attention maps in high-quality generation and propose
a novel filtering process that enhances robustness without requiring further training. This process
addresses the aforementioned issues, ensuring reliable and consistent results.

3.2 Leveraging Gradient and Weight Aggregation for Improved Prediction Consistency
In this work, we draw a conceptual analogy between gradients and weights in stochastic gradient
descent (SGD), and latents and attention maps in denoising diffusion models. Leveraging this analogy,
we adapt techniques from SGD to enhance prediction consistency in diffusion models. Below, we
summarize general techniques in SGD that improve the training process.

SGD is a fundamental tool in network training [4], designed to navigate the weight (network
parameter) space towards local minima. For a neural network F (x; θ) with parameters θ, SGD
samples training data points xi and their corresponding labels yi, and computes the gradient of the
loss function L(F (xi; θ), yi) with respect to θ to update the parameters. In practice, aggregation of
gradients and network weights during training is often performed to reduce variance and improve
convergence. Gradient aggregation typically involves averaging gradient values over a batch, while
weight aggregation accounts for the history of the weights in each update.

Notable examples include temporal averaging in Adam optimizer [23], Stochastic Weight Averaging
(SWA) [19] and teacher networks [47] used in consistency training by employing an exponential
moving average (EMA) of a student network to maintain high-quality predictions. This technique is
prevalent in semi-supervised and representation learning [13, 15, 6]. For a detailed study of EMA in
network training, we refer readers to [31].

4 Method
In this work we are concerned with the task of single image novel view synthesis. Formally, given an
input image of an object and a relative camera transformation towards a desired target view, our goal
is to generate the image at that target view. Specifically, we build upon the seminal work of Zero-
1-to-3 [27] which tackled this task via a diffusion model. As detailed in Sec. 3.1 Zero-1-to-3 often
struggles to generate plausible and input-consistent images. In this work we propose Zero-to-Hero–
a novel training-free technique that significantly improves its generation quality through attention
map manipulation. This section is structured as follows. (4.1) through network architecture analysis
we identify self-attention maps as key for robust view generation; (4.2) drawing inspiration from
SGD convergence-enhancement techniques, we outline our novel attention map filtering pipeline;
(4.3) details each step of the map filtering; (4.4) introduces the mutual self-attention which we use
for shape guidance at early generation stages; (4.5) Finally, our proposed hourglass scheduler is
introduced for more efficient utilization of generation steps. Fig. 2 depicts Zero-to-Hero’s main
modules. An ablation of these modules is provided in Tab. 2 and in Sec. 8.6 of the appendix.

4.1 Analyzing the Role of Cross- and Self-Attention Layers in Novel View Generation

Zero-1-to-3 builds upon the image-to-image variant of Stable Diffusion [36], which utilizes a UNet
[37] architecture as its backbone and incorporates both self- and cross-attention layers. In this
subsection, we analyze the roles of these components and their contributions to the generated view.
This analysis aims to identify effective intervention points for enhancing generation quality.
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Figure 2: Zero-to-Hero main modules. (Left) Two denoising steps of the generation process of both
the source (top) and target views (bottom). Each denoising step is iterated R times (“resampling”).
(Right-top) Attention map filtering: Robustifying attention maps via an aggregation of same step
and previous steps attention maps. (Right-bottom) Mutual self-attention: Guiding target shape
through the keys and values of the source generation branch.

Global pose conditioning through cross-attention. Prior work [16] has demonstrated that the
cross-attention layers in text-to-image diffusion models, which link text tokens to the latent image,
are spatially aware and can be used for spatial manipulation. We first investigate these cross-attention
layers, as they are the only components in the model through which the target pose is injected. In the
text-to-image variant of Stable Diffusion, the generation is conditioned on a prompt P containing
C tokens, each encoded with CLIP into an embedding, resulting in a condition cT2I ∈ RC×dCLIP .
However, in Zero-1-to-3, the condition is a pose-CLIP embedding c ∈ R1×dCLIP , project to keys
Kt ∈ R1×d Formally, given a sample zt ∈ RH×W×dz and its corresponding queries Qt ∈ RH×W×d,
the pre-softmax attention map A between Qt and Kt has dimensions H ×W × 1. Given that the
summation of the softmax is always 1, the post-softmax attention map softmax(A) in Zero-1-to-3
is a constant all-ones matrix. A visual demonstration is presented in Fig. 7 in the appendix.

The post-softmax attention map is used to compute a weighted sum over the values matrix V ∈ R1×d,
obtained by a transformation of the condition c. Since the attention matrix is an all-ones matrix, we
conclude that the cross-attention operation degenerates into a global bias term, lacking spatially
aware operations. Computing similarity scores in the cross-attention layers is redundant as these
scores are never used. While in principle it is possible to improve the global bias term by additional
optimization objectives and extra training overhead, we focus on the self-attention layers to enhance
the results and mitigate the consistency issues while avoiding retraining the model.

Spatial information flow through self-attention. By monitoring the self-attention layers during
the generation process, we observe that random noise introduced to the latent representation also
introduces randomness to the attention maps. This randomness, while promoting generation diversity,
can often lead to undesired strong correlations, that are misaligned with the true target. These strong
correlations may persist through the denoising process, resulting in accumulated errors and visual
artifacts.

Given the above observation and the insight about the spatial-degeneracy in the cross-attention
layers, we hypothesize that the self-attention layers preserve the information about the structure and
geometry of the generated image, through the similarity scores between different elements in the latent
vector. To validate our hypothesis, we conduct a straightforward experiment to assess Zero-1-to-3’s
performance using the ’ground truth’ self-attention maps, which reflect the most accurate connections
considering the true target image. Specifically, we selected two images, Isrc and I tgt, with known
relative camera parameters [R|T ]. We first encode I tgt to obtain the clean latent ztgt

0 and then add
subtle noise to obtain the corresponding noisy latent for timestep τinit, z

tgt
init. A single denoising step

is performed on the noisy latent, and we save the self-attention maps from each layer in the UNet,
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Figure 3: Through the injection of ground-truth attention maps extracted from the target view, we
demonstrate that Self-attention maps are key to robust view synthesis.

considering these maps as the ground truth (GT) maps. In our experiments, τinit = 5. Next, we
sample random Gaussian noise and denoise it to regenerate the target image. During each denoising
step, we replace the computed self-attention maps with the GT maps, without altering any other
components (e.g., cross-attention layers, residual blocks) or the latents, queries, keys, and values. We
report the results in the experiment section in Tab. 1, showing a significant improvement in all metrics.
Note that the results obtained with the GT attention maps are a strict upper bound, as the GT maps
contain information about areas that are invisible in the source view. Our experiment validates that
through improved self-attention maps, the generated image becomes more plausible. Visual examples
are shown in Fig. 3 and in Fig. 8 in the appendix, refer to Fig. 1 for the results of Zero123-XL and
Zero-to-Hero for the same views.

4.2 From SGD to Diffusion Models: Attention Map Filtering as Weight-Space Manipulation

We draw a conceptual analogy between a denoising process of a diffusion model, and SGD based
network optimization as both progress through gradient prediction of a loss function, and log
probability (the score)[43], respectively. Building on the discussion from the previous section, we
treat the self-attention maps as parameters M in the denoising process zt−1 = µ(zt;Mt, ψ) and
define their update process as a mapping1: Mt → zt−1 →Mt−1. Here the map Mt−1 results from
passing the latent zt−1 through the attention layers. This process is analogous to gradient descent
optimization in neural networks, where each step adjusts the weights in the direction of the gradient
of a loss function, such as the log probability in classification tasks. We denote this weight update as
a mapping θt → ŷt → θt+1, where ŷt = F (xt; θ), and the updated parameters θt+1 result from a
gradient step.

As detailed in Sec. 3.2, gradient and weight aggregation are essential for robust convergence. We
outline this process in three steps illustrating the analogy between network parameter updates and
attention map filtering. Fig. 4 further illustrates the analogy.

Step-by-Step Analogy From network parameters to attention maps

Network Training
1: Sampling: Generate R pairs of samples and

their corresponding labels {(xi, yi)}Ri=1.
2: In-step weight update: Average the gradi-

ents to adjust the network parameters: θ̃t =
θt − λ

∑
∇θL(F (xi; θt), yi).

3: Cross-step weight averaging: Update net-
work parameters using EMA: θt+1 = αθt +

(1− α)θ̃t, for α ∈ [0, 1].

Denoising Process
1: (Re-)Sampling: Repeatedly re-noise zt−1 to
zt and denoise, R times.

2: In-step map update: Resmapling results in
a sequence of maps {Mt,r}Rr=1, aggregated
into the final updated prediction M̃t,R.

3: Cross-step map averaging: Update atten-
tion maps via EMA: M̃t−1 = αMt + (1 −
α)M̃t−1, for α ∈ [0, 1].

4.3 Robust View Generation via Attention Map Filtering

We now discuss in detail each of the map filtering steps. A scheme of the different filtering modules
is provided in Fig. 2 (Left, and Top-right).

Latent refinement via per-step resampling. Inspired by previous studies [29, 2], we implement
per-step resampling throughout the image generation process. We select a range of timesteps

1Although the latent prediction zt−1 depends on the parameters ψ of denoising UNet µ, they remain
unchanged. Here we emphasize that the attention maps M are the parameters being updated.
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Figure 4: From SGD to Diffusion Models: An illustration of our conceptual analogy.

Figure 5: Attention map filtering in action. We compare the attention scores of zero123-XL (top)
and Zero-to-Hero (bottom) wrt the region marked with a purple circle at different denoising steps.
Both methods are initialized with the same seed. We observe that the strong correlation values in
the upper right corner lead to exaggerated content creation (note the unrealistically elongated neck).
Conversely, through filtering, Zero-to-Hero mitigates these artifacts, leading to robust view synthesis.

[tmin, tmax], where each denoised sample zt is re-noised with the proper noise ratio to the previous
sampled timestep zt+1 and denoised back to zt for R iterations2. We concur with previous studies
that resampling functions as an effective corrective mechanism to the generated image, as can be
seen in Tab. 2). Experimentally, we find that it is particularly useful during the initial stages of the
denoising process. Through resampling we progressively generate R attention maps with different
noise patterns. We propose to leverage these intermediate maps to further boost performance through
in- and cross-step attention map manipulations.

In-step map update. We propose a novel attention pooling function f , to update the attention
maps within the denoising step. Specifically, a self-attention map is refined based on previous maps
{Mt,k}r−1

k=1 created at the same timestep. Since resampling is a sequential process, we perform a
progressive aggregation scheme: M̃t,r = f(Mt,r, {M̃t,k}r−1

k=1). We found the element-wise min-
pooling operator f(a, b) = min(a, b) to perform best in our experiments. We discuss other options
for f in the appendix.

Cross-step map averaging. Resampling tends to favour “conservative” generations, often gradually
neglecting fine image details like buttons and eyes as denoising progresses. This phenomenon it not
resolved by the in-step update. To mitigate this issue, we propose to pass the self-attention map at
time t, M̃t to the next step in the denoising process. We implement this cross-step aggregation via
EMA: M̃t−1 = αMt + (1− α)M̃t−1, for α ∈ [0, 1]. This method effectively balances past priors
with current data to enhance the denoising results. In practice we apply both methods in tandem,
as detailed in Sec. 8.5. An example of our attention filtering is presented in Fig. 5. Note that our
filtering mechanism is applied to the pre-softmax attention maps.

2Depending on the sampling algorithm, h ≥ 1 steps may be taken.
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4.4 Early-Stage Shape Guidance via Mutual Self-Attention

Of the two challenges describe in the introduction, attention map filtering handles well generating
realistic outputs. Yet, we observe it is sometimes insufficient to enforce consistency with the input
appearance and structure. We propose to utilize mutual self-attention as a complementary technique,
to propagate information from the input to the target. Similar to prior works [49, 5, 1, 57, 52], we
generate the input and target views in parallel. At each timestep t, we obtain queries, keys and values
of the self-attention layers for the input and the target branches. Similar to the mutual self-attention
introduced in [5], we modify the self-attention operation of the target by replacing the target keys and
values with those of the input branch: Attn(Qtgt,Kin, V in) (Fig. 2 (bottom-right)).

Previous studies initiate mutual self-attention (MSA) at a later denoising step (small t). We find that
at that stage, the structure has already been determined. Instead, to guide the structure of the target to
be more consistent with the input, we find it more effective when applied from the beginning of the
denoising process. While MSA is effective at transferring the appearance and structure of the input
to the target, it may overfit. We find that terminating the MSA process once the structure has been
stabilized becomes crucial in mitigating overfitting. In practice we find that applying MSA during
the first third of the denoising process is a good rule of thumb for optimal results. We refer the reader
to Sec. 8.5 in the appendix for further details.

We view early-stage MSA as a complementary filtering scheme. Building on the property that
generating the input view (which the model is conditioned on) is a much easier task for the model
compared to generating novel views, keys and values predicted in the input branch are “cleaner”.
Mapping them to the target view thus refines the predicted scores, facilitating a more stable and
reliable output.

4.5 Hourglass Sampling Scheduler

As resampling is a time-consuming operation, significantly increasing the number of function
evaluation (NFE), we seek an efficient scheduling scheme that will enable robust and high quality
generation, while preserving the fast generation times of Zero-1-to-3. We use the common DDIM
sampling [42], and propose an efficient scheduling scheme to select the sampled timesteps. In
the experiments section, we demonstrate that increasing the number of denoising steps does not
necessarily improve the performance, and therefore we aim to use an overall small number of sampled
timesteps. Specifically, we find that denser sampling during the beginning of the denoising process is
crucial to promote realism. We also find that denser sampling at the final steps enhances fine details.
Therefore, we suggest a double heavy-tailed scheduling scheme we call Hourglass, according to
which we divide the generation process into 3 stages, as detailed in 8.5. Within each stage, we sample
steps uniformly via DDIM. However, in the first and last stages we sample steps more densely (at a
higher rate) than in the middle stage, by a factor of λden.

5 Experiments
Datasets. We evaluate our method on two datasets, following previous works. Firstly, Google
Scanned Objects (GSO) Dataset [12], which includes 1030 scanned household objects. However,
the dataset’s imbalance (e.g., 254 objects are categorized as “shoe”) and the high proportion of
symmetrical shapes limit its reliability for evaluation. To address this, inspired by [24], we select a
challenging subset of 50 objects from GSO, avoiding symmetrical and repetitive shapes. For each
object, we render 8 random views (details in Sec. 8.9 of the appendix) and synthesize the remaining
views from each source view, generating each target view with 3 different seeds to calculate the
average score per measure. Secondly, RTMV Dataset [48], which consists of 3D scenes. Each scene
contains 20 random objects. For evaluation, we randomly select 50 scenes, and 8 random views per
scene. The evaluation process is the same as described for GSO.

Metrics. We report the image quality metrics PSNR, SSIM [50] and LPIPS [59]. As these metrics
are sensitive to slight color variations, we segment the generated targets and their corresponding real
images, via thresholding, and report the Intersection Over Union (IoU) score.

5.1 Evaluations

Quantitative evaluation. We evaluate Zero-to-Hero against zero-1-to-3 and on zero123-XL. We
report all metrics for the original models using 25, 50 and 100 DDIM steps, and for our method
applied to both models. In Tab. 1 and in Tab. 3, we provide the results for GSO and RTMV datasets,
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respectively. We include the number of sampled timesteps T and the total number of network
evaluation NFE (accounting for resampling). Zero-to-Hero consistently improves performance across
all metrics, taking a significant step towards bridging the performance gap to GT attention maps.
All implementation details, including analysis of the inference cost of our modules, are provided in
Sec. 8.5 of the appendix.

Table 1: Quantitative evaluation on a challenging GSO subset. Zero-to-Hero consistently improves
performance upon baselines, taking a significant step towards oracle map performance (bottom rows).

Name T NFE PSNR ↑ SSIM ↑ LPIPS ↓ IOU ↑
Zero-1-to-3 25 25 17.27 0.851 0.173 73.5%
Zero-1-to-3 50 50 17.24 0.850 0.173 73.5%
Zero-1-to-3 100 100 17.21 0.850 0.173 73.4%
Ours (Zero-1-to-3) 26 66 17.67 0.859 0.163 75.3%
Zero123-XL 25 25 17.72 0.854 0.163 76.4%
Zero123-XL 50 50 17.71 0.854 0.163 76.4%
Zero123-XL 100 100 17.68 0.854 0.163 76.4%
Ours (Zero123-XL) 26 66 18.35 0.864 0.153 78.3%
Zero-1-to-3 + GT maps 50 50 21.52 0.888 0.122 88.8%
Zero123-XL + GT maps 50 50 21.79 0.890 0.117 88.6%

Qualitative evaluation. In Fig. 1, Fig. 9 and Fig. 10, we visually demonstrate how Zero-to-Hero
is able to mitigate various artifacts generated by Zero-1-to-3, from implausible results to incorrect
poses. In Fig. 1 and in Fig. 9, we present 3 examples per target view, generated with 3 random seeds,
to emphasize the consistency and robustness our method offers.

5.2 Ablation Study
To assess the contribution of Zero-to-Hero different components to the final performance, we evaluate
our pipeline on our challenging GSO subset, starting from the baseline Zero123-XL and gradually
adding each module. The results are summarized in Tab. 2. When reporting the results of the vanilla
Zero123-XL, we use its best score achieved by running the model with 25, 50, and 100 steps. A similar
comparison against zero-1-to-3 is included in Sec. 8.6 of the appendix, demonstrating consistent
behavior. We also analyze the affect of resampling and our attention filtering on the generation
diversity in Sec. 8.7 of the appendix. Additionally, we provide qualitative results, demonstrating the
common contributions of AMF and MSA in Fig. 10 in the appendix.

Table 2: Ablation Study. We demonstrate the importance of each of Zero-to-Hero modules, applied
to the base method Zero123-XL: Sample scheduling (Hourglass), Resampling (Resample), Attention
map filtering (AMF), and Early-Stage Mutual Self-Attention (MSA). Consistent conclusions are
reached with the base model Zero-1-to-3 and are shown in Sec. 8.6 of the appendix.

Hourglass Resample AMF MSA PSNR ↑ SSIM ↑ LPIPS ↓ IOU ↑
17.72 0.854 0.163 76.4%
17.74 0.855 0.162 76.6%
17.85 0.857 0.160 77.1%
17.92 0.859 0.157 77.8%
18.25 0.862 0.155 77.6%
18.35 0.864 0.153 78.3%

5.3 Attention Map Filtering Beyond Novel View Synthesis

Although our work addresses the core limitations of single view synthesis models, the condition
enforcing effect of our Attention Map Filtering (AMF) is more general. We have conducted several
preliminary experiments which demonstrate promising results. Further details are provided in
Sec. 8.8.

Conditional image generation. A brief study of ControlNet models [58] demonstrated that they suf-
fer from similar limitations as Zero-1-to-3 and its follow ups. Namely, lack of condition enforcement
and frequent appearance of visual artifacts. We implemented our proposed AMF module for two
pre-trained ControlNet models. We provide qualitative results for pose- and segmentation-conditioned
ControlNet models in Fig. 6 and Fig. 13, respectively.
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Multi-view synthesis. We integrate AMF into MVDream [40], a text-to-multiview model, and find
that it helps to mitigate the same issues as in the single view case. In Fig. 14, we provide qualitative
results.

Figure 6: Qualitative results for pose-conditioned ControlNet. Qualitative results for pre-trained
pose-conditioned ControlNet, without and with AMF. Both methods are initialized with the same
seed. AMF leads to results that are more plausible and better align with the conditions.

6 Conclusions and Future Work
In this paper, we introduced Zero-to-Hero, a training-free method to boost the robustness of novel
view synthesis. We enhanced the performance of a pre-trained Zero-1-to-3 diffusion model using
two key innovations: a test-time attention map filtering mechanism that enhances output realism,
and an effective use of source view information to improve input consistency. Our approach also
features a novel timestep scheduler for maintaining computational efficiency. In future work, we aim
to refine our method by developing trainable filtering mechanisms, enhancing pose authenticity via
cross-attention manipulation, and extending our approach to other diffusion-based generative tasks.

Limitations. Our method, operating at test-time, is limited
by the generative capabilities of the pre-trained model. If
Zero-1-to-3 cannot correctly generate the target pose, our
method may not enhance the output, as demonstrated in
the inset figure.

Broader impact. Through enhancing view synthesis, our method offers significant benefits to
applications in virtual reality, augmented reality, and robotics. As it requires no further training, it is
readily accessible. However, this accessibility also simplifies the creation of realistic novel views,
which could be exploited for malicious purposes such as deepfakes.
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8 Appendix

8.1 Cross-Attention in Zero-1-to-3

We demonstrate the degenerated cross-attention layers in Zero-1-to-3 in Fig. 7. We generate a random
target view using Zero123-XL and extract the cross-attention map generated at timestep 900 in the
last layer of the UNet. The same behaviour holds across all timesteps and layers. The displayed map
is created by averaging over all the attention heads.

Figure 7: Cross-Attention in Zero-1-to-3. (Left) The cross-attention map before applying softmax.
(Right) The degenerated all-ones attention map, produced by applying softmax on the left map.

8.2 Self-Attention in Zero-1-to-3

In Fig. 8 we present additional examples showing the performance of Zero123-XL when the self-
attention maps are replaced with the ’ground truth’ maps, extracted from the real target as described
in Sec. 4.1.

8.3 Qualitative Results

In Fig. 9, we provide more qualitative results that reinforce the effectiveness of Zero-to-Hero.

8.4 Quantitative Results

On the GSO evaluation, shown in Tab. 1 in the main paper, Zero123-XL improved performance
over Zero-1-to-3 by utilizing 12x more data, yielding gains of [0.45, 0.003, -0.01, 2.9%] in PSNR,
SSIM, LPIPS, and IoU, respectively. When applied to Zero-1-to-3, Our method achieved comparable
gains, [0.40, 0.008, -0.01, 1.8%], without using any additional data or further training. Notably, when
applied to Zero123-XL, our method resulted in even larger improvements [0.63, 0.1, -0.01, 1.9%]
(over Zero123-XL), demonstrating that these performance boosts cannot be solely achieved with
merely more data.

Additionally, in Tab. 3, we report all metrics on RTMV dataset, showing substantial improvement
over baselines.

8.5 Implementation Details

We evaluated our method on the default checkpoint of Zero-1-to-3 and on Zero123-XL. We used the
same hyper-parameters for both models, as follows. All experiments were run on a single NVIDIA
RTX 4090.

Note that the length of the forward process of Stable Diffusion is T = 1000.

Attention map filtering pipeline. As mentioned in the method section of the main paper, we
apply both in-step and cross-step aggregation in tandem. In detail, we preserve attention map history
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Figure 8: Through the injection of ground-truth attention maps extracted from the target view, we
demonstrate that self-attention maps are key to robust view synthesis.

Table 3: Quantitative evaluation on RTMV dataset. Zero-to-Hero consistently improves perfor-
mance upon baselines.

Name T NFE PSNR ↑ SSIM ↑ LPIPS ↓ IOU ↑
Zero-1-to-3 25 25 10.27 0.587 0.396 70.7%
Zero-1-to-3 50 50 10.26 0.585 0.395 70.7%
Zero-1-to-3 100 100 10.25 0.584 0.394 70.7%
Ours (Zero-1-to-3) 26 66 10.86 0.617 0.373 71.2%
Zero123-XL 25 25 10.64 0.595 0.391 71.9%
Zero123-XL 50 50 10.61 0.593 0.391 72.0%
Zero123-XL 100 100 10.64 0.593 0.390 72.1%
Ours (Zero123-XL) 26 66 11.15 0.618 0.372 72.8%

information denoted as Ht. Subsequently, we integrate this historical information through a simple
blending technique at each denoising step, along with our in-step map update:

M̃t,r = αc · f(Mt,r, {M̃t,k}r−1
k=1) + (1− αc) ·Ht+1,

where αc ∈ [0, 1], f is an attention pooling function and t+ 1 represents the previous sampled step.

The historical information is updated at the last resampling iteration (the R-th iteration) of each
timestep as follows: Ht = αh · M̃t,R + (1− αh) ·Ht+1, where αh is a decay factor within the range
[0, 1]. This historical data is initialized from the first refined self-attention map at the final resampling
step, expressed as HT = M̃T,R.

Resampling is performed during timesteps t ∈ [800, 1000], with R=5.

In-step map update. In-step map update is applied at timesteps t ∈ [800, 1000], with element-wise
min-pooling as a denoising function in all our experiments. We find that min-pooling is useful during
the earlier steps of the denoising, where the noise is substantial.
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Figure 9: Novel views generated from a single source image (far left column) at a specific target view
angle (with different seeds), compared between Zero123-XL [27] and our Zero-to-Hero method. The
ground-truth target view is displayed in the far right column.

We explored several simple denoising functions:

1. Averaging: M̃t,r = 1
r (Mt,r +

∑r−1
k=1 M̃t,k), which can be extended to weighted averaging.

2. Min pooling: M̃t,r = min(Mt,r, {M̃t,k}r−1
k=1).

3. Exponential Moving Average: M̃t,r = αi ·Mt,r + (1− αi) · M̃t,r−1, for αi ∈ [0, 1].

While all three improved performance over vanilla resampling, we find min-pooling to work best
during the early stages of the denoising process.

Cross-step map averaging. We perform cross-step information passing at timesteps t ∈ [600, 1000],
with αh = 0.5 and αc = 0.2.

Early-stage mutual self-attention. We apply Early-Stage mutual self-attention on timesteps t ∈[600,
1000] for Zero123-XL and on timesteps t ∈[700, 1000] for Zero-1-to-3. As mentioned in Sec. 3, the
input latent vector is concatenated to the generated latent vector in Zero-1-to-3. Therefore, the target
queries contain information about the input view, introducing a bias towards the input view during the
generation process. Although mutual self-attention manages to enforce consistency with the input, it
sometimes causes pose shifts and visual artifacts. Therefore, We only apply mutual self-attention
in the decoder layers of the UNet with spatial resolution of 16 × 16 and 32 × 32 (the two largest
resolutions, since the latent dimension of Zero-1-to-3 is 32× 32).

Hourglass scheduling. We divide the denoising process into 3 generation stages. We define the
early stage during timesteps t ∈ [τe, τT ], where the general shape and geometry are determined. τT
is the length of the forward process[17, 42]. We define the middle stage for t ∈ [τm, τe], where both
the shape and appearance are refined gradually. We define the last stage for t ∈ [0, τm], where mostly
fine-details are refined and added. As describes in the main paper, within each stage we sample steps
uniformlly via DDIM sampling. However, the sampling rate is higher for the early and late stages.

In our experiments, we determine the different stages of the denoising process as follows, setting
λden = 5. The early stage is defined for t ∈ [800, 1000] and we sample 10 timesteps uniformly within
this interval. The middle stage is defined for t ∈ [200, 800] and we sample 6 timesteps uniformly
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within this interval. The last stage is defined for t ∈ [0, 200] and we sample 10 timesteps uniformly
within this interval. In total, we sample 26 timesteps throughout the denoising process.

Setting the hype-parameters. All hyperparameters were tuned based on a small validation set of
objects. Due to limited computational resources, the tuning process was not exhaustive. We found
that the method’s performance is not highly sensitive to most parameters.

1. Cross-step weight (alpha): We experimented with values ranging from 0.1 to 0.9 in incre-
ments of 0.1. Alpha determines the weight assigned to previous predictions in the cross-step
aggregation. In Zero123-XL, early predictions were generally reliable, so a larger weight
yielded better results. We maintained the same parameters for Zero-1-to-3. In the exper-
iments conducted with additional models such as ControlNet and MVDream, a smaller
weight generally produced better outcomes.

2. Resampling iterations (R): We observed that the model’s performance is relatively insensitive
to the choice of R, with values between 4 and 8 yielding similar results. While some objects
benefited from larger values (∼10), the overall improvement was minimal. Additionally, as
shown in Fig. 11, large values of R (∼15-20) can reduce diversity. For additional experiments
with models like ControlNet and MVDream, we fixed R at 5 and did not test other values.

3. Filtering schedule: We apply resampling and our filtering mechanism during timesteps
t ∈ [tmin, T ]. To set tmin, we consider values from 500 to 900, in increments of 100.

4. MSA schedule: We apply Early-stage MSA in timesteps t ∈ [tmin, T ]. To set tmin, we
consider values from 400 to 1000, in increments of 100.

Additional Inference Cost Analysis. Our proposed modules add a computational overhead to the
base model. In the paper, we addressed this by counting the overall number of function evaluations
(NFE) and keeping it on par with the base model to ensure a fair comparison. We discuss the
individual computational overhead of each module.

1. Resampling: Similar to the total number of denoising steps, T, the number of resampling
iterations, R, linearly increases the NFE. Our chosen value for R and the timesteps at which
we apply it resulted in mapping 26 denoising steps to a total of 66 NFE. Resampling does
not introduce additional computational cost over adding standard denoising steps.

2. Mutual self-attention: The main additional cost of MSA is the necessity to generate the input
view in addition to the target views, meaning the effective number of generated samples is
increased by one.

3. Attention map filtering: We apply AMF during the early steps of the denoising process. We
find that the in- and cross-step operation adds a small computational overhead. We maintain
two additional instances of each attention map: the attention map from the previous timestep
(for cross-step updates) and the refined map from the current timestep (for in-step updates).

We provide running times (in seconds) of Zero-1-to-3 and Zero-to-Hero for the same NFE (66) in
Tab. 4. Note that the number of samples reported in the table does not include the input view generated
in Zero-to-Hero. Overall, we manage to provide competitive running times. If both MSA and AMF
are active (requiring the generation of the input), the running time is increased by approximately
1-1.5 seconds. If only AMF is active, the overhead is much smaller, averaging around 0.5 seconds
(there is no need to generate the extra input view).

Table 4: Runtime analysis of the computational overhead of Zero-to-Hero.

Number of Samples Zero-1-to-3 Zero-to-Hero (Ours)

1 2.2 3.1
2 2.9 3.9
3 3.5 4.9
4 4.3 -
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8.6 Ablation Study

We conduct ablation studies focused on each component on our method, and present the results for
the default checkpoint of Zero-1-to-3 and for Zero123-XL.

In addition to the main ablation table shown in the main paper, we present the same study on Zero-1-
to-3 in Tab. 5. Additionally, we provide qualitative results, demonstrating the common contributions
of AMF and MSA in Fig. 10.

Hourglass scheduling. We run the original model with 25, 50 and 100 steps sampled uniformly
using DDIM, and show that the hourglass scheduling, with 26 steps sampled in total, performs better
or on par. The main benefit of our Hourglass scheduling is reducing the number of steps, but it also
slightly improves the overall performance. Results are presented for Zero-1-to-3 in Tab. 8 and for
Zero123-XL in Tab. 6.

Attention map filtering. We use the hourglass scheduling for all further experiments. We run the
original model with and without resampling and attention filtering. Our experiments demonstrate
that adding the attention filtering in addition to the resampling mechanism improves the performance
across all metrics. Results are presented for Zero-1-to-3 in Tab. 9 and for Zero123-XL in Tab. 7.

Early-Stage mutual self-attention. To the best of our knowledge, most prior works utilizing MSA
fall into two categories:

1. Training-free based methods [5]: In these works, MSA is typically applied after the general
structure of the target is formed to transfer appearance details from the input to the target. In
this scenario, MSA does not contribute to the initial structure formation of the target.

2. Training or fine-tuning based methods [52, 53]: These works incorporate MSA layers within
the training or fine-tuning process.

Our approach is distinct as we employ MSA in a training-free manner, but crucially, we apply it
from the beginning of the denoising process until the target structure stabilizes—a phase we term
"Early-Stage Shape Guidance". To validate the impact of early-stage MSA on structure, we conducted
a simple experiment using Zero123-XL with 50 DDIM steps. We measure the effect of activating
MSA at different stages of denoising on Intersection over Union (IoU) metric, noting that image
quality metrics improved similarly. The results are reported in Tab. 10. Our approach demonstrate a
significant improvement in the structural integrity of the image. Applying MSA in the later stages of
the denoising process may hinder the results as it introduces a bias towards the input image.

Table 5: Ablation study — Zero-1-to-3. We demonstrate the importance of each of Zero-to-Hero
modules, applied to the base method Zero-1-to-3: Sample scheduling (Hourglass), Resampling
(Resample), Attention map filtering (AMF), and Early stage Mutual Self-Attention (MSA).

Hourglass Resample AMF MSA PSNR ↑ SSIM ↑ LPIPS ↓ IOU ↑
17.27 0.851 0.173 73.5%
17.29 0.852 0.173 73.6%
17.40 0.853 0.170 74.3%
17.49 0.855 0.167 75.0%
17.52 0.857 0.165 74.5%
17.67 0.859 0.163 75.3%

Table 6: Ablation study: Hourglass scheduling — Zero123-XL. We demonstrate the superiority of
our Hourglass scheduling over uniform DDIM sampling with different number of denoising steps.
The experiments are based on Zero123-XL.

Sampling T NFE PSNR ↑ SSIM ↑ LPIPS ↓ IOU ↑
Uniform 25 25 17.72 0.854 0.163 76.4%
Uniform 50 50 17.71 0.854 0.163 76.4%
Uniform 100 100 17.68 0.854 0.163 76.4%
Hourglass 26 26 17.74 0.855 0.162 76.6%
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Table 7: Ablation study: Attention map filtering — Zero123-XL. We demonstrate the importance
of Attention Map Filtering (AMF) over only applying Resampling (Resample). The experiments are
based on Zero123-XL.

Name T NFE PSNR ↑ SSIM ↑ LPIPS ↓ IOU ↑
Zero123-XL 26 26 17.74 0.855 0.162 76.4%
+ Resample 26 66 17.85 0.857 0.160 77.1%
+ Resample + AMF 26 66 17.92 0.859 0.157 77.8%

Table 8: Ablation study: Hourglass scheduling — Zero-1-to-3. We demonstrate the superiority of
our Hourglass scheduling over uniform DDIM sampling with different number of denoising steps.
The experiments are based on Zero-1-to-3.

Sampling T NFE PSNR ↑ SSIM ↑ LPIPS ↓ IOU ↑
Uniform 25 25 17.27 0.851 0.173 73.5%
Uniform 50 50 17.24 0.850 0.173 73.5%
Uniform 100 100 17.21 0.850 0.173 73.4%
Hourglass 26 26 17.29 0.852 0.173 73.6%

Table 9: Ablation study: Attention map filtering — Zero-1-to-3. We demonstrate the importance
of Attention Map Filtering over only applying Resampling (Resample). The experiments are based
on Zero-1-to-3.

Name T NFE PSNR ↑ SSIM ↑ LPIPS ↓ IOU ↑
Zero123-XL 26 26 17.29 0.852 0.173 73.6%
+ Resample 26 66 17.40 0.853 0.170 74.3%
+ Resample + AMF 26 66 17.49 0.853 0.167 75.0%

Table 10: Ablation study: Attention map filtering — Zero-1-to-3. We demonstrate the importance
of Attention Map Filtering over only applying Resampling (Resample). The experiments are based
on Zero-1-to-3.

Method Timesteps where MSA is applied IOU ↑
No MSA - 76.4%
All the way 1000 to 0 76.6%
After structure is formed 800 to 0 76.5%
Ours (from the beginning until structure is formed) 1000 to 600 77.6%

8.7 Generation Diversity Ablation Study

While our attention filtering manages to generate more robust and consistent results, we find that
excessive it might limit the generation diversity. We explore the two main factors that can reduce the
diversity: the number of filtering iterations R and the interval of timesteps [tmin, tmax] where we
apply filtering.

Number of filtering iterations. In Fig. 11, we show the effect of different values ofR on the diversity
of the results. All other hyper-parameters remain unchanged. We find that as R grows, the generation
diversity reduces, while the level of realism improves

Filtering schedule. We apply filtering during timesteps t ∈ [tmin, T ]. In Fig. 12, we show the
effect of different values of tmin on the diversity of the results. All the hyper-parameters besides
tmin remain unchanged. We observe that as we apply filtering for longer periods of the denoising
steps, the results are more realistic but less diverse.
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Figure 10: Qualitative results, illustrating where MSA and AMF excel. The first two rows present
cases where MSA fixed black and random textures in the target views. This contribution shows a
larger improvement in image quality metrics, although MSA usually cannot fully resolve significant
structural issues. The third and fourth rows show structural improvements achieved with AMF.
Finally, the last row shows a case where neither technique worked well enough on its own, but
the combination did the work: the original result of Zero123-XL shows an implausible right hand
and an incorrect pose of the right sword. MSA lead to more stable result, where the hand is not
out-of-distribution, but could not resolve the incorrect pose of the sword. AMF lead to reasonable
right hand and placement of the sword, but the sword is not aligned well the the texture of the original
sword. The final result show correct structure and texture for the right hand and sword.

Through our ablation study, we find that in practice, a moderate application of attention maps filtering
is sufficient for improving fidelity while preserving diversity. While excessive resampling might limit
diversity (e.g. using large values of R), we only apply our filtering mechanism in the earlier steps of
the denoising process, using a small value of R (5 in all our experiments). This enables our method to
maintain diversity effectively.

When evaluating diversity against base models, we observed that some results of the base models
were highly implausible, as can be seen in Fig 1 and Fig. 9 in the appendix. For example, Zero-1-to-3
produces out-of-distribution results, or results that are not aligned with either the input image or
the target pose, leading to seemingly larger variance. However, this "diversity" is largely due to
misalignment and artifacts, which comes at the expense of fidelity.

In our case, our model continues to generate diverse results that are both plausible and better aligned
with the conditions (e.g. the various chair backs and turtles heights in Fig. 1).
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Figure 11: Generation diversity wrt filtering iterations. We select an extreme change in viewpoint,
and show how different choices of R, the number of filtering iterations, affect the diversity of
generated outputs. As filtering iterations increase, the results become less diverse and more realistic.

Figure 12: Generation diversity wrt filtering schedule. We select an extreme change in viewpoint,
and show how different choices of the timesteps interval where filtering is applied, affect the diversity
of results. As filtering is applied for longer periods during the denoising process, the results become
less diverse and more realistic.
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8.8 Attention Map Filtering Beyond Novel View Synthesis

In this subsection, we describe several preliminary experiments where we integrate attention map
filtering to other base models. Remarkably, the integration of our proposed method into other base
models is straightforward, demonstrating its applicability and simplicity.

In all the mentioned experiments, resampling is performed during timesteps t ∈ [700, 1000], with
R=5. Additionally, the cross-step parameters were slightly tuned for each base model. Mutual
Self-Attention is not implemented, as it is not immediately applicable.

Conditional image generation. A brief study of ControlNet models [58] demonstrated that they
suffer from similar limitations as zero123 and its follow ups. Namely, lack of condition enforcement
and frequent appearance of visual artifacts. We implemented our proposed AMF module for two
pre-trained ControlNet models. In Fig. 6 in the main paper, we provide qualitative results for pose-
conditioned ControlNet. In Fig. 13, we provide qualitative results for segmentation-conditioned
ControlNet. We find that attention map filtering robustly mitigates artifacts across various prompts
and seeds for both base models.

Multi-view synthesis. We integrate AMF into MVDream [40], a text-to-multiview model, and find
that it helps to mitigate the same issues as in the single view case. We provide qualitative results in
Fig. 14.

Figure 13: Qualitative results for segmentation-conditioned ControlNet. Qualitative results
for pre-trained segmentation-conditioned ControlNet, without and with AMF. Both methods are
initialized with the same seed. AMF leads to results that are more plausible and better align with the
conditions, including intricate details (e.g. the base model fails to generate the faucet and the right
stool in the third row, while our method generates both and better align with the prompt.)
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Figure 14: Qualitative results for MVDream. Qualitative results for MVDream, without and with
AMF. Both methods are initialized with the same seed, and we provide results with two random seed
per prompt. AMF leads to results that are more plausible and spatially consistent, while also better
align with the conditions.
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8.9 Data

Dataset creation. For each object, we render various views by randomly selecting camera parameters,
an elevation θ ∈ [0, π, an azimuth ϕ ∈ [0, 2π] and a radius r ∈ [1.5, 2.2]. We manually select 8 views
for each object by removing images captured from close viewpoints and filtering camera viewpoints
only from the upper half of the unit sphere, to avoid significant lighting effects that swing the results
regardless of the output geometry.

Dataset assets. We provide a list of the objects picked for the challenging subset of GSO.

1. 3D_Dollhouse_Sink
2. 3D_Dollhouse_Swing
3. 3D_Dollhouse_TablePurple
4. adiZero_Slide_2_SC
5. Air_Hogs_Wind_Flyers_Set_Airplane_Red
6. BALANCING_CACTUS
7. Chelsea_lo_fl_rdheel_nQ0LPNF1oMw
8. CHICKEN_RACER
9. Circo_Fish_Toothbrush_Holder_14995988

10. COAST_GUARD_BOAT
11. CREATIVE_BLOCKS_35_MM
12. Dino_5
13. Down_To_Earth_Ceramic_Orchid_Pot

_Asst_Blue
14. FIRE_ENGINE
15. Great_Dinos_Triceratops_Toy
16. Guardians_of_the_Galaxy_Galactic_Battlers

_Rocket_Raccoon_Figure
17. Hilary
18. Imaginext_Castle_Ogre
19. My_First_Rolling_Lion
20. My_First_Wiggle_Crocodile
21. My_Little_Pony_Princess_Celestia
22. Nickelodeon_Teenage_Mutant_Ninja

_Turtles_Leonardo
23. Nickelodeon_Teenage_Mutant_Ninja

_Turtles_Michelangelo
24. Nintendo_Mario_Action_Figure
25. Nintendo_Yoshi_Action_Figure

26. Olive_Kids_Mermaids_Pack_n
_Snack_Backpack

27. Ortho_Forward_Facing
28. Ortho_Forward_Facing_3Q6J2oKJD92
29. Ortho_Forward_Facing_QCaor9ImJ2G
30. Racoon
31. Razer_Kraken_Pro_headset_Full_size_Black
32. Remington_TStudio_Hair_Dryer
33. Rubbermaid_Large_Drainer
34. Schleich_African_Black_Rhino
35. Schleich_Hereford_Bull
36. Schleich_Lion_Action_Figure
37. Schleich_S_Bayala_Unicorn_70432
38. Smith_Hawken_Woven_BasketTray_Organizer

_with_3_Compartments_95_x_9_x_13
39. Sonny_School_Bus
40. Sootheze_Cold_Therapy_Elephant
41. SORTING_TRAIN
42. Toysmith_Windem_Up_Flippin_Animals_Dog
43. Squirrel
44. Transformers_Age_of_Extinction_Mega_1Step

_Bumblebee_Figure
45. TriStar_Products_PPC_Power_Pressure_Cooker

_XL_in_Black
46. Vtech_Roll_Learn_Turtle
47. W_Lou_z0dkC78niiZ
48. Weisshai_Great_White_Shark
49. Whey_Protein_Vanilla
50. ZX700_mzGbdP3u6JB
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction reflect all our main contributions for the goal
of improving the reliability and quality of novel views generated by Zero-1-to-3 and its
variations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper both discuss extensively the limitations of the work, and provide an
example for a failure case to demonstrate these limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper do not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all implementation details, both for our method and dataset
creation, making our method and results fully reproducible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We intend to release all code and data used in our paper in time for the
camera-ready version.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all relevant details to understand all the experiments and
results shown.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Each generation task (defined by a source view and camera viewpoint) is
generated 3 times with different seeds, and the final score is the average of all score.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We note all experiments were run on a single NVIDIA RTX 4090.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research follows the NeurIPS Code of Ethics in full.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts: both positive and negative.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: Our method is training-free, builds upon an already released pre-trained model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper that introduces Google Scanned Objects and all
license details will be provided with the code and data.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not create 3D new assets. However, we generate a dataset of renderings
that is well documented and will be released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper doesn’t involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper doesn’t involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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