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Abstract

Some of the simplest, yet most frequently used predictors in statistics and machine learning
use weighted linear combinations of features. Such linear predictors can model non-linear
relationships between features by adding interaction terms corresponding to the products of all
pairs of features. We consider the problem of accurately estimating coefficients for interaction
terms in linear predictors. We hypothesize that the coefficients for different interaction
terms have an approximate low-dimensional structure and represent each feature by a latent
vector in a low-dimensional space. This low-dimensional representation can be viewed as
a structured regularization approach that further mitigates overfitting in high-dimensional
settings beyond standard regularizers such as the lasso and elastic net. We demonstrate
that our approach, called LIT-LVM, achieves superior prediction accuracy compared to the
elastic net, hierarchical lasso, and factorization machines on a wide variety of simulated and
real data, particularly when the number of interaction terms is high compared to the number
of samples. LIT-LVM also provides low-dimensional latent representations for features that
are useful for visualizing and analyzing their relationships.

1 Introduction

Some of the simplest, yet most commonly used models in statistics and machine learning model an example’s
target variable y using a weighted linear combination of its features x1, x2, . . . , xp. These linear prediction
models, such as linear regression and logistic regression, are favored for their speed, simplicity, and inter-
pretability. In high-dimensional settings where the number of features p is close to or even exceeds the number
of examples n, regularization techniques such as the lasso (Tibshirani, 1996) and elastic net (Zou & Hastie,
2005), have become essential to prevent overfitting and enhance prediction accuracy on unseen test data.

The primary limitation of linear predictors is their reliance on linear combinations of features, which reduces
their flexibility. To enhance their flexibility, a common approach is to incorporate polynomial features, which
create new features using products of the original features. Perhaps the simplest case involves computing all
second-order interaction terms corresponding to products xjxk for j < k, which describe the interactions
between pairs of different features. In classical statistical settings where p is much smaller than n, including
these

(
p
2
)

interaction terms does not complicate the estimation process, as the total number of features would
∗Research partially conducted while Z. Huang was at Case Western Reserve University.
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Figure 1: Our proposed framework for linear predictors with interaction terms. We arrange the coefficient
vector for the interaction terms θflat into an upper triangular matrix Θ. Our main contribution is to impose
an approximate low-dimensional structure on Θ using a structured regularization. We represent each of the p
features by a latent vector zj in d dimensions, with d < p, and minimize the deviation between θjk and a
function of zj and zk such as the dot product zT

j zk. In this toy example, p = 4 and d = 2.

be on the order of p2, which is still quite low compared to n. However, as p gets closer to n, p2 quickly
surpasses n, and even stronger regularization may be needed to prevent overfitting.

Unlike the original features, interaction terms have additional structure, as they denote relationships between
two features. The coefficients for these interaction terms can be arranged in a p × p coefficient matrix Θ,
where entry θjk denotes the coefficient for the interaction term xjxk. Prior research on structured sparsity
for interaction terms has typically assumed a hierarchical structure such that an interaction between features
j, k can only be present in the model if either feature j or k is in the model (Bien et al., 2013). We do
not make such an assumption and further hypothesize that the coefficient matrix Θ has an approximate
low-dimensional structure, so that we can represent each feature j by a vector zj in a d-dimensional space,
where d < p.

Our main contribution is a structured regularization approach for estimating the coefficients for interaction
terms in linear predictors using an approximate low-dimensional structure, as shown in Figure 1, in addition
to traditional regularization techniques such as the elastic net. We call our proposed approach LIT-LVM,
denoting linear and interaction terms with a latent variable model, and is applicable to many types of linear
predictors, including linear regression, logistic regression, and the Cox proportional hazards (Cox PH) model
(Cox, 1972). LIT-LVM fits in the space of models between elastic net with interactions, which provides sparse
but unstructured interaction coefficient estimates; sparse factorization machines (Atarashi et al., 2021), which
use exact low-rank factorizations of the interaction coefficients that are too rigid; and non-linear predictors,
which are more expressive but not as interpretable as linear predictors with interactions.

Our proposed structured regularization for the interaction coefficients offers two main benefits. First, it
improves estimation accuracy for the interaction coefficients, leading to better predictive accuracy, especially
as p grows relative to n, which we demonstrate in simulation experiments and across many real datasets
for both regression and classification settings. Second, it provides low-dimensional latent representations of
the features that are useful for visualizing and analyzing their relationships, which we demonstrate in an
application for modeling donor-recipient compatibility in kidney transplantation.
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2 Background

2.1 Linear Predictors

Linear predictors comprise some of the simplest models used in statistics and machine learning. They offer
the advantage of being far more interpretable than complex non-linear predictors, though sometimes at the
cost of reduced prediction accuracy. Linear predictors generate a prediction ŷ of the dependent variable or
target y as a function of linear combinations of the independent variables or features x1, x2, . . . , xp:

ŷ = f(β0 + β1x1 + . . . + βpxp) = f(βT x), (1)

where β0 is an intercept term, and β1, . . . , βp are the coefficients that quantify the contribution of each feature.
They are combined to form the coefficient vector β = [β0, β1, . . . , βp], and the features are combined with a
dummy variable of 1 for the intercept to form the feature vector x = [1, x1, . . . , xp].

Estimation In scenarios where the number of examples n significantly exceeds the number of features p,
the coefficients or weights β can typically be accurately estimated using the maximum likelihood estimate
(MLE). However, in many application settings, particularly within the biomedical domain, n is often on the
same order as p or even smaller, leading to a situation where the MLE can result in severe overfitting. Such
overfitting results in models that perform well on training data but poorly on unseen test data. To counteract
this, regularization methods like the lasso (Tibshirani, 1996), which uses an ℓ1 penalty, and elastic net (Zou
& Hastie, 2005), which uses both ℓ1 and ℓ2 penalties, are often employed to reduce overfitting and enhance
the generalization ability of the model. These regularizers tend to favor estimated coefficient vectors that are
sparse and have smaller magnitudes.

Interaction Terms To capture non-linear relationships between features, linear predictors can be extended
by incorporating interaction terms. Adding all second-order interaction terms involves adding all products
xjxk with j < k as additional features. The coefficients for these

(
p
2
)

interaction terms are stored in the
interaction matrix Θ:

Θ =


0 θ12 θ13 · · · θ1,p

0 0 θ23 · · · θ2,p

...
...

...
. . .

...
0 0 0 · · · θp−1,p

0 0 0 · · · 0

 . (2)

Let the vectors θflat = [θ12, θ13, . . . , θ1,p, . . . , θp−1,p] and xint = [x1x2, x1x3, . . . , x1xp, . . . , xp−1xp] denote the
flattened vector representations of Θ and the interaction terms. Then, equation 1 can be written as

ŷ = f(βT x + θT
flatxint) = f(β̃T x̃), (3)

where β̃ = [β, θflat] and x̃ = [x, xint] denote the augmented coefficient and feature vectors, respectively.

With the addition of interaction terms, the size of the augmented coefficient vector is β̃ on the order of p2,
so regularization is even more important to prevent overfitting. Since interaction terms represent relations
between different features, their coefficients Θ may possess some additional structure that is not present in
the coefficients β for the raw features. In this paper, we propose an approximate low-dimensional structure
for Θ that leads to structured regularization for interaction coefficients.

2.2 Related Work

2.2.1 Interaction Terms and Interpretability

Linear predictors with interaction terms have long been used as an interpretable approach for modeling
non-linear relationships between features. Interaction terms can provide the same benefit for generalized
additive models (GAMs), as noted by Lou et al. (2013), who proposed the GA2M model to extend GAMs
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with pairwise feature interactions, significantly enhancing model accuracy while maintaining interpretability.
Higher-order interaction terms can also be added, e.g., in the scalable polynomial additive models (SPAMs)
proposed by Dubey et al. (2022), where the maximum order of the interaction terms controls the flexibility of
the model. Limiting the maximum order controls the trade-off between flexibility and interpretability, with
second-order or pairwise interactions typically representing the “sweet spot” between the two (Dubey et al.,
2022).

One challenge when adding interaction terms to linear predictors and GAMs is how to handle a large number
of interaction terms. If we add all pairwise interactions to a model, the p features produce

(
p
2
)

interaction
terms, which is often a larger number than the number of samples n, and can lead to overfitting even when
using lasso or elastic net penalties. One approach to avoid this is interaction detection: selectively add
only the interactions that pass some statistical test. Lou et al. (2013) adopt this approach and propose a
computationally efficient method to rank interactions. Their approach scales to p in the thousands, which
results in millions of possible pairwise interactions. Another approach is to assume that the interaction matrix
Θ possesses some low-dimensional structure, such as low rank. This is the assumption made by factorization
machines, which we discuss in Section 2.2.3.

Another line of research on interaction terms focuses on structured sparsity using the notion of heredity.
Under the strong heredity structure, the interaction coefficient θjk ≠ 0 only if βj ̸= 0 and βk ̸= 0, implying
that both the features j, k must be selected in order to select their interaction. Several regularization methods
that incorporate strong heredity or a relaxed version termed weak heredity have been proposed (Zhao et al.,
2009; Yuan et al., 2009; Choi et al., 2010; Radchenko & James, 2010; Bien et al., 2013). The hierarchical
lasso (Bien et al., 2013) is probably the most similar to the methods we consider in this paper, as it also uses
an elastic net penalty, where the ℓ1 portion enforces the strong or weak heredity structure. The heredity
assumption simplifies the discovery of interaction terms, as one can first select a smaller number of features
through their main effects β and then consider only interactions between the selected terms, but does not
assume any low-dimensional structure on the interaction matrix.

2.2.2 Latent Variable Models

Latent variable models (LVMs) are used extensively in statistics and machine learning and aim to uncover
latent variables representing hidden factors not directly observable but inferred from available data. An
LVM particularly relevant to this paper is the latent space model (LSM) proposed by Hoff et al. (2002) for
graph-structured data. Under this model, conditional independence of node pairs is assumed, given the latent
positions of the nodes in a Euclidean space. In the most commonly used form of the LSM, the log odds of
an edge forming between two nodes i and j is given by α0 + α1xij − ∥zi − zj∥2, where xij denotes observed
covariates about the node pair, zi and zj are the latent positions of nodes i and j in a d-dimensional latent
space, and α0 and α1 are scalar parameters. This model implies a greater probability of an edge between
nodes that are closer together in the latent space.

Huang & Xu (2022) proposed a novel LSM to analyze human leukocyte antigen (HLA) compatibility from
data on kidney transplant outcomes. They first fit a Cox PH model with interaction terms using an ℓ2
penalty. They propose to improve the estimates of the interaction coefficients using an LSM for the HLA
compatibility network. Their proposed approach uses two-step estimation: first optimizing the ℓ2-penalized
Cox PH model’s partial likelihood to estimate interaction coefficients and then optimizing the LSM likelihood
to refine the estimates. On the other hand, our approach uses joint estimation over the model coefficients
and latent vectors and can be applied broadly to many linear predictors and regularizers.

2.2.3 Factorization Machines (FMs) and Related Models

The first FM model was proposed by Rendle (2010). It assumes that each feature j has a d-dimensional
latent vector zj such that Θ = ZZT . This forces Θ to have an exact low-rank structure. Sparse FMs (Xu
et al., 2016; Pan et al., 2016; Atarashi et al., 2021) further constrain Θ to be sparse; we discuss these models
further in Section 3.3.

Factorization of interaction terms has also been applied to models with time-varying coefficients through the
factorized structured regression (FaStR) model proposed by Rügamer et al. (2022). FMs have been used for
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modeling in recommender systems, and the extension to time-varying coefficients in FaStR enables modeling
in time-aware recommender systems where user behaviors change over time. FMs have also been extended to
higher-order interaction terms in a scalable manner, including higher-order FMs (Blondel et al., 2016) and
additive higher-order FMs (Rügamer, 2024), which combine the benefits of GAMs with the scalability of
factorized terms.

FMs and other models with factorized coefficients differ from our proposed LIT-LVM approach in two main
aspects. First, they are heavily concerned with scalability when using interaction terms and are often applied
to data with both large n and p with a sparse feature matrix X (Rendle, 2012; 2013). On the other hand,
our focus is on improving accuracy of estimation and prediction, not scalability, so our approach is not more
scalable than directly modeling interaction terms. Second, FMs and other models with factorized coefficients
assume that Θ is exactly low rank, whereas we assume that Θ has an approximate low-dimensional structure
(possibly low rank, but not necessarily). This is a subtle, yet important distinction, and we provide more
details in Section 3.3.

3 Model Formulation and Estimation

3.1 LVM for Interaction Terms

We propose to improve the estimation accuracy of the coefficients for interaction terms by introducing an
LVM for these coefficients. We make an underlying assumption that the p × p interaction coefficient matrix Θ
has an approximate low-dimensional structure captured by the matrix p × d matrix Z. (Note that this does
not imply a low-dimensional structure for the n × p data matrix X itself.) We discuss two possible models in
the following, a low rank and a latent distance model. Other continuous LVMs or matrix factorizations could
also be used instead, such as non-negative matrix factorization (Lee & Seung, 1999).

Low Rank Model This model hypothesizes that the interaction matrix Θ may exhibit an approximate
low rank structure. Under this model, the interaction coefficient for any pair j, k such that j < k is given by

θjk = zT
j zk + ϵjk, (4)

where ϵjk is a zero-mean error term for the pair j, k representing the deviation from the low rank structure.
This model is closely related to factorization machines, which assume that θjk = zT

j zk, i.e., an exact rather
than approximate low rank structure.

Latent Distance Model This model is inspired by the LSM of Hoff et al. (2002), where the distances
between latent vectors is of interest. Under this model, the interaction coefficient for any pair j, k such that
j < k is defined as

θjk = α0 − ∥zj − zk∥2
2 + ϵjk, (5)

where the intercept α0 denotes the baseline interaction level. The latent distance model has a negative effect
for distance so that features with more positive values of interactions are placed closer together in the latent
space and more negative values of interactions are pushed farther apart. This type of negative effect on
distance has also been used for matrices with both positive and negative entries by Huang & Xu (2022) and
Nakis et al. (2023) and is often more interpretable than models with a positive effect on distance (Huang
et al., 2022).

3.2 Estimation Procedure

We propose to estimate the model parameters β̃, which denotes the augmented coefficient vector combining
β and the flattened version of Θ as described in Section 2.1, by minimizing the total loss function

Ltotal = Lpred + λrLreg + λlLlvm, (6)

where λr and λl are hyperparameters controlling the strength of the traditional regularization and the
LVM-structured regularization, respectively.
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The initial term, Lpred, addresses the conventional loss associated with the linear predictor, such as mean-
squared error for linear regression, log loss for logistic regression, and negative log partial likelihood for the
Cox PH model. The second component, Lreg, is associated with standard regularization techniques for linear
predictors, such as the elastic net (Zou & Hastie, 2005). The third component, Llvm, is associated with the
LVM for the interaction term weights. This component ensures that the estimated interaction coefficients Θ̂
align with the hypothesized approximate low-dimensional structure.

Depending on the choice of linear predictor, regularizer, and LVM, the form of the total loss function will
differ. For example, for the case of linear regression with elastic net regularization and a low rank LVM, the
total loss would be

Ltotal(β, Θ, Z) = 1
n

∥y − X̃β̃∥2
2︸ ︷︷ ︸

mean squared error

+ λ2
∥∥β̃

∥∥2
2 + λ1

∥∥β̃
∥∥

1︸ ︷︷ ︸
elastic net regularizer

+ λl∥Θ − ZZT ∥2
F︸ ︷︷ ︸

low rank LVM

.

Our Contribution Our main contribution is the third term Llvm = ∥ϵ∥2
F in equation 6, denoting the

deviation from a low-dimensional structure. ϵ is the matrix of error terms between the interaction coefficients
θjk and reconstructions from their latent representations zj , zk. By minimizing squared distances between
the interaction coefficients and their reconstructions from low-dimensional representations, we encourage
the interaction coefficients to have an approximate low-dimensional structure. Our structured regularization
approach can be easily modified for settings where not all interactions are of interest, as we describe in
Section A.1.

Optimization We use Adam (Kingma & Ba, 2015) with various learning rates ∈ [0.005, 0.01, 0.05, 0.1] as our
optimizer for the total loss function. To handle the ℓ1 penalty, we use the proximal gradient method (Parikh
& Boyd, 2014), where the proximal operator corresponds to the soft thresholding operator. The other terms
are all differentiable, with derivatives computed by automatic differentiation in PyTorch. The initializations
of β̃ and Z are drawn from normal distributions: β̃j ∼ N (0, 1) and zjk ∼ N (0, 1). The time complexity of
our estimation procedure per epoch is O(np2), as we discuss in Section A.2.

3.3 Comparison with Related Methods

Nuclear Norm Regularization One approach to estimating low rank and sparse matrices is by adding
nuclear norm and ℓ1 penalties. Such an approach has been used in robust principal component analysis (PCA)
(Candès et al., 2011) to estimate a matrix of the form M = L0 + S0, where L0 is low rank and S0 is sparse.

More closely related to our work, Richard et al. (2012) and Zhou et al. (2013) propose approaches also using
nuclear norm and ℓ1 penalties to estimate a single matrix S that is simultaneously sparse and low rank. If we
applied these penalties to linear regression with interaction terms, it would result in the loss function

1
n

∥y − X̃β̃∥2
2 + λ1∥β̃∥1 + λl∥Θ∥∗,

where ∥Θ∥∗ =
∑

j σj(Θ) denotes the nuclear or trace norm consisting of the sum of the singular values
of Θ. This approach has the advantage of being convex; however, the disadvantage is that it requires
repeated computation of a singular value decomposition as part of the optimization routine, which has O(p3)
complexity. If we adopted this approach for our setting rather than introducing the latent variables Z, then
time complexity per epoch would be O(np3), higher than the O(np2) of our LIT-LVM approach. Additionally,
we are also interested in the latent vectors zj themselves, which can also help to interpret the structure of
the interaction matrix Θ.

Sparse Factorization Machines Another approach to estimating low rank and sparse matrices is sparse
FMs, which have been developed to improve the performance and interpretability of FMs (Xu et al., 2016;
Pan et al., 2016; Atarashi et al., 2021). Sparse FMs model the interaction coefficients by Θ = ZZT such
that Θ is sparse. Since Z is p × d with d < p, sparse FMs constrain Θ to have at most rank d, i.e., an exact
low-rank representation. On the other hand, our proposed LIT-LVM approach, when used with a low rank
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Figure 2: Results of simulation experiments on linear and logistic regression where the true latent dimension
for the interaction weights Θ is dtrue = 2. (a) Lower RMSE and (b) higher AUC denote higher prediction
accuracy. Error bars denote one standard error. Our proposed LIT-LVM approach, which uses structured
regularization, significantly outperforms the elastic net with interaction terms, a traditional regularization
approach, as p increases for fixed n.

model, penalizes the deviation from a low rank representation using the penalty ∥Θ − ZZT ∥2
F , resulting in Θ

being approximately rather than exactly low rank and enabling greater modeling flexibility. The trade-off for
the greater flexibility is higher time and space complexity as we need to work with the entire p × p matrix Θ
rather than just with the p × d matrix Z. In the limit as λl → ∞, the LIT-LVM estimate of Θ approaches
that of a sparse FM, as any deviation from the low rank structure is heavily penalized.

4 Simulation Experiments

We begin with some simulation experiments to investigate the effects of LIT-LVM as we change the number
of features p with fixed number of examples n. As p increases, the model becomes more difficult to estimate.
Code to reproduce all experiments is available at https://github.com/MLNS-Lab/LIT-LVM.

4.1 Linear Regression with Low Rank

We construct a feature matrix X with dimensions n × p. Each data point xi ∼ N (0, I). From the feature
matrix, we then construct the matrix of interaction terms Xint, which has dimensions n ×

(
p
2
)
. The target

vector y is then generated by y = Xβ + Xintθflat + η. The entries of the weight vector βj ∼ N (0, 1). Z has
dimensions p × dtrue with dtrue < p so that Θ possesses the approximate low rank structure in equation 4,
with entries zjk ∼ N (0, 1) and ϵjk ∼ N (0, 0.1). Finally, the observation noise ηi ∼ N (0, 0.01).

Results The results for fixed n = 1,000, true latent dimension dtrue = 2, and four different values of p are
shown in Figure 2a. We compare our proposed LIT-LVM approach using a low rank model to elastic net with
interaction terms. For p = 40, Θ has

(40
2

)
= 780 entries, which is less than n, and both approaches are quite

accurate. At p = 50, Θ has
(50

2
)

= 1, 225 entries, which now exceeds n, and we observe a phase transition
where the RMSE of elastic net increases significantly compared to our LIT-LVM approach. As p continues to
increase, LIT-LVM continues to outperform the elastic net with interactions.

In Section B.1, we repeat the experiment for true latent dimensions of 5 and 10 and observe similar results.
We also evaluate LIT-LVM for d ≠ dtrue and find that, although the accuracy drops, it drops less when
choosing d too high rather than too low. Furthermore, its accuracy is still higher than elastic net even with
misspecified d.

7
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4.2 Logistic Regression with Latent Distance

In this experiment, we generate the feature matrix and interaction terms in the same manner as in the
linear regression experiment in Section 4.1. For logistic regression, each element of the response vector y
is sampled from a Bernoulli distribution with success probability given by logistic(βT x + θT

flatxint) + ηi,
where logistic(x) = 1

1+e−x . We inject sparsity into the augmented coefficient vector β̃ by first generating a
dense version β̃dense. We then set each element β̃dense

j to 0 with probability given by the Gaussian function
exp(−(β̃dense

j )2/σ2
s), where σ2

s is a parameter that adjusts the level of sparsity. This ensures that larger
elements in β̃dense have a lower probability of being zeroed out.

To generate the dense augmented coefficient vector β̃dense = [βdense, θdense
flat ], we sample entries for the weight

vector βdense from βdense
j ∼ N (0, 1). The interaction matrix Θdense is constructed using the latent distance

model in equation 5. The matrix ϵ with entries ϵjk ∼ N (0, σ2
θ) denotes the deviation from the latent distance

model’s assumed structure. This formulation captures the interaction through the distances in the latent
space between each feature, where the matrix Θdense is flattened into θdense

flat before it is sparsified. We also
model noise in the response variable using a Gaussian distribution such that ηi ∼ N (0, σ2

y). We set the
variances of the Gaussian distributions to σ2

s = 0.0001, σ2
θ = 0.1, and σ2

y = 0.01.

Results The results for fixed n = 1,000, true latent dimension dtrue = 2, and five different values of p
are shown in Figure 2b. Similar to the results from the linear regression experiment, we observe a phase
transition where the accuracy of elastic net decreases significantly compared to our approach. The phase
transition occurs at roughly p = 30, lower than in the linear regression experiment. As p continues to increase,
our LIT-LVM approach continues to outperform elastic net, with prediction accuracy decreasing much slower
than in elastic net.

In Section B.2, we repeat the experiment for true latent dimension of 5 and 10 and observe similar results. We
also evaluate the performance of LIT-LVM for misspecified d, with the same findings as for linear regression:
choosing d too high is better than too low. We also demonstrate superior performance of LIT-LVM over
elastic net persists in even higher-dimensional settings up to p = 500.

Comparison with Sparse FMs In Section B.3, we conduct simulation experiments comparing the
performance of LIT-LVM with sparse FMs1. We simulate data in the same manner except with a low rank
structure rather than a latent space structure, to better match the assumption of FMs. Likewise, we use
LIT-LVM with a low rank model. We find that FMs perform worse when Θ is noisy or exhibits higher
sparsity (deviation from exact low rank). This indicates that factorizing the interaction coefficients, as FMs
do, can degrade performance when the underlying assumption of exact low rank structure is not met. In
contrast, the approximate low rank structure assumption in LIT-LVM offers greater flexibility in modeling
the interaction coefficients, ensuring more robustness and higher accuracy.

Effects of LVM Hyperparameter λl Next, we investigate the sensitivity of LIT-LVM to the hyperparam-
eter λl, which controls the strength of the LVM-structured regularization. On one extreme, λl = 0 reduces
LIT-LVM to a standard regularized linear predictor, while very large λl enforces a strict low-dimensional
structure that approaches factorization machines as λl → ∞.

First, we consider the simulation with true latent dimension dtrue = 2 and low noise in the latent variables,
where ϵjk, the deviation from low rank structure, has variance σ2

θ = 0.1, so that the interaction matrix
remains approximately low rank. Figure 3a shows the mean AUC for varying λl while holding the other
regularization hyperparameters (λ1, λ2) fixed. When λl = 0, the model can only learn a purely sparse linear
predictor with no latent structure penalty, which leads to relatively low predictive accuracy. On the other
hand, at extremely high λl, LIT-LVM approaches a factorization machine, which also underperforms here
because it enforces an overly strict exact low-rank assumption. Notably, there is a middle range of λl that
yields the highest mean AUC, indicating that partially constraining interaction terms to follow a latent
structure can improve prediction while allowing some flexibility for deviations.

1To avoid differences in performance caused by the optimizer, we implement sparse FMs using LIT-LVM with λl = 100, 000.
We show in Section C.3 that this value is sufficient. (Recall that LIT-LVM approaches a sparse FM in the limit as λl → ∞.).
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Figure 3: Mean AUC for different values of the LVM regularization strength λl on simulated data experiments
using logistic regression. (a) The simulation with low noise (σ2

θ = 0.1) peaks in AUC at an intermediate λl,
confirming the benefit of the LVM regularization term. (b) The simulation with high noise (σ2

θ = 4) has
destroyed the latent structure, and thus shows minimal benefit from the LVM regularization.

To assess the robustness of LIT-LVM under severe violations of the low-rank assumption, we repeat the same
simulation but increase latent variable noise variance to σ2

θ = 4, effectively destroying the underlying low-rank
structure. As shown in Figure 3b, the best performing λl is near 0 or 0.01 which corresponds to applying no
or little LVM penalty. This is not surprising because at such high noise, the interaction matrix no longer
possesses a low-rank structure so larger values of λl degrade the performance.

5 Real Data Experiments

5.1 OpenML Datasets

We conduct experiments on a wide variety of publicly available datasets from OpenML (Vanschoren et al.,
2013) to verify how well our structured regularization for the interaction matrix applies to real data. We
consider both regression and binary classification tasks using linear and logistic regression, respectively. We
consider 12 regression datasets and 10 classification datasets, described in Section C.1. For each task and
dataset, we compare the accuracy of five different predictors, all with an elastic net penalty, listed below in
increasing order of flexibility:

1. Elastic net with no interactions: the base linear predictor (linear or logistic regression) applied
directly to the features.

2. Sparse factorization machines (FMs): factorized form for the interaction coefficient matrix that
assumes exact low rank structure.

3. LIT-LVM: our proposed approach that assumes approximate low rank structure for the interaction
coefficient matrix.

4. Hierarchical lasso: includes only interaction terms xjxk where at least one of the features (main
effects) xj or xk is also included. This corresponds to an assumption of weak heredity.

5. Elastic net with interactions: includes interaction terms between all pairs of features.

We divide the data into a 50/50 train/test split for both classification and regression tasks. We tune
hyperparameters using a grid search, selecting the set of hyperparameters that minimize the mean RMSE
for regression tasks and maximize the mean AUC for classification tasks over five splits within the training
set. Subsequently, we evaluate prediction accuracy on the held-out test set. We repeat this process using
five different train/test splits to calculate the standard errors for the prediction accuracy. Details on
hyperparameter tuning are provided in Section C.1.2.
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Table 1: Mean RMSE ± standard error over 5 different train/test splits for OpenML regression datasets.
Lower RMSE denotes higher prediction accuracy. Highest accuracy for each data set is denoted in bold,
and entries within 1 standard error are denoted in italic. Our proposed LIT-LVM approach has the highest
accuracy on 11 of the 12 datasets and is within 1 standard error on the 1 remaining dataset.

Dataset Name Elastic Net
No Interactions

Elastic Net
with Interactions LIT-LVM Sparse FM Hierarchical

Lasso
boston 4.99 ± 0.12 4.39 ± 0.23 4 .40 ± 0 .26 5 .01 ± 0 .63 4 .51 ± 0 .17
bike_sharing_demand 148.40 ± 1.08 144 .48 ± 1 .06 144.47 ± 1.05 156.65 ± 1.07 144 .56 ± 0 .39
diamonds 0.28 ± 0.00 0.26 ± 0.00 0.25 ± 0.00 0.28 ± 0.00 0.28 ± 0.00
fri_c4_500_10 0 .88 ± 0 .01 0 .89 ± 0 .02 0.87 ± 0.02 1.00 ± 0.03 0 .88 ± 0 .02
medical_charges 0.24 ± 0.00 0.19 ± 0.00 0.19 ± 0.00 0.20 ± 0.00 0.20 ± 0.00
nyc_taxi_green 0.50 ± 0.00 0.50 ± 0.00 0.16 ± 0.00 0.50 ± 0.00 0.27 ± 0.00
pol 30.55 ± 0.08 24 .33 ± 0 .71 24.24 ± 0.63 29.05 ± 0.33 28.41 ± 0.06
rmftsa_ladata 1.86 ± 0.05 1 .73 ± 0 .05 1.72 ± 0.03 1.85 ± 0.05 6.49 ± 0.08
socmob 23.57 ± 0.61 17 .17 ± 1 .15 16.55 ± 1.56 23.56 ± 1.96 17 .52 ± 1 .05
space_ga 0.14 ± 0.00 0.13 ± 0.00 0.12 ± 0.00 0.13 ± 0.00 0.14 ± 0.00
superconduct 17.72 ± 0.07 15.17 ± 0.19 14.32 ± 0.07 17.70 ± 0.08 18.42 ± 0.05
wind 3.30 ± 0.01 3.28 ± 0.03 3.17 ± 0.02 3.28 ± 0.01 3.47 ± 0.02

Table 2: Mean AUC ± standard error over 5 different train/test splits for OpenML classification datasets.
Higher AUC denotes higher prediction accuracy. Highest accuracy for each data set is denoted in bold,
and entries within 1 standard error are denoted in italic. Our proposed LIT-LVM approach has the highest
accuracy on 9 of the 10 datasets and is within 1 standard error on the 1 remaining dataset.

Dataset Name Elastic Net
No Interactions

Elastic Net
with Interactions LIT-LVM Sparse FM Hierarchical

Lasso
Bioresponse 0.791 ± 0.013 0.791 ± 0.004 0.808 ± 0.003 0 .801 ± 0 .004 0.808 ± 0.004
clean1 0.900 ± 0.003 0.922 ± 0.004 0.947 ± 0.002 0.900 ± 0.005 0.934 ± 0.003
clean2 0.944 ± 0.001 0.943 ± 0.003 0.985 ± 0.001 0.955 ± 0.001 0.978 ± 0.001
eye_movements 0.586 ± 0.004 0.608 ± 0.002 0 .607 ± 0 .002 0.586 ± 0.004 0 .604 ± 0 .005
fri_c4_500_100 0.666 ± 0.011 0.576 ± 0.020 0.666 ± 0.010 0 .651 ± 0 .012 0.666 ± 0.010
fri_c4_1000_100 0 .672 ± 0 .009 0.564 ± 0.009 0.689 ± 0.008 0 .674 ± 0 .014 0 .678 ± 0 .009
hill-valley 0 .711 ± 0 .020 0.547 ± 0.027 0.734 ± 0.034 0 .699 ± 0 .023 0 .715 ± 0 .020
jannis 0.814 ± 0.000 0 .826 ± 0 .001 0.827 ± 0.001 0.801 ± 0.001 0.821 ± 0.001
jasmine 0 .831 ± 0 .004 0 .836 ± 0 .003 0.837 ± 0.003 0 .835 ± 0 .005 0 .832 ± 0 .003
tecator 0 .969 ± 0 .004 0.959 ± 0.006 0.974 ± 0.003 0 .970 ± 0 .004 0 .970 ± 0 .003

Results The regression and classification results are shown in Tables 1 and 2, respectively. Our LIT-LVM
approach achieves superior accuracy over the suite of datasets for both tasks, and by a large margin on
some datasets, such as nyc_taxi_green for regression and clean_2 for classification. As we observed in the
simulation experiments, our proposed LIT-LVM approach achieves the highest gains compared to elastic net
with interactions on datasets with high p2/n ratios (shown in Tables 4 and 5 in Section C.1.1), including
superconduct for regression and fri_c4_1000_100 for classification. This also agrees with well-known
results for other regularization methods such as elastic net, where the benefit is mainly achieved when the
ratio p/n approaches or exceeds 1. With the inclusion of

(
p
2
)

interaction terms, it is the ratio p2/n that is
important. We also note that, without the structured regularization of LIT-LVM, interaction terms can
often hurt the accuracy of a linear predictor, as shown by classification datasets such as hill-valley, where
elastic net without interactions far exceeds the accuracy with interactions. Such results were also observed by
Bien et al. (2013) in their experiments comparing elastic net without interactions, with interactions, and
hierarchical lasso. We find that the hierarchical lasso’s prediction accuracy is generally in between that of
elastic net with and without interactions, as one might expect. The weak heredity assumption provides a
stronger regularization compared to elastic net with interactions, which allows hierarchical lasso to perform
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Figure 4: Mean AUC for different values of the LVM regularization strength λl on real OpenML classification
datasets. (a) The clean1 dataset peaks in AUC at a moderate λl between 0.01 and 0.1, while the more
difficult fri_c4_500_100 dataset benefits from stronger LVM regularization with λl in the range of 1 to 100.

better, but not as well as LIT-LVM, on datasets with high p2/n ratios. On all datasets, we find that our
proposed optimization procedure for LIT-LVM converges, as shown in Section C.2.

Additionally, we find that FMs are not competitive with our proposed LIT-LVM approach in accuracy, despite
having higher latent dimension up to d = 50 tuned by grid search, compared to LIT-LVM with fixed d = 2.
We believe that this is due to its assumption that the interaction terms have an exact low rank structure,
rather than an approximate one as in LIT-LVM. A comparison of LIT-LVM and FM for varying d is provided
in Section C.1.3.

Effects of LVM Hyperparameter λl The effects of λl on mean AUC in the clean1 dataset are shown in
Figure 4a. From Table 2, we see that LIT-LVM already attains a substantially higher AUC on clean1 than
the other baselines. We observe that moderate values of λl again yield the best result, reinforcing that some,
but not excessive, emphasis on latent structure can exploit the potential low-rank signal in the data. The
performance on another data set, fri_c4_500_100 is shown in Figure 4b. From Table 2, we see that the
mean AUC of FM and LIT-LVM are closer on this dataset than on clean1, which indicates that LIT-LVM is
indeed imposing a low-rank structure similar to FM, but less rigid, and thus, still manages to outperform it.
Consequently, we observe a higher value for λl to maximize AUC compared to clean1. Nevertheless, the
overall pattern remains similar: a moderate λl still achieves or exceeds the best possible performance from an
FM, which is a purely factorized method, or a model with just an elastic net penalty and no factorization.

5.2 Survival Prediction and Compatibility Estimation for Kidney Transplantation

We now turn to a biomedical application that partially motivated the development of our LIT-LVM approach.
We aim to predict the outcomes of kidney transplants in terms of the time duration until the transplanted
kidney eventually fails. This is known as the time to graft failure or survival time. Survival times are
influenced by many factors, including the compatibility of the Human Leukocyte Antigens (HLAs) between
the donor and recipient (Opelz et al., 1999; Foster et al., 2014). HLA compatibility also impacts the accuracy
of survival time predictions (Nemati et al., 2023).

Data Description This study used data from the Scientific Registry of Transplant Recipients (SRTR).
The SRTR data system includes data on all donor, wait-listed candidates, and transplant recipients in the US,
submitted by the members of the Organ Procurement and Transplantation Network (OPTN). The Health
Resources and Services Administration (HRSA), U.S. Department of Health and Human Services provides
oversight to the activities of the OPTN and SRTR contractors.

We follow the inclusion criteria and data preprocessing steps outlined by Nemati et al. (2023) on the SRTR
kidney transplant data. Each sample includes demographic and clinical information of both donors and
recipients, such as age, gender, race, and BMI. Additionally, we incorporate data on the HLA types of donors
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and recipients. Since it is the compatibility between the HLAs of the donors and recipients that is the
important factor influencing survival times, it is the interactions between features representing donor HLAs
and recipient HLAs, called HLA pairs, that are of interest. We refer to these HLA pairs using uppercase
letters for the donor and lowercase for the recipient, similar to Huang & Xu (2022), e.g., A1_a2 denotes
that the donor has HLA-A1 and the recipient has HLA-A2. We further describe the construction of these
interaction terms in Section C.4.

Our dataset incorporates three specific HLA loci, which can be interpreted as groups of features: HLA-A,
HLA-B, and HLA-DR. We construct separate interaction matrices for each locus. Furthermore, the interaction
matrix considers only interactions between donor and recipient HLA types. This targeted approach enables
us to focus on the critical aspect of how donor-recipient HLA interactions impact graft survival time. We
describe how our proposed LIT-LVM model can be formulated with such targeted interactions in Section A.

Over 70% of the examples are censored, mostly denoting transplants that have not yet failed. Thus, we utilize
the Cox Proportional Hazards (Cox PH) model, a linear predictor commonly used for survival analysis, rather
than standard regression models to account for the censored examples. We divide the transplant data into
training and test sets, with a 50/50 split. We select the set of hyperparameters that maximize the mean Cox
PH partial log-likelihood using a 5-fold cross-validation on the training set. We evaluate prediction accuracy
on the test set using Harrell’s concordance index (C-index) (Harrell et al., 1982), which is a ranking-based
metric that measures only discrimination ability, and integrated time-dependent Brier score (IBS) (Graf
et al., 1999), which measures both discrimination and calibration of predictions.

Results We compare the C-index and IBS of five variants of the Cox PH model: one with an elastic net
(EN) penalty, one with our proposed LIT-LVM using a latent distance model, one using PCA to obtain
low-dimensional latent embeddings for reconstructing interaction weights after using the elastic net, and one
with sparse FMs. We also provide a Random Survival Forest (RSF) model (Ishwaran et al., 2008) as another
reference for the accuracy achievable by a nonlinear predictor that is typically one of the best performers
among survival prediction algorithms.

Table 3: Mean C-index and mean Integrated Brier Score
(IBS) ± 1 standard error for survival time prediction over
10 train/test splits. Highest accuracy for each data set is
denoted in bold, and entries within 1 standard error are
denoted in italic.

Model Mean C-index Mean IBS
Cox PH (EN) 0.627 ± 0.001 0.149 ± 0.000

Cox PH (LIT-LVM) 0.630 ± 0.001 0.143 ± 0.000
Cox PH (PCA) 0.626 ± 0.001 0.149 ± 0.000
Cox PH (FM) 0.623 ± 0.004 0.149 ± 0.000

RSF 0 .629 ± 0 .001 0.156 ± 0.000

Table 3 shows that LIT-LVM outperforms the
all other variants of Cox PH models in dis-
crimination and even the much more complex
random survival forest (RSF) on the C-index
(0.630 vs. 0.629), yet also achieves the best cal-
ibration with the lowest integrated Brier score
of 0.143. The discordance for RSF, having the
second-best C-index but worst IBS (0.156) is
not surprising, as the C-index measures rank-
ing only, whereas the Brier score also measures
calibration, and tree ensembles such as RSF
have been found to suffer from poorer calibra-
tion than Cox PH models in other work (Steele
et al., 2018). Notably, the ≈ 0.006 (≈ 4%) reduction in IBS that LIT-LVM achieves over the elastic net Cox
is an order of magnitude larger than the ≤ 0.001 differences among the other Cox PH variants, underscoring
a clear calibration advantage. The difference in IBS between LIT-LVM and the other models is further
explained in Section C.4.2 by examining the Brier score over time. LIT-LVM is the only model that combines
superior discrimination with superior calibration.

HLA Latent Representations One of the primary objectives of this study is to capture a latent
representation of donor and recipient HLAs to model their compatibilities, as greater compatibility is
associated with longer survival times. To achieve this, we visualize HLA compatibilities through their
distances in the latent space. Initially, we train an elastic net model and used its weights to initialize β̃ in LIT-
LVM. To initialize the latent positions for different HLA loci, we use the multidimensional scaling approach
proposed by Huang & Xu (2022). As a comparative baseline, we construct HLA latent representations using
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Figure 5: Latent space representation of HLA-DR pairs. Green and magenta dashed lines denote HLA
pairs associated with the best (most compatible) and worst (least compatible) outcomes, respectively. In
the LIT-LVM latent space, compatible HLA pairs are positioned closely and incompatible pairs are widely
separated, whereas PCA fails to preserve this property.

PCA on the weights of HLA pairs learned by Cox PH with elastic net regularization, denoted by Cox PH
(PCA) in Table 3.

We plot the latent positions of donor and recipient HLA-DRs in Figure 5 and draw dashed lines between
the three HLA pairs with the most negative weights and most positive weights, according to the Cox PH
model with only elastic net penalty. In the Cox PH model, negative weights are associated with a lower
risk of the occurrence of an event, so they are indicative of higher donor-recipient compatibility. Thus, we
expect that HLA pairs with the most negative weights should be positioned closely in the latent space, while
those with the most positive weights should be positioned farther apart. As shown in Figure 5a, the top
three pairs with the lowest weights (θDR17_dr17 = −0.068, θDR7_dr15 = −0.055, θDR103_dr1 = −0.050) are
close together in the latent space, while the top three pairs with the highest weights (θDR15_dr7 = 0.044,
θDR11_dr9 = 0.041, θDR10_dr11 = 0.040) are far apart for LIT-LVM. Unlike LIT-LVM, PCA-derived HLA
embeddings in Figure 5b fail to place all compatible pairs closely—for instance, DR7_dr15, the second most
compatible pair, are widely separated. Furthermore, the PCA embeddings also place many nodes extremely
close together near the origin, which does not provide an informative visualization compared to the LIT-LVM
embeddings. Latent space representations for HLA-A and HLA-B are shown in Section C.4.2.

Our findings show that our LIT-LVM approach with latent distance model effectively captures the HLA
compatibilities that influence kidney graft survival through distances between the latent positions of the HLAs,
in addition to achieving prediction accuracy competitive with and superior than more complex ensemble
methods such as random survival forest.

6 Conclusion

Our underlying hypothesis in this paper was that the coefficients for interaction terms in linear predictors
possess an approximate low-dimensional structure. We imposed this approximate low-dimensional structure on
the interaction coefficient matrix by representing each feature using a latent vector and penalizing deviations
of the estimated interaction coefficients from their expected values modeled by the latent structure. After
a thorough investigation on a wide variety of simulated and real datasets, we found that our proposed
LIT-LVM approach, which can be viewed as a form of structured regularization specifically for interaction
coefficients, generally outperforms elastic net regularization for linear predictors, as well as factorization
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machines. The improvement seems to increase with the ratio p2/n; thus, LIT-LVM seems particularly well
suited for moderate and high-dimensional settings.

Limitations In this paper, we limited our investigation to second-order interaction terms. Some datasets
may exhibit higher-order interactions; our proposed approach could potentially be extended to incorporate
these, with the interaction coefficient matrix Θ replaced by a higher-order tensor. The approximate low-
dimensional structure could then be enforced using tensor factorization approaches (Kuleshov et al., 2015).
Our LIT-LVM approach also excludes terms of the form x2

j , which can be viewed as self interactions and are
usually included in polynomial features. These self interactions could be added into LIT-LVM as terms on
the diagonal of Θ and by choosing a different type of low-dimensional structure that incorporates these terms.
Our proposed approach also only scales to thousands of features, as it requires estimation of the explicit p × p
interaction matrix Θ. Problems with even higher values of p are sometimes called ultrahigh-dimensional
problems and require methods such as factorization machines or the penalized interaction estimation (PIE)
technique proposed by Wang et al. (2021).
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A Additional Model Information

A.1 Targeted Interactions

Inclusion of the interaction terms between all the features might not be well suited given the conditions
and the domain pertinent to a specific application. Instead, we may be interested in incorporating the
interaction between a first set of features X′ ⊆ X with dimension of r and a second set of features X′′ ⊆ X
with dimension of q. We refer to these as targeted interactions, which may come from domain knowledge or
specific interest in a set of interactions. With targeted interactions, the interaction matrix Θ changes from a
square p × p to a possibly rectangular r × q matrix representing the coefficients for the interaction terms
between the features of X′

, X′′ . We denote the latent representation matrices of the two sets of features
X′

, X′′ as Z′

r×d, Z′′

q×d, respectively.

To account for targeted interactions, it is crucial to incorporate a method that selectively prevents updates to
the model components representing these non-existent interactions. This selective update is implemented
using a mask matrix M, which comprises elements valued at 0 or 1. The value of 0 is assigned to positions
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corresponding to non-interacting feature pairs, and 1 is assigned elsewhere. The use of this mask effectively
ensures that updates during the training process are only applied to the relevant elements of the interaction
weights and their corresponding latent representations.

Implementing a mask matrix provides a controlled mechanism for training a model while preserving the
integrity of the domain knowledge within the model’s structure. It helps in maintaining the sparsity of the
interaction matrix Θ and the latent representation matrices Z′ and Z′′ , thus preventing the model from
fitting to spurious interactions that are not of interest. This is particularly crucial when the dimensionality of
the feature space is high, where there is a risk of overfitting on spurious interactions. Accordingly, the loss
functions for the low-rank and latent distance models are modified to incorporate the mask matrix, ensuring
that only the targeted interactions contribute to the loss calculation.

A.2 Model Complexity

Our LIT-LVM model is parameterized by the (p + 1)-dimensional coefficient vector β, the p × p interaction
matrix Θ, and the p × d matrix of latent positions Z. Since the latent dimension d < p, there are a total of
O(p2) parameters, which is the same number of parameters that a usual linear predictor with interaction
terms would have. On the other hand, FMs store only a factorized representation of Θ using ZZT , so they
have only a total of O(pd) parameters, resulting in a smaller trained model.

The time complexity of our estimation procedure for LIT-LVM per epoch is O(np2 + p2d) = O(np2) as np2

dominates p2d. This is the same O(np2) time complexity as a usual linear predictor with interaction terms, so
there is also no asymptotic increase in computation. FMs can again achieve a lower O(npd) time complexity
due to their lower number of model parameters.

B Additional Details and Results on Simulation Experiments

B.1 Linear Regression with Low Rank Model

We repeat the experiment from Section 4.1 for true latent dimensions of 5 and 10, with results shown in
Figure 6. The same trends as in Figure 2a can be observed, with the phase transition around p = 50.

Next, we compare our results for different values of d, with results shown in Figure 7. For each value of
dtrue, the lowest RMSE is achieved for the correctly specified d = dtrue, as one would expect. When dtrue = 5,
choosing d = 2, which is too small, takes away most of the gain achieved compared to just using elastic net,
while choosing d = 10, which is too high, still results in an tremendous improvement compared to elastic net,
although less than for d = dtrue = 5. This suggests that, when in doubt, it is better to choose a higher rather
than lower dimensional latent representation.

B.2 Logistic Regression with Latent Distance Model

The results when we repeat the experiment from Section 4.2 across different values of dtrue are shown in
Figure 8. Again, we see superior prediction accuracy for LIT-LVM, although the improvement is lesser at
higher values of dtrue.

Next, we compare our results for different values of d, with results shown in Figure 9. For each value of dtrue,
the highest AUC is achieved for the correctly specified d = dtrue, as one would expect. When dtrue = 5, There
is still an improvement compared to elastic net even with the misspecified d = 2 and d = 10. Again, choosing
d too high rather than too low results in higher accuracy. The same trends can be observed for dtrue = 2 and
dtrue = 10.

Finally, we explore what happens when we let p grow to an extremely high value so that
(

p
2
)

≫ n. The
results up to p = 500, for which

(
p
2
)

= 124,750 with n = 1,000 are shown in Figure 10. Notice that LIT-LVM
continues to outperform elastic net until the point where all of the methods are barely better than a random
guess at p = 500.
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Figure 6: Results of simulation experiments on linear regression for different values of the true latent dimension
dtrue. Lower RMSE denotes higher prediction accuracy. Results for dtrue = 2 are shown in Figure 2a. Error
bars denote one standard error.
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Figure 7: Results of simulation experiments on linear regression for different values of the chosen latent
dimension d and true latent dimension dtrue. Lower RMSE denotes higher prediction accuracy. Error bars
denote one standard error.
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Figure 8: Results of simulation experiments on logistic regression for different values of the true latent
dimension dtrue. Higher AUC denotes higher prediction accuracy. Results for dtrue = 2 are shown in Figure
2b. Error bars denote one standard error.
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Figure 9: Results of simulation experiments on logistic regression for different values of the chosen latent
dimension d and true latent dimension dtrue. Higher AUC denotes higher prediction accuracy. Error bars
denote one standard error.
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Figure 10: Performance comparison of LIT-LVM vs. elastic net on logistic regression simulation in an
extremely high dimension setting. Error bars denote one standard error. LIT-LVM consistently outperforms
elastic net up to p = 500.
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Figure 11: Mean AUC comparison between LIT-LVM and FMs in classification simulation experiments. Error
bars denote one standard error. The feature matrix and weights are generated as described in Section 4.2.

B.3 LIT-LVM vs. Sparse Factorization Machines (FMs)

In this simulation study, we evaluate the performance of sparse FMs compared to LIT-LVM through a series
of classification experiments under varied conditions such as increased noise and sparsity injected in the
interaction matrix Θ. These conditions are critical for assessing the performance of the models, as they can
potentially affect the predictive accuracy of models like FMs that rely on exact low-rank structures. By
introducing greater noise variance and higher sparsity levels in the interaction weights during the simulations,
we aim to demonstrate how each model handles deviations from the exact low-rank assumption, thereby
providing insights into their practical use in scenarios where this assumption does not hold. Since we are
interested in the accuracy of the FM and not the computation time, we formulate FMs as a special case of
LIT-LVM with extremely large λl = 100, 000. (The model recovered by LIT-LVM is equivalent to that of an
FM in the limit λl → ∞ as discussed in Section 3.3.)

Figure 11 displays the mean AUC results for both models under baseline noise and sparsity conditions, while
Figures 12 and 13 show the results when the models are subjected to increased noise levels and greater
sparsity. Figure 12 shows the effect of increasing the noise variance to 4 on the performance of the models,
highlighting a significant drop in the accuracy of FMs due to their reliance on an exact low-rank structure
of the interaction weight matrix. Similarly, Figure 13 demonstrates how increasing the sparsity level in the
interaction weights impacts the performance of FMs compared to LIT-LVM. These experiments underscore
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Figure 12: Mean AUC comparison between LIT-LVM and FMs in classification simulation experiments.
Error bars denote one standard error. The feature matrix is generated as described in Section 4.2, with
increased noise variance (set to 4) added to the true interaction coefficients Θ. Due to this added noise, the
performance of FMs, which assume an exact low-rank structure for the interaction coefficient matrix, drops
significantly compared to their performance in Figure 11, where the noise was lower.
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Figure 13: Mean AUC comparison between LIT-LVM and FMs in classification simulation experiments. Error
bars denote one standard error. The feature matrix is generated as described in Section 4.2, with increased
sparsity level imposed on interaction coefficients Θ. Due to this added sparsity, the performance of FMs,
which assume an exact low-rank structure for the interaction coefficient matrix, drops significantly compared
to their performance in Figure 11, where the sparsity level was lower.
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Table 4: Regression datasets from OpenML used for real data experiments, comprising a wide range of
number of samples n and features p. Datasets with a slash in the number of features p have categorical
variables, so the entry denotes before/after one-hot encoding. The ratio p2/n is computed using the number
of features after one-hot encoding. The OpenML dataset ID column includes a link to the dataset.

Dataset Name # of Samples n # of Features p p2/n OpenML Dataset ID
boston 506 14/22 0.957 531
bike_sharing_demand 1,737 6 0.0207 44142
diamonds 53,940 10 0.00185 44140
fri_c4_500_10 500 10 0.200 604
medical_charges 163,065 12 0.000883 44146
nyc-taxi-green-dec-2016 581,835 9 0.000139 44143
pol 15,000 26 0.0451 44134
rmftsa_ladata 508 10 0.196 666
socmob 1,156 6/39 1.32 541
space_ga 3,106 7 0.158 507
superconduct 21,263 79 0.294 44148
wind 6,574 15 0.0342 503

Table 5: Classification datasets from OpenML used for real data experiments, comprising a wide range of
number of samples n and features p. The OpenML dataset ID column includes a link to the dataset.

Dataset Name # of Samples n # of Features p p2/n OpenML Dataset ID
Bioresponse 3,434 420 51.4 45019
clean1 476 169 60.0 40665
clean2 6598 169 4.33 40666
eye_movements 7,698 24 0.0748 44157
fri_c4_500_100 500 101 20.4 742
fri_c4_1000_100 1,000 101 10.2 718
hill-valley 1,212 101 8.41 1479
jannis 57,580 55 0.0525 43977
jasmine 2,984 145 7.05 45057
tecator 240 125 65.1 851

the robustness of LIT-LVM under more challenging conditions where assumptions of the exact low-rank
structures in FMs do not hold.

C Additional Details and Results on Real Data Experiments

C.1 OpenML Datasets

In our experiments, we utilize a diverse set of benchmark datasets to evaluate the performance of the proposed
model. These datasets are chosen to ensure comprehensive coverage of different types of data distributions and
characteristics. By using these datasets, we aim to thoroughly validate the performance and generalization
ability of our model across both classification and regression tasks.

C.1.1 Data Description

We employ a range of datasets as detailed in Table 4 for regression and Table 5 for classification. These
datasets are selected to test the model’s ability to handle different scenarios. The diversity in the number of
samples and features ensures that our model is evaluated on a wide spectrum of regression and classification
challenges. Links to these datasets are also provided for ease of access.
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Figure 14: Performance comparison of LIT-LVM vs. FM on fri_c4_1000_100 classification dataset with
different values for the dimension d of the latent representation. LIT-LVM outperforms FM for all values of d.

C.1.2 Hyperparameter Tuning

We ensure that our proposed LIT-LVM approach, elastic net, and FMs are initialized with identical weights, pro-
viding a fair comparison. The regularization parameter λl for the structured regularization in LIT-LVM is cho-
sen from [0.01, 0.1, 1, 10, 100], and the elastic net parameters λ1 and λ2 are chosen from [0, 0.01, 0.1, 1, 10, 100].
For LIT-LVM, we choose fixed dimension d = 2 unless otherwise specified. For FMs, we choose d using a grid
search over [2, 10, 25, 50], as its assumption of exact rather than approximate low rank structure may require
higher d.

We use the hierNet R package implementing hierarchical lasso (Bien et al., 2013). We tune its regularization
parameter λ over the same grid [0.01, 0.1, 1, 10, 100] as for the other methods while leaving the ℓ2 penalty
parameter fixed at 10−8λ, as the authors recommend not to tune this parameter. To match the other
methods, we consider only interaction terms and exclude the “self-interactions” (entries on the diagonal of
the interaction coefficient matrix).

C.1.3 Comparison of LIT-LVM with FMs

The comparison between FM and LIT-LVM models in Figure 14 shows that LIT-LVM consistently outperforms
FM across all values of the dimension d of the latent representation, with largest performance gap observed
at d = 3 and d = 5. This suggests that LIT-LVM’s structured regularization is more effective in estimating
interactions, particularly in lower-dimensional latent spaces. FM demonstrates gradual improvement with
increasing dimensionality, achieving its best performance at d = 50. This suggests that FMs can better
approximate the full interaction matrix when the d is larger. This is not surprising because FMs assume an
exact factorization of the interaction matrix Θ, which is likely not exactly low rank in real data sets such as
fri_c4_1000_100. On the other hand, LIT-LVM’s assumption of approximate low rank allows it to better
represent the interaction matrix Θ using lower dimensions such as d = 3 or d = 5.

C.2 Convergence of Optimization Procedure

To complement our empirical evaluations, we analyze the training dynamics of our model across various
datasets. Specifically, we plot the training and validation loss curves over epochs in Figure 15, showing
consistent and stable convergence of our optimization procedure.
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Figure 15: Training and validation loss curves over epochs across different OpenML classification datasets.
Each plot shows steady convergence, providing empirical evidence of stable optimization.
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Figure 16: Prediction AUC on the clean2 dataset as λl increases beyond 105. The curve is nearly flat,
indicating that LIT-LVM behaves like a sparse FM at large λl.
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C.3 Fitting Sparse Factorization Machine Models using LIT-LVM

To further validate that LIT-LVM with large λl approximates the behavior of a sparse factorization machine
(FM), we conduct an additional experiment on the clean2 dataset. Specifically, we increase λl values beyond
the 105 value that we use in earlier experiments and measure its effect on prediction accuracy. As shown in
Figure 16, the AUC remains nearly constant beyond this threshold, confirming that the LIT-LVM model
with λl = 105 is sufficiently large to represent a sparse FM model.

C.4 Survival Prediction and Compatibility Estimation for Kidney Transplantation

C.4.1 Data Preprocessing

For this study, we represent each HLA as a categorical feature which we call an HLA type. We define HLA
pairs to represent the interactions between donor and recipient HLA types. The HLA type and pair features
are encoded using the approach of Nemati et al. (2023), which we summarize in the following.

HLA types are encoded using a one-hot-like scheme, producing binary variables such as DON_A1, DON_A2,
REC_A1, and REC_A2. The binary variable is set to one if the donor or recipient possesses the corresponding
HLA type. We refer to the encoding as one-hot-like because some HLA types are splits of a broad HLA type.
For example, A23 is a split of A9, so that each occurrence of A23 in a donor is encoded with a one in both
columns DON_A23 and DON_A9.

HLA pairs are similarly represented with binary one-hot-like variables such as DON_A1_REC_A1, DON_A1_REC_A2,
etc., again accounting for broads and splits. A value of one in a particular column indicates that both the
donor and recipient possess the specified HLA types, and the donor-recipient HLA pair is biologically relevant.
Some HLA pairs are not biologically relevant due to the asymmetry between donors and recipients—if a
donor possesses an HLA type that is not in the recipient, then the recipient’s immune system may reject the
transplant, so the HLA pair is biologically relevant for evaluating donor-recipient compatibility. On the other
hand, if a recipient possesses an HLA type that is not present in the donor, it does not create a problem for
the recipient, so the HLA pair is not biologically relevant, and we do not place a one in the column for that
HLA pair. We refer interested readers to Nemati et al. (2023) for further details and illustrative examples of
the encodings.

C.4.2 Additional Results

A plot of Brier score over time is shown in Figure 17. Within a short period of time just under 1 year, RSF
already shows worse Brier scores than the other approaches and has worse calibration over the entire time
horizon. The Cox PH variants except for LIT-LVM all have roughly equal Brier scores. Beyond about 5
years, LIT-LVM shows noticeable improvement compared to the other Cox PH models, and this improvement
persists over the entire time horizon, resulting in the lower integrated Brier score for LIT-LVM shown in
Table 3.

HLA Latent Representations The latent representations for HLA-A and HLA-B are shown in Figure
18. We make similar observations to those for HLA-DR in Figure 5. First, notice that the PCA embeddings
for HLA-A and HLA-B tend to place almost all of the HLAs together around the origin, even more so than
for HLA-DR. This decreases the interpretability of the embedding, especially compared to the LIT-LVM
embedding, where the HLAs are more spaced apart. Furthermore, the distances between low compatibility and
high compatibility are also not well preserved in the PCA embedding compared to the LIT-LVM embedding.
For HLA-A, the most compatible pairs are (θA68_a2 = −0.053, θA2_a24 = −0.052, θA2_a68 = −0.050), which
are placed in the vicinity of each other, while the least compatible pairs are (θA32_a74 = 0.050, θA1_a3 = 0.044,
θA2_a3 = 0.040), which are placed far from each other. Similarly, for HLA-B, the most compatible pairs are
(θB8_b60 = −0.010, θB58_b8 = −0.006, θB44_b35 = −0.005), which are placed in the vicinity of each other,
while the least compatible pairs are (θB60_b35 = 0.007, θB35_b39 = 0.007, θB53_b72 = 0.005), which are placed
far from each other.
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Figure 17: Comparison of Brier scores over 30 time points. LIT-LVM achieves the best calibration, as
indicated by the lowest Brier score. The improvement is greatest at high survival times, beyond the median
survival time of about 10 years.
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(a) HLA-A latent space representation using LIT-LVM
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(b) HLA-A latent space representation using PCA

(c) HLA-B latent space representation using LIT-LVM
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(d) HLA-B latent space representation using PCA

Figure 18: HLA-A and HLA-B latent positions from LIT-LVM and PCA, highlighting the top three most
compatible and least compatible HLA pairs according to the elastic net penalized Cox PH model’s coefficients.
Green dashed lines denote the most compatible pairs, and magenta dashed lines denote least compatible
pairs. In LIT-LVM, the most and least compatible pairs are placed close together and far apart, respectively,
while the PCA latent spaces fail to preserve this property.
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