
Evaluating Temporal Delays and Spatial Gaps in Overshoot-avoiding
Mouse-pointing Operations

Shota Yamanaka*

Yahoo Japan Corporation

ABSTRACT

For hover-based UIs (e.g., pop-up windows) and scrollable UIs,
we investigated mouse-pointing performance for users trying to
avoid overshooting a target while aiming for it. Three experiments
were conducted with a 1D pointing task in which overshooting was
accepted (a) within a temporal delay, (b) via a spatial gap between
the target and an unintended item, and (c) with both a delay and a
gap. We found that, in general, movement times tended to increase
with a shorter delay and a smaller gap if these parameters were
independently tested. Therefore, Fitts’ law cannot accurately predict
the movement times when various values of delay and/or gap are
used. We found that 800 ms is required to remove negative effects
of distractor for densely arranged targets, but we found no optimal
gap.

Index Terms: H.5.2 [User Interfaces]: User Interfaces—Graphical
user interfaces (GUI); H.5.m [Information Interfaces and Presenta-
tion]: Miscellaneous

1 INTRODUCTION

1.1 Background
In conventional studies on user performance in mouse-pointing tasks,
users are instructed to point at and click an intended target as quickly
and accurately as possible. The success or failure is judged by
whether the mouse cursor falls within the target boundary when the
mouse button is pressed, and the measured subjects (task results) are
typically the movement time MT and the error rate. Other measures
of movement efficiencies have also been proposed by MacKenzie et
al., such as Movement Variability [27]. In this paper, we revisit one
of their proposed measures—Target Re-entry—for the case in which
a cursor leaves the target and then enters it again. In particular, we
focus on the case of overshooting, which is when the cursor passes
through the target and then returns to it1.

Such overshooting becomes problematic when, for example, a
user is trying to select a target that pops up when the cursor hovers
on a certain item, as shown in Fig. 1a. For example, in Amazon
Prime Video, when users move the cursor onto a movie thumbnail, a
corresponding window pops up to show the details of Movie 3: the
description, users’ rating, a Play button, etc. If users want to click on
the Play button to start Movie 3, they should not largely overshoot
it. If they do, the cursor leaves the pop-up window and hovers over
the thumbnail of Movie 1, and unintentionally the pop-up window
for Movie 1 opens. Then, the user must try again by pointing to the
thumbnail of Movie 3 and aiming for the Play button.

Such an overshooting error can occur on the OS level. For exam-
ple, as shown in Fig. 1b, when the cursor hovers over an application

*e-mail: syamanak@yahoo-corp.jp

1In some related papers, the term overshoot means that a click position
falls beyond the target (e.g., [21]). In our paper, however, this term means
that the cursor has crossed the target and has to move backward to return to
it (e.g., [30]).

Movie 3Movie 2Movie 1

b

Movie 3Movie 2Movie 1

Movie 3 (1998)
★★★★☆
Play (1h 52m)

Add to watchlist

Gap
Target

Movie 3Movie 2Movie 1

Hover onto
thumbnail

Pop up

Disappear

a

Figure 1: Examples of 2D pointing tasks where users want to avoid
overshooting the target. (a) When the cursor hovers over the thumb-
nail of Movie 3, a window including a Play button pops up near the
thumbnail, and a user wants to click on the button. The ‘Gap’ is the
distance from the edge of the Play button to the edge of the pop-up
window. (b) In Windows 10, multiple taskbar icons of a single applica-
tion can be overlapped to save space. When the cursor hovers over
an icon in the taskbar, all of the corresponding miniature windows are
displayed, and users point to the intended one.

icon in the taskbar, all of the windows of that application pop up in
miniature sizes, and the user points to an intended one. However,
if the user overshoots it and a given time has passed, the miniature
windows close. In other words, overshooting the target is permitted
for a given duration.

As a more general case of overshooting error other than hover-
based UIs, we introduce dragging to an intended position while
avoiding page-scrolling. Fig. 2 shows examples of 1D tasks requir-
ing dragging-and-dropping operations2. In Fig. 2a, a user wants
to select multiple columns in a spreadsheet. If the user overshoots
the aimed area and the cursor escapes from the window, the spread-
sheet begins scrolling rapidly. The recovery time to go back to the
initial view position is sometimes very long. Such unintended page-
scrolling may occur on many applications including text editors as
shown in Fig. 2b, drawing software, web browsers, file explorers,
etc.

As shown in these examples, overshooting the target during aim-
ing can be interpreted as an error operation in realistic UIs, although
conventional pointing studies have considered only clicking outside
the target as an error. The degree of care required to avoid overshoot-
ing depends on the task conditions. For example, when the Gap (or

2Dragging-and-dropping is also modeled by Fitts’ law [15, 20, 28].

Graphics Interface Conference 2020
28-29 May
Copyright held by authors. Permission granted to
CHCCS/SCDHM to publish in print and digital form, and
ACM to publish electronically.	

							

Target widtha Spreadsheet

b Text editor

Target width

Figure 2: Examples of overshoot-avoiding 1D pointing tasks. (a) A
user wants to select multiple columns from ‘C’ to ‘K’ in a spreadsheet.
If the cursor overshoots the ‘K’ column and goes outside the window,
the spreadsheet rapidly scrolls rightwards, and the user accidentally
select the columns from ‘C’ to ‘V’. Then, the user must go back to the
initial view position by scrolling the spreadsheet leftwards. Note that
vertical movements of the cursor are ignored when selecting multiple
columns. (b) A user wants to select two blocks (from Line 9 to Line 37)
in a BibTeX file on a text editor. If the cursor goes outside the window,
the text editor begins scrolling and the user accidentally select more
blocks from Line 9 to Line 143.

offset, margin) in Fig. 1a is wide, the possibility of unintentionally
closing the pop-up window of Movie 3 is small even if the user
overshoots the target Play button. In the authors’ environment, the
Gap is 36 pixels, but how does the user performance change if the
Gap is reduced to 18 pixels?

Similarly, as implemented on many websites and OSs, pop-up
windows that close by cursor-leaving can have a temporal delay (or
timeout). Such a delay, typically configured during website develop-
ment by means of the setTimeout (JavaScript) or delay (jQuery)
functions, gives users a chance to notice if accidental overshooting
has occurred and then return the cursor to the pop-up window. This
is desirable because it frees users from having to concentrate too
hard on precise mouse operations. For example, the delay to close
the miniature windows in Fig. 1b in our environment is approxi-
mately 400 ms, but we would have to point to the target window
more carefully if it were 50 ms.

1.2 Research Question and Contribution Statement

It remains unclear how such gaps and delays help users. Possible
drawbacks are, obviously, large gaps that take up a lot of screen
space, and longer mouse cursor movements to point to intended
items. For example, if the Gap in Fig. 1a is very wide, when the user
wants to view the details of Movie 1, the cursor movement distance
to the thumbnail increases. Because GUI designers carefully manage
the space, unnecessary empty space should be avoided if users are
not helped by the gaps.

Moreover, if the delay to close a pop-up window is too long, the
user has to wait a long time for the window to close. For example,
in Fig. 1a, when users want to view the description of Movie 2 that
is behind the pop-up window of Movie 3, they have to remove the
cursor from the thumbnail and wait for the delay to finish. Also,
in Fig. 1b, if users decide to click on a desktop icon behind the
miniature windows, they have to remove the cursor from the taskbar

icon and the miniature windows and then wait for the given delay3.
In summary, short delays and small gaps have potentially negative

effects on user performance (i.e., by enforcing careful operation).
At the same time, unnecessarily long delays and wide gaps should
also be avoided. Therefore, to clarify how such delays and gaps
affect mouse-pointing performance, we conducted three controlled
experiments. In the first and second experiments, we evaluated the
effects of delays and gaps independently. The third experiment was
to test the interaction between delay and gap. For example, the pop-
up window in Amazon Prime Video immediately closes when the
cursor leaves the window, but if designers configure a delay of 200
ms, users can overshoot the target and then hover over an unintended
object (in Fig. 1a, the thumbnail of Movie 1) for a short time without
closing the pop-up window of Movie 3. This provides the chance
to notice the overshooting and return to the intended target. Thus,
users may be more relaxed when pointing to the Play button.

Our key contributions include:

(1) Conducting three experiments to evaluate the effects of delays
and gaps in mouse-pointing tasks in which users have to avoid
overshooting the target. The results showed that delays and
gaps had different effects: the movement time MT decreased
with large gaps, while the effect of delays plateaued for 400
ms or longer.

(2) Evaluating Fitts’ law in all three experiments. Because delays
and gaps significantly affected the MT , different intercepts and
slopes should be used to accurately predict the MT depending
on these two factors.

2 RELATED WORK

The problematic operation discussed in this paper, namely, over-
shooting a target, becomes an issue when indirect pointing devices
are used. In contrast, when direct input methods such as finger
touching are used, typically the system cannot sense overshooting
of a finger above the surface.

In Fig. 1a, users have to avoid largely overshooting the target
during a leftward horizontal movement, and they also must not
deviate from the pop-up window on the y-axis. Such movements
are called steering [1, 12, 33], but in this study we simplify our
experiments by limiting these to 1D horizontal movements.

2.1 Effects of Timeout in GUI Operations
Regarding conventional desktop environments with mouse opera-
tions, timeouts have often been mentioned in relation to drop-down
or cascaded menus for opening sub-menus by cursor-hovering over
a menu item. That is to say, increasing the timeout can prevent
unintended exposure of sub-menus, but a long timeout can force
the user to wait to open intended sub-menus after hovering over the
parent menu item [10, 23, 37, 38]. While these studies focused on
improving menu operations by, for example, reducing the movement
time and the error rate, the effects of timeout on the menu pointing
time have not been modeled. Hence, we cannot refer to or modify
the models for menu selection times. Bailly et al.’s recent survey [2]
provides a thorough review of visual menu selection techniques.
However, these studies do not directly answer our questions about
how a timeout helps users’ pointing operations with avoiding over-
shooting, even though such operations are required in typical PC
tasks (Fig. 1 and Fig. 2).

Yamanaka proposed a refined version of steering law [1] with
a timeout term to accept errors (deviation from a path) [47]. A
difference in his work is that the necessary precision in path-steering
tasks is higher than pointing; the cursor must not deviate from a path,
and thus a timeout helps throughout the path. As a result, the MT

3In Windows 10, manually clicking on the desktop does not close the
miniature windows.

was reduced by 54% at most in steering [47] but only by 17% at most
in our experiments. Thus, designers should accept that the MT in
pointing cannot be largely reduced even if a long timeout is set. As
a series of work on modeling the MT with timeout, our work would
be beneficial to model a targeted-steering task [11, 25, 35, 39], e.g.,
clicking a target after steering a path, such as menu selection. For
example, in Fig. 1, users must not deviate from the pop-up window
on the y-axis and then click the target. Our work opens up new
research on such common tasks.

2.2 Effects of Gaps in Target Arrangements
If GUI items are densely arranged (i.e., small Gap), users tend to
carefully point to the intended target. The effects of other unwanted
items, hereafter distractors, have been studied. The area cursor [21]
and its variations [9, 16] are typical examples affected by distractors,
as the cursor size cannot be expanded among a dense group of
distractors. A target-aware cursor jumping technique [17], target-
aware gain-changing techniques [4, 44], and use of multiple cursors
[24] are other examples affected by the distractor density. In the
experiments undertaken for these studies, overshooting the target
while aiming was permitted, as in the conventional Fitts’ law task.

To model the density effect on these techniques, Blanch and Or-
tega introduced the index of sparseness of potential targets into Fitts’
law [5]. Also in their model, overshooting while aiming was permit-
ted, while in our experiments, such an operation is considered an
error. Thus, the index of target sparseness could not be equivalently
applied to our intended tasks in Fig. 1 and Fig. 2.

2.3 Performance Models of Pointing Tasks
For predicting user performance in aiming tasks, a promising model
is Fitts’ law [13] in the Shannon formulation [26, 36]:

MT = a+b log2 (A/W +1) (1)

where MT is the time to point to the target, A is the distance to
the target, and W is its size. a and b are empirically determined
constants. The logarithmic term is called the index of difficulty (ID):

ID = log2 (A/W +1) (2)

Fitts’ law with nominal A and W values shows a good fit to error-free
data [49].

Correcting the data when targets are missed has been discussed in
previous works. In HCI, replacing W in Equation 2 with the effective
width (We) is recommended [26, 36]. Here, We is 4.133×σ , where
σ is the standard deviation of the click positions.

As shown by Wright and Lee [45], however, the effective width
method is not appropriate for our purpose. This is because, when
designers set a target size to a new value (e.g., W = 30 pixels) after
conducting a user study, they can estimate the MT for selecting
the target by using W but cannot use We without conducting a new
user study. Thus, for predicting an average operation time when
designing a GUI, using the nominal ID value is more appropriate,
as was also mentioned by Zhai et al. [49]. More seriously, if many
click positions fall outside a target, we obtain a larger We value than
the nominal W ; e.g., We = 34 pixels for a target of W = 30 pixels.
This conflicts with our rule that the user must not overshoot a given
target area when there is no gap. Thus, We was not used in this study,
and in our data analysis we use nominal values for Fitts’ law.

3 EXPERIMENT 1: EFFECTS OF DELAY

We concurrently conducted Experiments 1 and 2 with the same
participants on the same day. In Experiment 1, we evaluated the
effects of a temporal delay in leaving then closing pop-up windows
(Tdelay), and in Experiment 2, we evaluated the effects of the Gap.
Each experiment took 20 min to complete. The order of the two
studies was counterbalanced among the 12 participants. This allowed

Figure 3: (a) Experimental parameter definitions. (b) Exercise system.

us to compare the results in Experiments 1 and 2. For example, if
Tdelay significantly affected the MT but Gap did not, we can assume
it is not due to any difference of the participant group. An experiment
with 12 participants is common in the HCI field (particularly in the
CHI literature [6]).

3.1 Participants
Twelve participants were recruited from a local university (all men;
ages: M = 22.5, SD = 1.19 years). All had normal or corrected-to-
normal vision, were right-handed, and were familiar with mouse
operations. Three of them were daily mouse users. Each participant
received 45 USD for his time (∼40 min total for Experiments 1 and
2).

3.2 Apparatus
The PC we used was a Sony Vaio Z (Core i7-5557U, 3.10 GHz,
4 cores; 16-GB RAM; Windows 10). The display was manufac-
tured by Dell (2407WFPb: 24-inch diagonal, 1920 × 1200 pixel
resolution, 518.4 × 324.0 mm display area, 3.70 pixels/mm; 16-ms
response time; connected by an HDMI-to-DVI cable), and its refresh
rate was set to 60 Hz. The input device was an iBuffalo optical
mouse (BSMBU05: blue LED, 81.6 g, 1000 dpi; 1.5-m cable). We
used a large mousepad (43 cm × 29 cm). The experimental system
was implemented with Hot Soup Processor 3.4 and used in full-
screen mode. The system read and processed input approximately
1000 times per second.

The mouse-cursor speed was set as the default in the OS, i.e.,
the control-display gain was in the middle of the slider. Pointer
acceleration, denoted as the Enhance pointer precision setting in
Windows 10, was enabled to allow the participants to perform mouse
operations with higher ecological validity [8]. Using pointer accel-
eration does not violate a Fitts task (e.g., [46]), and it is consistent
with the settings of a consumer OS such as Windows or macOS.

We adopted Müller et al.’s method [32] to measure the cursor
latency from mouse movements. We used a Casio Exilim EX-
ZR4000WE camera at 1000 fps. The experimenter moved the mouse
rapidly by snapping his wrist (thus not mechanically controlled),
and the mouse was hit with a heavy hard-cover book at high speed.
The number of frames from when the mouse stopped to when the
cursor stopped was counted. We repeated this action 30 times, and
the average latency was 57.9 ms (SD = 11.2). This is in the range
of typical mouse-display latencies of approximately 55 to 82 ms [7].
Therefore, we assume that the latency of our experimental system
did not have a significant negative effect on user performance.

3.3 Task
We used discrete pointing tasks, as shown in Fig. 3a. First, par-
ticipants clicked on the green start bar labeled “1”, and then they
clicked on the blue target bar labeled “2”. If the cursor (a) overshot
the target, (b) hovered over the pink distractor, and (c) had a hover-
ing time above a given duration Tdelay, then the trial was considered
an error of closing the pop-up window ERclose. The ERclose was
differentiated from a typical error in pointing, or ERclick, which
simply occurred when the click position was outside the target.

The participants were instructed to select the target as quickly as
possible and to avoid making an error (ERclose or ERclick). It did

not matter if the cursor returned to the target area within the given
Tdelay. In Experiment 1, there was no gap between the target and
distractor (Gap = 0 pixel).

When an ERclose occurred, the pink distractor turned red, and
a “friction” sound was played. When an ERclick occurred, a beep
sound was played. Even if an erroneous operation was performed,
the participants had to immediately aim for the target again; the task
was not restarted from the beginning.

3.4 Design and Procedure
We tested six delay values (Tdelay = 0, 100, 200, 400, 800, and ∞ ms).
Participants were not permitted any overshooting under the Tdelay = 0
ms condition. The Tdelay = ∞ condition, under which the participants
did not have to worry about overshooting, was included to determine
the baseline performance as in conventional Fitts tasks. The middle
four values were selected on the basis of typical human reaction
times. Because the time to correct hand movements according to
visual feedback is longer than 200 ms [34]—approximately 260 [22]
or 290 ms [31]—the participants could presumably return the cursor
within ∼300 ms (including the system latency of 57.9 ms) after they
noticed overshooting. Therefore, to observe the effects of delay, we
set the Tdelay values to range from less than to sufficiently longer
than human reaction time.

Two target distances (A = 250 and 600 pixels) and three widths
(W = 25, 45, and 75 pixels) were tested. When the ID is smaller than
approximately 3 or 4 bits, participants perform ballistic (feedfor-
ward) pointing motions [14, 19], such as aiming for a large or close
target. Pointing to a close target is likely to occur in daily PC work,
as shown in Fig. 1, and thus we set ID to range from 2.7 to 5.6 bits to
cover ballistic to visually controlled pointing motions. Note that the
ID here is the original formulation by Fitts: ID = log2(2A/W) [13].
Because our main focus is on Tdelay and Gap, the numbers of A and
W were relatively small.

One block consisted of a random order of 3A × 2W × 10 repe-
titions = 60 trials with a fixed Tdelay value. The first repetition was
considered practice. In addition, before each block, the participants
used an exercise system (described below) to learn the delay of the
next block, except for the Tdelay = 0 ms and ∞ conditions. The order
of the six Tdelay values was balanced among the 12 participants by
using a Latin square. The movement direction was always to the
right. In total, we recorded 3A × 2W × 9 repetitions × 6Tdelay ×
12 participants = 3888 data points. After the all trials were com-
pleted, we interviewed the participants about the strategies in the
experiments, such as how to shorten the MT and reduce errors.

3.5 Exercise to Learn a Given Delay
As shown in Fig. 3b, the participants moved the cursor to the right
pink area, and then a time measurement began. The goal was to
return the cursor to the left gray area before the given Tdelay. If the
measured time was over the Tdelay, the pink area turned red and a
friction sound was played. The participants repeatedly performed
this task and were expected to learn how to immediately return the
cursor after entering the pink area. The session finished when a
participant felt that he had sufficiently learned the Tdelay value. The
time required was typically 30–40 sec (∼15 or 20 trials).

This exercise session allowed us to simulate a situation in which
the participants were already familiar with the delay of a certain
GUI. If we had not used this system, we would have been simulating
participants using a GUI for the first time and learning the delay at
every trial, but our purpose here was not to observe such a learning
effect.

3.6 Results
We removed one spatial outlier data point (0.026%) whose move-
ment distance was less than A/2 or whose click position was
more than 2W from the target center [3]. For the remaining 3887

data points, we ran the normality tests (Shapiro-Wilk method with
α = 0.05) to the dependent variables. The results showed that the
error-free MT data did not normally distributed in 2 out of 36 con-
ditions (6Tdelay × 3A × 2W). Similarly, ERclick rate, ERclose rate,
and Vpeak did not normally distributed in 36, 31, and 17 conditions,
respectively. Hence, we used non-parametric ANOVAs with Aligned
Rank Transform [43] with Tukey’s p-value adjustment method for
pairwise comparisons. Posthoc tests will be reported if we found
main effects and first order interactions. The main effects of Tdelay
on the MT , ERclick rate, and ERclose rate are shown in Fig. 4. After
analyzing the speed profiles, we also decided to analyze the peak
speed in a trial Vpeak as dependent variable to check how the par-
ticipants changed their movement speeds depending on the task
condition. The first-order interactions involving Tdelay are shown in
Fig. 5.

3.6.1 Movement Time MT

Again, when analyzing the MT results and Fitts’ law fitness, we used
error-free data. We found significant main effects for Tdelay (F5,55 =

11.34, p < 0.001, η2
p = 0.51), A (F1,11 = 287.9, p < 0.001, η2

p =

0.96), and W (F2,22 = 485.9, p < 0.001, η2
p = 0.98). Posthoc tests

showed significant differences (at least p < 0.05) for the following
pairs on Tdelay: (0, 100), (0, 200), (0, 400), (0, 800), (0, ∞), and
(100, 800). Also for W , all the pairs showed significant differences
with p < 0.001.

Significant interactions were found for Tdelay ×A (F5,55 = 2.792,
p < 0.05, η2

p = 0.20) and A×W (F2,22 = 14.01, p < 0.001, η2
p =

0.56), but not for Tdelay ×W (F10,110 = 1.365, p = 0.20, η2
p = 0.11)

and Tdelay×A×W (F10,110 = 1.001, p = 0.45, η2
p = 0.08). Posthoc

tests showed significant differences (at least p < 0.05) for A = 250
pixels between the following Tdelay pairs: (0, 100), (0, 200), (0, 400),
(0, 800), and (0, ∞). In the same manner, significant differences for
A = 600 pixels between Tdelay = (0, 200), (0, 400), (0, 800), and (0,
∞). For all W values, significant differences were found for the two
A values.

3.6.2 ERclick rate
Regarding conventional pointing misses, we observed 181 ERclick
trials (4.66%). We did not find significant main effects for Tdelay
(F5,55 = 0.8653, p = 0.51, η2

p = 0.073), A (F1,11 = 0.3088, p =

0.59, η2
p = 0.027), or W (F2,22 = 1.454, p = 0.26, η2

p = 0.12). A
significant interaction was found for Tdelay×A×W (F10,110 = 2.041,
p < 0.05, η2

p = 0.16), but not for Tdelay ×A, Tdelay ×W , or A×W
(p > 0.05 for all).

3.6.3 ERclose rate
We observed 167 ERclose trials (4.30%) and found significant main
effects for Tdelay (F5,55 = 38.04, p < 0.001, η2

p = 0.76), A (F1,11 =

39.45, p < 0.001, η2
p = 0.78), and W (F2,22 = 38.87, p < 0.001,

η2
p = 0.78). Posthoc tests showed significant differences (at least

p < 0.05) for the following pairs on Tdelay: (0, 400), (0, 800), (0, ∞),
(100, 400), (100, 800), (100, ∞), (200, 400), (200, 800), (200, ∞),
(400, 800), and (400, ∞). Also for W , all the pairs showed significant
differences (at least p < 0.001).

Significant interactions were found for Tdelay ×A (F5,55 = 12.02,
p < 0.001, η2

p = 0.52), Tdelay ×W (F10,110 = 10.52, p < 0.001,
η2

p = 0.49), A ×W (F2,22 = 23.97, p < 0.001, η2
p = 0.68), and

Tdelay ×A×W (F10,110 = 6.538, p < 0.001, η2
p = 0.37). Posthoc

tests showed significant differences (at least p < 0.05) for A = 250
pixels between the following Tdelay pairs: (0, 800), (0, ∞), (100,
800), (100, ∞), (200, 800), (200, ∞), (400, 800), and (400, ∞). In
the same manner, significant differences for A = 600 pixels between
Tdelay = (0, 400), (0, 800), (0, ∞), (100, 400), (100, 800), (100, ∞),

763
683 684 654 630 663

0

200

400

600

800

1000

0 100 200 400 800 inf.

M
T

[m
s]

T_delay [ms]

7.10 7.10

9.57

2.01

0.00 0.00
0

3

6

9

12

15

0 100 200 400 800 Inf.

Er
ro

r_
cl

os
e

ra
te

 [%
]

T_delay [ms]

3.40
5.25

4.32 4.78 5.56
4.65

0

3

6

9

12

15

0 100 200 400 800 Inf.

Er
ro

r_
cl

ic
k

ra
te

 [%
]

T_delay [ms]

5.23 5.77 5.86 6.37 6.39 7.23
0

2

4

6

8

10

0 100 200 400 800 inf.

V_
pe

ak
 [p

ixe
ls/

m
s]

T_delay [ms]

a b c d

Figure 4: Main effects of Tdelay on the (a) MT , (b) ERclick rate, and (c)
ERclose rate in Experiment 1. Error bars show 95% CIs.

(200, 400), (200, 800), and (200, ∞). For W = 25 and 75 pixels,
the two A pairs showed significant differences. For W = 25 pixels,
significant differences on the following Tdelay pairs were found: (0,
800), (0, ∞), (200, 800), and (200, ∞). Similarly, for W = 45 pixels,
(0, 800), (0, ∞), (100, 800), (100, ∞), (200, 800), and (200, ∞).
Finally, for W = 75 pixels, (0, 800), (0, ∞), (100, 800), (100, ∞),
(200, 400), (200, 800), (200, ∞), (400, 800), (400, ∞).

Note that ERclick and ERclose could occur concurrently in one
trial (inclusive). The number of error-free trials was 3571, while
316 data points (8.13%) were removed because of errors found
when analyzing the MT . This total error rate is greater than typical
user experiments involving 1D target pointing (e.g., 4 or 5% [26,
42]), which is possibly because we defined new error criterion (i.e.,
ERclose).

3.6.4 Peak Speed Vpeak

We found significant main effects for Tdelay (F5,55 = 5.620, p <

0.001, η2
p = 0.34), A (F1,11 = 328.5, p < 0.001, η2

p = 0.97), and
W (F2,22 = 4.500, p < 0.05, η2

p = 0.29). Posthoc tests showed
significant differences (at least p < 0.05) for the following pairs on
Tdelay: (0, ∞), and (100, ∞). A significant differences were only
found between W = 25 and 45 pixels (p < 0.05).

Significant interactions were found for Tdelay ×A (F5,55 = 4.256,
p < 0.01, η2

p = 0.28), A×W (F2,22 = 5.374, p < 0.05, η2
p = 0.33),

and Tdelay ×A×W (F10,110 = 2.001, p < 0.05, η2
p = 0.15), but not

for Tdelay ×W (F10,110 = 1.710, p = 0.087, η2
p = 0.13). Posthoc

tests showed significant differences (at least p < 0.05) for A = 250
pixels between the following Tdelay pairs: (0, 800), (0, ∞), and (100,
∞), but not for any Tdelay pairs for A = 600 pixels. For all W values,
significant differences were found for the two A values. In summary,
Tdelay = 0 and 100 ms showed significantly slower peak speeds, yet
Tdelay ≥ 200 ms did not contribute to increasing the peak speed any
more.

3.6.5 Model Fitting
Fitts’ law showed R2 > 0.99 in each case for all Tdelay conditions
by using N = 6 (2A × 3W) data points as shown in Fig. 6. This
means that the MT can be accurately predicted if we use a single
Tdelay value. However, if several Tdelay conditions are mixed, the
prediction accuracy was comparatively low (R2 = 0.882).

3.6.6 Speed Profiles
Next, we investigated how the Tdelay affected pointing behaviors
during aiming. Fig. 7 shows the speed profiles for each Tdelay under
the longer distance (A = 600 pixels) and the smallest target size
(W = 25 pixels, which required the most careful cursor positioning
to avoid overshooting). Because the raw data were very noisy, we re-
sampled the cursor trajectories every 25 pixels. Because the clicked
positions in the start and target bars varied in every trial, we show
the speeds from when the cursor left the start bar to when it entered
the target (A−W = 575 pixels in this case).

Although the speed profiles in Fig. 7 are still noisy, as the overall
tendency, we can see two groups: speeds for longer than human
reaction time (Tdelay ≥ 400 ms) were clearly higher than the other

668

859

594

773

597

771

586

722

555

706
589

737

0

200

400

600

800

1000

250 600

M
T

[m
s]

A [pixels]

8.
33

5.
86

4.
94

 9.
26

8.
02

 11
.1

1

0.
62

 3.
40

0 00 0

0

5

10

15

20

25

250 600

Er
ro

r_
cl

os
e

ra
te

 [%
]

A [pixels]

12
.0

4

6.
48

2.
78

12
.5

0

7.
41

1.
39

12
.9

6

11
.1

1

4.
63

3.
70

1.
85

0.
46

0 00 0

0

5

10

15

20

25

25 45 75

Er
ro

r_
cl

os
e

ra
te

 [%
]

W [pixels]

2.51 7.94 2.59 8.96 2.82 8.90 3.40 9.33 3.23 9.55 3.12 11.34
0
2
4
6
8

10
12
14
16

250 600

V_
pe

ak
 [p

ixe
ls/

m
s]

A [pixels]

a b

c d

Figure 5: Interaction effects involving Tdelay on the (a) MT , (b–c)
ERclose rate, and Vpeak in Experiment 1. Error bars show 95% CIs.

Figure 6: Fitts’ law fitness in Experiment 1. The index of performance
(IP) is 1/b.

three conditions. This result indicates that a Tdelay helped the partic-
ipants to accelerate the pointing speed, but if Tdelay was shorter than
human reaction time, they could not effectively take advantage of
such an overshoot-accepting condition.

Another important finding is that this benefit due to a long Tdelay
increased the peak speeds, and a higher speed was maintained until
entering the target area compared to the no-delay condition. Hence,
we assume that the participants were more relaxed by a longer Tdelay
not only during the final cursor positioning phase onto the target, but
also throughout the feedback-loop controlling phase.

3.7 Discussion of Experiment 1

Regardless of the degree of care in avoiding overshooting due to
the Tdelay, Fitts’ law showed R2 > 0.99, while the MT showed
significant differences. Because we tested Tdelay ranging from 0 to
∞ ms, this high fitness will be observed for untested Tdelay values
such as 1000 or 2000 ms. This result can help designers predict
an MT value for a given set of A and W if a Tdelay value is fixed.
However, if designers want to use a new Tdelay value, they will have
to conduct another user study, as Fitts’ law for N = 36 data points
showed R2 = 0.88.

We had assumed that a longer Tdelay value would enable the
participants to move the cursor more quickly. Yet, we found no
significant difference in the MT for Tdelay of 200 ms or longer.
In addition, Tdelay showed no main effect on the ERclick rate, and
pair-wise tests of the ERclose rate showed no significant differences
for Tdelay of 800 ms or longer. Therefore, in summary, the upper
Tdelay value to remove the negative effects of the overshoot-avoiding
condition was 800 ms. For Tdelay of 800 ms or longer, no advantages
for MT or ERclose rate would be gained. For Tdelay of 400 ms or
shorter, negative effects to increase ERclose rate would be observed.

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600

Sp
ee

d
[p

ix
el

s/
m

se
c]

Cursor progress on the x-axis [pixels]

∞ ms
800 ms
400 ms
200 ms
100 ms
0 ms

Figure 7: Speed profiles for each Tdelay where A = 600 and W = 25
pixels in Experiment 1.

4 EXPERIMENT 2: EFFECTS OF GAP

4.1 Design and Procedure
Experiment 2 was concurrently performed with Experiment 1 using
the same participants and the same apparatus. We tested six Gap
values (0, 8, 24, 72, 216, and ∞ pixels). This task simulated that
the Gap area was still inside a pop-up window (as in Fig. 1a), and
the pink distractor area was outside it. The participants were not
permitted any overshooting under the Gap = 0 pixels condition. The
conditions for A, W , and the movement direction were the same as
in Experiment 1. Because Tdelay was fixed to 0 ms in Experiment
2, entering the pink distractor was not permitted, and the exercise
system described for Experiment 1 was not used.

One block consisted of a random order of 3A × 2W × 6Gap
= 36 trials. One block for practice and then nine blocks for data
collection were performed. In total, we recorded 3A × 2W × 6Gap
× 9 repetitions × 12 participants = 3888 data points. After the all
trials were completed, we interviewed the participants about the
strategies in the experiments. The main effects of Gap are shown
in Fig. 8. The first-order interactions involving Gap are shown in
Fig. 9.

4.2 Results
4.2.1 Movement Time (MT)
After removing two outlier data points (0.051%), we found signif-
icant main effects for Gap (F5,55 = 13.34, p < 0.001, η2

p = 0.55),
A (F1,11 = 241.2, p < 0.001, η2

p = 0.96), and W (F2,22 = 187.2,
p < 0.001, η2

p = 0.94). Posthoc tests showed significant differences
for the following Gap pairs (at least p < 0.05): (0, 216), (0, ∞), (8,
72), (8, 216), (8, ∞), (24, 216), and (24, ∞). All W pairs showed
significant differences with p < 0.001.

A significant interaction was found for A×W (F2,22 = 10.83, p <

0.001, η2
p = 0.50), but not for Gap×A, Gap×W , and Gap×A×W

(p > 0.05). For all W values, significant differences were found for
the two A values.

4.2.2 ERclick rate
We observed 208 ERclick trials (5.35%). We found significant main
effects for Gap (F5,55 = 2.955, p< 0.05, η2

p = 0.21) and W (F2,22 =

14.00, p< 0.001, η2
p = 0.56), but not for A (F1,11 = 2.504, p= 0.14,

η2
p = 0.19). Posthoc tests showed a significant difference between

Gap = 0 and ∞ with p < 0.05. The W pairs of (25, 75) and (45, 75)
showed significant differences with p < 0.05.

Significant interactions were found for Gap×A (F5,55 = 2.430,
p < 0.05, η2

p = 0.18), Gap×W (F10,110 = 4.243, p < 0.001, η2
p =

0.28), and Gap×A×W (F10,110 = 3.405, p < 0.001, η2
p = 0.24),

but not for A×W (F2,22 = 1.937, p = 0.17, η2
p = 0.15). For the

Gap×A and Gap×W interactions, posthoc tests showed no Gap

pairs having significant differences (it is possible for pairwise com-
parisons).

4.2.3 ERclose rate

We observed 131 ERclose trials (3.37%). The number of error-free
trials was 3569, while 317 data points (8.16%) were removed be-
cause of errors found when analyzing the MT .

We found significant main effects for Gap (F5,55 = 32.86, p <

0.001, η2
p = 0.75), A (F1,11 = 53.31, p < 0.001, η2

p = 0.83), and
W (F2,22 = 28.03, p < 0.001, η2

p = 0.72). Posthoc tests showed
significant differences for the following Gap pairs (at least p< 0.05):
(0, 72), (0, 216), (0, ∞), (8, 72), (8, 216), (8, ∞), (24, 216), (24, ∞),
(72, 216), and (72, ∞). The W pairs of (25, 75) and (25, 45) showed
significant differences with p < 0.05.

Significant interactions were found for Gap×A (F5,55 = 8.226,
p < 0.001, η2

p = 0.43), Gap×W (F10,110 = 6.289, p < 0.001, η2
p =

0.36), A×W (F2,22 = 18.87, p < 0.001, η2
p = 0.63), Gap×A×W

(F10,110 = 4.163, p < 0.001, η2
p = 0.27). Posthoc tests showed

significant differences (at least p < 0.05) for A = 250 pixels between
the following Gap pairs: (0, 72), (0, 216), (0, ∞), (8, 72), (8, 216), (8,
∞), (24, 216), (24, ∞). Similarly, for A = 600 pixels, the following
Gap pairs showed significant differences: (0, 216), (0, ∞), (8, 216),
(8, ∞), (24, 216), and (24, ∞). For W = 25 pixels, the following Gap
pairs showed significant differences: (0, 216), (0, ∞), (8, 216), (8,
∞), (72, 216), (72, ∞). Similarly, for W = 45 pixels: (0, 8), (0, 72),
(0, 216), (0, ∞), (24, 72), (24, 216), and (24, ∞). Finally, for W = 75
pixels: (0, 72), (0, 216), (0, ∞), (8, 72), (8, 216), (8, ∞), (24, 72),
(24, 216), and (24, ∞). For all W values, significant differences were
found for the two A values.

4.2.4 Peak Speed Vpeak

We found significant main effects for Tdelay (F5,55 = 10.06, p <

0.001, η2
p = 0.48), A (F1,11 = 206.2, p < 0.001, η2

p = 0.95), and
W (F2,22 = 7.952, p < 0.01, η2

p = 0.42). Posthoc tests showed
significant differences (at least p < 0.05) for the following pairs on
Gap: (0, 8), (0, 216), (0, ∞), (8, 24), (24,216), (24, ∞), and (72, ∞).
A significant differences were only found between W = 45 and 75
pixels (p < 0.01).

Significant interactions were found for Gap×A (F5,55 = 6.452,
p < 0.001, η2

p = 0.40), Gap×W (F10,110 = 2.384, p < 0.05, η2
p =

0.18), A×W (F2,22 = 5.165, p < 0.05, η2
p = 0.32), and Gap×A×

W (F10,110 = 2.432, p < 0.05, η2
p = 0.18). Posthoc tests showed

significant differences (at least p < 0.05) for A = 250 pixels between
the following Gap pairs: (0, 8), (0, ∞), (8, 24), (24, ∞), and (72,
∞), but not for any Gap pairs for A = 600 pixels. Regarding the
Gap×W interaction, we found two Gap pairs having significant
differences: (0, ∞) and (24, ∞) for W = 45 pixels. For all W values,
significant differences were found for the two A values (p < 0.001).

4.2.5 Model Fitting

Fitts’ law showed R2 > 0.98 for all Gap conditions by using N = 6
data points, as shown in Fig. 10. When we did not separate the Gap
conditions, the fit using N = 36 data points was R2 = 0.940.

4.2.6 Speed Profiles

Fig. 7 shows the speed profiles for each Gap under A = 600 and
W = 25 pixels. Compared with the speed profiles in Experiment 1,
we could not see clear differences between Gap values, while wider
Gap values (216 and ∞ pixels) seemed to slightly increase the speed.
This resulted in slight improvements in MT due to Gap values.

723 732 703 688 660 662

0

200

400

600

800

1000

0 8 24 72 216 Inf.

M
T

[m
s]

Gap [pixels]

8.02 7.72

3.26

1.23

0.00 0.00
0

3

6

9

12

0 8 24 72 216 Inf.

Er
ro

r_
cl

os
e

ra
te

 [%
]

Gap [pixels]

3.70

5.25
4.34

5.40
5.56

7.87

0

3

6

9

12

0 8 24 72 216 Inf.

Er
ro

r_
cl

ic
k

ra
te

 [%
]

Gap [pixels]

a b c

5.18
6.14

5.17 5.50 5.98 6.50

0

2

4

6

8

10

0 8 24 72 216 Inf.

V_
pe

ak
[p

ixe
ls/

m
s]

Gap [pixels]

d

Figure 8: Main effects of Gap on the (a) MT , (b) ERclick rate, and (c)
ERclose rate in Experiment 2.

2.73

7.62

2.65

9.63

2.53

7.81

2.81

8.18

3.26

8.70

3.21

9.79

0

3

6

9

12

15

250 600

V_
pe

ak
 [p

ixe
ls/

m
s]

A [pixels]

5.34 4.88 5.31 5.55 5.80
7.07

5.44 4.91 5.15 5.30 5.50 5.70 4.95
6.44 6.56

7.70

5.54 6.27

0

3

6

9

12

15

25 45 75

V_
pe

ak
 [p

ixe
ls/

m
s]

W [pixels]

2.47
4.94 4.94 5.56 5.25

3.43
5.86 4.94

6.79
4.32

5.56

10.19

0

5

10

15

20

250 600

Er
ro

r_
cl

ic
k

ra
te

 [%
]

A [pixels]

3.24 4.17 3.70

6.48 7.41

1.85

5.09 5.15
2.78

6.48
4.63 5.09

8.80

5.09
2.78

13.89

7.41

2.31

0

5

10

15

20

25 45 75

Er
ro

r_
cl

ic
k

ra
te

 [%
]

W [pixels]

4.94

11.11

6.79
8.64

3.40 3.12
1.23 1.23

0.00 0.00 0.00 0.00
0

5

10

15

20

250 600

Er
ro

r_
cl

os
e

ra
te

 [%
]

A [pixels]

12.96

4.63
6.48

8.80 9.26

5.09 5.61

2.78
1.39 0.46 1.39 1.85

0.00 0.00 0.00 0.00 0.00 0.00
0

5

10

15

20

25 45 75

Er
ro

r_
cl

os
e

ra
te

 [%
]

W [pixels]

a b

c d

e f

Figure 9: Interaction effects involving Gap on the (a–b) ERclick rate,
(c–d) ERclose rate, and (e–f) Vpeak in Experiment 2. Error bars show
95% CIs.

4.3 Discussion of Experiment 2
Similarly to Experiment 1, as Gap increased, MT tended to decrease
(Fig. 8a) and the ERclose rate decreased (Fig. 8c). There were no
significant differences for Gap ≥ 72 pixels in MT , yet the ERclose
rate for Gap = 72 pixels was still significantly higher than that for
Gap = 216 pixels. Thus, Gap = 216 pixels was needed to eliminate
negative effects on user performance in our experimental conditions.

The model fitness without separating the Gap values was R2 =
0.94, so designers can predict the average MT under a given condi-
tion regardless of the Gap with a certain degree of accuracy. Because
we used the same participants in both Experiments 1 and 2 and the
order of the two studies was counterbalanced, we conclude that the
resultant differences probably stem from whether the “allowance”
of overshooting was given temporally (Tdelay) or spatially (Gap).

5 EXPERIMENT 3: INTERACTIONS OF DELAY AND GAP

In Experiment 2, we found that the MT decreased as the Gap in-
creased (Fig. 8a). If the Tdelay and Gap were specified concurrently,
however, the result might be different. For example, when the Tdelay
is sufficiently long (e.g., 800 ms), there is little concern about invok-
ing ERclose (Fig. 4c), and hence, the positive effect of a large Gap
should disappear. To confirm such potential interactions between
the Tdelay and Gap, we conducted Experiment 3, which took 25 to
30 min per participant.

5.1 Apparatus and Participants
Experiment 3 was conducted two weeks after Experiments 1 and
2. The same apparatus was used. Twelve participants were again
recruited from a local university (four women, eight men; ages: M
= 22.2, SD = 1.72 years). All had normal or corrected-to-normal
vision and were right-handed. Two of them were daily mouse users.
Three of them had also participated in Experiments 1 and 2. Each
participant received 23 USD in compensation.

Figure 10: Fitts’ law fitness in Experiment 2.

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600

Sp
ee

d
[p

ix
el

s/
m

se
c]

Cursor progress on the x-axis [pixels]

∞ px
216 px
72 px
24 px
8 px
0 px

Figure 11: Speed profiles for each Gap where A = 600 and W = 25
pixels in Experiment 2.

5.2 Design and Procedure

Because the goal of Experiment 3 was to observe potential interac-
tions between the Tdelay and Gap, we did not evaluate any baseline
performance (i.e., the cases of Tdelay = ∞ ms and Gap = ∞ pixels).
If we had included Tdelay =∞, there would be no concern about over-
shooting regardless of the Gap values, and likewise for Gap = ∞.
Also, because Tdelay = 800 ms showed no significant difference
from Tdelay = ∞ for any results (MT , ERclick, and ERclose; Fig. 4),
we used Tdelay = 400 ms as the upper value. Thus, we reused four
Tdelay values (0, 100, 200, and 400 ms) and five Gap values (0, 8,
24, 72, and 216 pixels). The A and W values were the same as in
Experiment 1, and the movement direction was always to the right.

One block consisted of a random order of 3A × 2W × 5Gap × 4
repetitions = 120 trials with a fixed Tdelay value. Before each block,
the participants used the exercise system as in Experiment 1, and
then ten trials randomly selected from the 30 (3A × 2W × 5Gap)
conditions were performed as practice. In total, we recorded 3A
× 2W × 5Gap × 4 repetitions × 4Tdelay × 12 participants = 5760
data points. After the all trials were completed, we interviewed the
participants about the strategies in the experiments.

5.3 Results

We removed two outlier data points (0.035%). The main effects of
Tdelay and Gap are shown in Fig. 12. The first-order interactions
involving Tdelay and Gap are shown in Fig. 13. The number of error-
free trials was 5389, while 369 data points (6.41%) were removed
because of errors found when analyzing the MT .

5.3.1 Movement Time (MT)

We found significant main effects for Gap (F4,44 = 17.55, p< 0.001,
η2

p = 0.61), A (F1,11 = 708.7, p < 0.001, η2
p = 0.98), and W

(F2,22 = 344.8, p < 0.001, η2
p = 0.97), but not for Tdelay (F3,33 =

1.774, p = 0.17, η2
p = 0.14). Posthoc tests showed significant dif-

ferences for the following Gap pairs (at least p < 0.05): (0, 72), (0,

692 676 683 656

0

200

400

600

800

1000

0 100 200 400

M
T

[m
s]

T_delay [ms]

2.99
4.51

5.35 5.00

0

3

6

9

12

0 100 200 400

Er
ro

r_
cl

ic
k

ra
te

 [%
]

T_delay [ms]

3.26 3.61 2.99

0.21
0

3

6

9

12

0 100 200 400

Er
ro

r_
cl

os
e

ra
te

 [%
]

T_delay [ms]

696 695 680 665 646

0

200

400

600

800

1000

0 8 24 72 216

M
T

[m
s]

Gap [pixels]

2.95 3.13
4.43

5.47
6.34

0

3

6

9

12

0 8 24 72 216

Er
ro

r_
cl

ic
k

ra
te

 [%
]

Gap [pixels]

5.47
4.25

2.43

0.43 0.00
0

3

6

9

12

0 8 24 72 216

Er
ro

r_
cl

os
e

ra
te

 [%
]

Gap [pixels]

a

n.s. (p > 0.05) n.s. (p > 0.05)

b c d e f

Figure 12: Main effects of Tdelay and Gap on (a, b) MT , (c, d) ERclick rate, and (e, f) ERclose rate in Experiment 3.

216), (8, 72), (8, 216), (24, 216), and (72, 216). All the W pairs
showed significant differences with p < 0.001.

Significant interactions were found for Tdelay ×A (F3,33 = 9.508,
p < 0.001, η2

p = 0.46), Gap×W (F8,88 = 2.397, p < 0.05, η2
p =

0.18), A×W (F2,22 = 12.23, p < 0.001, η2
p = 0.52), and Gap×A×

W (F8,88 = 2.138, p < 0.05, η2
p = 0.16). The other combinations

of independent variables showed no significant interactions (p >
0.05). For the Tdelay ×A interaction, for both A values, no Tdelay
pairs showed significant differences (p > 0.05). For the Gap×W
interaction, significant differences on Gap pairs were found for: (0,
216) and (8, 216) for W = 25 pixels, (0, 216), (8, 216), and (24, 216)
for W = 45 pixels, and (0, 72), (0, 216), (8, 216), and (24, 216) for
W = 75 pixels. For all W values, significant differences were found
for the two A values (p < 0.001).

5.3.2 ERclick Rate

We found significant main effects for Tdelay (F3,33 = 6.285, p< 0.01,
η2

p = 0.36), Gap (F4,44 = 8.088, p < 0.001, η2
p = 0.43), A (F1,11 =

42.36, p < 0.001, η2
p = 0.79), and W (F2,22 = 25.17, p < 0.001,

η2
p = 0.70). Posthoc tests showed significant differences for the

following Tdelay pairs (at least p < 0.05): (0, 200) and (100, 200).
Posthoc tests showed significant differences for the following Gap
pairs (at least p < 0.05): (0, 24), (0, 72), (0, 216), and (8, 72). W
pairs of (25, 45) and (45, 75) showed significant differences with
p < 0.001.

Significant interactions were found for Tdelay × G (F12,132 =

2.970, p < 0.01, η2
p = 0.21), Tdelay ×A (F3,33 = 5.516, p < 0.01,

η2
p = 0.33), Tdelay ×W (F6,66 = 3.891, p < 0.01, η2

p = 0.26),
Gap×A (F4,44 = 3.595, p < 0.05, η2

p = 0.25), Gap×W (F8,88 =

2.364, p < 0.05, η2
p = 0.18), A ×W (F2,22 = 6.920, p < 0.01,

η2
p = 0.39), Gap×A×W (F8,88 = 2.283, p < 0.05, η2

p = 0.17),
and Tdelay ×Gap×A×W (F24,264 = 1.826, p < 0.05, η2

p = 0.14).
The other combinations of independent variables showed no signifi-
cant interactions (p > 0.05).

For the Tdelay ×Gap interaction, Tdelay = (100, 200) showed a
significant difference when Gap = 0 and Tdelay = (0, 200) when
Gap = 72 (p < 0.05). For the Tdelay ×A interaction, Tdelay = (100,
200) and (200, 400) showed significant differences when A = 250
and Tdelay = (0, 400) when A = 600 (p < 0.05). For the Tdelay ×W
interaction, Tdelay = (0, 200), (100, 200), and (200, 400) showed
significant differences when W = 45 (at least p < 0.05). For the
Gap×A interaction, Gap = (0, 24) and (0, 72) showed significant
differences when A = 250 and Gap = (0, 216) and (8, 216) when
A = 600 (at least p < 0.05). For the Gap×W interaction, Gap = (0,
24), (0, 72), (0, 216), and (8, 216) showed a significant difference
when W = 45 and Gap = (0, 72) and (72, 216) when W = 75 (at
least p < 0.05). For W = 25 and 75, significant differences were
found for the two A values (p < 0.001).

5.3.3 ERclose Rate

We found significant main effects for Tdelay (F3,33 = 95.59, p <

0.001, η2
p = 0.36), Gap (F4,44 = 75.48, p < 0.001, η2

p = 0.87), A
(F1,11 = 171.1, p < 0.001, η2

p = 0.94), and W (F2,22 = 89.95, p <

0.001, η2
p = 0.89). Posthoc tests showed significant differences for

the following Tdelay pairs (at least p < 0.01): (0, 200), (0, 400), (100,
200), (100, 400), and (200, 400). Posthoc tests showed significant
differences for the following Gap pairs (at least p < 0.05): (0, 72),
(0, 216), (8, 72), (8, 216), (24, 216), and (72, 216). All W pairs
showed significant differences with p < 0.001.

Significant interactions were found for Tdelay ×Gap (F12,132 =

18.54, p < 0.001, η2
p = 0.62), Tdelay × A (F3,33 = 73.89, p <

0.001, η2
p = 0.87), Tdelay ×W (F6,66 = 42.03, p < 0.001, η2

p =

0.79), Gap×A (F4,44 = 66.65, p < 0.001, η2
p = 0.85), Gap×W

(F8,88 = 33.79, p < 0.001, η2
p = 0.75), A ×W (F2,22 = 124.8,

p < 0.001, η2
p = 0.92), Tdelay ×Gap×W (F24,264 = 4.100, p <

0.001, η2
p = 0.27), Tdelay × A ×W (F6,66 = 3.877, p < 0.001,

η2
p = 0.26), Gap×A×W (F8,88 = 5.133, p < 0.01, η2

p = 0.32),
and Tdelay ×Gap×A×W (F24,264 = 12.36, p < 0.001, η2

p = 0.53).
Thus the other combination (Tdelay×Gap×A) showed no significant
interaction (p > 0.05).

For the Tdelay ×Gap interaction, Tdelay = (0, 400) and (100, 400)
showed significant differences when Gap = 24, Tdelay = (0, 400),
(100, 200), (100, 400), and (200, 400) when Gap = 72, and Tdelay
= (0, 400), (100, 200), (100, 400), and (200, 400) when Gap = 216
(at least p < 0.05). For the Tdelay ×A interaction, Tdelay = (0, 200),
(0, 400), (100, 200), (100, 400), and (200, 400) showed significant
differences when A = 250 and Tdelay = (0, 400), (100, 400), and
(200, 400) when A = 600 (p < 0.05). For the Tdelay ×W interaction,
Tdelay = (0, 400), (100, 400), and (200, 400) showed significant
differences when W = 25, Tdelay = (0, 400), (100, 400), and (200,
400) when W = 45, and Tdelay = (0, 200), (0, 400), (100, 200),
(100, 400), and (200, 400) when W = 75 (at least p < 0.05). For
the Gap×A interaction, Gap = (0, 216), (8, 216), (24, 216), and
(72, 216) showed significant differences when A = 250, and Gap
= (0, 216), (8, 24), (8, 72), (8, 216), (24, 216), and (72, 216) when
A = 600 (at least p < 0.05). For the Gap×W interaction, Gap
= (0, 216), (8, 216), (24, 216), and (72, 216) showed significant
differences when W = 25, Gap = (0, 216), (8, 216), (24, 216), (72,
216) when W = 45, and Gap = (0, 216), (8, 216), (24, 216), (72,
216) when W = 45, and Gap = (0, 24), (0, 72), (0, 216), (8, 72), (8,
216), (24, 216), and (72, 216) when W = 75 (at least p < 0.05). For
all W values, significant differences were found for the two A values
(p < 0.001).

5.3.4 Model Fitting

The R2 values of Fitts’ law for each Tdelay ×Gap condition by using
N = 6 (2A × 3W) data points ranged from 0.914 to 0.999. When
we did not separate the 4 Tdelay and 5 Gap conditions, the fit using

602 781 595 756 600 765 595 718
0

200

400

600

800

1000

250 600

M
T

[m
s]

A [pixels]

828 684 576 820 687 578 793 676 572 784 652 560 751 637 550
0

200

400

600

800

1000

25 45 75

M
T

[m
s]

W [pixels]

(a) Tdelay ×A (left to right: Tdelay = 0, 100, 200, 400) (b) Gap ×W (left to right: Gap = 0, 8, 24, 72, 216)

(c) Tdelay ×Gap (left to right: Gap = 0, 8, 24, 72, 216) (d) Tdelay ×A (left to right:
Tdelay = 0, 100, 200, 400)

(e) Tdelay ×W (left to right:
Tdelay = 0, 100, 200, 400)

(f) Gap ×A (left to right:
Gap = 0, 8, 24, 72, 216)

(g) Gap ×W (left to right: Gap = 0, 8, 24, 72, 216)

1.
39

4.
86

2.
43

3.
13

2.
08

1.
74

5.
21

3.
47

3.
13

2.
78

6.
60

5.
21

4.
86

 7.
29

3.
82

 5.
90

3.
47

 5.
90

 8.
68

7.
29

0

4

8

12

16

0 100 200 400

Er
ro

r_
cl

ic
k

ra
te

 [%
]

T_delay [ms]

2.
50

3.
47

4.
72

4.
31

5.
00

5.
69

5.
28

4.
72

0

4

8

12

16

250 600

Er
ro

r_
cl

ic
k

ra
te

 [%
]

A [pixels]

4.
38

2.
08

2.
50

6.
04

3.
96

3.
54

6.
67

3.
96

5.
42

6.
25

4.
58

4.
17

0

4

8

12

16

25 45 75

Er
ro

r_
cl

ic
k

ra
te

 [%
]

W [pixels]

3.
65

2.
26

2.
60

3.
65

3.
82

5.
03

4.
86

6.
08

6.
94

5.
73

0

4

8

12

16

250 600

Er
ro

r_
cl

ic
k

ra
te

 [%
]

A [pixels]

4.
17

2.
86

1.
82

 4.
17

2.
60

2.
60

 5.
47

3.
65

4.
17

7.
81

4.
95

3.
65

7.
55

4.
17

7.
29

0

4

8

12

16

25 45 75

Er
ro

r_
cl

ic
k

ra
te

 [%
]

W [pixels]

9.
03

6.
60

5.
56

0.
69

4.
51

 6.
25

5.
90

0.
35

 2.
43

 4.
51

2.
78

0.
00

0.
35

0.
69

0.
69

0.
00

0.
00

0.
00

0.
00

0.
00

0

4

8

12

16

0 100 200 400

Er
ro

r_
cl

os
e

ra
te

 [%
]

T_delay [ms]

3.
06

3.
47

3.
19

4.
03

3.
06

2.
92

0.
28

0.
14

0

4

8

12

16

250 600

Er
ro

r_
cl

os
e

ra
te

 [%
]

A [pixels]

4.
79

3.
33

1.
67

5.
42

3.
96

1.
46

 3.
96

3.
13

1.
88

0.
42

0.
00

0.
21

0

4

8

12

16

25 45 75
Er

ro
r_

cl
os

e
ra

te
 [%

]
W [pixels]

5.
21

5.
73

4.
34

4.
17

2.
08

2.
78

0.
35

0.
52

0.
00

0.
00

0

4

8

12

16

250 600

Er
ro

r_
cl

os
e

ra
te

 [%
]

A [pixels]

7.
81

5.
73

2.
86

 5.
73

4.
95

2.
08

 3.
65

2.
34

1.
30

1.
04

0.
00

0.
26

0.
00

0.
00

0.
00

0

4

8

12

16

25 45 75

Er
ro

r_
cl

os
e

ra
te

 [%
]

W [pixels]

(h) Tdelay ×Gap (left to right: Gap = 0, 8, 24, 72, 216) (i) Tdelay ×A (left to right:
Tdelay = 0, 100, 200, 400)

(j) Tdelay ×W (left to right:
Tdelay = 0, 100, 200, 400)

(k) Gap ×A (left to right:
Gap = 0, 8, 24, 72, 216)

(l) Gap ×W (left to right: Gap = 0, 8, 24, 72, 216)

Figure 13: Interactions related to Tdelay and Gap in Experiment 3.

N = 120 data points was R2 = 0.930.

5.4 Discussion of Experiment 3

Differently from the result of Experiment 1, Tdelay showed no main
effect on the MT . In contrast, a wider Gap significantly decreased
the MT , which was consistent with Experiment 2. Still, the differ-
ence in MT with the minimum and maximum Gap values was small
(696− 646 = 50 ms). Also, importantly, our assumption that the
Tdelay and Gap would have a significant interaction for MT was
rejected. Therefore, to model the MT data obtained in Experiment
3, it would be sufficient to account for Gap without Tdelay.

In contrast to the MT results, our assumption on the interaction of
Tdelay ×Gap on the ERclose rate was confirmed. This result shows
that, if the effect to reduce the ERclose has already been achieved by
either Tdelay or Gap, the other parameter’s effect would be limited.
For example, for Tdelay = 200 ms in Fig. 13h, the ERclose rate for
Gap = 0 and 8 pixels were still fairly high (> 5%); in comparison,
when Tdelay = 400 ms, the ERclose rates were almost 0%. This
indicates that, for small Gap values such as 0 or 8 pixels, a long
Tdelay is helpful to reduce the ERclose rate, but if there is space to set
large Gap among GUI items, a long Tdelay has no benefit.

6 GENERAL DISCUSSION

6.1 Experimental Design Issue of Learning Effects

For fair comparison, we checked the learning effects on MT , ERclick
rate, and ERclose rate in overshoot-prohibited conditions (Tdelay = 0
ms and Gap = 0 pixels). The effects of order (Experiments 1 vs.
2) are not significant for MT (a pair-wised two-tailed t-test shows
p = 0.098) and ERclick and ERclose rates (Wilcoxon signed-rank
tests showed p = 0.86 and p = 0.24, respectively). For the three
participants joining in Experiments 1–3, the effects of order (Exper-
iments 1 vs. 2 vs. 3) on MT s and ERclose rate are not significant
(repeated-measures ANOVA showed p = 0.48 and 0.86, respec-
tively). The ERclick rate shows p < 0.05 but pair-wise tests show no
significant differences in all pairs. This result rejects our concerns
that learning effects change our conclusions.

6.2 Participants’ Strategy
While the effects of the Tdelay and Gap on MT , ERclick rate, and
ERclose rate were independently observed in Experiments 1 and 2,
the concurrent interaction effects of these factors were not observed
for the MT rate in Experiment 3. According to oral interviews, in
Experiment 1, 11 of the 12 participants stated that they changed the
mouse movement speed depending on the Tdelay. For example, a
participant stated as follows.

• “When the timeout [Tdelay] was 100 and 200 ms, I could not
immediately return the cursor after entering the pink area in
the Exercise Session. Thus, in the actual experiment session,
I tried not to overshoot the target as if the timeout was 0 ms.
When the timeout was 800 ms and infinity, I did not take care
of overshooting the target. When the timeout was 400 ms, I
could return the cursor after noticing it entering the pink area
in the Exercise, and therefore I was more relaxed to move the
cursor than the 800-ms timeout.”

Similarly, in Experiment 2, eight participants stated that they
changed the speed depending on the Gap. A participant stated
as follows.

• “I think that the difficulty is categorized into three levels: no
gap, medium gap (8, 24 and 72 pixels), and no-effect gap (216
and ∞ pixels). The neighboring condition [Gap = 0] was the
most difficult. When there was a margin between the target
and the distractor, I moved the cursor a little carefully. If the
distractor is farthest [Gap = 216], I think that the task was
the same as no-gap condition [Gap = ∞]. So, I intentionally
changed my movement speed depending on the gap.

In contrast, in Experiment 3, six and seven participants stated that
they changed the speed depending on the Tdelay and Gap, respec-
tively (inclusive). The smaller number of participants who changed
the speed may be one reason that there was no significant difference
for Tdelay on MT in Experiment 3.

Hence, not many users purposely adjusted their movement speed
depending on the given parameters of Tdelay and Gap in Experiment
3. Rather, the priority that affected user performance was strongly

on the nominal ID. In a real GUI, however, both delays and gaps
can be independently designed. Further theoretical development of
the model will help GUI designers, but for now, predicting the MT
by using the baseline Fitts’ law model is a suboptimal approach.

In all three experiments, we measured user performance under
conditions where the participants knew the Tdelay, and the target and
Gap areas were explicitly drawn. In Netflix, for example, hovering
the cursor over a movie thumbnail reveals a Play button and detailed
descriptions. Similarly to Amazon Prime Video, the circular Play
button has a Gap from the neighboring movie thumbnail visually.
However, that button has a quite large area that receives mouse-click
events, and there is no Gap from the neighboring thumbnail in the
motor space. In such a case, i.e., where a target has visual and motor
spaces of different sizes, user performance would degraded [40, 41],
but our findings are limited to a condition of the same visual and
motor sizes.

6.3 Design Recommendation

The MT results of Experiment 1 show that the MT was significantly
worse for Tdelay = 0 and 100 ms, but the negative effect plateaued for
Tdelay ≥ 200 ms. In addition, the Tdelay did not significantly affect
the ERclick rate, and Tdelay ≥ 800 ms did not show a significantly
worse ERclose rate. Therefore, when there is no gap beyond the
target and distractor, using a 800-ms delay to close a pop-up window
seems to be needed. If using 400-ms delay, the ERclose rate was 2%
(Fig. 4c) and there were significant differences from 800 and ∞ ms
(both showed 0% ERclose rates). It is difficult to recommend using
200-ms delay because it showed the highest ERclose rate (∼10%).
Considering the tradeoff between low error rate and short waiting
time to close pop-up windows, if designers accept the 2% ERclose
rate, using 400-ms delay seems to be a possible choice. This also
justifies the delay configuration for miniature windows shown in
Fig. 1b.

Regarding the Gap, our results showed that greater gap values
were better in terms of decreasing the MT and errors in general
(Fig. 8 and Fig. 12). On the other hand, a wider gap directly occupies
a large space. Hence, our results suggest no clear optimal value
for the Gap that minimizes wasted spaces while maintaining user
performance.

Based on the results of Experiment 3, Tdelay and Gap had a signif-
icant interaction on ERclose rate, and thus it prevents us from recom-
mending specific values of these parameters. In summary, from the
results of Experiments 1–3, we conclude that (1) Tdelay = 800 ms
is needed to completely eliminate negative effects of distractor, (2)
400 ms is also possible if designers accept small (2%) unintentional
closing of pop-up windows for gap-absent target arrangements, and
(3) there is no clear evidence of an optimal Gap value. In addition,
there remains a possibility that there is more appropriate delay to
balance reducing negative effects and shortening a waiting time in
untested values around 400 ms, such as 300 or 500 ms.

6.4 Limitations and Future Work

Our results cannot be generalized to other conditions besides our
experimental setup. For example, cursor responsiveness is affected
by mouse-to-cursor transfer functions and by differences between
pointing devices such as mouse vs. touchpad [8]. The responsiveness
(or transmission lag) significantly affects the pointing performance
and Fitts’ law fitness [18, 29]. A fixed movement direction is also
a limitation, as mouse-pointing performance varies depending on
directions [48, 50]. Hence, we do not claim that we have found an
optimal delay or gap, or that we have found an optimal menu design.

While our tasks were limited to 1D pointing, we are also in-
terested in conducting experiments with a target and distractor of
finite heights, which is more realistic for current GUIs (as shown
in Fig. 1). From this viewpoint, we feel that our 1D tasks were

somewhat simple compared to real GUIs. Even so, the three exper-
iments provide good motivation for further studies on the topic of
overshoot-avoiding pointing performance.

Regarding 1D pointing, we showed page-scrolling tasks as exam-
ples in Fig. 2, which are, in actual, dragging-and-dropping opera-
tions. Because dragging-and-dropping requires to keep the tension
of finger for pressing the mouse button, it degrades user perfor-
mance in terms of MT and error rates [28]. Hence, further studies
are needed to confirm if our findings are directly true for dragging
and scrolling tasks.

Our future work includes deriving a model in a theoretical way.
In our study, the speed profiles did not show clear trends depending
on the Tdelay and Gap (Fig. 7 and Fig. 11). Thus, simply adding
the Tdelay and Gap terms to Fitts’ law would not improve the model
fitness. Carefully analyzing the principles involved in changing
the movement speed will provide better models to explain both the
Tdelay and Gap effects.

In addition, in our experiments, even when an error occurred, a
trial was not repeated from the beginning; the participants were asked
to immediately aim for the target again. In more realistic scenarios,
as described around Fig. 1 and Fig. 2, when we mistakenly click
outside the target or overshoot the target, additional time cost to redo
the pointing operation is needed. If we adopt such a time-based cost
for erroneous operations, the participants would be more careful,
and the resultant MT would increase [3]. Therefore, we tested only
a limited condition where the time-based penalty is 0 ms.

An unclear point regarding GUI designs is that, although 800
ms seems the upper value for ignoring the negative effects of the
Tdelay in Experiment 1, it is possible that such a delay negatively
affects users’ perceptions and feelings if users want to view the
items behind the pop-up window. In addition to the quantitative
experiments conducted in this study, subjective evaluation is needed
in order to judge whether this value is preferred by users.

7 CONCLUSION

We conducted three mouse-pointing experiments in which users had
to avoid overshooting a target. User performance was significantly
degraded by a shorter delay for acceptance of overshooting and a
smaller gap between the target and distractor. Fitts’ law held if we
run regression expressions for each value of delay and gap, but a
more theoretical derivation will be required to capture the effects on
MT . We found that 800 ms is needed to completely omit negative
effects of distractor for densely arranged targets, but we found no
optimal gap.

REFERENCES

[1] J. Accot and S. Zhai. Beyond fitts’ law: models for trajectory-based hci
tasks. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’97), pp. 295–302, 1997. doi: 10.1145/
258549.258760

[2] G. Bailly, E. Lecolinet, and L. Nigay. Visual menu techniques. ACM
Comput. Surv., 49(4):60:1–60:41, Dec. 2016. doi: 10.1145/3002171

[3] N. Banovic, T. Grossman, and G. Fitzmaurice. The effect of time-
based cost of error in target-directed pointing tasks. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’13, pp. 1373–1382. ACM, New York, NY, USA, 2013. doi: 10.
1145/2470654.2466181

[4] R. Blanch, Y. Guiard, and M. Beaudouin-Lafon. Semantic pointing:
Improving target acquisition with control-display ratio adaptation. In
Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, CHI ’04, pp. 519–526. ACM, New York, NY, USA, 2004.
doi: 10.1145/985692.985758

[5] R. Blanch and M. Ortega. Benchmarking pointing techniques with
distractors: Adding a density factor to fitts’ pointing paradigm. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’11, pp. 1629–1638. ACM, New York, NY, USA, 2011.
doi: 10.1145/1978942.1979180

[6] K. Caine. Local standards for sample size at chi. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems,
CHI ’16, pp. 981–992. ACM, New York, NY, USA, 2016. doi: 10.
1145/2858036.2858498

[7] G. Casiez, S. Conversy, M. Falce, S. Huot, and N. Roussel. Looking
through the eye of the mouse: A simple method for measuring end-to-
end latency using an optical mouse. In Proceedings of the 28th Annual
ACM Symposium on User Interface Software & Technology, UIST ’15,
pp. 629–636. ACM, New York, NY, USA, 2015. doi: 10.1145/2807442
.2807454

[8] G. Casiez and N. Roussel. No more bricolage!: Methods and tools
to characterize, replicate and compare pointing transfer functions. In
Proceedings of the 24th Annual ACM Symposium on User Interface
Software and Technology, UIST ’11, pp. 603–614. ACM, New York,
NY, USA, 2011. doi: 10.1145/2047196.2047276

[9] O. Chapuis, J.-B. Labrune, and E. Pietriga. Dynaspot: Speed-dependent
area cursor. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’09, pp. 1391–1400. ACM, New
York, NY, USA, 2009. doi: 10.1145/1518701.1518911

[10] A. Cockburn and A. Gin. Faster cascading menu selections with
enlarged activation areas. In Proceedings of Graphics Interface 2006,
GI ’06, pp. 65–71. Canadian Information Processing Society, Toronto,
Ont., Canada, Canada, 2006.

[11] J. T. Dennerlein, D. B. Martin, and C. Hasser. Force-feedback improves
performance for steering and combined steering-targeting tasks. In
Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, CHI ’00, pp. 423–429. ACM, New York, NY, USA, 2000.
doi: 10.1145/332040.332469

[12] C. G. Drury. Movements with lateral constraint. Ergonomics,
14(2):293–305, 1971. doi: 10.1080/00140137108931246

[13] P. M. Fitts. The information capacity of the human motor system
in controlling the amplitude of movement. Journal of Experimental
Psychology, 47(6):381–391, 1954. doi: 10.1037/h0055392

[14] K.-C. Gan and E. R. Hoffmann. Geometrical conditions for ballistic
and visually controlled movements. Ergonomics, 31(5):829–839, 1988.
doi: 10.1080/00140138808966724

[15] D. J. Gillan, K. Holden, S. Adam, M. Rudisill, and L. Magee. How
does fitts’ law fit pointing and dragging? In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’90, pp.
227–234. Association for Computing Machinery, New York, NY, USA,
1990. doi: 10.1145/97243.97278

[16] T. Grossman and R. Balakrishnan. The bubble cursor: Enhancing target
acquisition by dynamic resizing of the cursor’s activation area. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’05, pp. 281–290. ACM, New York, NY, USA, 2005. doi:
10.1145/1054972.1055012

[17] Y. Guiard, R. Blanch, and M. Beaudouin-Lafon. Object pointing: A
complement to bitmap pointing in guis. In Proceedings of Graphics
Interface 2004, GI ’04, pp. 9–16. Canadian Human-Computer Commu-
nications Society, School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada, 2004.

[18] E. R. Hoffmann. Fitts’ law with transmission delay. Ergonomics,
35(1):37–48, 1992. doi: 10.1080/00140139208967796

[19] E. R. Hoffmann. Critical index of difficulty for different body motions:
A review. Journal of Motor Behavior, 48(3):277–288, 2016. doi: 10.
1080/00222895.2015.1090389

[20] K. M. Inkpen. Drag-and-drop versus point-and-click mouse interaction
styles for children. ACM Trans. Comput.-Hum. Interact., 8(1):1–33,
Mar. 2001. doi: 10.1145/371127.371146

[21] P. Kabbash and W. A. S. Buxton. The “prince” technique:
Fitts’ law and selection using area cursors. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’95, pp. 273–279. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 1995. doi: 10.1145/223904.223939

[22] S. W. Keele and M. I. Posner. Processing of visual feedback in rapid
movements. Journal of Experimental Psychology, 77(1):155–158,
1968. doi: 10.1037/h0025754

[23] M. Kobayashi and T. Igarashi. Considering the direction of cursor
movement for efficient traversal of cascading menus. In Proceedings
of the 16th Annual ACM Symposium on User Interface Software and

Technology, UIST ’03, pp. 91–94. ACM, New York, NY, USA, 2003.
doi: 10.1145/964696.964706

[24] M. Kobayashi and T. Igarashi. Ninja cursors: Using multiple cursors to
assist target acquisition on large screens. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’08, pp.
949–958. ACM, New York, NY, USA, 2008. doi: 10.1145/1357054.
1357201

[25] S. Kulikov and W. Stuerzlinger. Targeted steering motions. In CHI
’06 Extended Abstracts on Human Factors in Computing Systems, CHI
EA ’06, pp. 983–988. ACM, New York, NY, USA, 2006. doi: 10.
1145/1125451.1125640

[26] I. S. MacKenzie. Fitts’ law as a research and design tool in human-
computer interaction. Human-Computer Interaction, 7(1):91–139,
1992. doi: 10.1207/s15327051hci0701 3

[27] I. S. MacKenzie, T. Kauppinen, and M. Silfverberg. Accuracy mea-
sures for evaluating computer pointing devices. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’01, pp. 9–16. ACM, New York, NY, USA, 2001. doi: 10.1145/365024.
365028

[28] I. S. MacKenzie, A. Sellen, and W. A. S. Buxton. A comparison of
input devices in element pointing and dragging tasks. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’91, pp. 161–166. Association for Computing Machinery, New
York, NY, USA, 1991. doi: 10.1145/108844.108868

[29] I. S. MacKenzie and C. Ware. Lag as a determinant of human perfor-
mance in interactive systems. In Proceedings of the INTERACT ’93
and CHI ’93 Conference on Human Factors in Computing Systems,
CHI ’93, pp. 488–493. ACM, New York, NY, USA, 1993. doi: 10.
1145/169059.169431

[30] M. J. McGuffin and R. Balakrishnan. Fitts’ law and expanding targets:
Experimental studies and designs for user interfaces. ACM Trans.
Comput.-Hum. Interact., 12(4):388–422, Dec. 2005. doi: 10.1145/
1121112.1121115

[31] M. A. Montazer and C. G. Drury. A test of the beggs’ model for
self-paced movements. Ergonomics, 32(5):497–511, 1989. doi: 10.
1080/00140138908966120

[32] J. Müller, A. Oulasvirta, and R. Murray-Smith. Control theoretic
models of pointing. ACM Trans. Comput.-Hum. Interact., 24(4):27:1–
27:36, Aug. 2017. doi: 10.1145/3121431

[33] N. Rashevsky. Mathematical biophysics of automobile driving. Bul-
letin of Mathematical Biophysics, 21(4):375–385, 1959. doi: 10.1007/
BF02477896

[34] R. A. Schmidt, H. N. Zelaznik, and J. S. Frank. Sources of inaccuracy
in rapid movement. In G. E. Stelmach, ed., Information Processing in
Motor Control and Learning, pp. 183–203. Academic Press, 1978. doi:
10.1016/B978-0-12-665960-3.50014-1

[35] R. Senanayake, E. R. Hoffmann, and R. S. Goonetilleke. A model
for combined targeting and tracking tasks in computer applications.
Experimental Brain Research, 231(3):367–379, Nov 2013. doi: 10.
1007/s00221-013-3700-4

[36] R. W. Soukoreff and I. S. MacKenzie. Towards a standard for pointing
device evaluation, perspectives on 27 years of fitts’ law research in hci.
International Journal of Human-Computer Studies, 61(6):751–789,
2004. doi: 10.1016/j.ijhcs.2004.09.001

[37] E. Tanvir, A. Bunt, A. Cockburn, and P. Irani. Improving cascading
menu selections with adaptive activation areas. International Journal
of Human-Computer Studies, 69(11):769 – 785, 2011. doi: 10.1016/j.
ijhcs.2011.06.005

[38] E. Tanvir, J. Cullen, P. Irani, and A. Cockburn. Aamu: Adaptive
activation area menus for improving selection in cascading pull-down
menus. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’08, pp. 1381–1384. ACM, New York, NY,
USA, 2008. doi: 10.1145/1357054.1357270

[39] E. Tanvir, J. Cullen, P. Irani, and A. Cockburn. Aamu: Adaptive ac-
tivation area menus for improving selection in cascading pull-down
menus. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’08, pp. 1381–1384. Association for Com-
puting Machinery, New York, NY, USA, 2008. doi: 10.1145/1357054.
1357270

[40] H. Usuba, S. Yamanaka, and H. Miyashita. Pointing to targets with

difference between motor and visual widths. In Proceedings of the 30th
Australian Conference on Computer-Human Interaction, OzCHI ’18,
pp. 374–383. ACM, New York, NY, USA, 2018. doi: 10.1145/3292147
.3292150

[41] H. Usuba, S. Yamanaka, and H. Miyashita. User performance by the
difference between motor and visual widths for small target pointing.
In Proceedings of the 10th Nordic Conference on Human-Computer
Interaction, NordiCHI ’18, pp. 161–169. ACM, New York, NY, USA,
2018. doi: 10.1145/3240167.3240171

[42] J. O. Wobbrock, E. Cutrell, S. Harada, and I. S. MacKenzie. An error
model for pointing based on fitts’ law. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’08, pp.
1613–1622. ACM, New York, NY, USA, 2008. doi: 10.1145/1357054.
1357306

[43] J. O. Wobbrock, L. Findlater, D. Gergle, and J. J. Higgins. The aligned
rank transform for nonparametric factorial analyses using only anova
procedures. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’11, pp. 143–146. ACM, New
York, NY, USA, 2011. doi: 10.1145/1978942.1978963

[44] A. Worden, N. Walker, K. Bharat, and S. Hudson. Making computers
easier for older adults to use: Area cursors and sticky icons. In Proceed-
ings of the ACM SIGCHI Conference on Human Factors in Computing
Systems, CHI ’97, pp. 266–271. ACM, New York, NY, USA, 1997. doi:
10.1145/258549.258724

[45] C. E. Wright and F. Lee. Issues related to hci application of fitts’s
law. Human-Computer Interaction, 28(6):548–578, 2013. doi: 10.
1080/07370024.2013.803873

[46] S. Yamanaka. Mouse cursor movements towards targets on the same
screen edge. In Proceedings of Graphics Interface 2018, GI 2018,
pp. 106 – 113. Canadian Human-Computer Communications Society
/ Société canadienne du dialogue humain-machine, 2018. doi: 10.
20380/GI2018.14

[47] S. Yamanaka. Steering performance with error-accepting delays. In
Proceedings of the 2019 CHI Conference on Human Factors in Com-
puting Systems, CHI ’19, pp. 570:1–570:9. ACM, New York, NY, USA,
2019. doi: 10.1145/3290605.3300800

[48] H. Yang and X. Xu. Bias towards regular configuration in 2d pointing.
In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’10, pp. 1391–1400. ACM, New York, NY, USA,
2010. doi: 10.1145/1753326.1753536

[49] S. Zhai, J. Kong, and X. Ren. Speed-accuracy tradeoff in fitts’ law
tasks: on the equivalency of actual and nominal pointing precision.
International Journal of Human-Computer Studies, 61(6):823–856,
2004. doi: 10.1016/j.ijhcs.2004.09.007

[50] X. Zhang, H. Zha, and W. Feng. Extending fitts’ law to account for
the effects of movement direction on 2d pointing. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’12, pp. 3185–3194. ACM, New York, NY, USA, 2012. doi: 10.
1145/2207676.2208737

	Introduction
	Background
	Research Question and Contribution Statement

	Related Work
	Effects of Timeout in GUI Operations
	Effects of Gaps in Target Arrangements
	Performance Models of Pointing Tasks

	Experiment 1: Effects of Delay
	Participants
	Apparatus
	Task
	Design and Procedure
	Exercise to Learn a Given Delay
	Results
	Movement Time MT
	ERclick rate
	ERclose rate
	Peak Speed Vpeak
	Model Fitting
	Speed Profiles

	Discussion of Experiment 1

	Experiment 2: Effects of Gap
	Design and Procedure
	Results
	Movement Time (MT)
	ERclick rate
	ERclose rate
	Peak Speed Vpeak
	Model Fitting
	Speed Profiles

	Discussion of Experiment 2

	Experiment 3: Interactions of Delay and Gap
	Apparatus and Participants
	Design and Procedure
	Results
	Movement Time (MT)
	ERclick Rate
	ERclose Rate
	Model Fitting

	Discussion of Experiment 3

	General Discussion
	Experimental Design Issue of Learning Effects
	Participants' Strategy
	Design Recommendation
	Limitations and Future Work

	Conclusion

