
Under review as a conference paper at ICLR 2024

CAREFUL AT ESTIMATION AND BOLD AT EXPLO-
RATION FOR DETERMINISTIC POLICY GRADIENT AL-
GORITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

Exploration strategies within continuous action spaces often adopt heuristic ap-
proaches due to the challenge of dealing with an infinite array of possible actions.
Previous research has established the advantages of policy-based exploration in
the context of deterministic policy reinforcement learning (DPRL) for continuous
action spaces. However, policy-based exploration in DPRL presents two notable
issues: unguided exploration and exclusive policy, both stemming from the soft
policy learning schema, which is famous for DPRL policy learning. In response to
these challenges, we introduce a novel approach called Bold Actor Conservative
Critic (BACC), which leverages Q-value to guide out-of-distribution exploration.
We extend the dynamic Boltzmann softmax update theorem to the double Q func-
tion framework, incorporating modified weights and Q values. This extension
enables us to derive an exploration policy directly for policy exploration, which
is constructed with the modified weights. Furthermore, we explicitly utilize the
minimum Q value as an intermediate step in policy gradient computation, which
derives from a conservative policy. In practice, we construct such an exploration
policy with a limited set of actions and train a parameterized policy by minimiz-
ing the expected KL-divergence between the target policy and a policy constructed
based on the minimum Q value. To evaluate the effectiveness of our approach, we
conduct experiments on the Mujoco and Roboschool benchmarks. Notably, our
method excels in the highly complex Humanoid environment, demonstrating its
efficacy in tackling challenging continuous action space exploration problems.

1 INTRODUCTION

Deep reinforcement learning(RL) has attracted much attention in recent years. It has achieved mas-
sive success in many fields, such as DQN (Mnih et al., 2015) in simple RGB games, AlphaStar
(Vinyals et al., 2019), and OpenaiFive (OpenAI et al., 2019) in multi-player combat games, chat-
GPT (OpenAI, 2022) in natural language processing. When applying deep RL in continuous action
control, such as robotic control, higher demands exist on the robustness of reinforcement learning
policy (Haarnoja et al., 2017). Algorithms based on the maximum entropy framework (Ziebart,
2010) are more robust due to the diverse action selection, which augments the standard reward with
the policy entropy, to some extent, encourages exploration in training and finally derives a robust
policy. The intuitive reason for taking exploratory actions is that other actions with lower predicted
rewards may be better. Moreover, the method used to select actions directly affects the rate at which
the RL algorithm will converge to an optimal policy. Ideally, the algorithm should perform a non-
greedy action if it lacks confidence in the current prediction and perform a bold exploration once we
gather more information about the prediction result.

Although various exploration methods, such as ϵ-greedy, Softmax, UCB-1 (Auer et al., 2002), have
been suggested for use in discrete action space, these kinds of explorations are not the same thing
as the exploration in the continuous action space, due to the infinite actions. Since the actions in
continuous space are uncountable, the exploration strategy is heuristic, such as adding the Gaussian
perturbation (Silver et al., 2014; Van Hasselt et al., 2016; Fujimoto et al., 2018; Haarnoja et al.,
2018). Intuitively, this kind of unguided exploration should not be an efficient exploration strategy.
It will slow down learning the optimal policy due to its randomness. However, such approaches still

1

Under review as a conference paper at ICLR 2024

yield significant improvements compared to methods not incorporating exploration. For instance,
in the TD3 (Fujimoto et al., 2018) algorithm, random noise is added to actions for exploration
purposes. Actions that exceed bounds are clipped to ensure their validity. Then, policy-based noise is
considered in the SAC (Haarnoja et al., 2018) algorithm, which also achieved good results compared
to the previous method. SAC considers a stochastic actor to explore and minimize the reverse KL-
divergence to learn a policy for computation consideration. However, this reverse KL-divergence
leads to another issue: exclusive policy, which hinders exploring the optimal policy. This issue
lies in the Q value-based policy gradient method since the DPG (Silver et al., 2014) algorithm is
proposed. That is, policy learning and Q-function learning are separate processes. Policy learning
lags behind Q-function learning, meaning that actions collected from the policy have relatively lower
Q-values. As we assume the Q function is multimodal, the policy may be sub-optimal due to the
exclusive reverse KL-divergence, preferring an unimodal approximation.

To overcome the unguided exploration issue, the OAC (Ciosek et al., 2019) algorithm uses the Q-
value-based policy gradient to predict Gaussian mean offset, then uses offset compensation Gaussian
policy to explore. However, in practice, most of these predictions are inaccurate regarding high-
dimensional action space, which leads to efficient exploration. A natural and straightforward idea is
using Q-value to guide exploration. Suppose the high Q-value actions far from the policy can also be
sampled. In this case, the exclusive policy issue can also be avoided. In this paper, we propose Bold
Actor Conservative Critic (BACC) algorithm to achieve such Q-value-guided out-of-distribution
(OOD) exploration.

Specifically, we initially introduce the DDQS operator based on the Double Q-function framework.
This operator is an extension derived from the DBS operator. Within the Double Q-function frame-
work, our primary modifications involve the weights and values associated with computing expected
state values of the DBS operator. For given state-action pairs, we softmax the maximum value
(greedy Q value) of two Q functions as weights and take the minimum value (conservative Q value)
of the two Q functions as values. Subsequently, we provide proof of the convergence of the DDQS
operator (Theorem 1), which serves as an assurance of the feasibility of the exploration method
we propose. Following this, we extract weights to construct an exploration policy to guide action
exploration, which is similar in approach to the SARSA (Rummery & Niranjan, 1994) algorithm.
However, considering sample efficiency, we aim to separate action exploration from policy learning.
Therefore, we superficially softmax the conservative Q values to construct an optimization policy.
We then iteratively minimize the KL-divergence between the target policy and the conservative pol-
icy to guide target policy learning. According to Theorem 1, both two Q functions will eventually
converge to the optimal Q-function. Therefore, the exploration policy and the optimization policy
will also ultimately be the same, which is the optimal policy. Consequently, minimizing the KL-
divergence can lead to obtaining the actual optimal policy. The use of conservative Q-values in the
optimization policy wasn’t our initial contribution, but in this paper, it is the first time it is explicitly
related to the conservative policy, to achieve stable policy learning.

We evaluate our proposed method on Mujoco (Todorov et al., 2012) benchmarks and verify that
the proposed method outperforms the previous state-of-the-art in various environments, particularly
the most complex Humanoid environment. We achieved about 8k scores in 3 million steps, a mas-
sive improvement over previous methods. We also tested our method in the Roboschool (OpenAI,
2017) environments HumanoidFlagrun and HumanoidFlagrunHarder. The results indicate that our
exploration method is more robust than the OAC algorithm in complex environments.

2 PRELIMINARY

We first introduce notation and the maximum entropy objective, then summarize the Soft Policy
Learning method.

Notation. In this paper, we consider deterministic policy reinforcement learning method for con-
tinuous action space. Consider a discounted infinite-horizon Markov decision process (MDP), de-
fined by the tuple (S,A, p, r, γ), where the state space S and the action spaceA are continuous, and
the state transition probability p : S×A×S → [0, ∞) represents the probability density of the next
state. Given the state st ∈ S and action at ∈ A at time-step t, we can get the probability density of
st+1 ∈ S . The environment emits a bounded reward r : S × A → [rmin, rmax] on for specific state

2

Under review as a conference paper at ICLR 2024

and action pair. γ is the discount factor, and its value is in the range [0, 1), which makes the infinite
accumulated reward finite in mathematics.

Maximum entropy objective. Standard RL algorithm maximizes the expected sum of rewards∑
t E(st,at)∼ρπ

[r(st,at)]. ρπ(st,at) denotes state-action marginals of the trajectory distribution
induced by a policy π(at|st). Maximum entropy objective augment the expectation with the ex-
pected entropy of the policy over ρπ(st):

J(π) = Eπ

[∞∑
t=0

r(st,at) + αH(π(· |st))

]
.

The temperature parameter α balance the relative importance of the entropy term and the reward,
and this entropy term influence the exploration of the policy, which in result to a more stochastic
optimal policy ideally.

Soft policy learning. Soft policy maximizes the maximize entropy objective and modifies the
Q value function using the standard Q value function minus the current action’s log proba-
bility, this Q value is called Soft Q value. Considering the discount factor in practice algo-
rithm, the standard Q value function is E(st,at)∼ρπ

[
∑∞

t=0 γ
tr(st,at)]. The soft Q value is∑∞

t=0 E(st,at)∼ρπ

[
γtr(st,at) + αγt+1H(π(· |st+1))

]
. For a fixed policy, the soft Q value can be

computed iteratively, starting from any function Q : S × A → R and repeatedly applying the
modified Bellman backup operator T π given by

T πQ(st,at) ≜ r(st,at) + γ E(st+1,at+1)∼ρπ
[Q(st+1,at+1)− α log π(at+1|st+1)] ,

then improve the policy by minimizing following formula

π′ = argmin
π∈Π

DKL

(
π(· |st)

∥∥∥∥ exp (Q(st, ·))
Z(st)

)
,

where Z(st) =
∑

at
Q(st,at) normalizes the distribution.

3 PROBLEMS AND OUR SOLUTION TO PREVIOUS WORK

In this section, we provide illustrations to explain inefficient exploration. Then, we demonstrate why
the method proposed in this paper is effective. For a fixed state, the Q-values and policy regarding
one-dimensional actions are approximately as shown in Fig. 1. It is typically assumed that the Q-
function is multimodal, and the policy is modeled as a Gaussian distribution.

OAC

Q

offset

(a) Unguided exploration and exclusive policy

Q

Q

(b) Q-value-guided OOD exploration

Figure 1: Left: Exploration typically occurs around the policy π. However, due to the exclusive-
ness of KL-divergence and the delay in policy learning, there is a high likelihood that the policy
could become stuck at a suboptimal state. The OAC algorithm predicts an offset to allow better
exploration, however, this offset cannot be accurately predicted in high-dimensional action spaces.
Right: Exploring with πQ, constructed by softmaxing the Q-value, can help avoid sub-optimality.
In contrast to the policy π, it represents a form of out-of-distribution exploration.

3

Under review as a conference paper at ICLR 2024

Unguided exploration. refers to a form of exploration in which an agent takes random actions
without a clear goal. This type of exploration can be inefficient and time-consuming, as the agent
may spend significant amounts of time exploring unimportant or irrelevant areas of the environment.
Exploration that relies solely on the current policy is limited by the quality of the policy initialization
and the difficulty of improving the policy.

Exclusive policy. occurs in soft policy learning methods, where reverse KL divergence is used
as the objective function. We assume that the Q-function is multimodal, and in combination with
policy learning lagging behind, this leads to policy convergence towards a suboptimal distribution
when minimizing reverse KL divergence.

As shown in Fig. 1(a), when the current policy is poorly initialized and far away from the optimal
policy, exploring the optimal policy without a specific objective in mind can be challenging. This
unguided exploration is inefficient and leads to poor performance, as the agent may fail to discover
important states or actions necessary for achieving its objectives. The OAC algorithm attempts to
combine Q-valued policy gradient information to guide exploration. It predicts an offset to allow
better exploration, as shown in the figure; however, this offset cannot be accurately predicted in
high-dimensional action spaces, both its value and direction.

OOD exploration. Therefore, it is beneficial to construct a policy that can guide exploration.
Guided exploration is similar to performing a breadth-first policy search at a state, which can help
address the issues associated with the policy-based approach.

A natural idea is to conduct out-of-distribution(OOD) exploration, which is more robust for policy
learning compared to OOD optimization, as it is often associated with instability. However, the fun-
damental issue is that we still need some guidance, as random OOD exploration doesn’t guarantee
good results. Since we employ soft policy learning to train the policy, with Q-function learning
leading the way, we can effectively use Q-values to guide excessive exploration. As depicted in Fig-
ure 1(b), Q-value-guided out-of-distribution (OOD) exploration is effective in preventing suboptimal
policies and facilitates the sampling of actions with high Q-values.

4 IMPROVING EXPLORATION IN SOFT POLICY LEARNING

In this section, we will begin by presenting a novel Q-value update method. Following that, we will
develop an effective exploration strategy and integrate the value update and action exploration based
on a specific premise. Finally, we will illustrate how to meet this premise and learn an effective
policy.

4.1 DYNAMIC DOUBLE Q SOFTMAX UPDATE

We introduce the Dynamic Double Q Softmax (DDQS) operator for updating Q-values. This op-
erator is grounded in the double Q-function framework, where two distinct Q-functions are inde-
pendently trained to estimate the value of state-action pairs. As described in the introduction, the
definitions of the greedy Q-function and the conservative Q-function are as follows,

Qmax(s, a) = max{Q1(s, a), Q2(s, a)}, Qmin(s, a) = min{Q1(s, a), Q2(s, a)},
we denote Qmax as the greedy Q-function and Qmin as the conservative Q-function. The DDQS
operator is defined as follows: for all s in the state space S,

ddqsβt
(Q(s, ·)) =

∑
a∈A eβtQ

max(s,a)Qmin(s, a)∑
a∈A eβtQmax(s,a)

.

Here, βt represents a dynamically increasing hyper-parameter during the training iteration. We will
now provide a theoretical analysis of the proposed DDQS operator and demonstrate that it offers a
convergence guarantee.

A modified Bellman backup operator T π given by

T πQ(st,at) ≜ r(st,at) + γ Est+1∼p [V (st+1)] ,

where
V (st) = ddqsβt(Q(st, ·))

4

Under review as a conference paper at ICLR 2024

Theorem 1 (Convergence of value iteration with the DDQS operator). For any dynamic double Q
softmax operator ddqsβt

, if βt approaches∞ after t iterations, the value function Qt converges to
the optimal value function Q∗.

The proof is deferred to Appendix A.1. We expand upon the utilization of the DBS operator, as
introduced in (Pan et al., 2020), within the double Q-function framework. This approach is less
susceptible to overestimation. The motivation for this approach lies in the challenges posed by
overestimation when learning the value function in continuous action spaces. Therefore, our goal is
not solely to construct a policy πQ, but rather to consider the combination of the two Q-functions to
effectively address and mitigate overestimation issues.

4.2 EXPLORATION WITH GREEDY Q VALUE

Inspired by the results of the above theorems, we employ the double Q-function framework and
utilized the greedy Q-value to construct a novel exploration policy, denoted as πE . 1 We first define
the exploration policy πE ,

πE(· |st) =
eβtQ

max(st, ·)∑
a∈A eβtQmax(st,a)

.

Based on the results of Theorem 1, we can utilize the following formula to update the target Q-value:

r(st,at) + γ Est+1∼p,at+1∼πE(· |st+1) [Q(st+1,at+1)] . (1)

Nevertheless, calculating the target values for the next state can be computationally intensive. It in-
volves sampling across all possible states and actions and subsequently computing the corresponding
Q-values. Drawing inspiration from the SARSA method, we can sample two consecutive (s, a) pairs
to estimate the expectation of the Q-value:

Est∼p,at∼πE(· |st),st+1∼p,at+1∼πE(· |st+1) [r(st,at) + γQ(st+1,at+1)] . (2)

The key distinction here is that we can estimate the expectation of the Q-value with finite sampling.
The target Q-value (Eq. 1) necessitates evaluating the next Q-value across the entire state and action
space. In contrast, consecutive pairs involve computation in an on-policy form. In continuous action
RL tasks, we learn the policy separately from the Q-function. If we can sample actions from the
policy π as follows:

E(st,at,st+1)∼(p,πE(· |st+1),p)

[
r(st,at) + γ Eat+1∼π(· |st+1) [Q(st+1,at+1)]

]
, (3)

then, we can employ this equation to update the Q-function in an off-policy manner. It’s evident that
we have devised a new exploration strategy through this approach.

Q1Q2

Q(s, a)

a

(a) Double Q

Qmax

Q(s, a)

a

(b) Greedy Q

Figure 2: The state s is fixed. Left: The two Q functions are in an energy-based form, which is the
optimal solution for the maximum-entropy objective. Right: Greedy Q function take the maximum
value of these two Q functions over the action space. The probability of reaching the red point
increases significantly when we sample actions according to the value of the Greedy Q instead of
Q1. This strategy is more effective for escaping from sub-optimal states.

As depicted in Fig. 2, our proposed greedy Q exploration strategy offers several advantages: 1) This
strategy proves superior for exploration compared to relying solely on any single Q-function or the

1πE is constructed using the greedy Q-value from the double Q-framework, while πQ is constructed using
the Q-value from a single Q-network.

5

Under review as a conference paper at ICLR 2024

policy. As illustrated by the black and red points in the figure, the number of actions better than
the suboptimal action increases, and their relative range expands. 2) The use of the max operator
in our method is a form of overestimation. Overestimation can be problematic for Q-value updates,
but it exhibits more favorable properties when employed for exploration purposes. 3) Although our
method is named ’Bold,’ it actually promotes exploration by diminishing the likelihood of selecting
the action with the highest value. This is accomplished through overestimating the values of all
available actions.

We also address the prerequisites for transitioning from Eq. 2 to Eq. 3. This transition necessitates
that the actions sampled from the π are as consistent as possible with the actions sampled from the
πE . In other words, ensuring that these two policies are as aligned as possible. Subsequently, we
delve into the discussion of how to learn this policy π.

4.3 POLICY LEARNING

Drawing inspiration from soft policy learning methods, we begin by defining a conservative policy
for optimization, which is defined as follows:

πO(· |st) =
eQ

min(st, ·)∑
a∈A eQmin(st,a)

,

then we can let the policy directly learn from the target policy like the soft policy learning as follows:
π′ = argmin

π
DKL (π(· |st) ∥ πO(· |st)) ,

Now consider the neural network parameterized Qθ function and policy πϕ, thus,

Qmax(st,at) = max{Qθ1(st,at), Qθ2(st,at)}, Qmin(st,at) = min{Qθ1(st,at), Qθ2(st,at)}
(4)

Next, to minimize the expected KL-divergence policy objective,
Jπ(ϕ) = Est∼D [DKL (πϕ(· |st) ∥ πO(· |st))]

= Est∼D
[
DKL

(
πϕ(· |st)

∥∥ exp(Qmin
θ (st, ·)− logZθ(st))

)]
= Est∼D

[
Eat∼πϕ(· |st)

[
log πϕ(at|st)−Qmin

θ (st,at) + logZθ(st)
]]
, (5)

where Zθ(st) is a constant for given state, D is a replay buffer and Eq. 5 requires sampling ac-
tion from the policy piϕ. 2 To make the policy trainable, which means that policy parameters are
differentiable, the action is reparameterized as follows:

at = fϕ(ϵt; st), ϵt ∼ N (µ, σ2). (6)
The gradient of Jπ(ϕ) with respect to ϕ as follows:

∇ϕJπ(ϕ) = ∇ϕ Est∼D,ϵt∼N
[
log πϕ(at|st)−Qmin(st,at)

]
= Est∼D,ϵt∼N

[
∇ϕ log πϕ(at|st)−∇ϕQ

min(st,at)|at=fϕ(ϵt;st)

]
, (7)

since we utilize a neural network to parameterize both the policy and Q-function, we can employ a
deep learning framework to perform the forward computations for the two terms in Eq. 7. The auto-
matic gradient mechanism inherent to the framework will handle the backpropagation automatically.
We can then derive an unbiased estimation of Eq. 7 using the following equation:

∇̂ϕJπ(ϕ) = ∇ϕ log πϕ(at|st)−∇ϕQ
min(st,at)|at=fϕ(ϵt;st). (8)

Here, refer to Eq. 3, we write the Q learning objective:

JQ(θ) = E(st,at)∼D

[
1

2
(Qθ(st,at)− Q̂(st,at))

2

]
, (9)

where Q̂(st,at) = r(st,at) + γ Eϵt+1∼N
[
Qmin(st+1,at+1)− log π(at+1|st+1)

]
, and at+1 =

fϕ(ϵt+1; st+1), the − log π(at+1|st+1) term is due to the computation is based on the maximum
entropy framework and the Q function is also in an energy-based form. The transition from replay
buffer D is generated from the interaction of the policy πE and the environment. Then the gradient
of the Q learning objective(Equation (9)) can be estimated with an unbiased estimator

∇̂θJQ(θ) = ∇θQθ(at, st)
(
Qθ(st,at)− r(st,at)− γQmin(st+1,at+1) + γ log π(at+1|st+1)

)
.

2πϕ contains parameters that need to be learned, while πE and πO do not contain parameters.

6

Under review as a conference paper at ICLR 2024

4.4 THE BOLD EXPLORATION ALGORITHM

In the Bold Actor Conservative Critic (BACC) algorithm (refer to Algorithm 1 in the appendix),
several key steps are followed: 1)Dynamic Increase of βt (line 3): This is done to ensure the con-
vergence of the Q-value, as described in section 4.1; 2)Action Sampling from Exploration Policy
(line 5): Actions are sampled from the exploration policy to interact with the environment, as de-
tailed in section 4.2; 3)Storing Transitions in Memory Buffer: The resulting transitions are stored in
a memory buffer; 4)Updating the Q-function (line 12) and Actor (line 13): BACC samples transi-
tions from the memory buffer to update both the Q-function and the actor, as explained in section 4.3.

In more detail, the policy network outputs both µ and σ for Equation (6). We uniformly sample sn
actions from the range [µ− sr ∗ σ, µ+ sr ∗ σ] to evaluate the sampled actions and construct the πE

distribution. The hyperparameters sr, sn, and βt are three key parameters in our algorithm. Further
details regarding the parameters and time cost will be discussed in Appendix E.

4.5 RELATED WORK

Exploration. Classical exploration methods in reinforcement learning encompass ϵ-greedy and
UCB-1 (Auer et al., 2002). In policy gradient methods, policy-based exploration can be facilitated
by leveraging information from the policy itself, such as entropy regularization. The deterministic
policy gradient method (Silver et al., 2014) introduced the concept of separating policy learning
from Q-function learning. Subsequently, deterministic-policy-based methods began exploring by
randomly sampling actions around the policy, leading to the development of the Optimistic Actor-
Critic (OAC) method (Ciosek et al., 2019). OAC predicts an offset of the Gaussian policy mean
to encourage out-of-distribution (OOD) exploration. In the context of continuous RL tasks, several
heuristic value-based exploration methods have emerged. For instance, the Coherent Exploration al-
gorithm (Zhang & Van Hoof, 2021) directly modifies the last layer parameters of the policy network
to enhance the policy’s exploratory nature. The DOIE algorithm (Lobel et al., 2022) explores using
a modified Q-function, assigning an optimistic value to transitions that lie significantly beyond the
agent’s prior experience. The RRS algorithm (Sun et al., 2022) directly alters Q-values, effectively
adjusting the initialization parameters of the Q-network, but this requires prior knowledge, such as
auxiliary rewards. In contrast, our method does not necessitate prior knowledge. In specific practical
applications, the AW-OPT (Lu et al., 2022) algorithm uses both policy and Q value for exploration,
assigning different weights to these two exploration approaches to achieve better control.

Overestimation. The concept of overestimation was first introduced in the paper by Thrun and
Schwartz (Thrun & Schwartz, 1993), discussing the positive approximation error in the function
approximation for RL. Then the MCQ-L (Rummery & Niranjan, 1994) method(famous with the
name “SARSA” (Sutton & Barto, 2018)) mentioned that the argmax operator is impractical in train-
ing. They estimate the Q value with the consequent two-state-action pairs(in an online form). The
Double Q learning (Hasselt, 2010) updates the Q value with two estimators to avoid overestimation.
Then the Double DQN (Van Hasselt et al., 2016) is proposed, which parameterizes the Q function
with a neural network. Inspired by the Double DQN, TD3 (Fujimoto et al., 2018) algorithm is pro-
posed to handle overestimation for continuous action space. Regarding the stable Q-value updates,
our method follows the TD3 approach, using the minimum Q-value from the two delayed-updated
Q-functions to estimate the target Q-value, thereby minimizing overestimation. As for exploration,
we harness overestimation to encourage bolder exploration strategies.

Policy learning. Stochastic policy gradient methods, such as A3C (Mnih et al., 2016),
TRPO (Schulman et al., 2015), and PPO (Schulman et al., 2017), are applicable for policy learning
in continuous action spaces. However, optimizing stochastic policy gradients in continuous action
spaces can be challenging, and deterministic policy gradient methods based on value functions often
yield better results. In the DPG (Silver et al., 2014) algorithm, the policy parameters are optimized
to maximize the Q-function. The DDPG (Lillicrap et al., 2016) algorithm is a neural network-based
variant of the DPG algorithm. The SQL (Haarnoja et al., 2017) algorithm assumes an energy-based
form for the Q-function. The TD3 (Fujimoto et al., 2018) algorithm introduces conservative policy
parameter updates using the minimum value of the two Q-functions. Lastly, the SAC (Haarnoja
et al., 2018) algorithm employs a stochastic actor for policy exploration. Previous methods em-
pirically calculate policy gradient with the minimum Q-value. In this paper, we explicitly define

7

Under review as a conference paper at ICLR 2024

the learning scheme, minimizing the KL-divergence between the target policy and the conservative
policy.

5 EXPERIMENTS

We conducted experiments using the Mujoco physics engine (Todorov et al., 2012), which is cur-
rently freely available and maintained by DeepMind. Additionally, we utilized the PyBullet physics
engine (Coumans & Bai, 2016–2021), which offers challenging environments for simulating robot
control tasks. These simulations were interacted with through the Python API provided by OpenAI
Gym (Brockman et al., 2016) for ease of use and interaction. In the following sections, we will
present the primary experimental results along with their corresponding analyses. More specific
and detailed results can be found in the appendix E. Unless otherwise specified, the units on the
horizontal axis of the graph represent 1M steps.

0.0 1.0 2.0 3.0

0.0

2.5

5.0

7.5

av
er

ag
e

re
tu

rn

1e3 (a) Humanoid-v2

0.0 1.0 2.0 3.0

0.0

2.5

5.0

7.5
av

er
ag

e
re

tu
rn

1e3 (b) Ant-v2

0.0 1.0 2.0 3.0

0.0

0.5

1.0

1.5

av
er

ag
e

re
tu

rn

1e4 (c) Halfcheetah-v2

bacc

oac

sac

td3

rrs

0.0 1.0 2.0 3.0
million steps

0

2

4

6

av
er

ag
e

re
tu

rn

1e3 (d) Walker2d-v2

0.0 1.0 2.0 3.0
million steps

0

2

4

av
er

ag
e

re
tu

rn

1e3 (e) Hopper-v2

0.0 1.0 2.0 3.0
million steps

0.0

0.5

1.0

1.5

av
er

ag
e

re
tu

rn

1e2 (f) Swimmer-v2

Figure 3: Results of BACC and four baseline algorithms in the six continuous environments

General results on MuJoCo benchmark. We compare BACC to OAC[2019] (Ciosek et al.,
2019), SAC[2018] (Haarnoja et al., 2018), TD3[2018] (Fujimoto et al., 2018) and RRS[2022] (Sun
et al., 2022) , four recent model-free RL methods that achieve state-of-the art performance. All
methods run with six random seeds. The policy network and the Q network are the same for all
methods. BACC uses three hyper-parameter related to exploration, which has been introduced in
section 4.4. We provide the value of all hyper-parameter in the appendix C. The results are orga-
nized based on the complexity of the environment, ranging from complex to simple, as illustrated
by Figure 3(a) through Figure 3(f). The Humanoid environment is the most complex, and the Swim-
mer environment is the simplest. The state dim and action dimension are summarized in the ap-
pendix D. As shown in Figure 3, our method achieves promising results on this benchmark. On
Humanoid-v2, BACC achieves state-of-the-art performance and is sample efficient than previous al-
gorithms. On Ant-v2, BACC works slightly worse than the RRS algorithm in the final performance.
On Halfcheetah-v2, our method get better sample efficient. On Walker2d-v2 and Hopper-v2, our
method get similar results with others. On Walker2d-v2, our method work better in the early learn-
ing stage.

Assessment on exploration. When evaluating the quality of exploration solely based on the results
in Fig. 3, it might not provide a clear understanding of what is happening. Therefore, we conducted
an analysis of the rewards obtained during each exploration. Comparing Fig. 3 and Fig. 4, we have
the following observations: In the humanoid environment, the differences in exploration rewards
are not very significant among the algorithms. However, there is a substantial difference in the
learned policies. In the hopper environment, OAC’s exploration seems to have become ineffective,
but the algorithm continues to improve its policy. These observations reveal important insights:
The first observation suggests that high-quality exploration has a significant impact on improving
policy learning. The second observation indicates that off-policy algorithms are more robust to

8

Under review as a conference paper at ICLR 2024

0.0 1.0 2.0 3.0
0

2

4

6

ex
pl

or
at

io
n

re
tu

rn

1e3 (a) Humanoid-v2

0.0 1.0 2.0 3.0

0

2

4

6

ex
pl

or
at

io
n

re
tu

rn

1e3 (b) Ant-v2

0.0 1.0 2.0 3.0

0.0

0.5

1.0

ex
pl

or
at

io
n

re
tu

rn

1e4 (c) Halfcheetah-v2

bacc

oac

0.0 1.0 2.0 3.0

million steps

0

2

4

ex
pl

or
at

io
n

re
tu

rn

1e3 (d) Walker2d-v2

0.0 1.0 2.0 3.0

million steps

0

1

2

3

ex
pl

or
at

io
n

re
tu

rn

1e3 (e) Hopper-v2

0.0 1.0 2.0 3.0

million steps

0.0

0.5

1.0

ex
pl

or
at

io
n

re
tu

rn

1e2 (f) Swimmer-v2

Figure 4: Average exploration episode return of BACC and OAC

suboptimal exploration results. In other words, poor exploration outcomes do not necessarily have
a fatal impact on policy learning if the policy has been optimal (at about 0.8M steps). Additionally,
this graph provides a more direct illustration of the effectiveness of our exploration strategy.

0.0 1.0 2.0 3.0

-1

0

1

2

av
er

ag
e

re
tu

rn

1e2(a) FlagrunHarder-v1

bacc

sac

oac

0.0 1.0 2.0 3.0

0

2

4

6

1e2 (b) Flagrun-v1

bacc

sac

oac

0.0 1.0 2.0 3.0
0

2

4

6

8

1e3 (c) Humanoid-v2

Q

E

0.0 1.0 2.0 3.0
0

2

4

6

8

1e3 (d) Humanoid-v2

doubleQ

tripleQ

Figure 5: (a-b) More results on RoboSchool, Flagrun-v1 and FlagrunHarder-v1.(c) We compare
the exploration result of πQ vs πE in the Humanoid-v2 environment. (d) We added additional Q-
functions to see if the results would improve.

Additional discussion. We conducted experiments on the Roboschool simulation platform. We
add comparative experiments in HumanoidFlagrun-v1 and HumanoidFlagrunHarder-v1 on Ro-
boschool simulation. In the HumanoidFlagrun environment, the robot must run toward a randomly
generated flag. In the HumanoidFlagrunHarder environment, the robot will be constantly bom-
barded by white cubes. In these two environments, the position of the flag is changed randomly, so
the performances of the off-policy algorithm are pretty poor. In Fig. 5(a), it can be seen that using
policy for exploration is better than using Q for exploration. In Fig. 5(b), since the environment is
more difficult so that most of the interactions occur in the early stage, our method can be better when
the information of Q can be properly utilized. In Fig. 5(c), we show that exploring with πE gives
better results than πQ, it indicates that our utilization of overestimation is effective. If the difference
between the two Q-functions is larger, it should be more efficient. We are curious about the impact
of adding more Q-functions on the results, so we tested the effect of three Q functions. In Fig. 5(d),
it can be found that triple Q functions gives better and more stable results.

6 CONCLUSION

In this paper, we have developed a practical policy-based exploration strategy for deterministic pol-
icy reinforcement learning in continuous action spaces, realizing Q-value-guided out-of-distribution
exploration. We conducted experiments on the Mujoco and RoboSchool benchmarks. In comparison
to prior methods, our approach achieves more effective action exploration and demonstrates substan-
tial improvements over previous approaches in the most complex Humanoid-v2 environments.

9

Under review as a conference paper at ICLR 2024

Reproducibility statement. We have included a detailed proof of the proposed theorem in Ap-
pendix A, a comprehensive algorithm description in Appendix B, and the experimental hyperparam-
eters in Appendix C. Additionally, we provide our code in the supplementary material to facilitate
the replication and verification of our results.

REFERENCES

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Kamil Ciosek, Quan Vuong, Robert Loftin, and Katja Hofmann. Better exploration with opti-
mistic actor critic. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/a34bacf839b923770b2c360eefa26748-Paper.pdf.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016–2021.

Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft
updates. In The Conference on Uncertainty in Artificial Intelligence. AUAI press, 2015.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Hado Hasselt. Double q-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and
A. Culotta (eds.), Advances in Neural Information Processing Systems, volume 23. Curran
Associates, Inc., 2010. URL https://proceedings.neurips.cc/paper_files/
paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Inter-
national Conference on Learning Representations, volume 32, 2016.

Sam Lobel, Omer Gottesman, Cameron Allen, Akhil Bagaria, and George Konidaris. Optimistic
initialization for exploration in continuous control. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 7612–7619, Jun. 2022.

Yao Lu, Karol Hausman, Yevgen Chebotar, Mengyuan Yan, Eric Jang, Alexander Herzog, Ted Xiao,
Alex Irpan, Mohi Khansari, Dmitry Kalashnikov, et al. Aw-opt: Learning robotic skills with
imitation andreinforcement at scale. In Conference on Robot Learning, pp. 1078–1088. PMLR,
2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

OpenAI. Introducing roboschool. https://openai.com/research/roboschool, 2017.

10

https://proceedings.neurips.cc/paper_files/paper/2019/file/a34bacf839b923770b2c360eefa26748-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/a34bacf839b923770b2c360eefa26748-Paper.pdf
http://pybullet.org
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://openai.com/research/roboschool

Under review as a conference paper at ICLR 2024

OpenAI. Introducing chatgpt. https://openai.com/blog/chatgpt, 2022.

OpenAI, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Christy Dennison,
David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray, Cather-
ine Olsson, Jakub Pachocki, Michael Petrov, Henrique P. d. O. Pinto, Jonathan Raiman, Tim Sal-
imans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski,
and Susan Zhang. Dota 2 with large scale deep reinforcement learning, 2019.

Ling Pan, Qingpeng Cai, Qi Meng, Wei Chen, and Longbo Huang. Reinforcement learning with
dynamic boltzmann softmax updates. In Proceedings of the 39th International Joint Conference
on Artificial Intelligence, IJCAI-20, pp. 1992–1998. International Joint Conferences on Artificial
Intelligence Organization, 7 2020.

Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems, vol-
ume 37. University of Cambridge, Department of Engineering Cambridge, UK, 1994.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin A. Riedmiller.
Deterministic policy gradient algorithms. In Proceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, volume 32 of JMLR Workshop
and Conference Proceedings, pp. 387–395. PMLR, 2014.

Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Ex-
ploit reward shifting in value-based deep-rl: Optimistic curiosity-based exploration and
conservative exploitation via linear reward shaping. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Infor-
mation Processing Systems, volume 35, pp. 37719–37734. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/f600d1a3f6a63f782680031f3ce241a7-Paper-Conference.pdf.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforcement
learning. In Proceedings of the Fourth Connectionist Models Summer School, volume 255, pp.
263. Hillsdale, NJ, 1993.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Yijie Zhang and Herke Van Hoof. Deep coherent exploration for continuous control. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 12567–12577. PMLR,
18–24 Jul 2021.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

11

https://openai.com/blog/chatgpt
https://proceedings.neurips.cc/paper_files/paper/2022/file/f600d1a3f6a63f782680031f3ce241a7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/f600d1a3f6a63f782680031f3ce241a7-Paper-Conference.pdf

Under review as a conference paper at ICLR 2024

Appendix

A PROOFS

A.1 THEOREM 1

This proof (of Theorem 1) uses techniques from the proof of Theorem 1 in the paper (Pan et al.,
2020), adapting them to the setting considered in this paper. An informal overview is as follows.
The maximum of the two Q values is a particular case in the computation of the operator. Here,
we mainly show this process also can guarantee convergence. We start with a proposition from the
paper (Pan et al., 2020) that shows the relation between the soft-max and the log-sum-exp function.

Proposition 1

lseβ(X)− smβ(X) =
1

β
H(X) =

1

β

n∑
i=1

−pi log(pi) ≤
log(n)

β
, (10)

where pi = eβxi∑n
j=1 eβxj

denotes the weights of the softmax distribution, lseβ(X) denotes the log-sum-

exp function lseβ(X) = 1
β log(

∑n
i=1 e

βxi), and smβ(X) denotes the softmax function smβ(X) =∑n
i=1 eβxixi∑n
j=1 eβxj

. H(X) is the entropy of the distribution. It is easy to check that the maximum entropy

is achieved when pi =
1
n , where the entropy equals to log(n).

Proof.

1

β

n∑
i=1

−pi log(pi)

=
1

β

n∑
i=1

(
− eβxi∑n

j=1 e
βxj

log

(
eβxi∑n
j=1 e

βxj

))

=
1

β

n∑
i=1

− eβxi∑n
j=1 e

βxj

βxi − log

 n∑
j=1

eβxj

=−

n∑
i=1

eβxixi∑n
j=1 e

βxj
+

1

β
log

 n∑
j=1

eβxj

 ∑n
i=1 e

βxi∑n
j=1 e

βxj

=− smβ(X) + lseβ(X)

Theorem 1 (Convergence of value iteration with the DDQS operator) For any dynamic double
Q softmax operator gdqβt , if βt approaches∞, the value function after t iterations vt converges to
the optimal value function V ∗.

Proof.
||(Tβt

Vi)− (Tβt
Vj)||∞ (11)

=max
s
|ddqsβt

(Qmax
i (s, ·))− ddqsβt

(Qj(s, ·))| (12)

≤max
s
|lseβt

(Q
(
is, ·))−

1

β
H(Qi(s, ·))

− lseβt
Qj(s, ·)) +

1

β
H(Qj(s, ·))| (13)

≤max
s
|lseβt

(Qi(s, ·))− lseβt
((Qj(s, ·))|︸ ︷︷ ︸

(A)

+
log(|A|)

βt︸ ︷︷ ︸
(B)

, (14)

12

Under review as a conference paper at ICLR 2024

For the term (A), the log-sum-exp operator has been proved as a non-expanding operator in the paper
(Fox et al., 2015). In mathematics, the log-sum-exp function is almost equal to the max function.
That is why this makes sense. Here, we prove that it’s also a non-expanding operator in our greedy
Q setting. Define a norm on Q value as ∥Qi − Qj∥ ≜ maxs,a |Qi(s,a) − Qj(s,a)|. Suppose
ϵ = ∥Qi − Qj∥. Please note that in our setting,Qi(s,a) = minQ1

i (s,a), Q
2
i (s,a), Qj(s,a) is

similar defined. Then

log

∫
exp(Qi(s

′,a′)) da′ ≤ log

∫
exp(Qj(s

′,a′) + ϵ) da′

= log

(
exp(ϵ)

∫
expQj(s

′,a′) da′
)

= ϵ+ log

∫
expQj(a

′,a′) da′. (15)

Similarly, log
∫
expQi(s

′,a′) da′ ≥ −ϵ + log
∫
expQj(s

′,a′) da′. Therefore ∥T Qi − T Qj∥ ≤
γϵ = γ∥Qi −Qj∥.

Consider for Q1 and Q2, we expand the composed Q function, we derive

∥T Qi − T Qj∥ ≤ γ∥Qi −Q1
j∥, ∥T Qi − T Qj∥ ≤ γ∥Qi −Q2

j∥

when Qi = Q1
i , it means Q1

i is the min value, for the term (A),we have

max
s
|lseβt

(Qi(s, ·))− lseβt
((Qj(s, ·))|

≤ max
s,a

1

βt
|βtQ

1
i − βtQ

1
j |

≤ γmax
s,a

∑
s′

p(s′|s, a)|Vi(s
′)− Vj(s

′)|

≤ γ||Vi − Vj ||∞

So T is a contraction. We can get the same result when Qi = Q2
i . And due to the min operator, Q1

and Q2 are updated iteratively. Consequently, the two Q functions converge to the optimal value,
satisfying the modified Bellman equation. Thus, the optimal policy is unique.

For the term (B), the details can be found in (Pan et al., 2020). A direct understanding is that as β
increases, this term will eventually become zero.

B ALGORITHM

Compared to SAC and OAC algorithms, the BACC algorithm 1 primarily makes modifications in
the exploration component. In practical applications, instead of calculating the state-value function,
BACC directly updates the Q-functions. In our algorithm, several key steps are followed: 1)Dynamic
Increase of βt (line 3): This is done to ensure the convergence of the Q-value, as described in
section 4.1; 2)Action Sampling from Exploration Policy (line 5): Actions are sampled from the
exploration policy to interact with the environment, as detailed in section 4.2; 3)Storing Transitions
in Memory Buffer: The resulting transitions are stored in a memory buffer; 4)Updating the Q-
function (line 12) and Actor (line 13): BACC samples transitions from the memory buffer to update
both the Q-function and the actor, as explained in section 4.3.

C HYPER PARAMETERS

Table 1 provides an overview of the common BACC parameters utilized in the comparative eval-
uation presented in Figure 3. However, for the results in Figure 5(a-b), which were evalu-
ated on the RoboSchool benchmark, we made slight adjustments to the hyperparameters. In the
HumanoidFlagrunHarder-v1 environment, we set βt to 10, and sr to 3. In the HumanoidFlagrun-v1
environment, we used βt=1 and sr=0.1.

13

Under review as a conference paper at ICLR 2024

Algorithm 1 Bold Actor and Conservative Critic (BACC).
Require: θ1, θ2, ϕ ▷ Initial parameters θ1, θ2 of the Q function and ϕ of the target policy πT .

1: θ̆1 ← θ1, θ̆2 ← θ2,D ← ∅ ▷ Initialize target network weights and replay buffer
2: for each iteration do
3: increase βt according to the iteration number
4: for each environment step do
5: at ∼ πE(at|st, βt) ▷ Sample action from exploration policy as in (4.2).
6: st+1 ∼ p(st+1|st,at) ▷ Sample state from the environment
7: D ← D ∪ {(st,at, R(st,at), st+1)} ▷ Store the transition in the replay buffer
8: end for
9: for each training step do

10: sample batch transition (st,at, R(st,at), st+1) from the buffer
11: compute target Q̂i(st,at) for i ∈ 1, 2

12: update θi with ∇̂θiJQ(θi) for i ∈ 1, 2 ▷ Q parameter update
13: update ϕ with ∇̂ϕJπ(ϕ) ▷ Policy parameter update
14: θ̆1 ← τθ1 + (1− τ)θ̆1, θ̆2 ← τθ2 + (1− τ)θ̆2 ▷ Update target networks
15: end for
16: end for
Ensure: θ1, θ2, ϕ ▷ Optimized parameters

Parameter Value

Shared
optimizer Adam
learning rate 3 · 10−4

discount (γ) 0.99
replay buffer size 106

number of hidden layers (all networks) 2
number of hidden units per layer 256
number of samples per minibatch 256
nonlinearity ReLU

SAC
target smoothing coefficient (τ) 0.005
target update interval 1
gradient steps 1

OAC
beta UB 4.66
delta 23.53

BACC
dynamic weight (βt) epoch number*1
sample range (sr) 7
sample size (sn) 32

Table 1: BACC Hyper-parameters

D ENVIRONMENT PROPERTIES

The properties of each environment are summarized in Table 2.

14

Under review as a conference paper at ICLR 2024

Environment State dim Action dim Episode Length

Humanoid-v2 376 17 1000
Ant-v2 111 8 1000
HalfCheetah-v2 17 6 1000
Walker2d-v2 17 6 1000
Hopper-v2 11 3 1000
Swimmer-v2 8 2 1000

Table 2: The details of Mujoco Environments used in this paper.

E MORE RESULTS

E.1 RELATION BETWEEN BETA AND SAMPLE SIZE

We sample n integers uniformly from [1,1000] and give the numerical result of the lseβ(X), smβ(X)
and 1

βH(X). According to the results shown in Table 3,Table 4,Table 5, we can see that a large
beta will lead smβ(X) give a consistent result with the max operator. And, smβ(X) is better than
lseβ(X), it approximate the maximum from the lower bound. With a large beta, the maximum value
can be aprroximated regardless of the sample size.

n, beta=0.01 lseβ(X) smβ(X) 1
βH(X) maximum

10 992.46 932.61 59.85 976
100 1252.17 900.62 351.50 995
1000 1461.84 899.60 561.094 999
10000 1692.55 900.98 779.09 999
100000 1920.21 899.25 896.54 999
1000000 2150.74 899.56 nan 999

Table 3: The results when beta=0.01.

n, beta=1 lseβ(X) smβ(X) 1
βH(X) maximum

10 834.69 834.00 0.69 834
100 970.02 969.92 0.09 970
1000 1000.29 998.70 1.58 999
10000 1001.69 998.31 3.38 999
100000 1004.10 998.41 5.68 999
1000000 1006.36 998.41 7.85 999

Table 4: The results when beta=1.

E.2 REWARD DIFFERENCE BETWEEN EXPLORATION AND EVALUATION

As shown in Figure 6, Because both algorithms are related to exploration, the evaluation return is
higher than the exploration return. However, something goes wrong in OAC exploration. As we use
transition sampled from the replay buffer to train the policy, it does not seem to have much impact
on policy learning. Instead, it shows that our exploration strategy is better than the OAC method.

E.3 REWARD COMPARISON BETWEEN BACC AND OAC

As shown in Figure 7, our method performs better in policy evaluation. Another thing to note is that
our method is inspired by OAC, and we found some problems with the exploration strategy of OAC.
Therefore, we need to prove that our exploration strategy is better, as shown in Figure 8, this figure
shows that our exploration strategy is better.

15

Under review as a conference paper at ICLR 2024

n, beta=100 lseβ(X) smβ(X) 1
βH(X) maximum

10 947.0 947.0 0.0 947
100 996.0 996.0 0.0 996
1000 997.0 997.0 0.0 997
10000 999.02 999.00 0.02 999
100000 999.05 999.0 0.05 999
1000000 999.07 999.0 0.07 999

Table 5: The results when beta=100.

0.0 1.0 2.0 3.0
million steps

0

2

4

av
er

ag
e

re
tu

rn

1e3 gac-hopper-v2

exploration

evaluation

0.0 1.0 2.0 3.0
million steps

0

2

4

av
er

ag
e

re
tu

rn

1e3 oac-hopper-v2

exploration

evaluation

Figure 6: Exploration and evaluation difference of BACC and OAC

E.4 MORE EXPERIMENTS

Learning the Q value. The parameter βt influences the learning of the Q function. In practice, we
dynamically increase the βt by setting it as the multiplication of β and the epoch number of timestep
t. In the early stage of training, the Q function cannot provide little information, so a small β can be
used to encourage the exploration. The different β results are shown in Figure 9(a). As we can see,
a smaller β can produce a slightly better result. Our method is not so sensitive to this parameter in
our setting. Nevertheless, a smaller β indeed takes a better result.

Better exploration. As shown in Figure 9(b), if we use a smaller value of sr, that is, we sample
action around the current policy, we can see the final result compared to the two larger values is
terrible, which shows that aimless exploration does lead to poor results, it is difficult to get good
results if sr is too small. Policy learning depends on how well the initial policy is. When sr=7, we
get better results indicating that the policy divergence problem can be solved by explicit sampling
point out-of-distribution. Thus, we can do more OOD sampling with the Q function to explore action
space. Additionally, according to the results of sr=7 and sr=9, we know that sr should not be as big
as possible. Bigger sr does not mean better results because the policy gradient comprises the ∇ϕQ
and∇ϕπ. Suppose we optimize the policy with many low-probability actions, which may prefer by
the Q function. In that case, the policy gradient may be too small to promote the parameter update.

Exploration policy. When constructing an exploration policy, a key question is how many actions
need to be evaluated to obtain a usable exploration policy. If constructing the policy needs many
actions to be evaluated, our method becomes computationally burdensome and resource-intensive.
As shown in Figure 9(c), when sn=10, the final result is the best; when sn=1000, the best result is
achieved at about one million steps, but the final result does not gain an advantage. According to the
results in the figure, it can be seen that BACC can be effective by evaluating only a limited number
of actions, and the improvement of the final performance does not lie in the complete evaluation
of actions in the action space. Instead, the exploration strategy is the main factor for performance
improvement.

Time cost. Our experimental setup consists of a computer with Ubuntu 18 operating system,
equipped with a 9900K CPU and an RTX 2060 GPU. Without using the exploration strategy pro-

16

Under review as a conference paper at ICLR 2024

0.0 1.0 2.0 3.0
0

2

4

6

8

ev
al

ua
tio

n
re

tu
rn

1e3 (a) Humanoid-v2

0.0 1.0 2.0 3.0

2

4

6

ev
al

ua
tio

n
re

tu
rn

1e3 (b) Ant-v2

0.0 1.0 2.0 3.0

0.0

0.5

1.0

1.5

ev
al

ua
tio

n
re

tu
rn

1e4 (c) Halfcheetah-v2

bacc

oac

0.0 1.0 2.0 3.0

million steps

0

2

4

6

ev
al

ua
tio

n
re

tu
rn

1e3 (d) Walker2d-v2

0.0 1.0 2.0 3.0

million steps

0

1

2

3

4

ev
al

ua
tio

n
re

tu
rn

1e3 (e) Hopper-v2

0.0 1.0 2.0 3.0

million steps

0.0

0.5

1.0

1.5

ev
al

ua
tio

n
re

tu
rn

1e2 (f) Swimmer-v2

Figure 7: Average evaluation episode return of BACC and OAC

0.0 1.0 2.0 3.0
0

2

4

6

ex
pl

or
at

io
n

re
tu

rn

1e3 (a) Humanoid-v2

0.0 1.0 2.0 3.0

0

2

4

6

ex
pl

or
at

io
n

re
tu

rn

1e3 (b) Ant-v2

0.0 1.0 2.0 3.0

0.0

0.5

1.0
ex

pl
or

at
io

n
re

tu
rn

1e4 (c) Halfcheetah-v2

bacc

oac

0.0 1.0 2.0 3.0

million steps

0

2

4

ex
pl

or
at

io
n

re
tu

rn

1e3 (d) Walker2d-v2

0.0 1.0 2.0 3.0

million steps

0

1

2

3

ex
pl

or
at

io
n

re
tu

rn

1e3 (e) Hopper-v2

0.0 1.0 2.0 3.0

million steps

0.0

0.5

1.0

ex
pl

or
at

io
n

re
tu

rn

1e2 (f) Swimmer-v2

Figure 8: Average exploration episode return of BACC and OAC

posed in this paper, it takes 6.619 seconds to complete one epoch on average. In most of our experi-
ments, we evaluate 32 actions. With this setting, running one epoch takes an average of 7.29 seconds.
If we evaluate 64 actions, running one epoch takes an average of 7.09 seconds. The GPU may be
more efficient when computing data with a batch size 64. From this, the additional time added due
to exploration is insignificant. One epoch requires 1000 interactions with the environment. When
averaged per exploration step, the time consumed is almost negligible.

We show all the results of different hyper-parameters on these six environments. As shown in
Figure 10, Figure 11 and Figure 12, combine the numerical results, we can better choose the value
for hyper-parameters.

E.5 VISUALIZATION FOR THE Q VALUE

17

Under review as a conference paper at ICLR 2024

0.0 1.0 2.0 3.0

million steps

0

1

2

3

4

av
er

ag
e

re
tu

rn

1e3 Hopper-v2

= 0.01
= 1
= 100

(a) Hyper-parameter β

0.0 1.0 2.0 3.0

million steps

0

1

2

3

4

av
er

ag
e

re
tu

rn

1e3 Hopper-v2

sr = 1
sr = 3
sr = 7
sr = 9

(b) Sample range

0.0 1.0 2.0 3.0

million steps

0

1

2

3

4

av
er

ag
e

re
tu

rn

1e3 Hopper-v2

sn = 10
sn = 100
sn = 1000

(c) Sample size

Figure 9: Three hyper-parameters related to the exploration policy. (a): In practice, the value of βt

is obtained by multiplying β with the epoch number of timestep t. (b): The parameter sr determines
the sample range, where a large value indicates that sampled actions could deviate further from the
distribution of the current policy. (c): We uniformly sample sn actions within the sample range to
construct our exploration policy.

0.0 1.0 2.0 3.0
million steps

0.0

2.5

5.0

7.5

av
er

ag
e

re
tu

rn

1e3 humanoid-v2

0.0 1.0 2.0 3.0
million steps

0

2

4

6

av
er

ag
e

re
tu

rn

1e3 ant-v2

0.0 1.0 2.0 3.0
million steps

0.0

0.5

1.0

1.5

av
er

ag
e

re
tu

rn

1e4 halfcheetah-v2

0.0 1.0 2.0 3.0
million steps

0

2

4

6

av
er

ag
e

re
tu

rn

1e3 walker2d-v2

0.0 1.0 2.0 3.0
million steps

0

2

4

av
er

ag
e

re
tu

rn

1e3 hopper-v2

0.0 1.0 2.0 3.0
million steps

0.0

0.5

1.0

1.5

av
er

ag
e

re
tu

rn

1e2 swimmer-v2

sr = 1
sr = 3
sr = 7
sr = 9

Figure 10: The results of different sample range on the six environments.

Visualization of the Q function. Our approach is based on the maximum entropy framework
and assumes that the Q function is in an energy-based form. We design experiments to validate
this assumption. The action space in the Simmer environment is two-dimensional, making it an
ideal validation environment. We select an intermediate state of the Q network during the training
process, sample 400*400 points across the entire action space, and calculate the corresponding Q
values. The results we obtained are shown in Figure 13. We plot the 3d surface of the Q function,
and a 2d plane for rotor2=-1.

To observe the surface of the Q network, we plot different stage Q value, which is evaluated based on
a random start state and sampled actions in the Swimmer-v2 environments. As shown in Figure 14,in
the initial stage, the surface is not flat, which is influenced by the input (state and action); if the state
and action is zero vector, this surface should be flat, all zero. This phenomenon shows that neural
networks imply prior knowledge about choosing actions. Policy initialization is closely related to
policy learning. As training progresses, the final optimal action dramatically differs from the initial
policy.

18

Under review as a conference paper at ICLR 2024

0.0 1.0 2.0 3.0
million steps

0.0

2.5

5.0

7.5

av
er

ag
e

re
tu

rn

1e3 humanoid-v2

0.0 1.0 2.0 3.0
million steps

2

4

6

av
er

ag
e

re
tu

rn

1e3 ant-v2

0.0 1.0 2.0 3.0
million steps

0.0

0.5

1.0

1.5

av
er

ag
e

re
tu

rn

1e4 halfcheetah-v2

0.0 1.0 2.0 3.0
million steps

0

2

4

6

av
er

ag
e

re
tu

rn

1e3 walker2d-v2

0.0 1.0 2.0 3.0
million steps

0

2

4

av
er

ag
e

re
tu

rn

1e3 hopper-v2

0.0 1.0 2.0 3.0
million steps

0.0

0.5

1.0

1.5

av
er

ag
e

re
tu

rn

1e2 swimmer-v2

sn = 10
sn = 100
sn = 1000

Figure 11: The results of different sample size on the six environments.

0.0 1.0 2.0 3.0
million steps

0.0

2.5

5.0

7.5

av
er

ag
e

re
tu

rn

1e3 humanoid-v2

0.0 1.0 2.0 3.0
million steps

2

4

6

av
er

ag
e

re
tu

rn

1e3 ant-v2

0.0 1.0 2.0 3.0
million steps

0.0

0.5

1.0

1.5

av
er

ag
e

re
tu

rn

1e4 halfcheetah-v2

0.0 1.0 2.0 3.0
million steps

0

2

4

6

av
er

ag
e

re
tu

rn

1e3 walker2d-v2

0.0 1.0 2.0 3.0
million steps

0

2

4

av
er

ag
e

re
tu

rn

1e3 hopper-v2

0.0 1.0 2.0 3.0
million steps

0.0

0.5

1.0

1.5

av
er

ag
e

re
tu

rn

1e2 swimmer-v2

= 0.01
= 1
= 100

Figure 12: The results of different beta on the six environments.

F NUMERICAL RESULTS

Table F lists the numerical results for three time steps: 1e6, 2e6, and 3e6 timesteps. In different
environments, the optimal results for these three time steps are all displayed in bold.

G LIMITATIONS AND BROADER IMPACTS

Limitations. In low-dimensional action spaces, our method shows little improvement. It is partic-
ularly noticeable that in the swimmer-v2 environment, state-of-the-art results can reach an episode
reward of 350. Furthermore, exploration costs should also increase as the action space’s dimension-
ality increases. The conclusions we drew earlier may have limitations. However, it is challenging to

19

Under review as a conference paper at ICLR 2024

rotor2

rotor1

(a) Swimmer

rotor1

-101

ro
to

r2

-1
0

1

Q
 v

al
ue

0.400

0.425

0.450

0.475

0.500

0.525

(b) 3D visualization

-1 -0.5 0 0.5 1
rotor1

0.495

0.500

0.505

0.510

0.515

0.520

0.525

Q
 v

al
ue

(c) 2D plane

Figure 13: Visualization of the Q function. (a): The swimmer has two rotors, and its moving is
controlled by adjusting the torque applied to the two rotors. (b): The Q values of the two-dimension
actions are plotted in 3D Space. (c): We plot a particular case for rotor2=-1 to show that the Q
function has an energy-based form in early-stage training.

(a) Epoch 0 (b) Epoch 500

(c) Epoch 1500 (d) Epoch 2000

Figure 14: 3D surfaces of different epoch Q function

20

Under review as a conference paper at ICLR 2024

Humanoid-v2(µ ± σ) 1e6 2e6 3e6

td3 1756.27 ± 2238.27 1484.93 ± 1900.97 1598.9 ± 2036.04
sac 4567.02 ± 1685.49 5261.63 ± 963.99 4502.22 ± 2095.16
oac 4576.88 ± 814.27 5227.4 ± 1836.92 5819.47 ± 1933.58
rrs 5023.11 ± 372.79 5944.82 ± 51.67 6887.61 ± 186.2
bacc 5839.09 ± 444.96 7040.95 ± 460.54 7911.13 ± 616.55
Ant-v2(µ ± σ) 1e6 2e6 3e6

td3 4476.55 ± 1202.99 5566.91 ± 807.15 6019.93 ± 501.09
sac 3650.65 ± 1223.69 4883.99 ± 2146.68 5226.24 ± 894.48
oac 4298.93 ± 573.6 5037.22 ± 535.36 5495.85 ± 615.79
rrs 5452.52 ± 778.41 6527.35 ± 182.4 6588.18 ± 322.39
bacc 5080.74 ± 564.6 5990.94 ± 327.87 6142.29 ± 466.41

Halfcheetah-v2(µ ± σ) 1e6 2e6 3e6

td3 9884.53 ± 1649.81 11313.22 ± 1688.05 12495.93 ± 2317.8
sac 9020.98 ± 514.63 11961.11 ± 310.73 14339.73 ± 562.87
oac 10057.67 ± 880.59 11958.49 ± 591.72 12653.99 ± 333.77
rrs 10196.44 ± 1596.95 12186.35 ± 1456.34 12782.87 ± 1339.96
bacc 9915.54 ± 855.0 12985.18 ± 767.3 14021.4 ± 895.09

Walker2d-v2(µ ± σ) 1e6 2e6 3e6

td3 4431.91 ± 912.77 4957.68 ± 761.62 5447.56 ± 992.39
sac 4088.68 ± 590.64 4656.63 ± 819.8 5261.41 ± 389.63
oac 3582.6 ± 584.79 4024.35 ± 642.66 4919.95 ± 408.12
rrs 3771.38 ± 1128.64 4517.25 ± 344.15 4723.65 ± 424.02
bacc 3775.62 ± 1247.12 4846.29 ± 638.8 5324.82 ± 464.94

Hopper-v2(µ ± σ) 1e6 2e6 3e6

td3 3182.54 ± 594.2 2463.6 ± 1337.51 3409.52 ± 306.04
sac 2820.05 ± 730.76 2494.56 ± 910.32 2464.37 ± 1238.7
oac 3548.57 ± 95.57 3373.07 ± 512.82 2833.11 ± 1160.81
rrs 3469.71 ± 263.87 3451.62 ± 555.41 3125.02 ± 1259.31
bacc 3392.43 ± 230.12 3072.41 ± 655.76 3591.63 ± 342.43
Swimmer-v2(µ ± σ) 1e6 2e6 3e6

td3 66.29 ± 30.45 81.7 ± 42.95 96.14 ± 31.91
sac 63.34 ± 25.78 95.73 ± 40.15 118.05 ± 31.69
oac 118.62 ± 8.17 143.22 ± 6.4 145.19 ± 3.76
rrs 103.89 ± 26.15 137.55 ± 4.76 138.46 ± 3.43
bacc 128.39 ± 11.35 144.46 ± 1.87 147.78 ± 1.58

21

Under review as a conference paper at ICLR 2024

develop environments with higher-dimensional action spaces, and we still need to fully validate our
conclusions in such environments.

Broader impacts. We do not anticipate any negative consequences from using our method in
practice.

22

	Introduction
	Preliminary
	Problems and Our Solution to Previous Work
	Improving Exploration in Soft Policy Learning
	Dynamic Double Q Softmax Update
	Exploration with Greedy Q Value
	Policy Learning
	The Bold Exploration Algorithm
	Related Work

	Experiments
	Conclusion
	Proofs
	Theorem 1

	Algorithm
	Hyper parameters
	Environment Properties
	More Results
	Relation between Beta and Sample Size
	Reward Difference between Exploration and Evaluation
	Reward Comparison between BACC and OAC
	More Experiments
	Visualization for the Q Value

	Numerical results
	Limitations and Broader Impacts

