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Abstract

Adversarial robustness research has focused on de-
fending against misclassification attacks. However,
such adversarially trained models remain vulnera-
ble to underconfidence adversarial attacks, which
reduce the model’s confidence without changing the
predicted class. Decreased confidence can result in
unnecessary interventions, delayed diagnoses, and
a weakening of trust in automated systems. In this
work, we introduce two novel underconfidence at-
tacks: one that induces ambiguity between a class
pair, and ConfSmooth which spreads uncertainty
across all classes. For defense, we propose Under-
confidence Adversarial Training (UAT) that
embeds our underconfidence attacks in an adversar-
ial training framework. We extensively benchmark
our underconfidence attacks and defense strategies
across six model architectures (both CNN and ViT-
based), and seven datasets (MNIST, CIFAR, Im-
ageNet, MSTAR and medical imaging). In 14 of
the 15 data-architecture combinations, our attack
outperforms the state-of-the-art, often substantially.
Our UAT defense maintains the highest robustness
against all underconfidence attacks on CIFAR-10,
and achieves comparable to or better robustness
than adversarial training against misclassification
attacks while taking half of the gradient steps. By
broadening the scope of adversarial robustness to in-
clude uncertainty-aware threats and defenses, UAT
enables more robust computer vision systems. The
code will be made publicly available.

1 Introduction

Deep neural networks have achieved state-of-the-art
performance in various computer vision tasks, includ-
ing image classification. Despite these successes, the
broad adoption of deep learning models has simulta-
neously increased their exposure to sophisticated se-
curity threats, particularly adversarial attacks [1, 2].
Adversarial attacks introduce imperceptible pertur-
bations in the input data, causing models to produce
incorrect predictions. These threats are particularly
concerning for safety-critical applications, such as
medical diagnosis [3, 4], where errors can have se-
vere consequences. The risk is further amplified in
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Improving Vision Model Robustness against Misclassification
and Uncertainty Attacks via Underconfidence Adversarial Train-

collaborative human-AT settings [5], where incorrect
model outputs can compromise trust and effective-
ness. As a result, adversarial machine learning has
attracted significant attention in the past decade,
with over 2,300 studies dedicated to understanding
and mitigating these vulnerabilities [6].

However, most adversarial machine learning re-
search focuses on perturbations that induce misclas-
sification. Other vulnerabilities, such as uncertainty
manipulation, remain underexplored [7]. These at-
tacks alter confidence scores without changing the
predicted class [8], degrading the model calibration
and prediction reliability. Poor calibration is espe-
cially problematic in high-stakes applications, where
over- or under-confidence can lead to unnecessary
interventions, redundant oversight, or increased op-
erational costs.

Recent work highlights the potential impact of
uncertainty-based attacks, revealing that existing
defenses are vulnerable and, counterintuitively, that
white-box variants can be less effective than black-
box ones due to unintended decision boundary cross-
ings [9]. To address these limitations, we propose
ConfSmooth, a novel attack that lowers confidence
while preserving the original prediction of the model,
revealing vulnerabilities missed by accuracy-based
metrics. We also introduce Underconfidence Adver-
sarial Training (UAT), a defense designed to counter
confidence manipulation while maintaining robust-
ness to misclassification attacks, requiring only half
of the gradient steps of standard adversarial train-
ing. These methods reveal key vulnerabilities in
confidence-based threats and offer practical defenses
for high-stakes settings.

2 Related work

2.1 Adversarial attacks

Misclassification attacks. Adversarial robust-
ness research has focused on attacks that induce mis-
classification. Among early efforts in this area, the
fast gradient sign method (FGSM) is a foundational
adversarial white-box attack method that perturbs
inputs by taking a single step in the direction of
the gradient of the loss function, scaled by a small
factor [10]. Building on FGSM, projected gradient
descent (PGD) performs multiple iterative updates,
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projecting the perturbed inputs back onto the al-
lowed perturbation set (e.g., a £, ball) after each
step [11]. The PGD attack is widely considered a
strong first-order approach and serves as a standard
for evaluating robustness. Other optimization-based
attacks have also been developed with the aim of gen-
erating minimal and highly effective perturbations
to induce misclassifications. The Carlini & Wag-
ner (C&W) attack formulates adversarial example
generation as an unconstrained optimization prob-
lem, minimizing perturbation magnitude through
a tailored loss function [12]. The DeepFool attack
approximates the decision boundary of a classifier
with a linear function and computes the minimal
perturbation required to cross the boundary [13].

Uncertainty attacks. Recent work has begun
to examine adversarial attacks against prediction
confidence. One of the first uncertainty attacks
focused on reducing model confidence in the true
class while simultaneously increasing confidence in
the erroneous classes [8]. The attack adapts PGD
by taking steps in the direction of gradient loss us-
ing the softmax score associated with the predicted
class. Recently, both white-box and black-box at-
tacks based on PGD and Square Attack [14] have
been developed with the aim of increasing or de-
creasing confidence in model predictions [9]. The
four white-box variations are: (a) an overconfidence
attack that aims to increase the confidence of model
predictions; (b) an underconfidence attack, which
reduces the confidence of model predictions by reduc-
ing the different between the top two predicted class
probabilities; (¢) a maximum miscalibration attack
that reduces the confidence of correct predictions
and increases the confidence of incorrect predictions;
and (d) a random confidence attack, which randomly
applies underconfidence or overconfidence attacks.
Guided by its relevance to critical applications, we
focus on underconfidence attacks in this work, which
can make Al-assisted diagnostics unreliable and com-
plicate decision-making processes.

2.2 Adversarial defenses

Misclassification attack defenses. Adversarial
training (AT) is a foundational defense strategy ini-
tially developed to enhance robustness against mis-
classification attacks by training models on adversar-
ially perturbed examples [10, 11]. Training a model
with adversarial examples increases classification ac-
curacy on adversarially perturbed data, but typically
reduces clean accuracy. To mitigate this trade-off
between clean and robust accuracy, the TRadeoff-
inspired Adversarial Defense via Surrogate-loss min-
imization (TRADES) method combines a classifica-
tion loss in clean inputs with a Kullback-Leibler (KL)
divergence term that penalizes differences between
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the model predictions in clean and adversarial sam-
ples [15]. This loss encourages the model to maintain
stable predictions under adversarial perturbations
while preserving clean accuracy. RobustAugMix ex-
tended this approach by using the Jensen-Shannon
(JS) divergence [16], a symmetric and smooth variant
of the KL divergence, to measure the similarity be-
tween the output distributions of clean, augmented,
and adversarial inputs [17, 18]. Although some de-
fenses are designed to jointly improve adversarial
robustness and probability calibration, their effec-
tiveness against underconfidence attacks remains
unexplored.

Uncertainty attack defenses. A recent study
evaluated a range of calibration methods as poten-
tial defenses against uncertainty attacks [9]. These
methods aim to align predicted class probabilities
with true class likelihoods and fall into two main
categories: post-calibration and training-based cali-
bration. Post-calibration techniques, such as Platt
scaling [19], adjust model predictions after training,
while training-based approaches incorporate calibra-
tion objectives during learning, using bias correction
or regularization [20, 21]. Despite their widespread
use, neither class of methods demonstrated robust-
ness against uncertainty manipulation attacks [22—
25].  An approach designed to improve general-
ization against adversarial examples is Confidence-
Calibrated Adversarial Training (CCAT) [26], which
rejects low-confidence adversarial samples during
training. Unfortunately, CCAT does not guarantee
robustness against underconfidence attacks. To ad-
dress this limitation, Calibration Attack Adversarial
Training (CAAT) was proposed, applying both over-
confidence and underconfidence perturbations to
each input and minimizing the sum of cross-entropy
losses over the resulting examples [9]. However,
CAAT-trained models still fail to achieve robustness
against uncertainty-based threats.

3 Methodology

Our main objective is to identify an adversarial
training defense approach robust to underconfidence
attacks without significantly compromising robust-
ness against misclassification attacks or clean data
performance. To achieve this, we first examine the
limitations of calibration attacks and defense strate-
gies [9]. Addressing these weaknesses, we intro-
duce two key modifications to strengthen the attack,
which ultimately leads to a more robust defense
model.

3.1 Underconfidence attack

White-box calibration attacks use PGD to minimize
a loss function that encodes the difference between
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the probabilities assigned to the predicted class (the
largest probability) and the next most likely class
(the second largest probability) [9]. The loss function

1S

UC(z,§) = po(x)g — maxpy(z);, (1)
J#9

where pg(x); is the probability of the most confident
class and max;.; pg(x); is the probability of the
second most confident class. By minimizing this
objective, the attack reduces the probability gap
between the two main predictions, making the model
appear underconfident in its predictions. However,
the attack performs better when a dropout mask is
applied to the generated perturbations (§) [9]. Let
m be a dropout mask defined as:

if u; < p, (2)

otherwise,

where u; ~ Uniform(0,1) and p is the fraction of
elements retained. Then, the dropout-modified per-
turbation is

3)

5dropout =00 m,

where ® denotes the element-wise product.

This approach may induce oscillations between
the probabilities of the top two classes, as it lacks a
mechanism to prevent repeated crossings of the deci-
sion boundary. Furthermore, it focuses solely on the
two most probable classes, disregarding the remain-
ing K — 2 classes in multiclass classification settings.
To address these limitations, we propose two modifi-
cations to the attack: (1) an adaptive step size rule
to mitigate oscillations, and (2) a redesigned loss
function that encourages a near-uniform distribution
over class probabilities, thereby ensuring broader
class awareness during optimization.

3.2 Adaptive step size with step back

The first limitation that we will address is the con-
stant misclassification that occurs when the under-
confidence attack is implemented using PGD. Since
this attack approximates a strong adversarial per-
turbation by repeatedly taking small steps within a
constrained norm ball, we propose a modified ver-
sion in which the step size is adaptively reduced by
half whenever the adversarial perturbation crosses
the decision boundary, causing a misclassification.
Importantly, if a misclassification occurs, we revert
the perturbation step before halving the step size,
ensuring that the subsequent step restarts from a
correctly classified point, which also decreases the
confidence. Since halving the step size can be too
aggressive, we slightly increase the step size by mul-
tiplying it by a factor A, which we have empirically
set as 1.1. Formally, this modified PGD update rule
is:

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

l'(tJrl) = Hz—i—S (:L'(t) =+ a(t) ! Slgn(vm‘c(oa x(t)7 g))) )
(4)
where z(®) is the adversarial example in step ¢, a(?)
is the adaptive step size, sign(-) is the sign function
that returns the element-wise direction of the gra-
dient, V,L£(0, 2", 9) is the gradient of the loss £(-)
with respect to the input z®, calculated for the
model parameters 6 and the initial predicted class
9, and II,4g(-) is the projection operator ensuring
2+ stays within the allowed perturbation set S.
Let ZHD = (f(ztD) = ) A (£(0, 24D ) <
L(0,2® ) denote a consistent classification at step
t + 1 where the loss function improves. Then, the
adaptive step size is defined as:

()
T i faY) £
(t+1) 2 .
a =940 .\ if 7D with A > 1
a® otherwise

(5)

and the updated data point is defined as:

2D — x(t)’
EREGR

This PGD update rule leads the attack to de-
crease both the number of misclassifications and
model confidence. However, this interpolates be-
tween two classes (an incorrect and correct class),
whereas an ideal uncertainty attack would allocate
class confidence uniformly.

if f(zFD) # g
otherwise. ’

(6)

3.3 ConfSmooth

To overcome the limitation of prior uncertainty at-
tacks that focus on two classes, we propose Conf-
Smooth, an underconfidence attack that combines
cross-entropy loss with label smoothing. This formu-
lation enables us to smooth the classifier-predicted
probability distribution across all K classes [27]. We
define the loss function as:

K
Hs(p.q) = =Y [(1 =) -pit 32| -log(ar), ()

where p; is the i-th element of the original one-hot
encoded ground truth label distribution (equal to 1
for the initially predicted class and 0 for all other
classes), and ¢; is the predicted probability of the
classifier for class ¢ after adding the attack pertur-
bation. The smoothing parameter € € [0, 1] controls
the degree of smoothing applied to the ground truth
distribution by modifying the ground-truth label
distribution from a one-hot encoding (probability 1
for the initially predicted class and 0 for all others)
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Algorithm 1 Underconfidence attack with adaptive
steps

Input: Classifier f, input x, initial predicted label g,
step size a, perturbation budget S, gradient steps
T, loss function £, increase factor A > 1
Output: Adversarial example 23"
12—z, 0?9« a
2 laav < L(f(z*V),9)
3: fort=0toT —1 do
4: Compute gradient V. L(f(z*™), )
2P T,y s (madv + a® sign(Vz L(f (), gj)))
5 ltemp — E(f(xtemp), g)
6 if f(x*™P) # § then
7: altth)  a® /9
8 ZtemP ¢ gadv. ltemp < ladv
9 else if f(z'™P) = § and ltemp < laav then

10: oc<t+l) — Oé<t))\

11: xadv — xtemp7 ladv < ltemp
12: else

13: oz<t+l) — Oé<t)

14: end if

15: end for

16: return z*dV

to a smoother distribution. The resulting probabil-
ity of the initially predicted class is reduced from 1
to (1 —€) + &, and each incorrect class probability
target increases from 0 to exactly .

The ConfSmooth attack algorithm uses PGD
(Equation (4)) with an adaptive step size (Equation
(5)) and adversarial perturbation update (Equation
(6)) to generate adversarial examples (Algorithm 1).
By minimizing this objective, ConfSmooth addresses
the limitation of Equation (1), which only reduces
the gap between the top two predicted classes.

)
6

3.4 Underconfidence adversarial

training (UAT)

Although no defense algorithm has shown high ro-
bustness against underconfidence attacks, AT has
provided the strongest defense so far [9]. Here, we
propose underconfidence adversarial training (UAT),
which integrates the robust optimization framework
of AT [11] with underconfidence attacks to preserve
the predicted label while reducing its confidence.
The optimization is given by:

min £ IlgﬂggsL(fe(wM),y) :

®)

(z,y)~D

where 6 are the model parameters, L(-) is the loss
function (e.g., a cross-entropy loss), the expectation
E()~p is taken over the data distribution D of
the input-output pairs (x,y), and || - ||, denotes an
¢, norm (typically the co-norm). The parameter S
defines the perturbation budget, restricting the mag-
nitude of adversarial perturbations within the spec-
ified norm. The inner maximization approximates

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

the worst-case perturbation § within the constraint
10]], < S (i.e., maximize the loss) and is typically
approximated using PGD (Equation (4)); the outer
minimization optimizes the model parameters 6 to
minimize the approximation of the worst-case loss.
The main difference between UAT and AT is in
the generation of 4. Instead of computing an optimal
perturbation to induce a misclassification using a
cross-entropy loss like AT, UAT uses Equation (1)
or Equation (7), which is an approximation of the
optimal perturbation to reduce the confidence of
the model. By training the model using the loss
functions in Equations (1) or (7) with PGD using
an adaptive step size, the model should achieve
robustness against underconfidence attacks.

4 Experimental Design

We evaluated the effectiveness of our adaptive and
ConfSmooth attacks and UAT defense across vari-
ous model architectures and datasets. To assess the
transferability of attacks and model-specific vulnera-
bilities, we considered convolutional neural networks
such as LeNet [28], EfficientNet-B0 [29], ResNet-18
and ResNet-50 [30], WideResNet-50 [31], as well as
a vision transformer model, ViT-B16 [32]. We eval-
uated generalization across domains and task com-
plexity by conducting experiments on seven datasets.
Breast Cancer Ultrasound (2 classes) [33], Chest X-
ray (3 classes) [34], MNIST (10 classes) [35], CIFAR-
10 (10 classes)[36], MSTAR (11 classes) [37, 38],
CIFAR-100 (100 classes) [36], and ImageNet (1000
classes) [39]. These datasets span handwritten dig-
its, medical, natural, and radar imagery, providing
a diverse testbed for evaluating attack performance
and defensive robustness.

4.1 Model training

All trained models used stochastic gradient descent
(SGD) with Nesterov momentum [40], an initial
learning rate of 0.1, and a weight decay of 5 x 1074,
following [41]. For CIFAR-10, we trained modified
ResNet architectures from scratch for 200 epochs
using a cosine learning rate schedule [42], adapt-
ing the input convolution kernel size and stride for
32x32 images [43]. For MNIST, LeNet model was
trained from scratch for 5 epochs. For ImageNet,
we used the standard pre-trained PyTorch models
without additional training. For all other datasets,
including breast cancer ultrasound, chest radiogra-
phy, and radar, we performed transfer learning using
ImageNet pretrained backbones, freezing all but the
classification head, which is trained for 10 epochs.
In addition, images were resized to 224 x 224 and
augmented with random crops and horizontal flips.

Adversarially trained models followed the same
configurations and used multiple PGD variants with
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Architecture Dataset Conf. (Before) Conf. - Dropout Conf. - Adaptive Conf. - ConfSmooth
Breast Cancer Ultrasound 0.61 £+ 0.016 0.52 £ 0.003 0.50 + 0.0001 0.51 £ 0.0004
Chest X-ray 0.86 + 0.004 0.45 + 0.028 0.61 4+ 0.009 0.51 + 0.023
EfficientNet-BO MSTAR 0.51 £ 0.005 0.39 £ 0.009 0.31 £ 0.005 0.15 + 0.001
CIFAR-100 0.60 £ 0.002 0.52 £ 0.004 0.27 £ 0.002 0.11 + 0.001
ImageNet 0.71 0.12 0.24 0.06
Breast Cancer Ultrasound 0.63 £+ 0.023 0.51 £ 0.001 0.50 + 0.001 0.51 £ 0.0003
Chest X-ray 0.78 £+ 0.006 0.48 £+ 0.010 0.45 £+ 0.007 0.38 + 0.003
ResNet-50 MSTAR 0.35 + 0.004 0.23 £+ 0.002 0.23 4+ 0.004 0.14 + 0.007
CIFAR-100 0.55 4+ 0.003 0.45 £+ 0.004 0.25 4+ 0.002 0.10 + 0.001
ImageNet 0.40 0.04 0.10 0.03
Breast Cancer Ultrasound 0.82 £+ 0.013 0.52 £ 0.003 0.50 + 0.00001 0.51 £ 0.0005
Chest X-ray 0.92 4+ 0.004 0.54 £+ 0.007 0.49 4+ 0.001 0.40 + 0.004
ViT-B16 MSTAR 0.60 + 0.011 0.37 £+ 0.006 0.34 £+ 0.002 0.23 + 0.003
CIFAR-100 0.83 £ 0.002 0.45 £ 0.003 0.39 £ 0.001 0.20 + 0.002
ImageNet 0.77 0.30 0.31 0.11

Table 1. Mean MSP before/after underconfidence attacks across architectures and datasets. Lower
post-attack values indicates stronger suppression. ConfSmooth is the top performer across most setups. Accuracy

and ECE are reported in Table S1.

10 gradient steps (5 for UAT-Smooth with a smooth-
ing parameter (e) of 0.98), an initial step size of
5/255 and an Lo, bounded perturbation budget of
8/255. For CAAT, we applied a 95% dropout rate
and included only underconfident generated sam-
ples, as including overconfident samples does not
improve robustness to underconfidence attacks [9].
For RobustAugMix, we included clean and adver-
sarial examples but excluded augmentations that
isolate adversarial robustness from generalization.
All training was conducted with a batch size of 128
using two NVIDIA Volta V100 GPUs.

4.2 Evaluation setup

We evaluated all models using multiple PGD vari-
ants each with 20 gradient steps and an initial step
size of 5/255. All perturbations were constrained by
the Lo, norm with a fixed budget of 0.03. The use of
more gradient steps ensures better convergence and
stronger adversarial examples [44]. We used a recom-
mended dropout factor of 95% for underconfidence
attacks leveraging dropout [9]. For ConfSmooth, we
set € = 0.98, such that the initially predicted class
keeps (1 —¢€) + & = 0.02 + % probability mass,
while each other class receives ¢/ K, thereby lowering
confidence while preserving the top-1 label.

4.3 Metrics

We used five criteria to evaluate model performance
and robustness: perturbation magnitude (AW),
structural similarity index measure (SSIM) [45], clas-
sification accuracy, model confidence, and expected
calibration error (ECE) [46]. The perturbation mag-
nitude AW is calculated as the Wasserstein distance
between a zero vector and the generated perturba-
tion vector [47]. SSIM is calculated between the orig-
inal image and its adversarial counterpart. Model
confidence is defined as the average of the maxi-
mum softmax probabilities (MSP) across evaluated
samples.

5 Experimental Results

In the adversarial attack results, we refer to the
misclassification attack as PGD, the calibration un-
derconfidence attack as Dropout [9], our improved
version as Adaptive, and our main contribution as
ConfSmooth. In the adversarial defense results, we
refer to underconfidence adversarial training using
the Adaptive attack as UAT-Gap and using the
ConfSmooth attack as UAT-Smooth.

5.1 Underconfidence attacks

We evaluated underconfidence attacks across multi-
ple datasets with varying class counts (Table 1). The
Dropout attack achieved the highest performance
in only a single architecture-dataset configuration,
likely due to its fixed step size and dropout fac-
tor (Fig. S1). By its use of an adaptive step size,
the Adaptive attack largely improved on the per-
formance of the Dropout attack while being more
efficient by omitting dropout. However, the Adap-
tive attack was less effective on large-scale datasets
with visually similar categories (e.g., ImageNet-1K).
In such cases, underconfidence attacks can leverage
the model’s tendency to spread the probability mass
across many classes [48], identifying regions of high
prediction uncertainty.

ConfSmooth outperformed the other attacks ex-
cept in the breast cancer ultrasound data, where all
attacks achieved close to the 50% confidence thresh-
old for a binary classification problem. However,
ConfSmooth was not the most performant for Effi-
cientNet trained on chest X-rays, where prediction
confidence often remained above 50%. The attack
reduced confidence below 50% for most inputs ini-
tially predicted as Covid19 or Normal, but largely
failed on inputs originally predicted as pneumonia
(Fig. S2). Despite incorporating a proposed adaptive
step size mechanism, ConfSmooth could not reduce
confidence without causing misclassification in 603
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-r:

0.6

Normalized Magnitude

Figure 1. Original MNIST image alongside perturbation heat-maps for the four PGD attacks
variations. Perturbations (indicated by the horizontal colorbar) are scaled to [0, 1] using the global minimum and
maximum perturbation values observed across the four attacks.

of 1,288 samples (47%). This result aligns with
previous findings that X-ray images are sensitive to
small adversarial changes [49].

Beyond dataset-specific outcomes, we also ob-
served architectural trends. Models based on the
ViT architecture were generally more robust to un-
derconfidence attacks than CNN models. This re-
sult aligns with previous work on misclassification
robustness, which showed that ViTs are more re-
sistant than similarly sized CNNs [50, 51]. ViTs
use self-attention to capture global relationships
between input patches [52], leading to high-level
feature representations that are less sensitive to lo-
calized perturbations.

Attack AW SSIM
PGD 0.0274 £+ 0.0034 0.8440 £ 0.0775
Dropout 0.0232 £ 0.0044  0.7592 £ 0.1158
Adaptive 0.0627 £ 0.0239  0.6813 £ 0.1197

ConfSmooth 0.0966 £+ 0.0289  0.6136 £ 0.1168

Table 2. Comparison of adversarial attacks on
MNIST based on perturbation strength and vi-
sual similarity. AW denotes the average perturba-
tion magnitude (higher is stronger), and SSIM measures
structural similarity to the original image (higher is more
structural similar). ConfSmooth produces the strongest
perturbations, though at the cost of lower SSIM.

5.2 Assessing adversarial perturba-
tions

Although underconfidence attacks have been de-
scribed as harder to detect because they preserve ac-
curacy while requiring smaller perturbations [9], our
results reveal a clear trade-off between perturbation
strength and structural similarity (Table 2). PGD
strikes an effective balance, introducing small pertur-
bations (AW = 0.0274) while preserving high struc-
tural similarity (SSIM = 0.8440), making it efficient
and structure-preserving. The dropout attack pro-
duces slightly smaller perturbations (AW = 0.0232)

but at the cost of a lower SSIM (0.7592). These per-
turbations remain small in magnitude and maintain
high structural similarity, suggesting that they are
harder to detect using standard structural similarity
metrics.

In contrast, the Adaptive and ConfSmooth at-
tacks cause more noticeable disruptions to image
quality. The Adaptive variant introduces stronger
perturbations (AW = 0.0627) and visible distortions
(SSIM = 0.6813). ConfSmooth is the most aggres-
sive, producing the highest perturbation magnitude
(AW = 0.0966) and the lowest SSIM (0.6136), lead-
ing to a clear degradation in visual fidelity. Inter-
estingly, underconfidence attacks, especially ConfS-
mooth, tend to concentrate perturbations on pixels
less salient to the image class (Figure 1). We at-
tribute this behavior to the constraint of not crossing
the decision boundaries, which discourages altering
features strongly tied to class prediction. As a re-
sult, perturbations often accumulate in background
or boundary regions, substantially reducing model
confidence while leaving the initial predicted label
unchanged.

5.3 Robustness to underconfidence
attacks

Having previously shown that underconfidence at-
tacks succeed across datasets and architectures
(§5.1), we next evaluate whether these attacks re-
main effective against adversarially trained models.
We evaluated adversarial defenses using CIFAR-10,
a small-scale dataset with disjoint classes, which pro-
vides a clear assessment of robustness while avoiding
confounding effects from semantic overlap between
classes [48]. Even the least effective attack, Dropout,
reduces the confidence of a Vanilla ResNet-18 model
to 45% (Table 3). However, the Dropout attack per-
formed poorly against adversarially trained models.
The Adaptive attack, which removes dropout and
uses an adaptive step size, reduced the confidence
of the top class below 50% in most adversarially
trained models.
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Architecture Defense Method Conf. (Before) Conf. - Dropout Conf. - Adaptive Conf. - ConfSmooth
Vanilla 0.919 + 0.004 0.449 + 0.006 0.414 + 0.004 0.272 + 0.007
AT 0.865 + 0.002 0.674 + 0.003 0.426 + 0.001 0.267 + 0.002
TRADES 0.844 + 0.044 0.668 + 0.028 0.427 + 0.003 0.256 + 0.003
ResNet-18 RobustAugMix 0.842 + 0.003 0.654 + 0.003 0.421 + 0.002 0.248 + 0.001
CAAT 0.900 + 0.006 0.645 + 0.007 0.416 + 0.003 0.280 + 0.011
UAT-Gap 0.874 + 0.016 0.688 £ 0.016 0.451 £ 0.011 0.295 + 0.013
UAT-Smooth 0.935 + 0.005 0.738 + 0.005 0.483 + 0.003 0.367 + 0.005
Vanilla 0.945 + 0.005 0.502 + 0.011 0.450 + 0.008 0.345 + 0.015
AT 0.901 + 0.007 0.708 + 0.007 0.442 + 0.004 0.317 + 0.009
TRADES 0.876 + 0.041 0.684 + 0.032 0.452 + 0.014 0.302 + 0.033
ResNet-50 Robust AugMix 0.884 + 0.011 0.691 + 0.008 0.436 + 0.007 0.294 + 0.016
CAAT 0.948 + 0.007 0.709 + 0.012 0.454 + 0.008 0.369 + 0.019
UAT-Cap 0.933 £ 0.004 0.726 + 0.003 0.496 + 0.014 0.440 + 0.027
UAT-Smooth 0.965 + 0.004 0.767 + 0.009 0.546 + 0.039 0.532 + 0.054
Vanilla 0.947 + 0.003 0.502 + 0.011 0.449 + 0.005 0.344 + 0.019
AT 0.889 + 0.007 0.699 + 0.008 0.429 + 0.004 0.306 + 0.011
TRADES 0.876 + 0.042 0.662 + 0.039 0.450 + 0.015 0.298 + 0.039
WideResNet-50  RobustAugMix 0.894 + 0.006 0.700 + 0.004 0.439 + 0.002 0.308 + 0.007
CAAT 0.955 + 0.006 0.728 + 0.012 0.453 + 0.008 0.385 + 0.013
UAT-Cap 0.927 + 0.004 0.721 + 0.005 0.514 + 0.010 0.469 + 0.021
UAT-Smooth 0.965 + 0.004 0.768 + 0.010 0.577 + 0.026 0.574 + 0.035
Table 3. Mean MSP confidence before and after underconfidence attacks on CIFAR-10 across CNN
architectures and defenses. UAT-Smooth maintains the highest post-attack confidence, indicating strong
robustness. ECE results are reported in Table S2.
517 ConfSmooth remained the most effective under- correct predictions (Figs. 2(a) and 2(b)). Interest- ssa
s1ts  confidence attack overall. On average, ConfSmooth ingly, the model trained with CAAT assigned slightly sss
519 reduced the confidence of adversarially trained mod- higher confidence to incorrect predictions than the sse
520 els by an additional 10% compared to the Adap- vanilla model, but still maintained a clear separation ss7
521 tive attack. An exception was our proposed de- between correct and incorrect samples (Figs. 2(c) sss
522 fense, UAT, which substantially improved robust- and 2(d)). In contrast, the model trained with UAT- ss9
523 ness against underconfidence attacks. UAT-Smooth Smooth assigned noticeably higher confidence to seo
524 consistently achieved the highest post-attack con- incorrect predictions compared to other methods se1
525 fidence across all architectures. For example, on (Figs. 2(e) and 2(f)). However, it maintained even se2
526 WideResNet-50, UAT-Smooth retained 0.574 con- greater confidence in the correctly classified sam- se3
527 fidence after ConfSmooth, compared to 0.344 for ples, exhibiting the strongest distinction between sea
528 the vanilla model and 0.306 for AT. Against the the two groups. In summary, the confidence dis- ses
520 less aggressive dropout-based attack, UAT-Smooth tributions for the vanilla model and model trained ses
530 achieved up to 0.768 confidence, outperforming all with CAAT collapse below the 50% threshold, lead- se7
531 other defenses. Notably, UAT-Smooth was trained ing to overlapping distributions, while UAT-Smooth ses
532 using only half as many attack gradient steps as the retained a significant portion of its confidence mass se9
533 other adversarial training methods, demonstrating for correctly classified samples above 50% with many s7o
53¢ strong efficiency. predictions remaining near 100%. 571
535 Finally, we observed that many defenses developed
536 for mlSClaSSlﬁC&thI'l attacksi, such as AT, TRADES, 5.4 Robustness to misclassification s
537 and RobustAugMix, remain vulnerable to under- attacks
538 confidence attacks. This suggests that robustness °r
539 to misclassification attacks does not 1r.npl}.f robust- Having established robustness to underconfidence at- s74
540 mess to undgr(-tonﬁde.nce.attacks, and .hl.ghhghts.the tacks, we next assessed how underconfidence attack s7s
s41 need for training objectives that explicitly consider efenses perform under misclassification attacks (Ta- s76
542  model pre.dlctlo.n conf}dencg. Adyers.arlally trained pe 4). We observed that CAAT, trained using only s77
543 models using misclassification objectives tend to be 597 of the perturbation magnitude, offers some ro- s7s
. ol . !
544 less co'nﬁde.nt than Vamlla.u models [53]; hov&{ever, thls bustness against the PGD attack compared to the s7o
545 behavior did not generahz.e tc.) models trained with yanilla model. However, our proposed methods, sso
s46 underconfidence-based objectives. based on UAT, achieved significantly higher robust- ss1
547 To better understand the prediction confidence in ness than CAAT, with improvements of at least ss2
548 response to underconfidence attacks, we examined 12% across the three architectures. Interestingly, se3
549 the confidence on correctly and incorrectly classified UAT-Smooth achieved robustness to misclassicia- ssa
ss0  samples across different defenses before and after tion attacks comparable to, or exceeding, AT. 585
551 applying the ConfSmooth attack. The vanilla model The robustness of UAT-Smooth against misclassi- sse
552 displayed well-calibrated behavior: low confidence fication attacks emerges from its training objective. ss7
553 for incorrect predictions and high confidence for Although UAT-Smooth does not directly optimize sss
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(f) UAT-Smooth after attack.

Figure 2. Confidence (MSP) distributions for
correct and incorrect samples before and after
ConfSmooth perturbation. Rows correspond to dif-
ferent defense methods (on WideResNet-50) and columns
indicated before (left) and after (right) underconfidence
attacks. Vanilla and CAAT shows marked confidence
drops for correct predictions after being attacked, while
UAT-Smooth retains high confidence, indicating stronger
robustness to confidence suppression.

for misclassification robustness, it uses a PGD-style
algorithm to target regions of high model uncer-
tainty. This strategy exposes weaknesses that help
models to generalize better under adversarial condi-
tions. ConfSmooth generates perturbations nearly
four times larger than PGD (see §5.2), making the
perturbed images more visually distorted. These
visual distortions introduce a trade-off, reducing
model performance on clean images in our evalua-
tions. UAT-Smooth showed lower clean accuracy
than most adversarial defenses (resulting in an ad-
ditional 8% drop relative to AT on ResNet-18).

In contrast, larger architectures such as ResNet-50
and WideResNet-50 maintained both higher clean
accuracy and robustness to misclassification attacks
using PGD compared to ResNet-18. For example, on
WideResNet-50, UAT-Smooth reached 0.407 post-
attack accuracy, outperforming AT (0.381), while
maintaining a clean accuracy of 0.724. This suggests
that UAT-based defenses scale well with model ca-
pacity, allowing a better balance between robustness
and accuracy as the size of the architecture increases.

Defense Accuracy (Before) Accuracy (After)
ResNet-18
Vanilla 0.885 4+ 0.004 0.000 £ 0.000
AT 0.758 + 0.005 0.358 £+ 0.002
TRADES 0.733 £ 0.006 0.381 +0.003
RobustAugMix 0.742 £+ 0.001 0.346 £+ 0.005
CAAT 0.852 + 0.003 0.200 £ 0.006
UAT-Gap 0.657 £ 0.042 0.328 £0.015
UAT-Smooth 0.679 £+ 0.012 0.344 £+ 0.007
ResNet-50
Vanilla 0.882 4+ 0.006 0.000 =£ 0.000
AT 0.775 £ 0.002 0.372 £ 0.005
TRADES 0.778 £ 0.041 0.486 +0.137
RobustAugMix 0.754 + 0.007 0.360 £ 0.004
CAAT 0.856 + 0.007 0.205 £ 0.008
UAT-Gap 0.738 £ 0.010 0.346 £ 0.006
UAT-Smooth 0.729 + 0.009 0.384 £ 0.025
WideResNet-50
Vanilla 0.886 + 0.004 0.000 =+ 0.000
AT 0.768 £ 0.005 0.381 £ 0.007
TRADES 0.773 £ 0.028 0.491 +0.144
Robust AugMix 0.753 £ 0.003 0.369 £ 0.004
CAAT 0.865 + 0.005 0.226 £+ 0.007
UAT-Gap 0.721 £+ 0.003 0.347 £+ 0.007
UAT-Smooth 0.724 £+ 0.008 0.407 £ 0.029
Table 4. Classification accuracy of CNNs on

CIFAR-10 before and after PGD attacks across
adversarial defenses. UAT performs comparably to
AT, achieving similar post-attack accuracy on ResNet-
50 and WideResNet-50. TRADES achieves the highest
overall post-misclassification attack accuracy.

6 Conclusion

In this work, we presented two new underconfidence
attacks (Adaptive and ConfSmooth) and UAT, an
underconfidence adversarial training algorithm that
leverages our new attacks. Among the underconfi-
dence attacks we evaluated, ConfSmooth generalized
more effectively across datasets and domains, a per-
formance that we attribute to its label-smoothing
loss and its adaptive step size to prevent constant
misclassifications. Architectural differences also in-
fluenced robustness: ViT consistently outperformed
CNNs, probably due to their emphasis on global
semantics rather than local textures. ConfSmooth
reliably reduced the model confidence below the
critical threshold of 0.5 (MSP), except when UAT-
Smooth was applied. Adversarily trained models
optimized for misclassification robustness are para-
doxically more susceptible to ConfSmooth than the
vanilla model, a vulnerability most pronounced in
TRADES, despite its state-of-the-art performance
against PGD. Interestingly, UAT-Smooth provided
robustness to both underconfidence and misclassifi-
cation attacks, often matching or exceeding AT while
requiring half of the steps. However, we did observe
a reduced clean accuracy and increased confidence
in incorrect classifications compared to the vanilla
model and CAAT. These findings highlight the need
for defenses that account not only for prediction
correctness but also for calibrated uncertainty under
adversarial conditions.
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7 Supplementary Material

S1 Assessing Dropout attack
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Figure S1. Interpreting underconfidence attacks
that use dropout. Using dropout, the underconfidence
attack reduces the confidence of the Pneumonia class un-
til the decision boundary of the Covid19 class is crossed.
At this point, confidence is not further reduced due to
oscillations between the two classes.

In our experiments, we found that applying the
Dropout attack led to oscillations between the proba-
bilities associated with two classes (Fig. S1). For ex-
ample, we applied the attack to a three-class problem
(chest X-ray dataset) and found that the probability
of Pneumonia diminishes until reaching a certain
threshold (58%), at which point the attack crosses
the boundary and Covid19 becomes the predicted
class. In the remaining steps, the attack causes the
probabilities of these two classes to oscillate back
and forth. It appears that as the attacked point
approaches the decision boundary of the model, the
perturbations applied may be too large and that
limiting them with dropout is not sufficient to avoid
large changes in the predicted probabilities.

S2 Assessing ConfSmooth attack

steps during underconfidence ad-
versarial training

We vary the number of ConfSmooth gradient steps
taken during UAT-Smooth adversarial training and
measure its effect on clean accuracy and robust-
ness to the ConfSmooth under-confidence attack
(Table S3). As the steps count increases from 1 to
10, clean accuracy steadily falls from 0.84 to 0.64,
while the confidence in pre-attack max-softmax re-
mains high (0.94-0.97). Robustness peaks at five
gradient steps: post-attack confidence climbs from
0.38 (1 step) to 0.57 (5 steps) and then declines
slightly at higher counts. This trade-off shows that
although more steps initially achieve resistance to
ConfSmooth, beyond five they erode both clean per-
formance and robustness. In practice, 3—-5 steps
strike the best balance, matching the standard AT

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

accuracy and substantially mitigating the ConfS-

mooth attack.
1.0 o
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Figure S2. EfficientNet chest X-ray confidence
distributions after ConfSmooth attack Each point
shows the MSP for samples originally predicted as Covid-
19 (red), Normal (blue), or Pneumonia (green). The
dashed line at 0.5 marks the classifier threshold we want
to break with the underconfidence attack. ConfSmooth
drives most Covid-19 and Normal confidences below 0.5
but largely fails to suppress Pneumonia predictions.
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Architecture Dataset Accuracy ECE (Before) ECE - Dropout ECE - Adaptive ECE - ConfSmooth
Breast Cancer Ultrasound 0.75 £ 0.07 0.16 £ 0.05 0.23 + 0.07 0.25 + 0.08 0.24 + 0.07
Chest X-ray 0.90 £+ 0.01 0.05 £+ 0.00 0.46 + 0.04 0.34 £ 0.01 0.43 £+ 0.02
EfficientNet MSTAR 0.67 £+ 0.01 0.17 £ 0.01 0.29 + 0.01 0.31 £ 0.01 0.52 £+ 0.01
CIFAR-100 0.60 £ 0.002 0.02 £ 0.002 0.09 £+ 0.01 0.33 £ 0.002 0.49 + 0.002
ImageNet 0.79 0.08 0.67 0.55 0.73
Breast Cancer Ultrasound 0.86 £ 0.00 0.24 £ 0.02 0.36 = 0.002 0.36 £ 0.001 0.35 £ 0.00
Chest X-ray 0.86 + 0.02 0.09 £+ 0.01 0.39 £+ 0.03 0.41 £ 0.03 0.48 £+ 0.02
ResNet-50 MSTAR 0.57 £ 0.01 0.23 £ 0.01 0.23 £+ 0.01 0.34 £ 0.01 0.43 £ 0.02
CIFAR-100 0.58 £+ 0.01 0.04 £ 0.003 0.14 £+ 0.01 0.33 £ 0.01 0.48 £ 0.01
ImageNet 0.83 0.43 0.79 0.73 0.81
Breast Cancer Ultrasound  0.89 £ 0.01 0.08 £ 0.02 0.36 £+ 0.01 0.39 £ 0.02 0.38 £ 0.01
Chest X-ray 0.93 £ 0.00 0.03 £ 0.00 0.39 £ 0.01 0.44 £ 0.004 0.54 £ 0.00
ViT MSTAR 0.78 £ 0.01 0.18 £+ 0.02 0.41 £ 0.01 0.44 £ 0.01 0.55 £ 0.01
CIFAR-100 0.79 £ 0.003 0.04 £ 0.002 0.36 £ 0.003 0.41 £ 0.003 0.59 + 0.003
ImageNet 0.82 0.06 0.53 0.51 0.71

Table S1. ECE before and after underconfidence attacks across datasets and architectures. Accuracy
is presented only before attacks since the underconfidence threats evaluated in this study does not cause misclassi-
fication. Higher post-attack ECE indicates stronger miscalibration; bold values denote the maximum post-attack
ECE per dataset—architecture setup.

Architecture Defense Method ECE (Before) ECE - Dropout ECE - Adaptive ECE - ConfSmooth ECE - PGD
Vanilla 0.037 £ 0.003 0.436 £ 0.006 0.470 £ 0.005 0.613 £ 0.007 1.000 + 0.000
AT 0.109 £ 0.002 0.090 £ 0.003 0.333 £ 0.004 0.491 £ 0.005 0.543 £ 0.003
TRADES 0.080 £ 0.006 0.092 £ 0.021 0.307 & 0.004 0.477 £ 0.004 0.442 £ 0.016
ResNet-18 Robust AugMix 0.101 £ 0.004 0.093 £ 0.003 0.321 £ 0.002 0.494 £ 0.001 0.537 £ 0.006
CAAT 0.050 £ 0.004 0.206 £ 0.005 0.436 £ 0.002 0.571 & 0.009 0.737 £ 0.009
UAT-Gap 0.217 4 0.058 0.068 + 0.026 0.207 £ 0.053 0.363 & 0.054 0.584 £ 0.021
UAT-Smooth 0.257 4 0.012 0.136 £ 0.017 0.089 £ 0.019 0.314 £ 0.014 0.669 4 0.004
Vanilla 0.065 £ 0.003 0.380 £ 0.010 0.432 4 0.008 0.537 4+ 0.014 1.000 + 0.000
AT 0.128 £ 0.005 0.084 £ 0.003 0.332 4 0.003 0.458 £ 0.008 0.570 £ 0.005
TRADES 0.100 £ 0.017 0.098 £ 0.029 0.326 £ 0.029 0.475 £+ 0.016 0.397 £ 0.132
ResNet-50 Robust AugMix 0.132 £ 0.008 0.078 £ 0.006 0.318 £ 0.007 0.460 £ 0.013 0.568 £ 0.015
CAAT 0.094 £ 0.008 0.149 £ 0.009 0.402 £ 0.011 0.487 £ 0.019 0.772 £ 0.008
UAT-Gap 0.196 £ 0.009 0.062 + 0.007 0.242 4 0.023 0.298 + 0.037 0.623 £ 0.004
UAT-Smooth 0.237 4 0.008 0.103 £ 0.036 0.129 £ 0.036 0.197 £ 0.049 0.646 & 0.014
Vanilla 0.062 & 0.002 0.384 £ 0.009 0.437 4 0.004 0.541 & 0.016 1.000 + 0.000
AT 0.123 £ 0.005 0.083 £ 0.005 0.339 & 0.005 0.462 + 0.009 0.552 4 0.005
TRADES 0.104 £ 0.021 0.117 £ 0.052 0.323 £ 0.018 0.476 £+ 0.013 0.394 £ 0.134
‘WideResNet-50 RobustAugMix 0.142 £ 0.006 0.076 £ 0.003 0.314 £ 0.005 0.445 £ 0.006 0.574 £ 0.007
CAAT 0.091 £ 0.003 0.139 £ 0.007 0.412 £ 0.005 0.479 £ 0.008 0.755 £ 0.008
UAT-Gap 0.207 £ 0.005 0.061 £ 0.003 0.207 £ 0.011 0.252 + 0.022 0.625 £ 0.006
UAT-Smooth 0.241 £ 0.007 0.101 £ 0.026 0.130 £ 0.027 0.152 £ 0.030 0.654 & 0.011

Table S2. ECE before and after underconfidence and misclassification attacks on CIFAR-10 across
CNN architectures and defense methods. For each attack—defense pair, bold values denote the lowest

post-attack ECE.

Steps Accuracy Confidence(Before) Confidence (After)
One 0.84 £+ 0.008 0.96 £+ 0.015 0.38 = 0.03
Three 0.78 £ 0.004 0.97 £ 0.004 0.45 £ 0.04
Five 0.72 £+ 0.008 0.96 + 0.004 0.57 + 0.035
Seven 0.69 + 0.012 0.96 £+ 0.006 0.56 4+ 0.040
Ten 0.64 £+ 0.021 0.94 + 0.005 0.49 4+ 0.030

Table S3. Effect of ConfSmooth gradient steps taken during UAT-Smooth adversarial training
(on WideResnet-50). Taking more than five gradient steps sharply reduces clean accuracy and robustness to
ConfSmooth, indicating a trade-off between robustness and standard performance. Accuracy is presented only
before attack since ConfSmooth does not cause misclassification.
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