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Abstract

As one of the most fundamental non-convex learning problems, ReLU regression
under differential privacy (DP) constraints, especially in high-dimensional settings,
remains a challenging area in privacy-preserving machine learning. Existing re-
sults are limited to the assumptions of bounded norm ∥x∥2 ≤ 1, which becomes
stringent and strong with increasing data dimensionality. In this work, we revisit
the problem of DP ReLU regression in overparameterized regimes. We propose
two innovative algorithms, DP-GLMtron and DP-TAGLMtron, that outperform
the conventional DPSGD. DP-GLMtron is based on a generalized linear model
perceptron approach, integrating adaptive clipping and Gaussian mechanism for
enhanced privacy. To overcome the constraints of small privacy budgets in DP-
GLMtron, represented by Õ(

√
1/N) where N is the sample size, we introduce

DP-TAGLMtron, which utilizes a tree aggregation protocol to balance privacy and
utility effectively, showing that DP-TAGLMtron achieves comparable performance
with only an additional factor of O(logN) in the utility upper bound. Moreover,
our theoretical analysis extends beyond Gaussian-like data distributions to settings
with eigenvalue decay, showing how data distribution impacts learning in high di-
mensions. Notably, our findings suggest that the utility bound could be independent
of the dimension d, even when d≫ N . Experiments on synthetic and real-world
datasets also validate our results.

1 Introduction
Protecting individual privacy in data analysis has emerged as a critical concern. In light of the vast
quantities of personal and sensitive information involved, traditional methods of ensuring privacy
are encountering significant challenges. Differential Privacy (DP), introduced by [13], has gained
widespread recognition as a method for preserving privacy by adding a controlled amount of random
noise to the data or query responses, thereby effectively concealing the details of any individual.

Differentially Private Stochastic Optimization (DP-SO) and its empirical form, Differentially Private
Empirical Risk Minimization (DP-ERM), are foundational models extensively studied in the DP
community. Although there is a substantial body of research on DP-SO and DP-ERM with convex
loss functions [10, 46, 7, 16, 35, 37, 6, 9, 26, 36, 38, 39], the understanding of nonconvex optimization
in a DP context remains limited. Recent efforts have developed private algorithms with established
proven utility bounds for differentially private nonconvex optimization [51, 46, 43, 52, 8, 47].
However, most of the current work employs the gradient norm of the population risk function as
a measurement instead of excess population risk, commonly used in convex scenarios. Recently,
[33] comprehensively studied different instances of non-convex learning, such as generalized linear
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models, ReLU regression, and multi-layer neural networks. However, for each problem, they imposed
different strong assumptions, which left a big room to further understanding DP non-convex learning.
In this paper, we consider the most fundamental one, the ReLU (Rectified Linear Unit) regression
model.

As one of the most fundamental non-convex models, ReLU regression stands out due to its widespread
use and effectiveness in deep learning. Despite its prevalence in industry, theoretical exploration
of ReLU regression has been relatively limited. [33] studies the DP ReLU regression problem in
both well-specified and misspecified settings. However, the problem is still far from well-understood.
By and large, several challenges need to be addressed. Their analysis, for instance, heavily relies
on strong assumptions about bounded norms of feature vectors and labels, i.e. ∥x∥2 ≤ O(1) and
|y| ≤ O(1), which does not hold even for normal Gaussian distributions. Secondly, while they
provide a utility upper bound of Õ( 1√

N
+min{ d1/2

(Nε)1/2
, 1
(Nε)2/3

}) with sample size N and dimension
d, their dimension-independent results heavily rely on their data assumption, leading to a dimension-
dependent upper bound when considering Bernoulli or O(1)-subGaussian data where ∥x∥2 ≤ O(

√
d)

with high probability. That means when d ≫ N , i.e., when in the overparameterization regime,
previous results become trivial.

In this paper, we revisit the DP ReLU regression problem in the overparameterized regime. Specifi-
cally, we provide a general analysis under the well-specified setting and propose two novel algorithms
(DP-GLMtron and DP-TAGLMtron). Our contributions are three-fold, see Table 1 for details.

1) We propose an innovative algorithm, DP-GLMtron, built upon the Generalized Linear Model
Perceptron (GLM-tron) algorithm of [23]. Specifically, DP-GLMtron operates by making a single
pass over the dataset and processes one data point at a time by integrating appropriate clipping and
adding Gaussian noise to maintain privacy. Additionally, we provide an excess population risk upper

bound of Õ(Deff
N +

Dpri
eff

N2ε2 ) where Deff (Dpri
eff) is the (private) effective dimension. It is noticed that

Deff and Dpri
eff are defined in a way that does not directly rely on the dimension d. Furthermore, our

results are applicable not only to Gaussian-like data, typically considered in the traditional differential
privacy community, but also to data distributions that exhibit either polynomial or exponential decay.
In these cases, we demonstrate that the utility bound is independent of the dimension d, which marks
a significant departure from the traditional one (see more discussions in Remark 4). Finally, we also

show that our analysis on DP-GLMtron is almost tight by providing a lower bound of Ω̃(Deff
N +

Dpri
eff

N2ε2 ).

2) A significant issue with DP-GLMtron is its upper bound only holds with a small privacy budget
ε = Õ( 1√

N
) (for further details, see Remark 3), which is due to privacy amplification via shuffling.

To tackle this limitation, we propose DP-TAGLMtron, which utilizes the tree aggregation protocol
to introduce noise into the sum of mini-batch gradients instead of using privacy amplification. Our
analysis reveals that the utility upper bound of DP-TAGLMtron is closely comparable to that of
DP-GLMtron only with an additional factor of O(logN). This finding indicates that DP-TAGLMtron
can offer similar performance benefits while potentially being applicable in settings with larger
privacy budgets.

3) We conducted experiments with both synthetic data and real data on the ReLU regression model
across various algorithms and privacy budgets. Specifically, in the first part, synthetic data was
generated under two eigenvalue decay scenarios, λi ∝ i−2 and λi ∝ i−3. The results revealed
that faster eigenvalue decay consistently resulted in lower excess risk compared to slower decay,
indicating that it may suffer less from dimensionality with respect to utility. Additionally, in both
synthetic and real data, DP-GLMtron and DP-TAGLMtron outperformed DP-SGD and DP-FTRL
[22], especially as the sample size increased, highlighting the effectiveness of our proposed methods.

Due to space limitations, we have included the algorithms and proofs in the appendix.

2 Related Work
Private Nonconvex Optimization Previous research focusing on the utility of DP-SO/DP-ERM with
convex loss functions predominantly employed excess population risk as the metric of utility. In
contrast, for non-convex scenarios, utility assessment can be broadly categorized into three types:
first-order stationary-based, second-order stationary-based, and excess population risk. The first-order
stationary-based method [43, 53, 34, 8, 52, 50] involves evaluating the ℓ2-norm of the gradient of
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Table 1: Comparison of our work with related studies on (ε, δ)-DP ReLU regression in the statistical
estimation setting. Here, N represents the sample size, d refers to the dimension and Deff, , D

pri
eff

are the (private) effective dimensions. It is noticed that Deff and Dpri
eff are defined in a way that

does not directly rely on the dimension d. Instead, they segment the feature space into an effective
subspace.For further discussion, please see Remark 4.

Method Upper Bound Lower Bound Privacy Constraints Data Assumptions

DP-PGD
[33]

Õ(min{ d1/2

(Nε)1/2
, 1

(Nε)2/3
}+

1√
N
)

- - ∥x∥2 ≤ 1

DP-GLMtron Õ(Deff
N

+
D

pri
eff

N2ε2
) Ω̃(Deff

N
+

D
pri
eff

N2ε2
) ε = O( 1√

N
) -

DP-TAGLMtron Õ(Deff
N

+
D

pri
eff+Deff
N2ε2

) - - -

the population risk function. This method, however, encounters several challenges. For example,
[2] shows that the gradient norm tends to approach zero as the sample size increases indefinitely,
while there exists no assurance that a differentially private estimator will converge to or even be
near any significant local minimum. The Second-order stationary-based method [42, 45] employs
the norm of the gradient and the Hessian matrix minimal eigenvalue of the population risk function.
However, this approach is particularly suited to specific scenarios where any second-order stationary
point is a local minimum of the problem, and all the local minima are the global minimum, such as
matrix completion and dictionary learning. The third approach involves directly employing the excess
population risk as the measure of utility [33, 43] and our work aligns with this direction. However, as
we mentioned these bounds either need strong assumptions or become trivial when d≫ N .

Private Generalized Linear Models DP-SO and DP-ERM with generalized linear loss (DP-GLL)
and generalized linear models (DP-GLM) have gained significant attention in recent years. The key
developments in this area can be regarded as three aspects: 1) For convex loss functions, an early
study on DP-GLL [21] revealed that, assuming features have bounded l2 norm, the error bound can
reach Õ( 1√

Nε
), contrasting with the general convex DP-ERM bound of O(

√
d

Nε ). A subsequent study
[25] found that in constrained cases, the error bound depends on the Gaussian width of the constraint
set. [34] improved the bound to O(

√
θ

Nε ) under the assumption that the data space is a bounded
set, where θ is the rank of the expectation of the data matrix. 2) For constrained DP-GLM, [8]
explored various scenarios, including smooth/non-smooth losses and losses in ℓp space for 1 ≤ p ≤ 2.
[5] provided the optimal rates of DP-GLM in unconstrained settings, identifying different rates
depending on the nature of the loss function (smooth and non-negative but not necessarily Lipschitz,
or Lipschitz). 3) For non-convex losses, [34, 7] provided dimension-independent bounds for the
gradient ℓ2 norm of the population risk function. As a specific instance of GLM, this work focuses
on the overparameterized regime with sub-Gaussian data rather than bounded data.

3 Preliminaries
Notations: In this paper, we adhere to a consistent notation style for clarity. We use boldface lower
letters such as x,w for vectors, and boldface capital letters (e.g. A,H) for matrices. Let ∥A∥2
denote the spectral norm of A. For two matrices A and B of appropriate dimension, their inner
product is defined as ⟨A,B⟩ := tr(A⊤B). For a positive semi-definite (PSD) matrix A and a vector
v of appropriate dimension, we write ∥v∥2A := v⊤Av. The outer product is denoted by ⊗.

Given a dataset D = {(xi, yi)}Ni=1 with each data point has a feature vector xi ∈ X ⊆ Rd

and a response variable yi ∈ Y . In this paper, we assume that {(xi, yi)}Ni=1 are i.i.d. sampled
from a ReLU regression model, i.e., each (xi, yi) is a realization of the ReLU regression model
y = ReLU(x⊤w∗) + z, where ReLU(·) := max{·, 0} is the Rectified Linear Unit (ReLU); z is a
zero mean randomized noise; w∗ ∈ Rd is the optimal model parameter. Our goal is to output a model
wpriv that maintains privacy while minimizing the excess population risk, i.e., L(wpriv )− L(w∗),
where

L(w) =
1

2
E(x,y)∼D[(ReLU(x⊤w)− y)2]. (1)

In this paper, we will focus on classic Differential Privacy to ensure privacy.
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Definition 3.1 (Differential Privacy [13]). Given a data universe X , we say that two datasets
D,D′ ⊆ X are neighbors if they differ by only one element, which is denoted as D ∼ D′. A
randomized algorithm A is (ε, δ)-differentially private (DP) if for all adjacent datasets D,D′ and for
all events S in the output space of A, we have P(A(D) ∈ S) ≤ eε · P(A(D′) ∈ S) + δ.

In the following, we will introduce some definitions and assumptions related to the model.
Definition 3.2 (Well-specified Condition). Assume that there exists a parameter w∗ ∈ Rd such
that E[y | x] = ReLU(x⊤w∗), and the variance of the model noise can be denoted by σ2 :=
E
[
(y − ReLU(x⊤w∗))

2
]
.

In the literature, the well-specified setting is also extensively referred to as the ”noisy teacher” setting
[18] or the well-structured noise mode [19]. It has been widely studied previously [56, 41, 33, 12].
Assumption 3.3 (Data Covariance). Define H := E[xx⊤] as the expected data covariance matrix.

Denote the eigen decomposition of the data covariance by H =
∑

i λiviv
⊤
i , where (λi)i≥1 are

eigenvalues in a nonincreasing order and (vi)i≥1 are the corresponding eigenvectors. Define Hk1:k2

as Hk1:k2
:=

∑
k1<i≤k2

λiviv
⊤
i , and allow k2 =∞ to imply that Hk:∞ =

∑
i>k λiviv

⊤
i .

In the case of a Gaussian distribution, the data covariance matrix reduces to an identity matrix scaled
by variance.
Assumption 3.4 (Fourth moment conditions). Define that the fourth moment of x asM:

(A) There exists a constant α > 0 such that for any Positive Semi-Definite (PSD) matrix A, the
following holds:

E[xx⊤Axx⊤] ⪯ α · tr(HA) ·H.

(B) There exists a constant β > 0, such that for every PSD matrix A, the following holds:

E[xx⊤Axx⊤]−HAH ⪰ β · tr(HA) ·H.

Remark 1. For Gaussian distribution, it can be verified that Assumption 3.4 holds with α = 3 and
β = 1 [56]. Furthermore, the assumption of sub-Gaussianity in data, specifically that H− 1

2x is a
sub-Gaussian random vector, as posited in previous work [44, 41, 54, 28, 55, 20, 32, 31] for private
linear regression model, can be shown to imply Assumption 3.4 (A) [56]. It is important to note that
Assumption 3.4 (B) is specifically utilized in our analysis for establishing the lower bound only.
Definition 3.5 ((H, C2, a, b)-Tail). Let both H and M exist and are finite. A random vector x
satisfies (H, C2, a, b)-Tail if the the following holds:

• ∃a > 0 s.t. with probability ≥ 1− b,

∥x∥22 ≤ E[∥x∥22] · log
2a(1/b), (2)

• We have,

max
v,∥v∥=1

E[exp((
|⟨x,v⟩|2

C2
2∥H∥2

)1/2a)] ≤ 1,

That is, for any fixed v, with probability ≥ 1− b :

(⟨x,v⟩)2 ≤ C2
2∥H∥2∥v∥2 log

2a(1/b).

Both conditions above provide Gaussian-like tail bounds determining the resilience of the dataset.
Note that Definition 3.5 is widely used in the recent literature on DP analysis for the sub-Gaussian
type of data such as [41, 29, 27]. In this work, we will assume each sample x satisfying (H, C2, a, b)-
Tail and the distribution of the inherent noise z satisfies (σ2, C2, a, b)-Tail, which could capture more
statistical properties beyond expectations. Additionally, according to Assumption 3.4 (A), it holds
that ∥x∥22 ≤ α tr(H) · log2a(1/b) in Equation (2).
Assumption 3.6 (Symmetricity conditions). Assume that for every u,v ∈ Rd, it holds that:

E[xx⊤ · 1[x⊤u > 0,x⊤v > 0]] = E[xx⊤ · 1[x⊤u < 0,x⊤v < 0]]

E[(x⊤v)2xx⊤ · 1[x⊤u > 0,x⊤v > 0]] = E[(x⊤v)2xx⊤ · 1[x⊤u < 0,x⊤v < 0]].

Remark 2. Here we require that both the second and fourth moments of x remain symmetric. It can
be shown that Assumption 3.6 is satisfied when x and −x follow the same distribution, which can
apply to symmetric sub-Gaussian such as symmetric Bernoulli or Gaussian distributions.
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(a) Trajectory with smaller noise (b) Trajectory with larger noise

Figure 1: Training trajectories of DP-SGD and DP-GLMtron on a 2D noiseless ReLU regression
with symmetric Bernoulli data.

4 Proposed DP-GLMtron Algorithm
Before presenting the analysis of DP ReLU regression problem, we first introduce our novel algorithm:
DP-GLMtron (Algorithm 1), which is inspired by and built upon the Generalized Linear Model
Perceptron (GLM-tron) algorithm of [23].

The fundamental distinction between SGD and GLMtron lies in their respective update rules. Specifi-
cally, it takes the following rules:

SGD: wt = wt−1 − η · (ReLU(x⊤
t wt−1)− yt)xt · 1[x⊤

t wt−1 > 0]

GLMtron: wt = wt−1 − η · (ReLU(x⊤
t wt−1)− yt)xt.

(3)

where the algorithm commence from an initial point w0 and iterate from t = 0 to t = N with
stepsize η. In contrast to the update rule of SGD, GLMtron diverges by changing the derivative of
the ReLU function in its update mechanism. Typically, in neural network training, the gradient of
the activation function, such as ReLU, is a critical component of the backpropagation process. The
exclusion of this derivative in GLMtron’s framework not only simplifies the computational process
but also enhances efficiency. Our motivation for developing the DP-GLMtron algorithm stems from
observations regarding the limitations of DP-SGD, as it sometimes fails to reach the optimal solution
and can struggle with convergence under conditions of high noise, often settling at a saddle point
instead (as illustrated in Figure 4). This issue is particularly pronounced when considering a low
privacy budget. Furthermore, [23] demonstrates that this specific omission plays a significant role in
GLMtron’s ability to efficiently identify a predictor that closely approximates the optimal solution.

Building upon these foundations, we now present the detailed implementation of our proposed
DP-GLMtron. For Algorithm 1, we begin with a random permutation of the dataset, ensuring that
each data point is treated independently and uniformly. Also, such shuffling can amplify privacy[17].
Subsequently, the algorithm performs a single pass over the dataset. Throughout this pass, we
need to determine the clipping threshold before undergoing iterative updates for w. Establishing an
appropriate clipping threshold is crucial for balancing the trade-off between utility and privacy. If
the clipping threshold is set excessively low, it results in loss of gradient information, consequently
leading to high bias [30, 3]. Consequently, we propose an advanced Algorithm 2 based on the residual
estimator in [28] to achieve an adaptive clipping [4] by utilizing a small batch of data points.

Recall that the clipping term is a product of the residual, (ReLU(x⊤
t wt)−yt), and the covariate, x⊤

t .
Based on Definition 3.5 and Assumption 3.4, we understand that ∥xt∥22 ≤ α tr(H) · log2a(1/b) with
a probability of at least 1− b. Thus, it is sufficient to get an upper bound of |ReLU(x⊤

t wt)− yt|.
To bound this, we consider three cases, 1) x⊤

t wt > 0,x⊤
t w∗ > 0; 2) x⊤

t wt < 0,x⊤
t w∗ > 0; 3)

x⊤
t wt > 0,x⊤

t w∗ < 0, corresponding to d1t , d2t , and d3t in step 2 of Algorithm 2. It is noticed that
the inherent model noise is not considered when initially calculating the residual for the third case
at step 2, while this noise is taken into account at step 15. Moreover, when considering a special
case that x⊤

t wt < 0,x⊤
t w∗ < 0, the clipping threshold is integrated into the third scenario. For

each residual, we first partition the dataset into K batches, compute an estimate for each batch, and
form a histogram with over those K estimates. We then apply a private histogram mechanism with
geometrically increasing bin sizes. The bin with the most estimates is used, ensuring a constant factor

5



approximation of the distance to the optimum. Finally, we take the maximum among the three private
residual estimates.

Upon determining the clipping threshold γt, it is subsequently incorporated into the existing clipping
list γ. Following this, Gaussian noise with a standard deviation of 2fγt is introduced to the clipped
lt and then the weight vector wt+1 will be updated. Finally, the algorithm culminates by computing
the average of the iterates.
Theorem 4.1 (Privacy Guarantee). Suppose DP-GLMtron is applied to N input samples with a noise
multiplier set to f = O( log(N/δ)

ε
√
N

). Under these conditions, the algorithm satisfies (ε, δ)-differential

privacy for ε = O(
√

log(N/δ)
N ), with ε′ = ε√

8N log(2/δ)
, δ′ = δ

2N in Algorithm 2.

Remark 3. For general data distributions, DP-GLMtron necessitates a more complex approach to
clipping decisions. To this end, we incorporate Algorithm 2, which uses the magnitude of the residual
along with privacy parameters ε′ and δ′, as a means to estimate the private threshold. Additionally,
we take only one pass over random shuffling data for Algorithm 1 [15, 17, 41], which is a well-
known method of privacy amplification. Hence, we need to add noise O( γt

ε
√
N
), where γt is the

clipping threshold and ε must be restricted to 1/
√
N , to satisfy the requirement of [17] and to ensure

differential privacy.
Theorem 4.2 (Utility Guarantee Upper). Consider a dataset D = {(xi, yi)}Ni=1, where each xi is
drawn from a distribution D satisfying (H, C2, a, b)-Tail and the distribution of the inherent noise z
satisfies (σ2, C2, a, b)-Tail. Given Assumptions 3.4 and 3.6, if we set a step size η ≤ 1

2α tr(H) log2a(N)
,

a noise multiplier f = O( log(N/δ)

ε
√
N

), estimating data size m = Ω( log(N) log(N/δ′)
ε′ ), then with a

probability of 1− 1/N , the output of Algorithm 1 will satisfy:

E[L(wN )]− L(w∗) ≲ bias + variance + privacy,

where the bias, variance, and private terms are upper bounded by

bias ≲
1

η2N2
· ∥w0 −w∗∥2H−1

0:k∗
+ ∥w0 −w∗∥2Hk∗:∞ + (

α

N
∥w0 −w∗∥2I0:k∗

Nη
+Hk∗:∞

) ·Deff

variance ≲
σ2

N
·Deff, private ≲

Γ2f2

N
·Dpri

eff

where the effective dimensions are given by

Deff = k∗ +
N2η2

4

∑
i>k∗

λ2
i , Dpri

eff =
∑
i<k∗

λ−1
i +

N2η2

4
·
∑
i>k∗

λi

with k∗ = max{k : λk ≥ 2
ηN

} and Γ = max{γt}T−1
t=0 .

Remark 4. The utility bound is typically decomposed into three terms: the bias term, which is
associated with the initial value of the model; the variance term, stemming from the inherent noise
intrinsic to the model itself; and the privacy term, introduced by the privacy-preserving mechanism.
Notably, the results contain two crucial factors: the effective dimension Deff and the private effective
dimension Dpri

eff , which can be regarded as the function of data covariance matrix’s eigenvalues.

Technical Understanding Under Simplified Cases To provide a more intuitive explanation, we
explore two simplified scenarios. 1) ∥x∥2 ≤ 1: In this scenario, where the norm of the data is
constrained, the trace of the covariance matrix tr(H) ≤ 1. This condition indicates that the sum
of the eigenvalues, λi, is less than 1. Given that the eigenvalues are ordered non-increasingly
(refer to Assumption 3.3), the majority of these eigenvalues must be very small. Assuming the
step size η is sufficiently small and scaled with the square root of the data size,

√
N , the optimal

number of iterations k∗ must be confined within a scope proportional to
√
N . If not, the inequality

tr(H) ≥ k∗ · 2
Nη ≥ 1 would contradict the data assumptions. Furthermore, the clipping threshold,

which depends on tr(H), remains a constant term, and the private effective dimension Dpri
eff is bounded

above by N . Therefore, the total utility is Õ( 1√
N

+ tr(H−1)
N2ε2 ). 2) sub-Gaussian tail: In this case,

the eigenvalue of the covariance matrix corresponds to the variance of sub-Gaussian data. Both the
effective dimension, Deff, and the private effective dimension, Dpri

eff , effectively reduce to the feature
dimension d. Moreover, the clipping threshold contributes a factor of d, leading to a total utility
bound of Õ( d√

N
+ d2

N2ε2 ).
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The Role of Eigenvalue in High-dimensional Setting Existing work in the DP community
primarily relies on data assumptions satisfying Gaussian-like distributions, as discussed in Remark 1,
which reduces the data covariance matrix to an identity matrix scaled by variance. Such an assumption
may cause the case to be overlooked when the spectrum exhibits decay. Theorem 4.2 offers a novel
perspective by elucidating the interplay between the feature space and the utility bound. Notice
the crucial cut-off index k∗ = max{k : λk ≥ 2

ηN }, which separates the entire space into a k∗

dimensional subspace. It enables us to obtain a bound that does not directly depend on the feature
dimension d in the overparameterized regime. To achieve a diminishing bound, it is necessary for k∗
to be o(N) and for the tail summation of eigenvalues to be o(1/N), which indicates that it is possible
to achieve improved results without suffering the dimension d in the overparameterized regime.

To better understand the effective dimension, we offer examples of data spectra where the excess risk
diminishes under certain conditions.
Corollary 4.3. Given the same assumptions in Theorem 4.2 and suppose ∥w0 −w∗∥2 is bounded, it
holds that:

1. If the spectrum of H satisfies λk = k−r for some r > 1, then with probability at least
1− 1/N , the utility is upper bounded by Õ(N− r

1+r (1 + (ε−2N
r

1+r )
r

1+2r )).

2. If the spectrum of H satisfies λk = e−k, then with probability at least 1− 1/N , the utility
is upper bounded by Õ(N−1(1 + (ε−2N)

1
2 )).

Remark 5. Corollary 4.3 indicates that utility bound in the overparameterized setting can still vanish
if the spectrum exhibits either polynomial or exponential decay. Specifically, a constant privacy
budget ε = O(1) can yield utility bounds of Õ(N−r/(1+2r)) for polynomial decay and Õ(N−1/2)
for exponential decay. Notably, faster eigenvalue decay (e.g. r = 2, 3) consistently resulted in lower
excess risk compared to slower decay, indicating that it may suffer less from dimensionality with
respect to utility. This insight cannot be derived when considering only traditional Gaussian-like data.
Our experiment in Section 6 also validates the conclusion. Moreover, increasing the privacy budget
to ε = O(Nr/(2+2r)) for polynomial decay and ε = O(N1/2) for exponential decay improves utility
bounds to Õ(N−r/(1+r)) and Õ(N−1), respectively, matching non-private and linear regression
scenario results [49, 48].

In the following, we show that our previous analysis for Algorithm 1 is almost tight.
Theorem 4.4 (Utility Guarantee Lower). Consider a dataset D = {(xi, yi)}Ni=1, where each xi is
drawn from a distribution D satisfying (H, C2, a, b)-Tail and the distribution of the inherent noise
z satisfies (σ2, C2, a, b)-Tail. Given Assumptions 3.4 and 3.6, if we set the same parameters as in
Theorem 4.2, then with a probability of 1− 1/N , the output of Algorithm 1 will satisfy:

E[L(wN )]− L(w∗) ≳ bias + variance + privacy,

where

bias ≳
1

η2N2
· ∥w0 −w∗∥2H−1

0:k∗
+ ∥w0 −w∗∥2Hk∗:∞ + (

β

N
∥w0 −w∗∥2I0:k∗

Nη
+Hk∗:∞

) ·Deff

variance ≳
σ2

N
·Deff, private ≳

Γ̃2f2

N
·Dpri

eff

where the effective dimensions, k∗
m are defined same as in Theorem 4.2 and denotes Γ̃ = min{γt}T−1

t=0 .

Remark 6. Similar to the Theorem 4.2, the lower bound stated here consists of three terms: the bias
term, the variance term, and the privacy term. It is noticed that Theorem 4.4 provides the algorithmic
lower bound Algorithm 1, applicable in both under-parameterized and over-parameterized settings.
Notably, our lower bound aligns with the upper bound, differing only by absolute constants.

5 Advanced DP-TAGLMtron

A pivotal concern with Algorithm 1 DP-GLMtron lies in its primary applicability in the setting where
the privacy budget ε is small, which could potentially limit its practical utility (see Remark 3 for
more details). To address this challenge, we introduce DP-TAGLMtron (Algorithm 3) in this section,
which is designed to attain an improved trade-off between privacy and utility.

7



In Algorithm 3, the process starts with setting the initial weights. For each iteration t, a private
residual is determined by Algorithm 2 on the estimating samples, current weights, and privacy
parameters. Subsequently, the clipping bound is computed as the product of the private residual and
the covariate, analogous to the previous case. Once this clipping bound γt for the current iteration
is computed, it is added to the existing clipping list γ. With γt in place, the clipped "gradient" (lt)
is calculated. The maximum value from this list is selected as the clipping threshold Γ for our next
step. The "gradient" lt is then forwarded to the differentially private tree-aggregation mechanism
with noise multiplier f and the maximal clipping threshold Γ.

It is noticed that our proposed algorithm, DP-TAGLMtron, does not depend on privacy amplification.
Instead, it primarily involves employing tree aggregation [14, 11, 22, 40] to introduce noise into the
sum of mini-batch gradients. At the beginning of training, we construct a binary tree consisting of
(2⌈log2 N⌉+1 − 1) nodes, corresponding to N leaves. Each leaf node is assigned a label li, and the
value of each internal node represents the sum of its child nodes. In each iteration, the tree receives a
vector lt, derived from the current data pair (xt, yt), which is used to update the tree, incorporating
the new node. The final output, denoted as l′≤t, is obtained by aggregating the gradients accumulated
in the binary tree and adding Gaussian noise to this aggregate. As a result, we can understand that
l′≤t is the private estimation of

∑t
i=0 li generated by tree aggregation protocol as follows:

l′≤t =

t∑
i=0

li + vt,where li = clipγt
(xi(ReLU(x⊤

i wi)− yi)),

and vt is a combination of at most O(⌈log2 t⌉) Gaussian. Therefore, each li influences only its
ancestor nodes, affecting at most ⌈log t⌉+ 1 nodes. By introducing Gaussian noise with a standard
deviation of O(log t/ε) to each node, the entire tree achieves (ε, δ)-differential privacy.

When receiving the output of Algorithm 4, the optimization objective at step 9 is to determine the
weight parameter w. This objective function is composed of two key components: the first term,
(l′≤t,w), represents the inner product of l′≤t and the weight parameter w. The second term, 1

2η∥w∥
2
2,

introduces a regularization mechanism, where η controls the balance between fitting the training data
and constraining the magnitude of the parameters to prevent overfitting. One common method to find
the optimal solution for this optimization problem is to take the derivative of the objective function
and set it to zero. Therefore, for the given problem at step 9, we have the following update:

wt+1 ← −η · l′≤t = −η · (
t∑

i=0

li + vt).

It should be noted that in Algorithm 1, if the initialization is set to w0 = 0, then the update rule of w
can be considered equivalent to the one presented here, provided that the variance of the noise and
the clipping threshold are disregarded. Upon completing all iterations, the final model weights are
determined by averaging all the updated weights from each iteration.

Theorem 5.1 (Privacy Guarantee). Suppose DP-GLMtron is applied to N input samples with a

noise multiplier set to f =

√
2⌈lg(N+1)⌉ ln(1/δ)

ε . Under these conditions, the Algorithm 3 satisfies
(ε, δ)-differential privacy, with ε′ = ε√

8N log(2/δ)
and δ′ = δ

2N in Algorithm 2.

Remark 7. Differing from Algorithm 1, the update rule of DP-TAGLMtron mainly utilizes the
DP-Tree-Aggregation mechanism, which involves aggregating the "gradients" collected in a bi-
nary tree and then adding Gaussian noise to this aggregate. Based on [22], Algorithm 4 achieves

(ε, δ)-differential privacy with appropriate noise multiplier f =

√
2⌈lg(N+1)⌉ ln(1/δ)

ε , ensuring that
Algorithm 3 also upholds (ε, δ)-DP under similar settings with ε′, δ′ as Algorithm 2.

Theorem 5.2 (Utility Guarantee). Consider a dataset D = {(xi, yi)}Ni=1, where each xi is drawn
from a distribution D satisfying (H, C2, a, b)-Tail and the distribution of the inherent noise z satisfies
(σ2, C2, a, b)-Tail. Given Assumptions 3.4 and 3.6 hold, if we set a stepsize η < 1/(α tr(H)), a noise

multiplier f =

√
2⌈lg(N+1)⌉ ln(1/δ)

ε , then with a probability of 1 − 1/N , the output of Algorithm 3
will satisfy:

E[L(wN )]− L(w∗) ≲ bias + variance + privacy,
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where

bias ≲
1

η2N2
· ∥w0 −w∗∥2H−1

0:k∗
+ ∥w0 −w∗∥2Hk∗:∞ + (

α

N
∥w0 −w∗∥2I0:k∗

Nη
+Hk∗:∞

) ·Deff

variance ≲
σ2

N
·Deff, private ≲

f2 log2 N

N
· (αη log2 N tr(H) + Γ2) · (Deff +Dpriv

eff )

where the effective dimensions and k∗ are defined same as in Theorem 4.2.

Remark 8. It is noteworthy that in Theorem 5.2, both the bias term and the variance term are
consistent with those in Theorem 4.2. This alignment extends to the non-private results, with the only
differences being in the absolute constants. Additionally, the private term in Theorem 5.2 closely
aligns with that in Theorem 4.2, with the primary difference being a factor of log2 N . It is intuitive
that the tree aggregation mechanism utilized in DP-TAGLMtron indicates that the noise added for
privacy is derived from a combination of at most ⌈log2 N + 1⌉ and at least one random Gaussian
vector. This aspect suggests that DP-TAGLMtron diverges from the upper bound of DP-GLMtron at
most by a factor of log2 N and adheres to the same lower bound as DP-GLMtron with a different noise
variance. Moreover, in contrast to Algorithm 1, DP-TAGLMtron does not necessitate ε = O(1/

√
N)

to maintain differential privacy, allowing a broader range of privacy budget settings in terms of
flexibility and applicability.

6 Empirical Simulation

In this section, we first conduct experiments with synthetic data to validate the theoretical insights
related to the role of eigenvalues in a high-dimensional setting. Additionally, due to space con-
straints, we present a real-data experiment on the MNIST dataset in Appendix B to demonstrate the
performance of our proposed method.
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Figure 2: Comparative Performance of Various Differential Privacy Algorithms Across Different Data
Spectrum and Privacy Budgets. This figure illustrates the performance of four differential privacy
algorithms—DP-SGD, DP-GLMtron, DP-TAGLMtron, and DP-FTRL—on generated Bernoulli
distributed data, comparing excess risk across different sample sizes and privacy budgets.

Experiment Setup. The experiments were designed with varying privacy budgets (ε) set at 0.05,
0.2, and 0.5 with δ = 1

n1.1 to observe the impact of differential privacy constraints on the learning
process. We generated the data with two eigenvalue decay scenarios, λi ∝ i−2, i−3, simulating
different distributions of feature importance. The dimensionality of the data was fixed at 1,024 to
maintain consistency across trials. The learning rate was initially set to 10−2, with N representing

9



the sample size, which varied from 50 to 550 and increased in steps to 100. We utilized a ReLU
regression model with noise to be trained using the previously mentioned algorithms, integrating
privacy-preserving noise adjustments. The algorithms underwent a single iteration over generated
data. The primary metric for evaluation was the average excess risk across varying dataset sizes and
ε values. For each experiment, we also consider DP-SGD [1] and DP-FTRL [22] as baselines.

Empirical Findings. Compared with Figures (2a-2c), which illustrate data with eigenvalue decay
λi ∝ i−2, Figures (2f-2e), which illustrate data with eigenvalue decay λi ∝ i−3 exhibit the lower
excess risk under the same training algorithms and conditions regardless of privacy budget. This
indicates that fast eigenvalue decay suffers less from the dimensionality with respect to utility, thereby
validating our results in Section 4. Additionally, results in both data with eigenvalue decay λi ∝ i−2

and data with eigenvalue decay λi ∝ i−3 show that DP-GLMtron and DP-TAGLMtron consistently
outperform DP-SGD and DP-FTRL regarding excess risk, particularly as the sample size increased.
Moreover, it is noticed that the DP-SGD and DP-FTRL exhibit poor convergence performance even
with comparatively large data sizes. Finally, in both figures, increasing the privacy budget from
ε = 0.05 to ε = 0.5 resulted in lower excess risks for both algorithms. This observation confirms
the anticipated trade-off between privacy and learning performance, with a looser privacy constraint
leading to more accurate models.

7 Conclusions

In conclusion, our study significantly advances the field of differential privacy in ReLU regression
problems. Our first proposed algorithm, DP-GLMtron, provides an excess population risk upper

bound of Õ(Deff
N +

Dpri
eff

N2ε2 ), offering a novel perspective on utility decomposition and highlighting
the impact of eigenvalues in overparameterized settings. Our results apply not only to Gaussian-like
data, typically considered in traditional differential privacy studies, but also to data distributions
with polynomial or exponential decay. To address limitations with small privacy budgets, we
developed DP-TAGLMtron, which offers performance comparable to DP-GLMtron but supports
broader privacy budgets. Empirical results from both synthetic and real data experiments demonstrate
that DPGLMtron and DP-TAGLMtron consistently outperform DP-SGD and DP-FTRL.
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A Algorithms

Algorithm 1 DP-GLMtron

1: Input: Training Samples: {(xi, yi)}N−1
i=0 , Estimating Samples: {(x′

i, y
′
i)}mi=1, Learning Rate: η,

DP Noise Multiplier: f , Expected x Norm:
√

α tr(H), Privacy Parameters: ε′, δ′, Clipping list
γ = {}

2: Randomly permute {(xi,yi)}N−1
i=0

3: Initialize w0 → 0
4: for t = 0, . . . , N − 1 do
5: st ← DP-Threshold({(x′

i, y
′
i)}mi=1,wt, ε

′, δ′)

6: γt =
√

2α tr(H)C2 log
2a N · st

7: Sample gt ∼ N (0, Id×d)
8: wt+1 ← wt − η(lt + 2fγtgt)
9: where lt = clipγt

(x⊤
t (ReLU(x⊤

t wt)− yt))
10: end for
11: return w← 1

N

∑N−1
t=0 wt

Algorithm 2 DP-Threshold

1: Input: Estimating Samples: {(x′
i, y

′
i)}mi=1, Privacy Parameters: ε′, δ′, Model w, Distribution

Parameters: a, bz in Definition 3.5
2: ∀i ∈ [m], d1i ← (x⊤

i w − yi)
2, d2i ← y2i , d3i ← (x⊤

i w)2, ∀i ∈ [m]
3: Partition {d1i }mi=1, {d2i }mi=1 and {d3i }mi=1 into three K = ⌈C1 log(N/(δ′))/ε′⌉ subsets of equal

size separately, namely {D1
j}Kj=1, {D2

j}Kj=1 and {D3
j}Kj=1

4: for p=1,2,3 do
5: (dpj )

′ ←
∑

i∈Dp
j
dpi /|D

p
j |,∀j ∈ [K]

6: Partition [0,∞) into geometrically increasing intervals Ωp :=
{. . . , [2−1, 1), [1, 2), [2, 22), . . .} ∪ {[0, 0]}

7: Compute d
p

k ←
∑

j∈Dp
k
dpj1(d

p
j ≤ (dpk)

′)/|Dp
k|, where Dp

k is the interval in Ωp

8: if dpk ∈ (0, 2 log(1/δ′)/(ε′K) + (1/K)) then
9: d̃pk ← d

p

k + ppk, where qpk ∼ Lap(0, 2/(ε′K))
10: else
11: d̃pk ← 0
12: end if
13: Let [sp1, s

p
2] be the nonempty interval containing the largest d̃pk

14: if p=3 then
15: set sp =

√
2(sp2 + σ2 · log2a(1/bz))

16: else
17: set sp =

√
2sp2

18: end if
19: end for
20: return s = max{sp}3p=1
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Algorithm 3 DP-TAGLMtron

1: Input: Training Samples: {(xi, yi)}N−1
i=0 , Estimating Samples: {(x′

i, y
′
i)}mi=1, Learning Rate: η,

DP Noise Multiplier: f , Expected x Norm:
√

α tr(H), Privacy Parameters: ε′, δ′, Clipping list
γ = {}

2: Initialize w0 ← 0
3: for t = 0 . . . N − 1 do
4: st ← DP-Threshold({(x′

i, y
′
i)}mi=1,wt, ε

′, δ′)

5: γt ←
√

2α tr(H)C2 log
2a N · st

6: add γt to the list γ and Γ = maxγ
7: lt ← clipγt

(xt(ReLU(x⊤
t wt)− yt))

8: l′≤t ← DP-Tree-Aggregation(l≤t, f,Γ)

9: Update wt+1 ← argminw⟨w, l′t⟩+ 1
2η∥w∥

2
2

10: end for
11: return wN ← 1

N

∑N−1
t=0 wt

Algorithm 4 DP-Tree-Aggregation

1: Input: Vectors: {li}t−1
i=0 , Noise Paramters: f,Γ

2: Initialization Create a binary tree T of size 2⌈log2 N⌉+1 − 1 with N leaf nodes, and each node is
sampled i.i.d. from N (0, f2Γ2Id×d).

3: At t-th iteration, do:
4: Accept lt and add it to all the nodes along the path to the root of T .
5: Let [e1, . . . , eh] be the list of nodes from the root of T to the t-th leaf node, with node e1 being

the root node and node eh being the leaf node, where h is the height of tree.
6: Let l′≤t = 0d and {b1, . . . , bh} be the h bit binary representation of t.
7: for j ∈ [h] do
8: if bj = 1 then
9: l′≤t ← l′≤t + ej , where ej is the value in left sibling of ej node.

10: end if
11: end for
12: return l′≤t
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B Additional Experiment
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Figure 3: Comparative Performance of Various Differential Privacy Algorithms on MNIST Across
Different Privacy Budgets. This figure illustrates the performance of four differential privacy
algorithms—DP-SGD, DP-GLMtron, DP-TAGLMtron, and DP-FTRL—on generated Bernoulli
distributed data, comparing excess risk across different sample sizes and privacy budgets (ε = 0.05,
0.2, 0.5).

In our second experiment, we evaluate the performance of four different differential privacy (DP)
algorithms—DP-SGD, DP-GLMtron, DP-TAGLMtron, and DP-FTRL—using the MNIST dataset
across varying sample sizes and privacy budgets denoted by ε, with values set at 0.05, 0.2, and 0.5.
The learning rate was initially set to 0.05, with N representing the sample size, which varied from 0
to 1000 and increased in steps to 100. We utilized a ReLU regression model with noise to be trained
using the previously mentioned algorithms, integrating privacy-preserving noise adjustments. The
primary metric for evaluation was the average excess risk across varying dataset sizes and ε values.

The key insights from our findings are: Under Tight Privacy Constraints (ε = 0.05): DP-TAGLMtron
demonstrated superior performance across all sample sizes, achieving the lowest excess risk, while
DP-GLMtron’s excess risk increased with larger sample sizes. Under Moderate Privacy Constraints
(ε = 0.2): The performance differential between our DP-GLMtron and the baseline narrowed, and
DP-TAGLMtron continued to exhibit lower excess risks. DP-SGD’s performance suffered with
larger sample sizes, highlighting its sensitivity to sample size under moderate privacy levels. Under
Relaxed Privacy Constraints (ε = 0.5): Our proposed methods markedly outperformed both DP-SGD
and DP-FTRL, showcasing their enhanced risk mitigation capabilities when privacy constraints are
loosened. These insights demonstrate the effectiveness of our proposed algorithms, DP-TAGLMtron
and DP-GLMtron, in optimizing the balance between privacy protection and model accuracy.
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Figure 4: Performance of Different Algorithms under Various Privacy Budgets.

Sensitivity of Privacy Budgets. Here, we also included additional experimental results related
to the performance of different algorithms under various privacy budgets. we demonstrate the
sensitivity of the privacy budget for each algorithm, and it is clear that DP-SGD faces the same
issue. When ε is small, the tree mechanism in DP-FTRL allows it to add less noise compared to the
naive Gradient Descent or GLMtron algorithm, resulting in similar performance between DP-FTRL
and DP-GLMtron. Additionally, it is important to note that DP-FTRL should be compared with
DP-TAGLMtron rather than DP-GLMtron, as both DP-FTRL and DP-TAGLMtron utilize the tree
mechanism, whereas DP-GLMtron does not. Moreover, even though DP-FTRL converges at the end
of the training, it can be observed that the excess risk for DP-FTRL is significantly larger than that of
DP-TAGLMtron, indicating that it may converge to a suboptimal solution.
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C Supported Lemmas

Here, we provide some relaxation for Assumption 3.6.
Assumption C.1 (Moment symmetricity conditions [49]). Assume that:

1. For every u ∈ H, it holds that

E[xx⊤ · 1[x⊤u > 0]] = E[xx⊤ · 1[x⊤u < 0]].

2. For every u ∈ H and v ∈ H, it holds that

E[xx⊤ · 1[x⊤u > 0,x⊤v > 0]] = E[xx⊤ · 1[x⊤u < 0,x⊤v < 0]].

3. For every u ∈ H, it holds that

E[x⊗4 · 1[x⊤u > 0]] = E[x⊗4 · 1[x⊤u < 0]].

4. For every u ∈ H and v ∈ H, it holds that

E[(x⊤v)2xx⊤ · 1[x⊤u > 0,x⊤v > 0]] = E[(x⊤v)2xx⊤ · 1[x⊤u < 0,x⊤v < 0]].

Lemma C.2 ([49]). The following results are direct consequences of Assumption C.1.

1. Under Assumption C.1, it holds that: for every vector u ∈ H,

E[xx⊤ · 1[x⊤u > 0]] =
1

2
· E[xx⊤] =:

1

2
·H.

2. Under Assumption C.1, it holds that: for every vector u ∈ H,

E[x⊗4 · 1[x⊤u > 0]] =
1

2
· E[x⊗4] =:

1

2
· M

D DP-GLMtron

D.1 Privacy Guarantee

To guarantee the privacy of Algorithm 1, we should first ensure that each step of DP-GLMtron is
private.
Lemma D.1. Each update step of DP-GLMtron (Algorithm 1)ensures (ε0, δ0)-differential privacy,
provided that f = c

ε0
, where c ≥

√
2 log(1.25/δ0), and γt denotes the clipping norm.

Proof. We first consider {wt}N−1
t=0 .

Each update step (excluding the DP-noise addition) is of the form:

wt+1 ← wt − η clipγt
(xt(ReLU(x⊤

t wt)− yt)),

where clipγt
(v) = v ·max{1, γt

∥v∥2
}. Consequently, the local L2 sensitivity of wt+1 is determined

by analyzing the variation in the tth iteration data sample, as follows:

∆2 = ∥w′
t+1 −wt+1∥

= ∥η clipγt
(x′

t(ReLU(x′
t
⊤
wt)− y′t))− η clipγt

(xt(ReLU(x⊤
t wt)− yt))∥

≤ 2η∥ clipγt
(xt(ReLU(x⊤

t wt)− yt))∥
= 2ηγt.

Moreover, denoting ε′ = ε0/
√

8N log(2/δ0) and δ′ = δ0/(2N), according to Lemma 2.3 in [24],
we could know that {st}Nt=0 is (ε′, δ′)-DP.

Lemma D.2 ([17]). For a domain D, let R(i) : f ×D → S(i) for i ∈ [n] (where S(i) is the range
space ofR(i) ) be a sequence of algorithms such thatR(i)(z1:i−1, ·) is a (ε0, δ0)-DP local randomizer
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for all values of auxiliary inputs z1:i−1 ∈ S(1) × · · · × S(i−1). Let As : Dn → S(1) × · · · × S(n)
be the algorithm that given a dataset x1:n ∈ Dn, samples a uniformly random permutation π, then
sequentially computes zi = R(i)(z1:i−1, xπ(i)) for i ∈ [n], and outputs z1:n. Then for any δ ∈ [0, 1]
such that ε0 ≤ log( n

16 log(2/δ) ),As is (ε, δ +O(eεδ0n))-DP where ε is:

ε = O((1− e−ε0)(

√
eε0 log(1/δ)√

n
+

eε0

n
)).

We are now prepared to prove Theorem 4.1, utilizing the lemmas discussed above.

Firstly, we reformulate the update rule into a sequence of one-step algorithms as follows:

R(t+1)(u0:t, (x, y)) := wt+1 ← wt(u0:t)−η clipγt
(xπ(t)(ReLU(x⊤

π(t)wt(u0:t))−yπ(t)))−2ηγtfgt,

where u denotes auxiliary inputs, and π(t) represents the sample at the t-th iteration after randomly
permuting the input data.

From Lemma D.1, each R(t+1)(u0:t, ·) is a (ε0, δ0)-DP local randomizer algorithm, where ε0 ≤
log( N

16 log(2/δ̂)
). The output of DP-GLMtron is derived through post-processing of the shuffled

outputs ut+1 = R(t+1)(u0:t, (x, y)) for t ∈ 0, . . . , N − 1. Therefore, by Lemma D.2, Algorithm
DP-GLMtron adheres to (ε̂, δ̂ +O(eε̂δ0N))-DP, where:

ε̂ = O((1− e−ε0)(

√
eε0 log(1/δ̂)
√
N

+
eε0

N
)).

Assuming ε0 ≤ 1
2 , we can infer the existence of some constant c1 > 0 such that:

ε̂ ≤ c1 · (1− e−ε0)(

√
eε0 log(1/δ̂)
√
N

+
eε0

N
)

≤ c1 · ((eε0/2 − e−ε0/2)

√
log(1/δ̂)

N
+ (eε0 − 1)

1

N
)

≤ c1 · (((1 + ε0)− (1− ε0/2))

√
log(1/δ̂)

N
+ ((1 + 2ε0)− 1)

1

N
) (4)

= c1 · ε0(
1

2

√
log(1/δ̂)

N
+

2

N
).

By setting f =

√
2 log(1.25/δ0)

ε0
in Lemma D.1, we ensure that each update step of DP-GLMtron

independently satisfies (ε0, δ0)-DP, based on standard Gaussian mechanism. Replacing ε0 =√
2 log(1.25/δ0)

f , we obtain:

ε̂ ≤ c1 ·

√
2 log(1.25/δ0) log(1/δ̂)

f
√
N

(5)

To satisfy overall (ε, δ)-DP, set δ̂ = δ
2 , and δ0 = c2 · δ

eε̂N
for some constant c2 > 0. From this, we

have:

ε̂ ≤ c1 ·
√
2 log(c2 · 1.25 · eε̂N/δ) · log(2/δ)

f
√
N

(6)

For any ε ≤ 1, setting f = c3 · log(N/δ)

ε
√
N
≥ c3

√
log(N/δ) log(1/δ)

ε
√
N

for a sufficiently large c3 > 0 ensures
that ε̂ ≤ ε. Additionally, to fulfill Lemma D.2’s assumption, ε0 < 1

2 must be satisfied, which is

attainable by setting ε = O(
√

log(N/δ)
N ).

This implies that for f = Ω( log(N/δ)

ε
√
N

), DP-GLMtron achieves (ε, δ)-DP as long as ε =

O(
√

log(N/δ)
N ), thereby completing the proof.
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D.2 Utility Guarantee

Here we first provide several results that will be used in our DP-GLMtron utility bound.
Lemma D.3 ([28]). Let m = Ω(b log(b/δ′) logN/ε′) and denote V =
max{∥w∗ −wt∥2H + σ2, ∥w∗∥2H + σ2, ∥wt∥2H + σ2}, with probability at least 1 − 1/b, Al-
gorithm 2 returns st such that V ≤ γ2

t ≤ 2V .

Proof. Consider each sample xi ∼ D satisfying (H, C2, a, b)-Tail and the inherent noise zi satisfying
(σ2, C2, a, b)-Tail. It implies the following facts with Assumption 3.4

• ∃a > 0 s.t. with probability ≥ 1− bx, such that ∥x∥22 ≤ α tr(H) · log2a(1/bx).

• ∃a > 0 s.t. with probability ≥ 1− bv , such that ⟨x,v⟩2 ≤ C2
2v

⊤Hv log(1/bv).

• ∃a > 0 s.t. with probability ≥ 1− bz , such that ∥z∥22 ≤ σ2 · log2a(1/bz).

Additionally, we know that

∥xt(ReLU(x⊤
t wt)− yt)∥ = ∥xt(max(0,x⊤

t wt)− yt)∥ ≤ ∥xt∥∥(max(0,x⊤
t wt)− yt)∥

According to the aforementioned facts, it holds that with probability ≥ 1− bx, such that

∥x∥22 ≤ α tr(H) · log2a(1/bx).
Moreover,
√
st∥ ≤ max{

√
2((x⊤

t (wt −w∗))2 + z2t ),
√

2((x⊤
t w∗)2 + z2t ),

√
2((x⊤

t wt)2 + z2t )}

≤
√
2C2

2 log
2a(1/b) ·max{

√
∥w∗ −wt∥2H + σ2,

√
∥w∗∥2H + σ2,

√
∥wt∥2H + σ2}.

The second part of the proof can be directly derived from Lemma 2.3 in [24] and Theorem 5 in [28],
because each part of dpi , with high probability, holds that

√
st∥ ≥ max{

√
∥w∗ −wt∥2H + σ2,

√
∥w∗∥2H + σ2,

√
∥wt∥2H + σ2}.

Therefore, we have the following clipping results:

∥xt(ReLU(x⊤
t wt)− yt)∥22

≤ 2α tr(H) · log2a(1/bx) · C2
2 log

2a(1/b) ·max{∥w∗ −wt∥2H + σ2, ∥w∗∥2H + σ2, ∥wt∥2H + σ2}
≤ 2α tr(H) · log4a(1/b) · C2

2 · s2t .
Lemma D.4 (Generic bounds on the DP-GLMtron iterates [49]). Suppose that Assumption 3.6 holds.
Considering the DP-GLMtron algorithm, we have the following recursion:

• At ⪯ At−1 − η
2 (HAt−1 +At−1H) + η2M◦At−1 + η2σ2H+ 4η2Γ2f2I

• At ⪰ At−1 − η
2 (HAt−1 +At−1H) + η2

4M◦At−1 + η2σ2H+ 4η2Γ̃2f2I

where At := E(wt −w∗)(wt −w∗)
⊤, t ≥ 0

Now consider the recursion of At given in Lemma D.4. Note that At is related to At−1 through
a linear operator, therefore At can be understood as the sum of two iterates, i.e., At := Bt +Ct,
where{

Bt ⪯ (I − η
2 · T (2η)) ◦Bt−1;

B0 = (w0 −w∗)
⊗2

{
Ct ⪯ (I − η

2 · T (2η)) ◦Ct−1 + η2σ2H+ 4η2Γ2f2I;
C0 = 0

(7)
and{

Bt ⪰ (I − η
2 · T (

η
2 )) ◦Bt−1;

B0 = (w0 −w∗)
⊗2

{
Ct ⪰ (I − η

2 · T (
η
2 )) ◦Ct−1 + η2σ2H+ 4η2Γ̃2f2I;

C0 = 0
(8)
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where {
(I − η

2 · T (2η)) ◦At−1 := At−1 − η
2 (HAt−1 +At−1H) + η2M◦At−1;

(I − η
2 · T (

η
2 )) ◦At−1 := At−1 − η

2 (HAt−1 +At−1H) + η2

4M◦At−1

Besides, since our DP-GLM-tron is run with constant stepsize η and outputs the average of the
iterates:

wN :=
1

N

N−1∑
t=0

wt. (9)

Then, the following lemma holds:

Lemma D.5. Suppose that Assumption 3.6 hold. For wN defined in Equation (9), we have that

E⟨H, (wN −w∗)
⊗2⟩ ≤

N−1∑
t=0

N−1∑
k=t

1

ηN2
⟨(I− η

2
H)k−tH,At⟩

E⟨H, (wN −w∗)
⊗2⟩ ≥

N−1∑
t=0

N−1∑
k=t

1

2ηN2
⟨(I− η

2
H)k−tH,At⟩.

Proof.
E[wt −w∗ | wt−1] =E[(I− η1[x⊤

t wt−1 > 0]xtx
⊤
t )(wt−1 −w∗) | wt−1] + 2ηΓfE[gt−1 | wt−1]

+ η · E[(1[x⊤
t w∗ > 0]− 1[x⊤

t wt−1 > 0])xtx
⊤
t w∗ | wt−1] + ηE[ztxt | wt−1]

=E[(I− η1[x⊤
t wt−1 > 0]xtx

⊤
t )(wt−1 −w∗) | wt−1]

=(I− η

2
H)(wt−1 −w∗)

The remaining proof simply follows [56].

From the decomposition presented in Equation (7) and Equation (8), we know that
∑N

t=0 At =∑N
t=0 Bt+

∑N
t=0 Ct. With this foundation, we can now bound the bias and variance terms separately.

Upper bound for variance error

For t = 0 we have C0 = 0 ⪯ ησ2

1−η(α tr(H))I+
4ηΓ2f2

1−η(α tr(H))H
−1.

We then assume that Ct−1 ⪯ ησ2

1−η(α tr(H))I+
4ηΓ2f2

1−η(α tr(H))H
−1, and exam Ct based on Equation (7):

Ct ⪯ (I − η · T (η)) ◦Ct−1 + η2σ2H+ 4η2Γ2f2I

= Ct−1 −
η

2
(HCt−1 +Ct−1H) + η2M◦Ct−1 + η2σ2H+ 4η2Γ2f2I

⪯ ησ2

1− η(α tr(H))
I+

4ηΓ2f2

1− η(α tr(H))
H−1 − η(

ησ2

1− η(α tr(H))
H+

4ηΓ2f2

1− η(α tr(H))
I)

+ η2(α tr(H))(
ησ2

1− η(α tr(H))
H+

4ηΓ2f2

1− η(α tr(H))
I) + η2σ2H+ 4η2Γ2f2I

⪯ ησ2

1− η(α tr(H))
I+

4ηΓ2f2

1− η(α tr(H))
H−1.

For the simplicity, we define Σ := σ2H+ 4Γ2f2I. By the definitions of T and T̃ , we have:

Ct = (I − η

2
· T (2η)) ◦Ct−1 + η2Σ

= (I − η

2
· T̃ (2η)) ◦Ct−1 + η2(M− 1

4
M̃) ◦Ct−1 + η2Σ

⪯ (I − η

2
· T̃ (2η)) ◦Ct−1 + η2M◦Ct−1 + η2Σ,
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where the last inequality is due to the fact that M̃ is a PSD mapping. Then by the iteration of variance,
we have for all t ≥ 0,

M◦Ct ⪯M◦(
ησ2

1− η(α tr(H))
I+

4ηΓ2f2

1− η(α tr(H))
H−1) ⪯ ησ2(α tr(H))

1− η(α tr(H))
H+

4ηΓ2f2(α tr(H))

1− η(α tr(H))
I

Substituting above into Appendix D.2, we obtain:

Ct ⪯ (I − η

2
· T̃ (2η)) ◦Ct−1 +

η3(α tr(H))

1− η(α tr(H))
· (σ2H+ 4Γ2f2I) + η2Σ

= (I − η

2
· T̃ (2η)) ◦Ct−1 +

η3(α tr(H))

1− η(α tr(H))
· (σ2H+ 4Γ2f2I) + η2(σ2H+ 4Γ2f2I)

= (I − η

2
· T̃ (2η)) ◦Ct−1 +

η2

1− η(α tr(H))
· (σ2H+ 4Γ2f2I)

⪯ η2

1− η(α tr(H))
·
t−1∑
k=0

(I − η

2
· T̃ (2η))k ◦ (σ2H+ 4Γ2f2I) (10)

=
η2

1− η(α tr(H))
·
t−1∑
k=0

(I− η

2
H)k(σ2H+ 4Γ2f2I)(I− η

2
H)k

⪯ η2

1− η(α tr(H))
·
t−1∑
k=0

(I− η

2
H)k(σ2H+ 4Γ2f2I)

=
ησ2

1− η(α tr(H))
· (I− (I− η

2
H)t) +

4ηΓ2f2

1− η(α tr(H))
· (I− (I− η

2
H)t) ·H−1

Consequently, the variance error can be represented as follows, in accordance with Lemma D.5:

Variance error ≤ 1

ηN2
⟨I− (I− η

2
H)N ,

N∑
t=0

Ct⟩

≤ 1

ηN2
⟨I− (I− η

2
H)N ,

N∑
t=0

ησ2

1− η(α tr(H))
· (I− (I− η

2
H)t)⟩

+
1

ηN2
⟨I− (I− η

2
H)N ,

N∑
t=0

4ηΓ2f2

1− η(α tr(H))
· (I− (I− η

2
H)t) ·H−1⟩ (11)

≤ σ2

(1− η(α tr(H)))N
⟨I− (I− η

2
H)N , (I− (I− η

2
H)N )⟩

+
4Γ2f2

(1− η(α tr(H)))N
⟨I− (I− η

2
H)N , (I− (I− η

2
H)N ) ·H−1⟩.

Noting that for any x ∈ (0, 1/η), we have 1− (1− ηx)N ≤ min{1, Nηx}, then

I− (I− η

2
H)N ⪯ I0:k +N

η

2
Hk:∞.
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Final results can be obtained:

variance error:

≤ σ2

(1− η(α tr(H)))N
(k∗ +

N2η2

4

∑
i>k∗

λ2
i ) +

4Γ2f2

(1− η(α tr(H)))N
Tr(H−1

0:k∗ +
N2η2

4

∑
i>k∗

λi)

(12)

≤ σ2

(1− η(α tr(H)))N
(k∗ +

N2η2

4

∑
i>k∗

λ2
i ) +

4Γ2f2

N(1− η(α tr(H)))
(k∗Nη +

N2η2

4

∑
i>k∗

λi)

(13)

≲
σ2

N
(k∗ +N2η2

∑
i>k∗

λ2
i ) +

Γ2f2

N
(
∑
i<k∗

λ−1
i +N2η2 ·

∑
i>k∗

λi)

≲
σ2

N
(k∗ +N2η2

∑
i>k∗

λ2
i ) + Γ2f2η(k∗ +Nη

∑
i>k∗

λi)

where the second inequality holds since tr(H−1
0:k∗) =

∑k∗

i=1 λ
−1
i ≤ Nη · k∗ and λi ≥ 1

ηN .

Lower bound for variance error

Similarly, we derive a recursion for the variance term to establish the lower bound:

Ct = (I − ηT (η)) ◦Ct−1 + η2Σ

= (I − ηT̃ (η)) ◦Ct−1 + η2(M− 1

4
M̃) ◦Ct−1 + η2Σ

⪰ (I − ηT̃ (η)) ◦Ct−1 + η2(σ2H+ 4Γ̃2f2I).

It implies that

Ct = η2 ·
t−1∑
k=0

(I− η

2
H)k(σ2H+ 4Γ̃2f2I)(I− η

2
H)2k

⪰ η2 ·
t−1∑
k=0

(I− η

2
H)k(σ2H+ 4Γ̃2f2I)

= η2σ2 · (I− (I− η

2
H)2t) · (ηI− η2

4
H)−1 + 4η2Γ̃2f2 · (I− (I− η

2
H)2t) · (ηH− η2

4
HH)−1

⪰ ησ2 · (I− (I− η

2
H)2t) + 4ηΓ̃2f2 · (I− (I− η

2
H)2t) ·H−1.

where the last inequality comes from ηI− η2

4 H ⪯ ηI.

23



Applying Lemma D.5, we could derive the lower bound for variance error:

variance error ≥ 1

2ηN2

N−1∑
t=0

N−1∑
k=t

⟨(I− η

2
H)k−tH,Ct⟩

≥ σ2

N2

N−1∑
t=0

⟨I− (I− η

2
H)N−t, (I− (I− η

2
H)2t)⟩

+
4Γ̃2f2

N2

N−1∑
t=0

⟨I− (I− η

2
H)N−t, (I− (I− η

2
H)2t) ·H−1⟩

≥ σ2

N2

∑
i

N−1∑
t=0

(1− (1− η

2
λi)

N−t)(1− (1− η

2
λi)

2t)

+
4Γ̃2f2

N2

∑
i

N−1∑
t=0

(1− (1− η

2
λi)

N−t)(1− (1− η

2
λi)

2t)λ−1
i

≥ σ2

N2

∑
i

N−1∑
t=0

(1− (1− η

2
λi)

N−t−1)(1− (1− η

2
λi)

t)

+
4Γ̃2f2

N2

∑
i

N−1∑
t=0

(1− (1− η

2
λi)

N−t−1)(1− (1− η

2
λi)

t)λ−1
i .

By defining f(x) :=
∑N−1

t=0 (1− (1− x)N−t−1)(1− (1− x)t) and according to Lemma C.3 in [56],
we have:

variance error ≥ σ2

N2

∑
i

f(ηλi) +
4Γ̃2f2

N2

∑
i

f(ηλi)λ
−1
i

≥ σ2

N2
(
Nk∗

10
+

2N3

25
η2 ·

∑
i>k∗

λ2
i ) +

4Γ̃2f2

N2
(
N

10

∑
i<k∗

λ−1
i +

2N3

25
η2 ·

∑
i>k∗

λi)

(14)

≥ σ2

15N
(k∗ +N2η2 ·

∑
i>k∗

λ2
i ) +

4Γ̃2f2

15N
(
∑
i<k∗

λ−1
i +N2η2 ·

∑
i>k∗

λi)

≳
σ2

N
(k∗ +N2η2 ·

∑
i>k∗

λ2
i ) +

Γ̃2f2

N
(
∑
i<k∗

λ−1
i +N2η2 ·

∑
i>k∗

λi).

Upper and Lower bound for bias error

According to Theorem B.5 in [49], the upper and lower bounds on the bias error can be directly
derived:

Lemma D.6. Suppose Assumption 3.6 holds and the step size satisfies η ≤ 1/λ1, then it holds that:

bias ≲
1

η2N2
· ∥w0 −w∗∥2H−1

0:k∗
+ ∥w0 −w∗∥2Hk∗:∞

+
α(∥w0 −w∗∥2I0:k∗ +Nη∥w0 −w∗∥2Hk∗:∞

)

Nη
· (k

∗

N
+Nη2

∑
i>k∗

λ2
i )

bias ≳
1

η2N2
· ∥w0 −w∗∥2H−1

0:k∗
+ ∥w0 −w∗∥2Hk∗:∞

+
β(∥w0 −w∗∥2I0:k∗ +Nη∥w0 −w∗∥2Hk∗:∞

)

Nη
· (k

∗

N
+Nη2

∑
i>k∗

λ2
i )

By integrating the aforementioned results, we thus complete the proof.
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E DP-TAGLMtron

E.1 Privacy Guarantee

Lemma E.1 ([22]). Algorithm 4 guarantees (τ, τ⌈lg(N+1)]
2σ2 )-Rényi differential privacy, where N

is the number of samples. Setting σ =

√
2⌈lg(N+1)⌉ ln(1/δ)

ε , one can guarantee (ε, δ)-differential
privacy, for ε ≤ 2 ln(1/δ).

To guarantee the privacy of Algorithm 3, we should first ensure that each step of DP-TAGLMtron is
private.

We first consider {lt}N−1
t=0 . According to Lemma E.1, it ensures that DP-tree-aggregation step is

(ε, δ)-DP with f =

√
2⌈lg(N+1)⌉ ln(1/δ)

ε .

Moreover, denoting ε′ = ε/
√

8N log(2/δ) and δ′ = δ/(2N), according to Lemma 2.3 in [24], we
could know that {st}Nt=0 is (ε′, δ′)-DP.

Combining with the advanced composition theorem, it holds that Algorithm 3 is (ε, δ)-DP.

E.2 Utility Guarantee

Here we introduce several lemmas for future proof.

Lemma E.2. Given a sequence of Positive Semi-Definite (PSD) matrices Pt, t = 0 . . . N , where
Pt = (I − η

2 · T (2η)) ◦Pt−1 and P0 = I, if η ≤ 1/(4β tr(H) logN), then for any t ∈ [0, N ], the
following inequality holds:

tr(HPt) ≤ 2 · ⟨ 1

ηN
I0:k∗ +Hk∗:∞, I⟩,

where k∗ ∈ [N ] can be arbitrarily chosen.

Lemma E.3. Under Assumption 3.4(A), for every A ⪰ 0, it holds that

(M−M̃) ◦ T −1 ◦A ⪯M◦ T −1 ◦A ⪯ 2α tr(A)

1− αη tr(H)
·H ⪯ 2α tr(A)H.

Lemma E.4 (Generic bounds on the GLM-tron iterates [49]). Suppose that Assumption 3.6 holds.
Consider the GLM-tron algorithm, we have the following recursion:

• At ⪯ At−1− η
2 (HAt−1+At−1H)+η2M◦At−1+η2σ2H := (I− η

2 ·T (2η))◦At−1+

η2σ2H

• At ⪰ At−1− η
2 (HAt−1+At−1H)+ η2

4M◦At−1+η2σ2H := (I − η
2 · T (

η
2 ))◦At−1+

η2σ2H

where At := E(wt −w∗)(wt −w∗)
⊤, t ≥ 0.

Lemma E.5 (Generic bounds on the DP-TAGLMtron iterates). Suppose that Assumptions 3.6 (A)
hold. Consider the DP-TAGLMtron algorithm, we have the following recursion:

At ⪯ (I − η

2
· T (2η)) ◦At−1 + η2σ2H+ η2f2(⌈log2 N⌉+ 1)E[γ4(t) + γ2(t)]I.

+ η2f2(⌈log2 N⌉+ 1)(
∑

j∈Q(t)

(I − η

2
· T̃ (2η))p ◦ I+ 4ηα|Q(t)| tr(H)(I− (I− η

2
H)N ))

At ⪰ At−1 −
η

2
(HAt−1 +At−1H) +

η2

4
M◦At−1 + η2σ2H+ 4η2Γ̃2f2I

where At := E(wt −w∗)(wt −w∗)
⊤, t ≥ 0.

Proof of Lemma E.5. According to the update rule of DP-TAGLMtron, we know:

wt+1 = w0 − ηl′≤t,
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where l′≤t is the private estimation of
∑t

i=0 li generated by tree aggregation protocol. From [22],
we notice l′≤t =

∑t
i=0 li + vt, where li = (xt(ReLU(x⊤

t wt)− yt)) and vt is a combination of at
most O(⌈log2 t⌉) Gaussian noise. If we set w0 = 0, then it holds that:

wt+1 = w0 − η · (
t∑

i=0

li + vt)

= w0 − η ·
t∑

i=0

(xt(ReLU(x⊤
t wt)− yt))− η · vt

= wt − η(xt(ReLU(x⊤
t wt)− yt) + vt − vt−1).

By denoting Γt = vt − vt−1 and noticing that vt is a combination of at most O(⌈log2 t⌉) Gaussian
noise, it implies that Γt is a combination of at most ⌈log2 t + 1⌉ random Gaussian vectors, i.e.
Γt =

∑
q∈Q(t) γ(q)Γf

2gq , whereQ(t) is an index set andQ(t) = {2Q−1, 2Q−1+2Q−2, . . . , 2Q−1+

2Q−2 + · · · + 20} when t = 2Q with Q ∈ N and γ(q) = max{γ1, . . . , γq}. Moreover, we know
gq ∼ N (0, Id×d), indicating:

wt −w∗ = (I− η1[x⊤
t wt−1 > 0]xtx

⊤
t )(wt−1 −w∗)

+ η(1[x⊤
t w∗ > 0]− 1[x⊤

t wt−1 > 0])xtx
⊤
t w∗ + ηztxt − ηΓt.

Let us consider the expected outer product:

At = E[∥wt −w∗∥22] = E[(wt −w∗)(wt −w∗)
⊤]

= E ((I− η1[x⊤
t wt−1 > 0] · xtx

⊤
t ) · (wt−1 −w∗))((I− η1[x⊤

t wt−1 > 0] · xtx
⊤
t ) · (wt−1 −w∗))

⊤︸ ︷︷ ︸
(quadratic term 1)

+ η2 · E (1[x⊤
t w∗ > 0]− 1[x⊤

t wt−1 > 0])2 · (xtx
⊤
t w∗)(xtx

⊤
t w∗)

⊤︸ ︷︷ ︸
(quadratic term 2)

+ 2η · E(1[x⊤
t w∗ > 0]− 1[x⊤

t wt−1 > 0]) · (I− η1[x⊤
t wt−1 > 0] · xtx

⊤
t )(wt−1 −w∗)(xtx

⊤
t w∗)

⊤︸ ︷︷ ︸
(crossing term 1)

− η · (E[(I− η1[x⊤
t wt−1 > 0]xtx

⊤
t )(wt −w∗)Γ

⊤
t ] + E[Γt(wt −w∗)

⊤(I− 1[x⊤
t wt−1 > 0]ηxtx

⊤
t )])︸ ︷︷ ︸

(crossing term 2)

− η · (E[(1[x⊤
t w∗ > 0]− 1[x⊤

t wt−1 > 0])(xtx
⊤
t w∗)Γ

⊤
t ] + E[Γt(xtx

⊤
t w∗)

⊤(1[x⊤
t w∗ > 0]− 1[x⊤

t wt−1 > 0])])︸ ︷︷ ︸
(crossing term 3)

+ η2 · E(σ2x⊤
t xt)︸ ︷︷ ︸

(quadratic term 3)

+η2 · E[ΓtΓ
⊤
t ]︸ ︷︷ ︸

(quadratic term 4)

.

It can be observed that quadratic terms 1,2,3 and crossing term 1 are original terms for non-private
problems, where the remaining are introduced by the private noise.

According to Assumption 3.6, Lemma C.2 and the independence of w∗, we have:

(crossing term 3) = 0,

(crossing term 2) = E[(I− η1[x⊤
t wt−1 > 0]xtx

⊤
t )wtΓ

⊤
t ] + E[Γtw

⊤
t (I− 1[x⊤

t wt−1 > 0]ηxtx
⊤
t )].

Now we examine the crossing term 2, denoting Rt := (I− η1[x⊤
t wt−1 > 0]xtx

⊤
t ). According to

the update rule, we have:

wt = wt−1 − η · (ReLU(x⊤
t wt−1)− yt)xt + Γt

= (I− η1[x⊤
t wt−1 > 0] · xtx

⊤
t )wt−1 + ηxtyt + Γt

=

t−1∑
j=1

(Rt−1Rt−2 · · ·Rj(ηxj−1yj−1 + ηΓj−1)) + ηxt−1yt−1 + ηΓt−1.
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Hence, we have:

wtΓ
⊤
t =

t−1∑
j=1

(Rt−1Rt−2 · · ·Rj(ηxj−1yj−1 + ηΓj−1))Γ
⊤
t + ηxt−1Γ

⊤
t yt−1 + ηΓt−1Γ

⊤
t .

By multiplying both sides by A and taking the expected value, we can obtain:

E[(I− ηxtx
⊤
t )wtΓ

⊤
t ] = E[ηRt

t−1∑
j=1

(Rt−1Rt−2 · · ·RjΓj−1)Γ
⊤
t ] + E[ηRtxt−1yt−1Γ

⊤
t ] + E[ηRtΓt−1Γ

⊤
t ].

We first consider the second term, notice that:

E[ηRtxt−1yt−1Γ
⊤
t ] = E[ηRt(1[x

⊤
t w∗ > 0] · xtx

⊤
t w∗ + ztxt)Γ

⊤
t ] = 0.

Furthermore, considering Γt and Γj , when j < t and j /∈ Q(t), it follows that E[ΓjΓ
⊤
t ] = 0,

otherwise, we have:

E[ΓjΓ
⊤
t ] = (

∑
q∈Q(j−1)

γ(q)f2gq)(
∑

q′∈Q(t)

γ(q′)f2gq′)
⊤.

These results arise because only Γq is dependent on gq for q ∈ Q(t). Hence, denoting R[t:j] =
Rt · · ·Rj , we have:

E[ηRt

t−1∑
j=1

(Rt−1Rt−2 · · ·RjΓj−1)Γ
⊤
t ]

= ηE[Rt

∑
j∈Q(t)

(Rt−1Rt−2 · · ·RjΓj−1)Γ
⊤
t ]

= ηE[
∑

j∈Q(t)

R[t:j](
∑

q∈Q(j−1)

γ(q)f2gq)(
∑

q′∈Q(t)

γ(q′)f2gq′)
⊤]

= ηE[
∑

j∈Q(t)

R[t:j](
∑

q̃∈Q(j−1)∩Q(t)

γ2(q̃)f2gq̃g
⊤
q̃ +

∑
q ̸=q′

γ(q′)γ(q)f2gqg
⊤
q′)]

= ηf2
∑

j∈Q(t)

∑
q̃∈Q(j−1)∩Q(t)

E[γ2(q̃)f2R[t:j]].

For the last term of crossing term 3, we could also derive:

E[ηRtΓt−1Γ
⊤
t ] =

∑
q̃∈Q(t−1)∩Q(t)

E[γ2(q̃)f2Rt].

Combining the above results with the symmetric of Rt, it implies that:

−(crossing term 2) = −ηf2
∑

j∈Q(t)

∑
q̃∈Q(j−1)∩Q(t)

E[γ2(q̃)R[t:j] + γ2(q̃)R[j:t]]

⪯ ηf2(⌈log2 N⌉+ 1)
∑

j∈Q(t)

E[Rt . . .RjRj . . .Rt] + η2f2(⌈log2 N⌉+ 1)E[γ4(t)]I.

Recall Rt := (I− η1[x⊤
t wt−1 > 0]xtx

⊤
t ) and the lemma in [49].

It indicates that:

E[Rt . . .RjRj . . .Rt] ⪯ (I − η

2
· T (2η))t−j+1 ◦ I.
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We first consider Pp = (I − η
2 · T (2η)) ◦Pp−1 and P0 = I. Then, it follows that:

Pp ⪯ (I − η

2
· T̃ (2η)) ◦Pp−1 + η2(M−M̃) ◦Pp−1

⪯ (I − η

2
· T̃ (2η)) ◦Pp−1 + η2α tr(HPp−1)H

= (I − η

2
· T̃ (2η))p ◦ I+ 2η2α tr(H)

p∑
i=0

(I − η

2
· T̃ (2η))iH

⪯ (I − η

2
· T̃ (2η))p ◦ I+ 4ηα tr(H)(I− (I− η

2
H)N ),

where the term HPp−1 can be bounded by Lemma E.2. Now, we could derive:∑
j∈Q(t)

E[Rt . . .RjRj . . .Rt] ⪯
∑

j∈Q(t)

(I − η

2
· T̃ (2η))p ◦ I+ 4ηα|Q(t)| tr(H)(I− (I− η

2
H)N ).

As a results, the generic bounds on the DP-TAGLMtron iterate could have the following recursion:

At ⪯ (I − η

2
· T (2η)) ◦At−1 + η2σ2H+ η2f2(⌈log2 N⌉+ 1)E[γ4(t) + γ2(t)]I.

+ η2f2(⌈log2 N⌉+ 1)(
∑

j∈Q(t)

(I − η

2
· T̃ (2η))p ◦ I+ 4ηα|Q(t)| tr(H)(I− (I− η

2
H)N )).

We now move on to the second part. In light of the Γt definition, we know it is at least a random
Gaussian vector such that Γt = Γ̃gt, where Γ̃ = minγ. Moreover, it holds that

E[(I− ηxtx
⊤
t )wtΓ

⊤
t ] = E[ηRt

t−1∑
j=1

(Rt−1Rt−2 · · ·RjΓj−1)Γ
⊤
t ] + E[ηRtxt−1yt−1Γ

⊤
t ] + E[ηRtΓt−1Γ

⊤
t ] = 0.

Since E[ΓjΓ
⊤
t ] = 0 for any j ̸= t. Therefore, the iteration of At will be the same case in DP-

GLMtron.

Consequently, analogous to the previous case, we can decompose At into bias term Bt and variance
term Ct.

Bt = (I − η

2
· T (2η)) ◦Bt−1, B0 = (w0 −w∗)(w0 −w∗)⊤;

Ct = (I − η

2
· T (2η)) ◦Ct−1 + η2Mt, C0 = 0

where

Mt ⪯ σ2H+ f2(⌈log2 N⌉+ 1)E[γ4(t) + γ2(t)]I

+ f2(⌈log2 N⌉+ 1)(
∑

j∈Q(t)

(I − η

2
· T̃ (2η))p ◦ I+ 4ηα|Q(t)| tr(H)(I− (I− η

2
H)N )).

Lemma E.6. Let M represent a union upper bound for M0, . . . ,MN−1. Under Assumptions (A)
and 3.6, and provided that the step size η satisfies η ≲ 1/(tr(H) logN), the following holds:

C0 ⪯ · · · ⪯ CN ⪯
8αη2

1− αη tr(H)
·⟨I−(I−η

2
H)N ,M⟩·(I−(I−η

2
H)N )+η2·

N−1∑
t=0

(I−η

2
·T̃ (2η))t◦M.

(15)

Proof of Lemma E.6. Our proofs follow the main idea of [48], we include them here for complete-
ness. According to the update rule of Ct, it follows that:

Ct = η2
N−1∑
t=0

(I − η

2
· T (2η)) ◦Mt.

It can be observed that C0 ⪯ C1 ⪯ · · · ⪯ CN since (I − η
2 · T (2η)) is a PSD mapping.
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Let M be an union upper bound of {M0, . . . ,MN−1}, we will have:

CN ⪯ η2
N−1∑
t=0

(I−η

2
·T (2η))◦M = 2η·T −1◦(I−(I−η

2
·T (2η))N )◦M ⪯ 2η·T −1◦(I−(I−η

2
·T̃ (2η))N )◦M.

The last inequality comes from (T̃ − T ), (I − η
2 · T (2η)) and (I − η

2 · T̃ (2η)) are PSD mappings.
Hence, it implies that:

Ct+1 = (I − η

2
· T (2η)) ◦Ct + η2 · (M−M̃) ◦Ct + η2Mt

⪯ (I − η

2
· T (2η)) ◦Ct + η2 · (M−M̃) ◦CN + η2M

⪯ (I − η

2
· T (2η)) ◦Ct + η2 · (M−M̃) ◦ 2η · T −1 ◦ (I − (I − η

2
· T̃ (2η))N ) ◦M+ η2M

⪯ (I − η

2
· T (2η)) ◦Ct +

4αη3

1− αη tr(H)
· ⟨I− (I− η

2
H)N ,M⟩ ·H+ η2M,

where the last inequality comes from Lemma E.3. Therefore, we have:

CN ⪯
4αη3

1− αη tr(H)
· ⟨I− (I− η

2
H)N ,M⟩ ·

N−1∑
t=0

(I − η

2
· T̃ (2η))N−1−t ◦H+ η2 ·

N−1∑
t=0

(I − η

2
· T̃ (2η))N−1−t ◦M

=
8αη2

1− αη tr(H)
· ⟨I− (I− η

2
H)N ,M⟩ · (I− (I− η

2
H)N ) + η2 ·

N−1∑
t=0

(I − η

2
· T̃ (2η))t ◦M.

Lemma E.7. Variance error] If the step size satisfies η ≲ 1/(tr(H) logN), then the following holds
for any k ≥ 1,

variance error ≲
αη

N(1− αη tr(H))
·⟨I0:k∗+

Nη

2
Hk∗:∞, M̃⟩·(k∗+N2η2

4

∑
i>k∗

λ2
i )+

1

N
·⟨H−1

0:k∗+
N2η2

4
Hk∗:∞, M̃⟩,

where

M̃ = σ2 ·H+ηαf2(log2 N)2 tr(H) ·(I0:k∗+
Nη

2
Hk∗:∞)+f2 log2 N ·(E[γ(N)2+γ(N)4]+1) ·I.

Proof. According to Lemma D.5, we have:

variance error ≤ 16αη

N(1− αη tr(H))
⟨I− (I− η

2
H)N ,CN ⟩

≤ 16αη

N(1− αη tr(H))
· ⟨I− (I− η

2
H)N ,M⟩ · ⟨I− (I− η

2
H)N , I− (I− η

2
H)N ⟩

+
η

N
· ⟨I− (I− η

2
H)N ,

N−1∑
t=0

(I − η

2
· T̃ (2η))t ◦M⟩

=
16αη

N(1− αη tr(H))
· ⟨I− (I− η

2
H)N ,M⟩ · ⟨I− (I− η

2
H)N , I− (I− η

2
H)N ⟩

+
η

N
· ⟨

N−1∑
t=0

(I − η

2
· T̃ (2η))t ◦ (I− (I− η

2
H)N ),M⟩

=
16αη

N(1− αη tr(H))
· ⟨I− (I− η

2
H)N ,M⟩ · ⟨I− (I− η

2
H)N , I− (I− η

2
H)N ⟩

+
2

N
· ⟨(I− (I− η

2
H)N )2H−1,M⟩.
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Furthermore, Lemma E.5 implies that, for any t ≤ N :

Mt ⪯ σ2H+ f2(⌈log2 N⌉+ 1)E[γ4(t) + γ2(t)]I

+ f2(⌈log2 N⌉+ 1)(
∑

j∈Q(t)

(I − η

2
· T̃ (2η))p ◦ I+ 4ηα|Q(t)| tr(H)(I− (I− η

2
H)N )).

Now we consider an arbitrary PSD mapping A commuting with H, it holds that:

⟨A,M⟩ ≲ σ2⟨H,A⟩+ f2 log2 N · E[γ4(t) + γ2(t)] tr(A) + ηαf2(log2 N)2 tr(H) · ⟨A, I− (I− η

2
H)N ⟩.

Moreover, noting that for any x ∈ (0, 2/η), we have 1− (1− ηx
2 )N ≤ min{1, Nηx/2}, then

I− (I− η

2
H)N ⪯ I0:k∗ +

Nη

2
Hk∗:∞,

for any k∗ ≥ 0. Therefore, we can define a new matrix as follows:

M̃ = σ2 ·H+ ηαf2(log2 N)2 tr(H) · (I0:k∗ +
Nη

2
Hk∗:∞) + f2 log2 N · (E[γ(N)2 + γ(N)4] + 1) · I.

Combining the previous results, we obtain

variance

≲
αη

N(1− αη tr(H))
· ⟨I0:k∗ +

Nη

2
Hk∗:∞, M̃⟩ · (k∗ + N2η2

4

∑
i>k∗

λ2
i ) +

1

N
· ⟨H−1

0:k∗ +
N2η2

4
Hk∗:∞, M̃⟩

≲
σ2

N
(1 + αη(

∑
i<k∗

λi +
Nη

2

∑
i>k∗

λ2
i )) · (k∗ +

N2η2

4

∑
i>k∗

λ2
i )

+
f2 log2 N

N
· (αη log2 N tr(H) + E[γ(N)2 + γ(N)4]) · (αη(k∗ + Nη

2

∑
i>k∗

λi) + (
∑
i<k∗

λ−1
i +

N2η2

4

∑
i>k∗

λi)).

Now, we introduce the lemma in [49] to complete the proof.
Lemma E.8 ([49]). If the step size satisfies η ≤ 1/λ1, then it holds that for any k∗ ≥ 1,

bias ≲
1

η2N2
· ∥w0 −w∗∥2

H−1
0:k∗

+ ∥w0 −w∗∥2Hk∗:∞

+
α(∥w0 −w∗∥2I0:k∗ +Nη∥w0 −w∗∥2Hk∗:∞

)

N2η(1− αη tr(H))
· (k∗ + N2η2

4

∑
i>k∗

λ2
i )

E.3 Specific Disrtibutions

Proof of Corollary. 1. if λk = k−r, by the definition of k∗, we have k∗ = (Nη
2 )1/r, then:

k∗ +
N2η2

4

∑
k>k∗

λ2
k ≃ k∗ +

Nη

2

∑
k>k∗

λk ≃ (Nη)
1
r +Nη · (Nη)

1−r
r ≃ (Nη)

1
r .

For the sake of simplicity, we assume ∥w0 −w∗∥2 ≤W 2, then it hold that:

Utility ≲
W 2

Nη
+ (

W 2

Nη
+

W 2

Nη
+

σ2

N
+

Γ2f2

N2
) · (Nη)

1
r .

If we choose the step size as follows:

η ≃ min{N− 1
1+r , N− 1+r

1+2r f− 2r
1+2r },

which indicates:

Utility ≲ (σ +W 2) ·N− r
1+r + (W 2 + Γ2) · (f−2N)−

r
1+2r .

Thus, it holds that Utility = Õ(N− r
1+r · (1 + (f2N

r
1+r )

r
1+2r )).
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2. If λk = e−k, we have k∗ = log(Nη), then:

k∗ +
N2η2

4

∑
k>k∗

λ2
k ≃ k∗ +Nη

∑
k>k∗

λk ≃ log(Nη) +
Nη

2
· (Nη)−1 ≃ log(Nη).

Hence,

Utility ≲
W 2

Nη
+ (

W 2

N
+

W 2

Nη
+

σ2

N
+

Γ2f2

N2
) · log(Nη) ≲

W 2

Nη
+

W 2

N
+

σ2

N
+

Γ2f2

N2
.

If we choose the following step size η ≃ min{1, 1√
Nf
}, then we complete our results:

Utility ≃ Õ(N−1(1 + (ε−2N)1/2)).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s main contributions and scope are included in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper provides a discussion on the limitation and future direction.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All assumptions and proofs are included in the submission.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experiments can be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All data and code will be released after acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the detailed experiment setup
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The factors that will influence the experiment are discussed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

34

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The Experiments Compute Resources are discussed in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none of which we
feel must be specifically highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All related works are cited correctly and explicitly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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