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Abstract001

Adversarial robustness research has focused on de-002

fending against misclassification attacks. However,003

such adversarially trained models remain vulnera-004

ble to underconfidence adversarial attacks, which005

reduce the model’s confidence without changing the006

predicted class. Decreased confidence can result in007

unnecessary interventions, delayed diagnoses, and008

a weakening of trust in automated systems. In this009

work, we introduce two novel underconfidence at-010

tacks: one that induces ambiguity between a class011

pair, and ConfSmooth which spreads uncertainty012

across all classes. For defense, we propose Under-013

confidence Adversarial Training (UAT) that014

embeds our underconfidence attacks in an adversar-015

ial training framework. We extensively benchmark016

our underconfidence attacks and defense strategies017

across six model architectures (both CNN and ViT-018

based), and seven datasets (MNIST, CIFAR, Im-019

ageNet, MSTAR and medical imaging). In 14 of020

the 15 data-architecture combinations, our attack021

outperforms the state-of-the-art, often substantially.022

Our UAT defense maintains the highest robustness023

against all underconfidence attacks on CIFAR-10,024

and achieves comparable to or better robustness025

than adversarial training against misclassification026

attacks while taking half of the gradient steps. By027

broadening the scope of adversarial robustness to in-028

clude uncertainty-aware threats and defenses, UAT029

enables more robust computer vision systems. The030

code will be made publicly available.031

1 Introduction032

Deep neural networks have achieved state-of-the-art033

performance in various computer vision tasks, includ-034

ing image classification. Despite these successes, the035

broad adoption of deep learning models has simulta-036

neously increased their exposure to sophisticated se-037

curity threats, particularly adversarial attacks [1, 2].038

Adversarial attacks introduce imperceptible pertur-039

bations in the input data, causing models to produce040

incorrect predictions. These threats are particularly041

concerning for safety-critical applications, such as042

medical diagnosis [3, 4], where errors can have se-043

vere consequences. The risk is further amplified in044

collaborative human-AI settings [5], where incorrect 045

model outputs can compromise trust and effective- 046

ness. As a result, adversarial machine learning has 047

attracted significant attention in the past decade, 048

with over 2,300 studies dedicated to understanding 049

and mitigating these vulnerabilities [6]. 050

However, most adversarial machine learning re- 051

search focuses on perturbations that induce misclas- 052

sification. Other vulnerabilities, such as uncertainty 053

manipulation, remain underexplored [7]. These at- 054

tacks alter confidence scores without changing the 055

predicted class [8], degrading the model calibration 056

and prediction reliability. Poor calibration is espe- 057

cially problematic in high-stakes applications, where 058

over- or under-confidence can lead to unnecessary 059

interventions, redundant oversight, or increased op- 060

erational costs. 061

Recent work highlights the potential impact of 062

uncertainty-based attacks, revealing that existing 063

defenses are vulnerable and, counterintuitively, that 064

white-box variants can be less effective than black- 065

box ones due to unintended decision boundary cross- 066

ings [9]. To address these limitations, we propose 067

ConfSmooth, a novel attack that lowers confidence 068

while preserving the original prediction of the model, 069

revealing vulnerabilities missed by accuracy-based 070

metrics. We also introduce Underconfidence Adver- 071

sarial Training (UAT), a defense designed to counter 072

confidence manipulation while maintaining robust- 073

ness to misclassification attacks, requiring only half 074

of the gradient steps of standard adversarial train- 075

ing. These methods reveal key vulnerabilities in 076

confidence-based threats and offer practical defenses 077

for high-stakes settings. 078

2 Related work 079

2.1 Adversarial attacks 080

Misclassification attacks. Adversarial robust- 081

ness research has focused on attacks that induce mis- 082

classification. Among early efforts in this area, the 083

fast gradient sign method (FGSM) is a foundational 084

adversarial white-box attack method that perturbs 085

inputs by taking a single step in the direction of 086

the gradient of the loss function, scaled by a small 087

factor [10]. Building on FGSM, projected gradient 088

descent (PGD) performs multiple iterative updates, 089
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projecting the perturbed inputs back onto the al-090

lowed perturbation set (e.g., a ℓ∞ ball) after each091

step [11]. The PGD attack is widely considered a092

strong first-order approach and serves as a standard093

for evaluating robustness. Other optimization-based094

attacks have also been developed with the aim of gen-095

erating minimal and highly effective perturbations096

to induce misclassifications. The Carlini & Wag-097

ner (C&W) attack formulates adversarial example098

generation as an unconstrained optimization prob-099

lem, minimizing perturbation magnitude through100

a tailored loss function [12]. The DeepFool attack101

approximates the decision boundary of a classifier102

with a linear function and computes the minimal103

perturbation required to cross the boundary [13].104

Uncertainty attacks. Recent work has begun105

to examine adversarial attacks against prediction106

confidence. One of the first uncertainty attacks107

focused on reducing model confidence in the true108

class while simultaneously increasing confidence in109

the erroneous classes [8]. The attack adapts PGD110

by taking steps in the direction of gradient loss us-111

ing the softmax score associated with the predicted112

class. Recently, both white-box and black-box at-113

tacks based on PGD and Square Attack [14] have114

been developed with the aim of increasing or de-115

creasing confidence in model predictions [9]. The116

four white-box variations are: (a) an overconfidence117

attack that aims to increase the confidence of model118

predictions; (b) an underconfidence attack, which119

reduces the confidence of model predictions by reduc-120

ing the different between the top two predicted class121

probabilities; (c) a maximum miscalibration attack122

that reduces the confidence of correct predictions123

and increases the confidence of incorrect predictions;124

and (d) a random confidence attack, which randomly125

applies underconfidence or overconfidence attacks.126

Guided by its relevance to critical applications, we127

focus on underconfidence attacks in this work, which128

can make AI-assisted diagnostics unreliable and com-129

plicate decision-making processes.130

2.2 Adversarial defenses131

Misclassification attack defenses. Adversarial132

training (AT) is a foundational defense strategy ini-133

tially developed to enhance robustness against mis-134

classification attacks by training models on adversar-135

ially perturbed examples [10, 11]. Training a model136

with adversarial examples increases classification ac-137

curacy on adversarially perturbed data, but typically138

reduces clean accuracy. To mitigate this trade-off139

between clean and robust accuracy, the TRadeoff-140

inspired Adversarial Defense via Surrogate-loss min-141

imization (TRADES) method combines a classifica-142

tion loss in clean inputs with a Kullback-Leibler (KL)143

divergence term that penalizes differences between144

the model predictions in clean and adversarial sam- 145

ples [15]. This loss encourages the model to maintain 146

stable predictions under adversarial perturbations 147

while preserving clean accuracy. RobustAugMix ex- 148

tended this approach by using the Jensen-Shannon 149

(JS) divergence [16], a symmetric and smooth variant 150

of the KL divergence, to measure the similarity be- 151

tween the output distributions of clean, augmented, 152

and adversarial inputs [17, 18]. Although some de- 153

fenses are designed to jointly improve adversarial 154

robustness and probability calibration, their effec- 155

tiveness against underconfidence attacks remains 156

unexplored. 157

Uncertainty attack defenses. A recent study 158

evaluated a range of calibration methods as poten- 159

tial defenses against uncertainty attacks [9]. These 160

methods aim to align predicted class probabilities 161

with true class likelihoods and fall into two main 162

categories: post-calibration and training-based cali- 163

bration. Post-calibration techniques, such as Platt 164

scaling [19], adjust model predictions after training, 165

while training-based approaches incorporate calibra- 166

tion objectives during learning, using bias correction 167

or regularization [20, 21]. Despite their widespread 168

use, neither class of methods demonstrated robust- 169

ness against uncertainty manipulation attacks [22– 170

25]. An approach designed to improve general- 171

ization against adversarial examples is Confidence- 172

Calibrated Adversarial Training (CCAT) [26], which 173

rejects low-confidence adversarial samples during 174

training. Unfortunately, CCAT does not guarantee 175

robustness against underconfidence attacks. To ad- 176

dress this limitation, Calibration Attack Adversarial 177

Training (CAAT) was proposed, applying both over- 178

confidence and underconfidence perturbations to 179

each input and minimizing the sum of cross-entropy 180

losses over the resulting examples [9]. However, 181

CAAT-trained models still fail to achieve robustness 182

against uncertainty-based threats. 183

3 Methodology 184

Our main objective is to identify an adversarial 185

training defense approach robust to underconfidence 186

attacks without significantly compromising robust- 187

ness against misclassification attacks or clean data 188

performance. To achieve this, we first examine the 189

limitations of calibration attacks and defense strate- 190

gies [9]. Addressing these weaknesses, we intro- 191

duce two key modifications to strengthen the attack, 192

which ultimately leads to a more robust defense 193

model. 194

3.1 Underconfidence attack 195

White-box calibration attacks use PGD to minimize 196

a loss function that encodes the difference between 197
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the probabilities assigned to the predicted class (the198

largest probability) and the next most likely class199

(the second largest probability) [9]. The loss function200

is201

UC(x, ŷ) = pθ(x)ŷ −max
j ̸=ŷ

pθ(x)j , (1)202

where pθ(x)ŷ is the probability of the most confident203

class and maxj ̸=ŷ pθ(x)j is the probability of the204

second most confident class. By minimizing this205

objective, the attack reduces the probability gap206

between the two main predictions, making the model207

appear underconfident in its predictions. However,208

the attack performs better when a dropout mask is209

applied to the generated perturbations (δ) [9]. Let210

m be a dropout mask defined as:211

mi =

{
1, if ui < p,

0, otherwise,
(2)212

where ui ∼ Uniform(0, 1) and p is the fraction of213

elements retained. Then, the dropout-modified per-214

turbation is215

δdropout = δ ⊙m, (3)216

where ⊙ denotes the element-wise product.217

This approach may induce oscillations between218

the probabilities of the top two classes, as it lacks a219

mechanism to prevent repeated crossings of the deci-220

sion boundary. Furthermore, it focuses solely on the221

two most probable classes, disregarding the remain-222

ing K − 2 classes in multiclass classification settings.223

To address these limitations, we propose two modifi-224

cations to the attack: (1) an adaptive step size rule225

to mitigate oscillations, and (2) a redesigned loss226

function that encourages a near-uniform distribution227

over class probabilities, thereby ensuring broader228

class awareness during optimization.229

3.2 Adaptive step size with step back230

The first limitation that we will address is the con-231

stant misclassification that occurs when the under-232

confidence attack is implemented using PGD. Since233

this attack approximates a strong adversarial per-234

turbation by repeatedly taking small steps within a235

constrained norm ball, we propose a modified ver-236

sion in which the step size is adaptively reduced by237

half whenever the adversarial perturbation crosses238

the decision boundary, causing a misclassification.239

Importantly, if a misclassification occurs, we revert240

the perturbation step before halving the step size,241

ensuring that the subsequent step restarts from a242

correctly classified point, which also decreases the243

confidence. Since halving the step size can be too244

aggressive, we slightly increase the step size by mul-245

tiplying it by a factor λ, which we have empirically246

set as 1.1. Formally, this modified PGD update rule247

is:248

x(t+1) = Πx+S

(
x(t) + α(t) · sign(∇xL(θ, x(t), ŷ))

)
,

(4) 249

where x(t) is the adversarial example in step t, α(t)
250

is the adaptive step size, sign(·) is the sign function 251

that returns the element-wise direction of the gra- 252

dient, ∇xL(θ, x(t), ŷ) is the gradient of the loss L(·) 253

with respect to the input x(t), calculated for the 254

model parameters θ and the initial predicted class 255

ŷ, and Πx+S(·) is the projection operator ensuring 256

x(t+1) stays within the allowed perturbation set S. 257

Let I(t+1) := (f(x(t+1)) = ŷ) ∧ (L(θ, x(t+1), ŷ) < 258

L(θ, x(t), ŷ)) denote a consistent classification at step 259

t+ 1 where the loss function improves. Then, the 260

adaptive step size is defined as: 261

α(t+1) =


α(t)

2
if f(x(t+1)) ̸= ŷ

α(t) · λ if I(t+1)

α(t) otherwise

with λ > 1

(5) 262

and the updated data point is defined as: 263

x(t+1) =

{
x(t), if f(x(t+1)) ̸= ŷ

x(t+1), otherwise.
. (6) 264

This PGD update rule leads the attack to de- 265

crease both the number of misclassifications and 266

model confidence. However, this interpolates be- 267

tween two classes (an incorrect and correct class), 268

whereas an ideal uncertainty attack would allocate 269

class confidence uniformly. 270

3.3 ConfSmooth 271

To overcome the limitation of prior uncertainty at- 272

tacks that focus on two classes, we propose Conf- 273

Smooth, an underconfidence attack that combines 274

cross-entropy loss with label smoothing. This formu- 275

lation enables us to smooth the classifier-predicted 276

probability distribution across all K classes [27]. We 277

define the loss function as: 278

HLS(p, q) = −
K∑
i=1

[
(1− ϵ) · pi +

ϵ

K

]
· log(qi), (7) 279

where pi is the i-th element of the original one-hot 280

encoded ground truth label distribution (equal to 1 281

for the initially predicted class and 0 for all other 282

classes), and qi is the predicted probability of the 283

classifier for class i after adding the attack pertur- 284

bation. The smoothing parameter ϵ ∈ [0, 1] controls 285

the degree of smoothing applied to the ground truth 286

distribution by modifying the ground-truth label 287

distribution from a one-hot encoding (probability 1 288

for the initially predicted class and 0 for all others) 289
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Algorithm 1 Underconfidence attack with adaptive
steps

Input: Classifier f , input x, initial predicted label ŷ,
step size α, perturbation budget S, gradient steps
T , loss function L, increase factor λ > 1

Output: Adversarial example xadv

1: xadv ← x, α(0) ← α
2: ladv ← L(f(xadv), ŷ)
3: for t = 0 to T − 1 do
4: Compute gradient ∇xL(f(xadv), ŷ)

xtemp ← Πx+S

(
xadv + α(t) sign(∇xL(f(xadv), ŷ))

)
5: ltemp ← L(f(xtemp), ŷ)
6: if f(xtemp) ̸= ŷ then
7: α(t+1) ← α(t)/2
8: xtemp ← xadv, ltemp ← ladv
9: else if f(xtemp) = ŷ and ltemp < ladv then

10: α(t+1) ← α(t)λ
11: xadv ← xtemp, ladv ← ltemp

12: else
13: α(t+1) ← α(t)

14: end if
15: end for
16: return xadv

to a smoother distribution. The resulting probabil-290

ity of the initially predicted class is reduced from 1291

to (1− ϵ) + ϵ
K , and each incorrect class probability292

target increases from 0 to exactly ϵ
K .293

The ConfSmooth attack algorithm uses PGD294

(Equation (4)) with an adaptive step size (Equation295

(5)) and adversarial perturbation update (Equation296

(6)) to generate adversarial examples (Algorithm 1).297

By minimizing this objective, ConfSmooth addresses298

the limitation of Equation (1), which only reduces299

the gap between the top two predicted classes.300

3.4 Underconfidence adversarial301

training (UAT)302

Although no defense algorithm has shown high ro-303

bustness against underconfidence attacks, AT has304

provided the strongest defense so far [9]. Here, we305

propose underconfidence adversarial training (UAT),306

which integrates the robust optimization framework307

of AT [11] with underconfidence attacks to preserve308

the predicted label while reducing its confidence.309

The optimization is given by:310

min
θ

E(x,y)∼D

[
max

||δ||p<S
L(fθ(x+ δ), y)

]
, (8)311

where θ are the model parameters, L(·) is the loss312

function (e.g., a cross-entropy loss), the expectation313

E(x,y)∼D is taken over the data distribution D of314

the input-output pairs (x, y), and ∥ · ∥p denotes an315

ℓp norm (typically the ∞-norm). The parameter S316

defines the perturbation budget, restricting the mag-317

nitude of adversarial perturbations within the spec-318

ified norm. The inner maximization approximates319

the worst-case perturbation δ within the constraint 320

∥δ∥p ≤ S (i.e., maximize the loss) and is typically 321

approximated using PGD (Equation (4)); the outer 322

minimization optimizes the model parameters θ to 323

minimize the approximation of the worst-case loss. 324

The main difference between UAT and AT is in 325

the generation of δ. Instead of computing an optimal 326

perturbation to induce a misclassification using a 327

cross-entropy loss like AT, UAT uses Equation (1) 328

or Equation (7), which is an approximation of the 329

optimal perturbation to reduce the confidence of 330

the model. By training the model using the loss 331

functions in Equations (1) or (7) with PGD using 332

an adaptive step size, the model should achieve 333

robustness against underconfidence attacks. 334

4 Experimental Design 335

We evaluated the effectiveness of our adaptive and 336

ConfSmooth attacks and UAT defense across vari- 337

ous model architectures and datasets. To assess the 338

transferability of attacks and model-specific vulnera- 339

bilities, we considered convolutional neural networks 340

such as LeNet [28], EfficientNet-B0 [29], ResNet-18 341

and ResNet-50 [30], WideResNet-50 [31], as well as 342

a vision transformer model, ViT-B16 [32]. We eval- 343

uated generalization across domains and task com- 344

plexity by conducting experiments on seven datasets. 345

Breast Cancer Ultrasound (2 classes) [33], Chest X- 346

ray (3 classes) [34], MNIST (10 classes) [35], CIFAR- 347

10 (10 classes)[36], MSTAR (11 classes) [37, 38], 348

CIFAR-100 (100 classes) [36], and ImageNet (1000 349

classes) [39]. These datasets span handwritten dig- 350

its, medical, natural, and radar imagery, providing 351

a diverse testbed for evaluating attack performance 352

and defensive robustness. 353

4.1 Model training 354

All trained models used stochastic gradient descent 355

(SGD) with Nesterov momentum [40], an initial 356

learning rate of 0.1, and a weight decay of 5× 10−4, 357

following [41]. For CIFAR-10, we trained modified 358

ResNet architectures from scratch for 200 epochs 359

using a cosine learning rate schedule [42], adapt- 360

ing the input convolution kernel size and stride for 361

32×32 images [43]. For MNIST, LeNet model was 362

trained from scratch for 5 epochs. For ImageNet, 363

we used the standard pre-trained PyTorch models 364

without additional training. For all other datasets, 365

including breast cancer ultrasound, chest radiogra- 366

phy, and radar, we performed transfer learning using 367

ImageNet pretrained backbones, freezing all but the 368

classification head, which is trained for 10 epochs. 369

In addition, images were resized to 224 × 224 and 370

augmented with random crops and horizontal flips. 371

Adversarially trained models followed the same 372

configurations and used multiple PGD variants with 373
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Architecture Dataset Conf. (Before) Conf. - Dropout Conf. - Adaptive Conf. - ConfSmooth

EfficientNet-B0

Breast Cancer Ultrasound 0.61 ± 0.016 0.52 ± 0.003 0.50 ± 0.0001 0.51 ± 0.0004
Chest X-ray 0.86 ± 0.004 0.45 ± 0.028 0.61 ± 0.009 0.51 ± 0.023
MSTAR 0.51 ± 0.005 0.39 ± 0.009 0.31 ± 0.005 0.15 ± 0.001
CIFAR-100 0.60 ± 0.002 0.52 ± 0.004 0.27 ± 0.002 0.11 ± 0.001
ImageNet 0.71 0.12 0.24 0.06

ResNet-50

Breast Cancer Ultrasound 0.63 ± 0.023 0.51 ± 0.001 0.50 ± 0.001 0.51 ± 0.0003
Chest X-ray 0.78 ± 0.006 0.48 ± 0.010 0.45 ± 0.007 0.38 ± 0.003
MSTAR 0.35 ± 0.004 0.23 ± 0.002 0.23 ± 0.004 0.14 ± 0.007
CIFAR-100 0.55 ± 0.003 0.45 ± 0.004 0.25 ± 0.002 0.10 ± 0.001
ImageNet 0.40 0.04 0.10 0.03

ViT-B16

Breast Cancer Ultrasound 0.82 ± 0.013 0.52 ± 0.003 0.50 ± 0.00001 0.51 ± 0.0005
Chest X-ray 0.92 ± 0.004 0.54 ± 0.007 0.49 ± 0.001 0.40 ± 0.004
MSTAR 0.60 ± 0.011 0.37 ± 0.006 0.34 ± 0.002 0.23 ± 0.003
CIFAR-100 0.83 ± 0.002 0.45 ± 0.003 0.39 ± 0.001 0.20 ± 0.002
ImageNet 0.77 0.30 0.31 0.11

Table 1. Mean MSP before/after underconfidence attacks across architectures and datasets. Lower
post-attack values indicates stronger suppression. ConfSmooth is the top performer across most setups. Accuracy
and ECE are reported in Table S1.

10 gradient steps (5 for UAT-Smooth with a smooth-374

ing parameter (ϵ) of 0.98), an initial step size of375

5/255 and an L∞ bounded perturbation budget of376

8/255. For CAAT, we applied a 95% dropout rate377

and included only underconfident generated sam-378

ples, as including overconfident samples does not379

improve robustness to underconfidence attacks [9].380

For RobustAugMix, we included clean and adver-381

sarial examples but excluded augmentations that382

isolate adversarial robustness from generalization.383

All training was conducted with a batch size of 128384

using two NVIDIA Volta V100 GPUs.385

4.2 Evaluation setup386

We evaluated all models using multiple PGD vari-387

ants each with 20 gradient steps and an initial step388

size of 5/255. All perturbations were constrained by389

the L∞ norm with a fixed budget of 0.03. The use of390

more gradient steps ensures better convergence and391

stronger adversarial examples [44]. We used a recom-392

mended dropout factor of 95% for underconfidence393

attacks leveraging dropout [9]. For ConfSmooth, we394

set ϵ = 0.98, such that the initially predicted class395

keeps (1 − ϵ) + ϵ
K = 0.02 + 0.98

K probability mass,396

while each other class receives ϵ/K, thereby lowering397

confidence while preserving the top-1 label.398

4.3 Metrics399

We used five criteria to evaluate model performance400

and robustness: perturbation magnitude (∆W ),401

structural similarity index measure (SSIM) [45], clas-402

sification accuracy, model confidence, and expected403

calibration error (ECE) [46]. The perturbation mag-404

nitude ∆W is calculated as the Wasserstein distance405

between a zero vector and the generated perturba-406

tion vector [47]. SSIM is calculated between the orig-407

inal image and its adversarial counterpart. Model408

confidence is defined as the average of the maxi-409

mum softmax probabilities (MSP) across evaluated410

samples.411

5 Experimental Results 412

In the adversarial attack results, we refer to the 413

misclassification attack as PGD, the calibration un- 414

derconfidence attack as Dropout [9], our improved 415

version as Adaptive, and our main contribution as 416

ConfSmooth. In the adversarial defense results, we 417

refer to underconfidence adversarial training using 418

the Adaptive attack as UAT-Gap and using the 419

ConfSmooth attack as UAT-Smooth. 420

5.1 Underconfidence attacks 421

We evaluated underconfidence attacks across multi- 422

ple datasets with varying class counts (Table 1). The 423

Dropout attack achieved the highest performance 424

in only a single architecture-dataset configuration, 425

likely due to its fixed step size and dropout fac- 426

tor (Fig. S1). By its use of an adaptive step size, 427

the Adaptive attack largely improved on the per- 428

formance of the Dropout attack while being more 429

efficient by omitting dropout. However, the Adap- 430

tive attack was less effective on large-scale datasets 431

with visually similar categories (e.g., ImageNet-1K). 432

In such cases, underconfidence attacks can leverage 433

the model’s tendency to spread the probability mass 434

across many classes [48], identifying regions of high 435

prediction uncertainty. 436

ConfSmooth outperformed the other attacks ex- 437

cept in the breast cancer ultrasound data, where all 438

attacks achieved close to the 50% confidence thresh- 439

old for a binary classification problem. However, 440

ConfSmooth was not the most performant for Effi- 441

cientNet trained on chest X-rays, where prediction 442

confidence often remained above 50%. The attack 443

reduced confidence below 50% for most inputs ini- 444

tially predicted as Covid19 or Normal, but largely 445

failed on inputs originally predicted as pneumonia 446

(Fig. S2). Despite incorporating a proposed adaptive 447

step size mechanism, ConfSmooth could not reduce 448

confidence without causing misclassification in 603 449
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Figure 1. Original MNIST image alongside perturbation heat-maps for the four PGD attacks
variations. Perturbations (indicated by the horizontal colorbar) are scaled to [0, 1] using the global minimum and
maximum perturbation values observed across the four attacks.

of 1, 288 samples (47%). This result aligns with450

previous findings that X-ray images are sensitive to451

small adversarial changes [49].452

Beyond dataset-specific outcomes, we also ob-453

served architectural trends. Models based on the454

ViT architecture were generally more robust to un-455

derconfidence attacks than CNN models. This re-456

sult aligns with previous work on misclassification457

robustness, which showed that ViTs are more re-458

sistant than similarly sized CNNs [50, 51]. ViTs459

use self-attention to capture global relationships460

between input patches [52], leading to high-level461

feature representations that are less sensitive to lo-462

calized perturbations.463

Attack ∆W SSIM

PGD 0.0274 ± 0.0034 0.8440 ± 0.0775
Dropout 0.0232 ± 0.0044 0.7592 ± 0.1158

Adaptive 0.0627 ± 0.0239 0.6813 ± 0.1197
ConfSmooth 0.0966 ± 0.0289 0.6136 ± 0.1168

Table 2. Comparison of adversarial attacks on
MNIST based on perturbation strength and vi-
sual similarity. ∆W denotes the average perturba-
tion magnitude (higher is stronger), and SSIM measures
structural similarity to the original image (higher is more
structural similar). ConfSmooth produces the strongest
perturbations, though at the cost of lower SSIM.

5.2 Assessing adversarial perturba-464

tions465

Although underconfidence attacks have been de-466

scribed as harder to detect because they preserve ac-467

curacy while requiring smaller perturbations [9], our468

results reveal a clear trade-off between perturbation469

strength and structural similarity (Table 2). PGD470

strikes an effective balance, introducing small pertur-471

bations (∆W = 0.0274) while preserving high struc-472

tural similarity (SSIM = 0.8440), making it efficient473

and structure-preserving. The dropout attack pro-474

duces slightly smaller perturbations (∆W = 0.0232)475

but at the cost of a lower SSIM (0.7592). These per- 476

turbations remain small in magnitude and maintain 477

high structural similarity, suggesting that they are 478

harder to detect using standard structural similarity 479

metrics. 480

In contrast, the Adaptive and ConfSmooth at- 481

tacks cause more noticeable disruptions to image 482

quality. The Adaptive variant introduces stronger 483

perturbations (∆W = 0.0627) and visible distortions 484

(SSIM = 0.6813). ConfSmooth is the most aggres- 485

sive, producing the highest perturbation magnitude 486

(∆W = 0.0966) and the lowest SSIM (0.6136), lead- 487

ing to a clear degradation in visual fidelity. Inter- 488

estingly, underconfidence attacks, especially ConfS- 489

mooth, tend to concentrate perturbations on pixels 490

less salient to the image class (Figure 1). We at- 491

tribute this behavior to the constraint of not crossing 492

the decision boundaries, which discourages altering 493

features strongly tied to class prediction. As a re- 494

sult, perturbations often accumulate in background 495

or boundary regions, substantially reducing model 496

confidence while leaving the initial predicted label 497

unchanged. 498

5.3 Robustness to underconfidence 499

attacks 500

Having previously shown that underconfidence at- 501

tacks succeed across datasets and architectures 502

(§5.1), we next evaluate whether these attacks re- 503

main effective against adversarially trained models. 504

We evaluated adversarial defenses using CIFAR-10, 505

a small-scale dataset with disjoint classes, which pro- 506

vides a clear assessment of robustness while avoiding 507

confounding effects from semantic overlap between 508

classes [48]. Even the least effective attack, Dropout, 509

reduces the confidence of a Vanilla ResNet-18 model 510

to 45% (Table 3). However, the Dropout attack per- 511

formed poorly against adversarially trained models. 512

The Adaptive attack, which removes dropout and 513

uses an adaptive step size, reduced the confidence 514

of the top class below 50% in most adversarially 515

trained models. 516
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Architecture Defense Method Conf. (Before) Conf. - Dropout Conf. - Adaptive Conf. - ConfSmooth

ResNet-18

Vanilla 0.919 ± 0.004 0.449 ± 0.006 0.414 ± 0.004 0.272 ± 0.007
AT 0.865 ± 0.002 0.674 ± 0.003 0.426 ± 0.001 0.267 ± 0.002
TRADES 0.844 ± 0.044 0.668 ± 0.028 0.427 ± 0.003 0.256 ± 0.003
RobustAugMix 0.842 ± 0.003 0.654 ± 0.003 0.421 ± 0.002 0.248 ± 0.001
CAAT 0.900 ± 0.006 0.645 ± 0.007 0.416 ± 0.003 0.280 ± 0.011
UAT-Gap 0.874 ± 0.016 0.688 ± 0.016 0.451 ± 0.011 0.295 ± 0.013
UAT-Smooth 0.935 ± 0.005 0.738 ± 0.005 0.483 ± 0.003 0.367 ± 0.005

ResNet-50

Vanilla 0.945 ± 0.005 0.502 ± 0.011 0.450 ± 0.008 0.345 ± 0.015
AT 0.901 ± 0.007 0.708 ± 0.007 0.442 ± 0.004 0.317 ± 0.009
TRADES 0.876 ± 0.041 0.684 ± 0.032 0.452 ± 0.014 0.302 ± 0.033
RobustAugMix 0.884 ± 0.011 0.691 ± 0.008 0.436 ± 0.007 0.294 ± 0.016
CAAT 0.948 ± 0.007 0.709 ± 0.012 0.454 ± 0.008 0.369 ± 0.019
UAT-Gap 0.933 ± 0.004 0.726 ± 0.003 0.496 ± 0.014 0.440 ± 0.027
UAT-Smooth 0.965 ± 0.004 0.767 ± 0.009 0.546 ± 0.039 0.532 ± 0.054

WideResNet-50

Vanilla 0.947 ± 0.003 0.502 ± 0.011 0.449 ± 0.005 0.344 ± 0.019
AT 0.889 ± 0.007 0.699 ± 0.008 0.429 ± 0.004 0.306 ± 0.011
TRADES 0.876 ± 0.042 0.662 ± 0.039 0.450 ± 0.015 0.298 ± 0.039
RobustAugMix 0.894 ± 0.006 0.700 ± 0.004 0.439 ± 0.002 0.308 ± 0.007
CAAT 0.955 ± 0.006 0.728 ± 0.012 0.453 ± 0.008 0.385 ± 0.013
UAT-Gap 0.927 ± 0.004 0.721 ± 0.005 0.514 ± 0.010 0.469 ± 0.021
UAT-Smooth 0.965 ± 0.004 0.768 ± 0.010 0.577 ± 0.026 0.574 ± 0.035

Table 3. Mean MSP confidence before and after underconfidence attacks on CIFAR-10 across CNN
architectures and defenses. UAT-Smooth maintains the highest post-attack confidence, indicating strong
robustness. ECE results are reported in Table S2.

ConfSmooth remained the most effective under-517

confidence attack overall. On average, ConfSmooth518

reduced the confidence of adversarially trained mod-519

els by an additional 10% compared to the Adap-520

tive attack. An exception was our proposed de-521

fense, UAT, which substantially improved robust-522

ness against underconfidence attacks. UAT-Smooth523

consistently achieved the highest post-attack con-524

fidence across all architectures. For example, on525

WideResNet-50, UAT-Smooth retained 0.574 con-526

fidence after ConfSmooth, compared to 0.344 for527

the vanilla model and 0.306 for AT. Against the528

less aggressive dropout-based attack, UAT-Smooth529

achieved up to 0.768 confidence, outperforming all530

other defenses. Notably, UAT-Smooth was trained531

using only half as many attack gradient steps as the532

other adversarial training methods, demonstrating533

strong efficiency.534

Finally, we observed that many defenses developed535

for misclassification attacks, such as AT, TRADES,536

and RobustAugMix, remain vulnerable to under-537

confidence attacks. This suggests that robustness538

to misclassification attacks does not imply robust-539

ness to underconfidence attacks, and highlights the540

need for training objectives that explicitly consider541

model prediction confidence. Adversarially trained542

models using misclassification objectives tend to be543

less confident than vanilla models [53]; however, this544

behavior did not generalize to models trained with545

underconfidence-based objectives.546

To better understand the prediction confidence in547

response to underconfidence attacks, we examined548

the confidence on correctly and incorrectly classified549

samples across different defenses before and after550

applying the ConfSmooth attack. The vanilla model551

displayed well-calibrated behavior: low confidence552

for incorrect predictions and high confidence for553

correct predictions (Figs. 2(a) and 2(b)). Interest- 554

ingly, the model trained with CAAT assigned slightly 555

higher confidence to incorrect predictions than the 556

vanilla model, but still maintained a clear separation 557

between correct and incorrect samples (Figs. 2(c) 558

and 2(d)). In contrast, the model trained with UAT- 559

Smooth assigned noticeably higher confidence to 560

incorrect predictions compared to other methods 561

(Figs. 2(e) and 2(f)). However, it maintained even 562

greater confidence in the correctly classified sam- 563

ples, exhibiting the strongest distinction between 564

the two groups. In summary, the confidence dis- 565

tributions for the vanilla model and model trained 566

with CAAT collapse below the 50% threshold, lead- 567

ing to overlapping distributions, while UAT-Smooth 568

retained a significant portion of its confidence mass 569

for correctly classified samples above 50% with many 570

predictions remaining near 100%. 571

5.4 Robustness to misclassification 572

attacks 573

Having established robustness to underconfidence at- 574

tacks, we next assessed how underconfidence attack 575

defenses perform under misclassification attacks (Ta- 576

ble 4). We observed that CAAT, trained using only 577

5% of the perturbation magnitude, offers some ro- 578

bustness against the PGD attack compared to the 579

vanilla model. However, our proposed methods, 580

based on UAT, achieved significantly higher robust- 581

ness than CAAT, with improvements of at least 582

12% across the three architectures. Interestingly, 583

UAT-Smooth achieved robustness to misclassicia- 584

tion attacks comparable to, or exceeding, AT. 585

The robustness of UAT-Smooth against misclassi- 586

fication attacks emerges from its training objective. 587

Although UAT-Smooth does not directly optimize 588
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(a) Vanilla before attack. (b) Vanilla after attack.

(c) CAAT before attack (d) CAAT after attack.

(e) UAT-Smooth before at-
tack (f) UAT-Smooth after attack.

Figure 2. Confidence (MSP) distributions for
correct and incorrect samples before and after
ConfSmooth perturbation. Rows correspond to dif-
ferent defense methods (on WideResNet-50) and columns
indicated before (left) and after (right) underconfidence
attacks. Vanilla and CAAT shows marked confidence
drops for correct predictions after being attacked, while
UAT-Smooth retains high confidence, indicating stronger
robustness to confidence suppression.

for misclassification robustness, it uses a PGD-style589

algorithm to target regions of high model uncer-590

tainty. This strategy exposes weaknesses that help591

models to generalize better under adversarial condi-592

tions. ConfSmooth generates perturbations nearly593

four times larger than PGD (see §5.2), making the594

perturbed images more visually distorted. These595

visual distortions introduce a trade-off, reducing596

model performance on clean images in our evalua-597

tions. UAT-Smooth showed lower clean accuracy598

than most adversarial defenses (resulting in an ad-599

ditional 8% drop relative to AT on ResNet-18).600

In contrast, larger architectures such as ResNet-50601

and WideResNet-50 maintained both higher clean602

accuracy and robustness to misclassification attacks603

using PGD compared to ResNet-18. For example, on604

WideResNet-50, UAT-Smooth reached 0.407 post-605

attack accuracy, outperforming AT (0.381), while606

maintaining a clean accuracy of 0.724. This suggests607

that UAT-based defenses scale well with model ca-608

pacity, allowing a better balance between robustness609

and accuracy as the size of the architecture increases.610

Defense Accuracy (Before) Accuracy (After)

ResNet-18
Vanilla 0.885± 0.004 0.000± 0.000
AT 0.758± 0.005 0.358± 0.002
TRADES 0.733± 0.006 0.381± 0.003
RobustAugMix 0.742± 0.001 0.346± 0.005
CAAT 0.852± 0.003 0.200± 0.006

UAT-Gap 0.657± 0.042 0.328± 0.015
UAT-Smooth 0.679± 0.012 0.344± 0.007

ResNet-50
Vanilla 0.882± 0.006 0.000± 0.000
AT 0.775± 0.002 0.372± 0.005
TRADES 0.778± 0.041 0.486± 0.137
RobustAugMix 0.754± 0.007 0.360± 0.004
CAAT 0.856± 0.007 0.205± 0.008

UAT-Gap 0.738± 0.010 0.346± 0.006
UAT-Smooth 0.729± 0.009 0.384± 0.025

WideResNet-50
Vanilla 0.886± 0.004 0.000± 0.000
AT 0.768± 0.005 0.381± 0.007
TRADES 0.773± 0.028 0.491± 0.144
RobustAugMix 0.753± 0.003 0.369± 0.004
CAAT 0.865± 0.005 0.226± 0.007

UAT-Gap 0.721± 0.003 0.347± 0.007
UAT-Smooth 0.724± 0.008 0.407± 0.029

Table 4. Classification accuracy of CNNs on
CIFAR-10 before and after PGD attacks across
adversarial defenses. UAT performs comparably to
AT, achieving similar post-attack accuracy on ResNet-
50 and WideResNet-50. TRADES achieves the highest
overall post-misclassification attack accuracy.

6 Conclusion 611

In this work, we presented two new underconfidence 612

attacks (Adaptive and ConfSmooth) and UAT, an 613

underconfidence adversarial training algorithm that 614

leverages our new attacks. Among the underconfi- 615

dence attacks we evaluated, ConfSmooth generalized 616

more effectively across datasets and domains, a per- 617

formance that we attribute to its label-smoothing 618

loss and its adaptive step size to prevent constant 619

misclassifications. Architectural differences also in- 620

fluenced robustness: ViT consistently outperformed 621

CNNs, probably due to their emphasis on global 622

semantics rather than local textures. ConfSmooth 623

reliably reduced the model confidence below the 624

critical threshold of 0.5 (MSP), except when UAT- 625

Smooth was applied. Adversarily trained models 626

optimized for misclassification robustness are para- 627

doxically more susceptible to ConfSmooth than the 628

vanilla model, a vulnerability most pronounced in 629

TRADES, despite its state-of-the-art performance 630

against PGD. Interestingly, UAT-Smooth provided 631

robustness to both underconfidence and misclassifi- 632

cation attacks, often matching or exceeding AT while 633

requiring half of the steps. However, we did observe 634

a reduced clean accuracy and increased confidence 635

in incorrect classifications compared to the vanilla 636

model and CAAT. These findings highlight the need 637

for defenses that account not only for prediction 638

correctness but also for calibrated uncertainty under 639

adversarial conditions. 640
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7 Supplementary Material899

S1 Assessing Dropout attack900

Figure S1. Interpreting underconfidence attacks
that use dropout. Using dropout, the underconfidence
attack reduces the confidence of the Pneumonia class un-
til the decision boundary of the Covid19 class is crossed.
At this point, confidence is not further reduced due to
oscillations between the two classes.

In our experiments, we found that applying the901

Dropout attack led to oscillations between the proba-902

bilities associated with two classes (Fig. S1). For ex-903

ample, we applied the attack to a three-class problem904

(chest X-ray dataset) and found that the probability905

of Pneumonia diminishes until reaching a certain906

threshold (58%), at which point the attack crosses907

the boundary and Covid19 becomes the predicted908

class. In the remaining steps, the attack causes the909

probabilities of these two classes to oscillate back910

and forth. It appears that as the attacked point911

approaches the decision boundary of the model, the912

perturbations applied may be too large and that913

limiting them with dropout is not sufficient to avoid914

large changes in the predicted probabilities.915

S2 Assessing ConfSmooth attack916

steps during underconfidence ad-917

versarial training918

We vary the number of ConfSmooth gradient steps919

taken during UAT-Smooth adversarial training and920

measure its effect on clean accuracy and robust-921

ness to the ConfSmooth under-confidence attack922

(Table S3). As the steps count increases from 1 to923

10, clean accuracy steadily falls from 0.84 to 0.64,924

while the confidence in pre-attack max-softmax re-925

mains high (0.94-0.97). Robustness peaks at five926

gradient steps: post-attack confidence climbs from927

0.38 (1 step) to 0.57 (5 steps) and then declines928

slightly at higher counts. This trade-off shows that929

although more steps initially achieve resistance to930

ConfSmooth, beyond five they erode both clean per-931

formance and robustness. In practice, 3–5 steps932

strike the best balance, matching the standard AT933

accuracy and substantially mitigating the ConfS- 934

mooth attack. 935

Figure S2. EfficientNet chest X-ray confidence
distributions after ConfSmooth attack Each point
shows the MSP for samples originally predicted as Covid-
19 (red), Normal (blue), or Pneumonia (green). The
dashed line at 0.5 marks the classifier threshold we want
to break with the underconfidence attack. ConfSmooth
drives most Covid-19 and Normal confidences below 0.5
but largely fails to suppress Pneumonia predictions.
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Architecture Dataset Accuracy ECE (Before) ECE - Dropout ECE - Adaptive ECE - ConfSmooth

EfficientNet

Breast Cancer Ultrasound 0.75 ± 0.07 0.16 ± 0.05 0.23 ± 0.07 0.25 ± 0.08 0.24 ± 0.07
Chest X-ray 0.90 ± 0.01 0.05 ± 0.00 0.46 ± 0.04 0.34 ± 0.01 0.43 ± 0.02
MSTAR 0.67 ± 0.01 0.17 ± 0.01 0.29 ± 0.01 0.31 ± 0.01 0.52 ± 0.01
CIFAR-100 0.60 ± 0.002 0.02 ± 0.002 0.09 ± 0.01 0.33 ± 0.002 0.49 ± 0.002
ImageNet 0.79 0.08 0.67 0.55 0.73

ResNet-50

Breast Cancer Ultrasound 0.86 ± 0.00 0.24 ± 0.02 0.36 ± 0.002 0.36 ± 0.001 0.35 ± 0.00
Chest X-ray 0.86 ± 0.02 0.09 ± 0.01 0.39 ± 0.03 0.41 ± 0.03 0.48 ± 0.02
MSTAR 0.57 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.34 ± 0.01 0.43 ± 0.02
CIFAR-100 0.58 ± 0.01 0.04 ± 0.003 0.14 ± 0.01 0.33 ± 0.01 0.48 ± 0.01
ImageNet 0.83 0.43 0.79 0.73 0.81

ViT

Breast Cancer Ultrasound 0.89 ± 0.01 0.08 ± 0.02 0.36 ± 0.01 0.39 ± 0.02 0.38 ± 0.01
Chest X-ray 0.93 ± 0.00 0.03 ± 0.00 0.39 ± 0.01 0.44 ± 0.004 0.54 ± 0.00
MSTAR 0.78 ± 0.01 0.18 ± 0.02 0.41 ± 0.01 0.44 ± 0.01 0.55 ± 0.01
CIFAR-100 0.79 ± 0.003 0.04 ± 0.002 0.36 ± 0.003 0.41 ± 0.003 0.59 ± 0.003
ImageNet 0.82 0.06 0.53 0.51 0.71

Table S1. ECE before and after underconfidence attacks across datasets and architectures. Accuracy
is presented only before attacks since the underconfidence threats evaluated in this study does not cause misclassi-
fication. Higher post-attack ECE indicates stronger miscalibration; bold values denote the maximum post-attack
ECE per dataset–architecture setup.

Architecture Defense Method ECE (Before) ECE - Dropout ECE - Adaptive ECE - ConfSmooth ECE - PGD

ResNet-18

Vanilla 0.037 ± 0.003 0.436 ± 0.006 0.470 ± 0.005 0.613 ± 0.007 1.000 ± 0.000
AT 0.109 ± 0.002 0.090 ± 0.003 0.333 ± 0.004 0.491 ± 0.005 0.543 ± 0.003
TRADES 0.080 ± 0.006 0.092 ± 0.021 0.307 ± 0.004 0.477 ± 0.004 0.442 ± 0.016
RobustAugMix 0.101 ± 0.004 0.093 ± 0.003 0.321 ± 0.002 0.494 ± 0.001 0.537 ± 0.006
CAAT 0.050 ± 0.004 0.206 ± 0.005 0.436 ± 0.002 0.571 ± 0.009 0.737 ± 0.009
UAT-Gap 0.217 ± 0.058 0.068 ± 0.026 0.207 ± 0.053 0.363 ± 0.054 0.584 ± 0.021
UAT-Smooth 0.257 ± 0.012 0.136 ± 0.017 0.089 ± 0.019 0.314 ± 0.014 0.669 ± 0.004

ResNet-50

Vanilla 0.065 ± 0.003 0.380 ± 0.010 0.432 ± 0.008 0.537 ± 0.014 1.000 ± 0.000
AT 0.128 ± 0.005 0.084 ± 0.003 0.332 ± 0.003 0.458 ± 0.008 0.570 ± 0.005
TRADES 0.100 ± 0.017 0.098 ± 0.029 0.326 ± 0.029 0.475 ± 0.016 0.397 ± 0.132
RobustAugMix 0.132 ± 0.008 0.078 ± 0.006 0.318 ± 0.007 0.460 ± 0.013 0.568 ± 0.015
CAAT 0.094 ± 0.008 0.149 ± 0.009 0.402 ± 0.011 0.487 ± 0.019 0.772 ± 0.008
UAT-Gap 0.196 ± 0.009 0.062 ± 0.007 0.242 ± 0.023 0.298 ± 0.037 0.623 ± 0.004
UAT-Smooth 0.237 ± 0.008 0.103 ± 0.036 0.129 ± 0.036 0.197 ± 0.049 0.646 ± 0.014

WideResNet-50

Vanilla 0.062 ± 0.002 0.384 ± 0.009 0.437 ± 0.004 0.541 ± 0.016 1.000 ± 0.000
AT 0.123 ± 0.005 0.083 ± 0.005 0.339 ± 0.005 0.462 ± 0.009 0.552 ± 0.005
TRADES 0.104 ± 0.021 0.117 ± 0.052 0.323 ± 0.018 0.476 ± 0.013 0.394 ± 0.134
RobustAugMix 0.142 ± 0.006 0.076 ± 0.003 0.314 ± 0.005 0.445 ± 0.006 0.574 ± 0.007
CAAT 0.091 ± 0.003 0.139 ± 0.007 0.412 ± 0.005 0.479 ± 0.008 0.755 ± 0.008
UAT-Gap 0.207 ± 0.005 0.061 ± 0.003 0.207 ± 0.011 0.252 ± 0.022 0.625 ± 0.006
UAT-Smooth 0.241 ± 0.007 0.101 ± 0.026 0.130 ± 0.027 0.152 ± 0.030 0.654 ± 0.011

Table S2. ECE before and after underconfidence and misclassification attacks on CIFAR-10 across
CNN architectures and defense methods. For each attack–defense pair, bold values denote the lowest
post-attack ECE.

Steps Accuracy Confidence(Before) Confidence (After)

One 0.84 ± 0.008 0.96 ± 0.015 0.38 ± 0.03
Three 0.78 ± 0.004 0.97 ± 0.004 0.45 ± 0.04
Five 0.72 ± 0.008 0.96 ± 0.004 0.57 ± 0.035
Seven 0.69 ± 0.012 0.96 ± 0.006 0.56 ± 0.040
Ten 0.64 ± 0.021 0.94 ± 0.005 0.49 ± 0.030

Table S3. Effect of ConfSmooth gradient steps taken during UAT-Smooth adversarial training
(on WideResnet-50). Taking more than five gradient steps sharply reduces clean accuracy and robustness to
ConfSmooth, indicating a trade-off between robustness and standard performance. Accuracy is presented only
before attack since ConfSmooth does not cause misclassification.
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