
Published as a conference paper at ICLR 2025

BRAID: INPUT-DRIVEN NONLINEAR DYNAMICAL
MODELING OF NEURAL-BEHAVIORAL DATA

Parsa Vahidi1, Omid G. Sani1, Maryam M. Shanechi1-3,*

1Electrical and Computer Engineering, 2Computer Science, 3Biomedical Engineering
Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA
{pvahidi, omid.ghasemsani, shanechi}@usc.edu, *Corresponding author

ABSTRACT

Neural populations exhibit complex recurrent structures that drive behavior, while
continuously receiving and integrating external inputs from sensory stimuli, up-
stream regions, and neurostimulation. However, neural populations are often mod-
eled as autonomous dynamical systems, with little consideration given to the influ-
ence of external inputs that shape the population activity and behavioral outcomes.
Here, we introduce BRAID, a deep learning framework that models nonlinear
neural dynamics underlying behavior while explicitly incorporating any measured
external inputs. Our method disentangles intrinsic recurrent neural population
dynamics from the effects of inputs by including a forecasting objective within
input-driven recurrent neural networks. BRAID further prioritizes the learning of
intrinsic dynamics that are related to a behavior of interest by using a multi-stage
optimization scheme. We validate BRAID with nonlinear simulations, showing
that it can accurately learn the intrinsic dynamics shared between neural and be-
havioral modalities. We then apply BRAID to motor cortical activity recorded
during a motor task and demonstrate that our method more accurately fits the
neural-behavioral data by incorporating measured sensory stimuli into the model
and improves the forecasting of neural-behavioral data compared with various
baseline methods, whether input-driven or not.

1 INTRODUCTION

Understanding the relationship between neural activity and behavior is a critical goal in neuroscience
and neurotechnology. Neural activity and its temporal structure, or “dynamics”, during a behavior
are formed by the interplay between (1) the recurrent networks within a brain area, i.e., intrinsic
dynamics, and the (2) temporally-structured inputs it receives during the behavior (Remington et al.,
2018; Vyas et al., 2020). A neural population may receive inputs from measurable sources such as
sensory stimuli, electrical/optogenetic neurostimulation (Buonomano & Maass, 2009; Seely et al.,
2016; Susilaradeya et al., 2019; Sauerbrei et al., 2020; Shenoy & Kao, 2021; Yang et al., 2021b;
Vahidi et al., 2024), as well as from other upstream brain areas (Sauerbrei et al., 2020; Shenoy &
Kao, 2021), which could be included in multi-regional recordings (Jun et al., 2017; Steinmetz et al.,
2019). However, even easily measurable external inputs (e.g., sensory stimuli) are often not explic-
itly considered when modeling neural-behavioral activity, which can lead to a conflation of intrinsic
and input-driven contributions, creating challenges for interpretation (Seely et al., 2016; Sauerbrei
et al., 2020; Vahidi et al., 2024). Beyond disentangling intrinsic dynamics from input dynamics,
incorporating measured inputs into models can also enhance the behavior decoding performance in
neurotechnologies such as stimulation-based closed-loop controllers (Yang et al., 2018; 2021b).

Another challenge is to disentangle neural dynamics that are relevant to a specific behavior from
other neural dynamics, and to prioritize the former. This is critical as the majority of neural variance
may not be relevant to the behavior of interest (Churchland et al., 2012; Mante et al., 2013; Kobak
et al., 2016; Allen et al., 2019; Engel & Steinmetz, 2019; Stringer et al., 2019; Sani et al., 2021).
While most prior works use unsupervised methods when modeling neural activity as latent variable
dynamical systems (Aghagolzadeh & Truccolo, 2015; Gao et al., 2016; Wu et al., 2017; Pandarinath
et al., 2018; Hernandez et al., 2020; Rutten et al., 2020; Kim et al., 2021), recent works have shown
improved learning of behaviorally relevant neural dynamics by using behavior data during learning

1

Published as a conference paper at ICLR 2025

in a supervised manner (Sani et al., 2021; Hurwitz et al., 2021; Kramer et al., 2022; Gondur et al.,
2024; Vahidi et al., 2024; Abbaspourazad et al., 2024; Sani et al., 2024; Oganesian et al., 2024).

Yet another challenge is posed by the nonlinearities in neural-behavioral data. While linear models
have been extremely effective in approximating neural dynamics (Hastie et al., 2009; Churchland
et al., 2012; Mante et al., 2013; Cunningham & Yu, 2014; Kao et al., 2015; Kobak et al., 2016;
Abbaspourazad et al., 2021; Sani et al., 2021), they may require higher dimensional latent repre-
sentations compared to nonlinear models (Yang et al., 2019; Nozari et al., 2024; Sani et al., 2024),
and do not provide interpretability for nonlinear dynamical phenomena such as multi-stable fixed
points and limit cycles (Kim et al., 2021; Durstewitz et al., 2023). Moreover, unlike linear models,
for nonlinear models the relationship between the intrinsic dynamics and an inference model that is
fitted to estimate the latent states from observations is not analytically known, posing a challenge
for studying intrinsic dynamics (see section 3.1).

Here, we address all aforementioned challenges by introducing Behaviorally Relevant Analysis of
Intrinsic Dynamics (BRAID), a new method with the following key contributions. First, BRAID
captures complex nonlinear structures in neural-behavioral-input data, offering greater expressiv-
ity than linear methods. Second, by optimizing multi-step-ahead forecasts of neural-behavior data,
BRAID simultaneously learns two representations for neural dynamics: the predictor and the gener-
ative form representations (see section 3.1), the latter of which describes intrinsic dynamics. Third,
by explicitly modeling the influence of measured inputs, BRAID disentangles their dynamics from
intrinsic dynamics to more closely reflect the neuronal networks within the recorded brain region.
Fourth, we introduce a multi-stage learning framework that dissociates and prioritizes the learning
of intrinsic behaviorally relevant neural dynamics, while considering measured inputs (see section
3.2). Fifth, we introduce additional preprocessing and post-hoc learning stages that allow behavior-
specific dynamics to be dissociated from behaviorally relevant neural dynamics (see section 3.3).

We validate BRAID in multiple simulated datasets with distinct nonlinear structures and show its
capability to accurately learn the underlying nonlinear model, resulting in an interpretable represen-
tation of intrinsic dynamics. We then apply our method to electrophysiological data recorded from a
non-human-primate (NHP) performing sequential reaches (O’Doherty et al., 2017). Our results indi-
cate that accounting for both nonlinearity and sensory inputs improves neural-behavioral prediction,
suggesting a more accurate representation of intrinsic behaviorally relevant neural dynamics.

2 RELATED WORK

Our work addresses multiple problems simultaneously, which makes it related to various methods
that tackle a subset of these problems. A summary of related methods is provided in table 1.

First, a key ability of BRAID is to incorporate measured inputs to disentangle intrinsic dynamics
from input dynamics. Other nonlinear modeling methods (Gao et al., 2016; Sussillo et al., 2016;
Wu et al., 2017; Pandarinath et al., 2018; Rutten et al., 2020; Hurwitz et al., 2021; Kim et al., 2021;
Abbaspourazad et al., 2024; Sani et al., 2024) have not addressed modeling measured external inputs
and their impact on neural-behavioral data. As demonstrated by Vahidi et al. (2024), not consider-
ing external inputs can lead to the dynamics of these inputs being misinterpreted as intrinsic neural
dynamics. To overcome this challenge, Vahidi et al. (2024) introduce a linear dynamical model-
ing method, termed IPSID, which explicitly incorporates measured external inputs into the model.
However, IPSID is an analytical, and strictly linear method that cannot capture nonlinearities. By
incorporating the strengths of this linear modeling work into BRAID, we can account for measured
external inputs and dissociate their dynamics while allowing every model element to be nonlinear.
We use IPSID as a key baseline to show the benefit of enabling nonlinearity in our method (see
appendix A.2 for details). We also show the results for the special case of setting all model elements
as linear in our method (referred to as linear BRAID), which fits in a linear model similar to IPSID.

Second, a key capability of BRAID is that it dissociates behaviorally relevant neural dynamics into
a distinct part of the latent states and prioritizes their learning, while also being able to learn neural-
specific and behavior-specific dynamics using additional latent states. Among prior works, two
recent nonlinear methods termed DPAD (Sani et al., 2024) and TNDM (Hurwitz et al., 2021) aim to
dissociate behaviorally relevant dynamics from other neural dynamics, but neither method dissoci-
ates the third category of dynamics, i.e., the behavior-specific dynamics. More importantly, neither

2

Published as a conference paper at ICLR 2025

DPAD nor TNDM incorporates external inputs into the model to dissociate intrinsic dynamics from
input dynamics. Finally, DPAD learns models based on 1-step-ahead prediction of neural-behavioral
data and does not explicitly learn the intrinsic dynamics, whereas BRAID adds m-step-ahead pre-
dictions into the loss to optimize forecasting and also explicitly learns a generative representation
of intrinsic dynamics. TNDM on the other hand is a sequential autoencoder (similar to LFADS,
Pandarinath et al., 2018), i.e., it optimizes reconstruction of a window of data after ingesting the
entire window as input. We compared our results with both DPAD and TNDM, although DPAD’s
architecture is closer to ours. In fact, the comparisons with DPAD can also be thought of as ablation
studies that show the benefit of incorporating external inputs and forecasting in our method.

Third, we learn behaviorally relevant neural dynamics, or in other words the shared neural-
behavioral dynamics, in an initial optimization focused on learning these dynamics, while leaving
the learning of other neural dynamics to a separate subsequent optimization. This approach, priori-
tizes behaviorally relevant neural dynamics in the sense that we can fit models with low dimensional
latent states that are purely focused on these dynamics (Sani et al., 2021). Besides DPAD (Sani et al.,
2024), a few other works, including TNDM, propose nonlinear approaches for learning dynamics
shared between two modalities (Hurwitz et al., 2021; Kramer et al., 2022; Gondur et al., 2024). How-
ever, these works use a combined loss to optimize the reconstruction of both modalities in the same
optimization. While this approach can capture the dynamics shared between modalities, it does not
prioritize them over dynamics specific to either modality (Sani et al., 2024). Moreover, most multi-
modal approaches do not model the effect of external inputs (Hurwitz et al., 2021; Gondur et al.,
2024). One multi-modal model, termed mmPLRNN (Kramer et al., 2022), which models dynamics
of two modalities with a piecewise-linear RNN (see appendix A.2 for details), supports modeling
the effect of external inputs, although this capability was not demonstrated in Kramer et al. (2022).
Nevertheless, we include comparisons with mmPLRNN with input as one baseline. Finally, as an-
other ablation study to assess the importance of prioritizing behaviorally relevant dynamics, we also
implement an unsupervised version of BRAID, termed U-BRAID, that removes the behaviorally
relevant optimization step and instead learns all neural dynamics in one optimization step while still
incorporating external inputs into the model (see section 3 and appendix A.2 for details).

Most other prior nonlinear methods only consider neural signals during modeling without consider-
ing behavior or external inputs (Gao et al., 2016; Pandarinath et al., 2018; Hernandez et al., 2020;
Rutten et al., 2020; Kim et al., 2021) or do not use dynamic models (Zhou & Wei, 2020; Schneider
et al., 2023) and thus are vastly different from our method. Nevertheless, we include comparisons
with LFADS (Pandarinath et al., 2018) and CEBRA (Schneider et al., 2023) as additional baselines.
We list the differences of some of these methods with our method in table 1.

Table 1: Related works (see Discussion). ELBO: evidence lower bound, LL: log-likelihood.

Method Nonlinear Prioritize
behaviorally relevant

Dissociate
non-neural

Dissociate
intrinsic Training objective

IPSID ✗ ✓ ✓ ✓ Projection-based
TNDM ✓ ✓ ✗ ✗ Multi-modal ELBO
LFADS ✓ ✗ ✗ ✗ ELBO
mmPLRNN ✓ ✗ ✗ ✓ Multi-modal ELBO
DPAD ✓ ✓ ✗ ✗ 1-step-ahead LL
CEBRA ✓ ✓ ✗ ✗ Contrastive
BRAID ✓ ✓ ✓ ✓ m-step-ahead LL

3 METHODS

3.1 BRAID MODEL

We model the neural activity (yk ∈ Rny) and behavior (zk ∈ Rnz) as observations of a nonlinear
dynamical system that is driven by measured (uk ∈ Rnu) and/or unmeasured inputs (wk ∈ Rnx): xs

k+1 = Afw(x
s
k) +Kfw(uk) +wk

yk = Cy(x
s
k,uk) + vk

zk = Cz(x
s
k,uk) + ϵk

(1)

3

Published as a conference paper at ICLR 2025

Here, xs
k ∈ Rnx represent the latent states of the system and evolve according to intrinsic dynamics

Afw. vk ∈ Rny and ϵk ∈ Rnz represent observation noises. Given this dynamical system, one can
recursively infer the latent state from neural observations yk using an RNN as follows

xk+1|k = A(xk|k−1) +K(yk,uk) (2)

where xk+1|k (or simply xk+1) is defined as the inferred latent state based on {y1, ...,yk} and
{u1, ...,uk}. Given the latent nature of the states, even when inference is optimal (e.g., in a Kalman
filter), the inferred states will not be equal to the internal states xs

k in equation 1 (Katayama, 2006),
which is why we use different notations for the states in equations 1 and 2. More importantly,
note that A and K in equation 2 are distinct from Afw and Kfw in equation 1. This is because
A and K represent the “predictor form” representation of dynamics, describing how the inferred
latent state recursively evolves over time as samples of yk and uk are observed, whereas Afw

and Kfw represent the “generative form” representation of dynamics that describe how the latent
states themselves evolve, purely based on their intrinsic dynamics – so Afw is what ultimately
describes the intrinsic dynamics. For linear systems, there is an analytical bidirectional relationship
between predictor and generative form representations (defined by the Kalman filter, see Katayama,
2006), whereas for nonlinear systems in general, this relationship is not known. Thus, we devise an
approach that allows us to learn both representations of dynamics from data.

Critically, to predict the latent state (or neural-behavioral data) multiple (m > 1) steps into the future
without new neural observations and using only new inputs uk, we need to propagate the latent state
ahead according to its intrinsic dynamics, i.e., the “generative form” representation of dynamics, as

xk+m|k = Afw(xk+m−1|k) +Kfw(uk+m−1) (3)

where xk+m|k denotes the latent state at time step k + m, generated given {y1, ...,yk} and
{u1, ...,uk+m−1}. Note that for m = 2, the right hand side of equation 3 would have xk+1|k,
which is given by equation 2. Thus, m-step-ahead inference of the latent state engages both the pre-
dictor and generative form representations of the dynamics via equations 2 and 3, respectively. As
an alternative interpretation, the m-step-ahead prediction of the latent state (or neural or behavioral
data), for m > 1, involves two RNNs operating in complementary fashion (figure 1b):
1. The first RNN (RNN, parameterized by A and K) takes in neural and input time series and

recursively estimates the 1-step-ahead prediction (xk|k−1).
2. The second RNN (RNNfw, parameterized by Afw and Kfw) takes in the 1-step-ahead predicted

state from the first RNN and propagates it m− 1 additional steps ahead according to the intrinsic
latent dynamics of the model, to get the m-step-ahead predictions (xk+m−1|k−1, for m > 1).

Overall, the BRAID model is comprised of six distinct transformations: A(·), Afw(·), K(·),
Kfw(·), Cz(·), and Cy(·). A/Afw describe predictor/generative form recursions of the latent state.
K/Kfw describe predictor/generative form encoders. Cz and Cy describe behavior and neural de-
coders. We implement these six transformations as multi-layer perceptrons (MLPs) with arbitrary
user-specified number of units and hidden layers. As a special case, any (or all) of these mappings
can be replaced by a linear mapping (i.e., an MLP with no hidden layer and a linear activation).

We learn the parameters specifying all six transformations of the model by optimizing a weighted
sum of m-step-ahead neural-behavioral prediction errors (for m ∈ [m1,m2, . . . ,mL]) as our losses

Lz =
∑L

i=1 αzmi
MSE(zk+mi

,Cz(xk+mi|k,uk+mi
))

Ly =
∑L

i=1 αymi
MSE(yk+mi

,Cy(xk+mi|k,uk+mi
))

(4)

where MSE(·) indicates the mean-squared error loss, L denotes the number of steps ahead simulta-
neously included in the loss, and αzmi

and αymi
denote the weights used in the sum. In this work,

we always set αzmi
and αymi

to 1. Moreover, although the decoders in BRAID can optionally take
both the latent state and the external input uk (lines 2-3 of equation 1), in our real data analyses we
do not provide uk to decoders and generate predictions only based on the latent states.

3.2 PRIORITIZATION OF BEHAVIORALLY RELEVANT OVER OTHER NEURAL DYNAMICS

To dissociate behaviorally relevant neural dynamics from other neural dynamics and prioritize the
former, we break the latent state xk into two sections (x(1)

k and x
(2)
k) and learn these two sections

4

Published as a conference paper at ICLR 2025

 Neural
activity

Behavior

Input

𝑦𝑘

𝑧𝑘

𝑢𝑘

𝑥𝑘

Behavior-specific
(non-encoded)

Stage 1

Stage 2

 Neural activity
𝑦𝑘

𝑥𝑘

𝑥𝑘

En
co

de
r

N
eu

ra
l

de
co

de
r

En
co

de
r

Be
ha

vi
or

de
co

de
r

(1)

(2)

𝐴

𝑦𝑘−1

𝑥𝑘|𝑘−1

𝑢𝑘−1

𝐾�

𝐴
𝐶𝑧 𝐶𝑦

𝑦𝑘

𝑥𝑘+1|𝑘

𝑢𝑘

𝐾�

𝐴
𝐶𝑧 𝐶𝑦

𝑦𝑘+1|𝑘𝑧𝑘+1|𝑘𝑦𝑘|𝑘−1𝑧𝑘|𝑘−1

... ...

𝐶𝑧

𝐶𝑦

𝑥𝑘+1|𝑘−1

...
𝐴𝑓𝑤 �

𝐴𝑓𝑤 �

𝑥𝑘+2|𝑘−1

𝐶𝑧

𝐶𝑦

𝑧𝑘+1|𝑘−1

𝑧𝑘+2|𝑘−1

�˰�𝑘+2|𝑘−1

𝑦𝑘+1|𝑘−1

𝑢𝑘

𝑢𝑘+1

...
�𝐾�𝑓𝑤�

�𝐾�𝑓𝑤�

𝐴𝑓𝑤 � 𝐴𝑓𝑤 �

1-step-ahead

2-step-ahead

3-step-ahead

...

(a) (b)

(3)

RNN1

RNN1𝑓𝑤

Figure 1: BRAID model architecture. (a) BRAID dissociates the dynamics of neural-behavioral
data into three latent states x(1)

k , x(2)
k , and x

(3)
k : 1) the dynamics shared between neural and behav-

ioral modalities (learned in stage 1 by RNN1 and RNN1fw), 2) any remaining dynamics private to
neural activity (learned in stage 2 by RNN2 and RNN2fw), and 3) Input-driven, behavior-specific dy-
namics not encoded in neural activity (learned per section 3.3 by RNN3 and RNN3fw). (b) For each
latent state, we simultaneously learn a predictor and generative form representation of the dynamics
(denoted by A and Afw), by optimizing m-step-ahead prediction of neural-behavioral data. This
interconnected two-RNN system is visualized for RNN1 and RNN1fw in this computation graph.
The superscript .(1) indicating that parameters are for RNN1 and RNN1fw is omitted for simplicity.

in two learning stages. We denote the model parameters associated with each model section using
a .(1) or .(2) superscript, e.g., A(1) and A(2). We provide the full two-section formulation for the
model in appendix A.1.1 and the optimization details in appendix A.1.2. Briefly, each of the two
learning stages consist of 2 optimizations, as follows:

Stage 1: Learning RNN1 and RNN1fw

1a Learn A(1), A(1)
fw, K(1), K(1)

fw , and C
(1)
z , and extract latent states x(1)

k and x
(1)
k+m|k (for m > 1)

by minimizing the behavior prediction loss Lz from equation 4.

1b Learn C
(1)
y by predicting neural data from x

(1)
k and x

(1)
k+m|k, while minimizing the neural predic-

tion loss Ly from equation 4.
Stage 2: Learning RNN2 and RNN2fw

2a Learn A(2), A(2)
fw, K(2), K(2)

fw , and C
(2)
y , and extract latent states x(2)

k and x
(2)
k+m|k (for m > 1)

by minimizing the neural loss Ly, while including outputs of stage 1b as part of the predictions.

2b Learn C
(2)
z by predicting behavior from x

(2)
k and x

(2)
k+m|k, while minimizing the behavior loss

Lz from equation 4, and including outputs of stage 1a as part of the predictions.
The explicit dissociation of the relevant dynamics and the above two-stage optimization allow us to
first preferentially learn the (low-dimensional) shared dynamics between the two observations, i.e.,
the behaviorally relevant neural dynamics (x(1)

k), in stage 1. Then in stage 2, we learn any residual
neural dynamics (x(2)

k), which, as depicted in figure 1a, can depend on the behaviorally relevant
dynamic (see appendix A.1 for details). The optional stage 2 is of interest for explaining neural
dynamics beyond the ones related to behavior. This multi-stage approach has similarities to Sani
et al. (2024), but here we have: 1) additional signals (uk), 2) different losses, 3) a forecasting RNN
within each model section (figure 1b), and additional steps that are discussed in the next section.

3.3 DISSOCIATION OF BEHAVIOR-SPECIFIC DYNAMICS

Optimizing behavior prediction (stage 1a) given neural activity yk and input uk can lead to learning
behavior dynamics that are predictable from the input but are not encoded in the recorded neural
activity. Although learning such behavior-specific dynamics enhances behavior decoding, it poses
an interpretation challenge for neuroscience applications because one would not know what part of

5

Published as a conference paper at ICLR 2025

the learned dynamics are represented in the recorded brain regions. As shown in Vahidi et al. (2024),
this may lead to a misinterpretation of input-driven behavior-specific dynamics as intrinsic dynamics
of the recorded brain region. To mitigate this possibility, we develop two additional steps in our
method, that can 1) exclude such behavior-specific dynamics from x

(1)
k , and 2) learn them separately

as a distinct latent state x
(3)
k (figure 1a). Details are provided in appendix A.1.3. Briefly, first,

to exclude behavior-specific dynamics, we introduce an optional preprocessing stage that predicts
behavior from neural data, and passes this neurally-predicted behavior to be used in stages 1a and
2b. This preprocessing step ensures that the behaviorally relevant states learned in stage 1 (x(1)

k)
are encoded in recorded neural activity yk, which can be crucial for interpretability in neuroscience
studies. In our analyses of the real datasets (section 4.2), we always include this preprocessing step.
Second, to still be able to learn behavior-specific dynamics, we add an optional post-hoc learning
step (i.e., stage 3) that fits RNN3 and RNN3fw to any unexplained behavior and learns these input-
driven behavior-specific dynamics as a distinct latent state x

(3)
k . As we show in simulations (see

section A.5.1 and figure A.2), the preprocessing step can exclude non-encoded behavior dynamics.
When desired in an application, the optional stage 3 can learn such dynamics to offset any behavior
decoding loss incurred due to the preprocessing step, while still maintaining the interpretability of
the model. We did not apply this post-hoc step in our real data analyses (section 4.2).

3.4 INFERENCE AND EVALUATION METRICS

After learning BRAID’s parameters, we can readily use the learned mappings A, K (and Afw and
Kfw) to infer the 1-(and multi)-step-ahead predicted states xk (and xk+m|k) using equations 2 (and
3) for the held-out test data. Predicted neural activity and behavior are obtained by applying their
corresponding decoders Cy and Cz to these inferred states. We also use the term “decoding” for
behavior predictions because our model predicts behavior only using neural data and inputs, and
never using behavior itself. To evaluate the performance of our models, we perform 5- and 2-fold
cross-validation, for real data and simulation analyses, respectively. We report Pearson’s Correlation
Coefficient (CC) and in some cases (see table A.8) also the coefficient of determination (R2) between
the predicted and actual observation, averaged over dimensions. We further report the m-step-ahead
prediction accuracy, which reflects how well the intrinsic dynamics Afw are learned. For simulation
analyses with linear recursions (Afw), we additionally evaluate the learned intrinsic dynamics by
comparing the eigenvalues of Afw between the true and learned model (see appendix A.1.5).

4 EXPERIMENTAL RESULTS

4.1 SIMULATION EXPERIMENTS

We validated BRAID in three simulations with different nonlinear neural-behavioral-input structures
to show that it can learn intrinsic behaviorally relevant neural dynamics in presence of inputs.

4.1.1 BRAID ACHIEVES NEAR OPTIMAL NEURAL-BEHAVIORAL PREDICTIVE ACCURACY IN
NONLINEAR INPUT-DRIVEN SIMULATIONS

First, we considered an input-driven dynamical system as in equation 1, but with only the behavior
mapping Cz being nonlinear with the mapping fCz (ν) := a sin(ν)+bν, as detailed in section A.4.2
(figure 2a). We generated 10 random parameter sets as our true models and generated data from
them. First, we implemented an automatic selection of nonlinearity for BRAID by setting each of
A, K, Cy, or Cz to linear or nonlinear, resulting in 24 different BRAID models, and finding the
model with the best behavior decoding in the training data. Across all 10 realizations and 2 cross-
validated folds, setting the behavior decoder Cz to be nonlinear was correctly identified as the best
performing nonlinearity in 100% of the cases. Additionally, we evaluated BRAID with nonlinearity
only in one of A, K, Cy, or Cz. The model with nonlinear behavior decoder Cz outperformed other
nonlinearity choices as well as linear models (i.e., IPSID and the fully linear BRAID) in behavior
decoding and neural prediction. BRAID further outperformed DPAD, which is nonlinear but does
not account for the input uk, in neural-behavioral prediction. In fact, both BRAID with nonlinear
Cz and BRAID with automatic nonlinearity selection achieved almost the same neural-behavioral

6

Published as a conference paper at ICLR 2025

prediction as the true simulated models, demonstrating BRAID’s success in accurately learning the
nonlinear input-driven dynamical system (table 2).

Table 2: 1-step-ahead prediction results for nonlinear simulations with sinusoidal behavior mapping.
Mean ± s.e.m. is across 20 runs (10 datasets, 2 folds). State dimension is always set to ground truth.
True model’s outcome indicates the “Ideal” accuracy. Bold: within 1 s.e.m. of ideal.

Method Behavior decoding CC Neural prediction CC
IPSID 0.4567 ± 0.0527 0.8901 ± 0.0304
linear BRAID 0.4558 ± 0.0528 0.8893 ± 0.0304
DPAD Nonlin Cz 0.4958 ± 0.0620 0.3767 ± 0.0680
BRAID Nonlin A 0.4735 ± 0.0572 0.8127 ± 0.0528
BRAID Nonlin K 0.7680 ± 0.0467 0.6983 ± 0.0473
BRAID Nonlin Cy 0.4558 ± 0.0528 0.8887 ± 0.0305
BRAID Nonlin Cz 0.8696 ± 0.0487 0.8913 ± 0.0305
BRAID Auto Nonlin 0.8693 ± 0.0487 0.8913 ± 0.0305
True model (ideal) 0.8737 ± 0.0486 0.8921 ± 0.0306

4.1.2 BRAID DISSOCIATES INTRINSIC DYNAMICS FROM INPUT DYNAMICS IN SIMULATIONS

Next, we sought to validate BRAID’s ability to disentangle intrinsic and input-driven contributions
to neural dynamics. BRAID simultaneously learns a predictor form and a generative form represen-
tation of the dynamics, the latter of which directly describes the intrinsic dynamics in terms of the
mapping Afw(·) (section 3.1, figure 1b). In this simulation, we kept the ground truth state transi-
tions linear so that we could precisely quantify the intrinsic dynamics and their learning error via the
eigenvalues of the state transition matrix Afw (appendix A.1.5). We analyzed data from three sets
of simulated dynamical systems with distinct nonlinear structures (see appendix A.4 for details):
(1) Spiral behavior manifold (figure 2a-d), (2) trigonometric behavior manifold (also explained in
section 4.1.1, figure 2e-h), and (3) trigonometric input-encoder (figure A.1). For each simulation,
we generated realizations from 10 different systems with randomly generated sets of parameters.
Across all three simulations, BRAID accurately learned the intrinsic dynamics, resulting in smaller
error in eigenvalues of the transition matrix compared with DPAD, which is nonlinear but does not
consider the input, and compared with linear BRAID and IPSID, which consider input but are linear
(figures 2c,g, A.1d). We demonstrate in an ablation study that learning a separate generative model
for forecasting is crucial for correct learning of the intrinsic dynamics (table A.3). These more ac-
curate intrinsic dynamics coupled with the input also resulted in BRAID achieving better behavior
decoding (figures 2b,f , A.1a) and neural prediction (figure A.1c) compared to baselines. These re-
sults suggest that failing to account for either nonlinearity or input may lead to less accurate models
and a misinterpretation of the intrinsic dynamics in nonlinear data.

Another metric for how well intrinsic dynamics are learned is forecasting, where behavior is pre-
dicted multiple steps into the future, without observing new neural data and only by observing the
future input (section 3.1). Forecasting evolves the state dynamics according to the learned intrinsic
dynamics (equation 3) and thus validates their accurate learning. We performed forecasting up to 32
steps ahead and found that the nonlinear models with input consistently outperformed linear models
as well as the nonlinear DPAD, which does not consider input (figures 2d,h and A.1e,f).

4.2 NON-HUMAN PRIMATE MOTOR CORTICAL ACTIVITY DURING REACHING

We applied our method to a publicly available dataset recorded from a non-human primate (NHP)
performing reaching movements O’Doherty et al. (2017) (figure 3a). We took either the smoothed
spike counts or raw LFP from primary motor cortex (M1) as neural time-series yk, fingertip’s po-
sition and velocity as behavior zk, and sensory task instructions (target location) as the input uk

(appendix A.3). Sensory inputs can have their own dynamics, which are distinct from the intrinsic
dynamics of the motor cortex. Our goal is to learn the intrinsic dynamics in M1 related to movement
while disentangling them from the dynamics of sensory input and also from any behavior-specific
dynamics. Therefore, we importantly include BRAID’s behavior preprocessing stage (section 3.3).

7

Published as a conference paper at ICLR 2025

D
ec

od
in

g
C

C
(f) (g)(e)

0

0.2

0.4

0.6

0.8

D
ec

od
in

g
C

C

0

0.2

0.4

0.6

0.8

steps ahead
1 2 4 8 16 32

(h)
Trigonometric

behavior manifold

𝑥�

𝑓
(𝑥

)
𝐶� 𝑧

�

lo
g 10

 n
or

m
al

iz
ed

 E
V

er
ro

r

-1.5

-1

-0.5

0

-2

10%

1%

IPSIDLinear BRAID
(steps-ahead=[1,2,3,4,5])

BRAID
(steps-ahead=[1,2,3,4,5])

DPAD
(steps-ahead=[1,2,3,4,5])

Nonlinear 𝐶�𝑧� Nonlinear 𝐶�𝑧�

D
ec

od
in

g
C

C

lo
g 10

 n
or

m
al

iz
ed

 E
V

er
ro

r(b) (c) (d)

steps ahead
1 2 4 8 16 32

0

0.1

0.2

0.3

0.4

0.5

D
ec

od
in

g
C

C

Ti
m

e

Spiral behavior
manifold

(a)

-1.5

-1

-0.5

0

0

0.1

0.2

0.3

0.4

0.5

𝑓
(𝑥

)
𝐶� 𝑧

�
∣ 2�

𝑓 (𝑥)
𝐶�𝑧�

∣1�

10%

Figure 2: BRAID better learns the intrinsic shared dynamics by simultaneously modeling in-
put and nonlinearity, and by optimizing forecasting. (a-d) Results for simulations with a spiral
behavioral manifold. (b) 1-step-ahead behavior decoding for nonlinear BRAID, nonlinear DPAD,
linear BRAID, and IPSID (c). Error in identifying intrinsic dynamics of the true model quantified by
the error in learning the eigenvalues of Afw. (d) Behavior decoding forecasts for 1 to 32 steps ahead,
enabled by learning the intrinsic dynamics (Afw), with predictions optimized for [1, 2, 3, 4, 5]-steps-
ahead (section 3). (e-h) Same as (a-d) for simulations with a trigonometric behavior mapping.

We fitted BRAID with different nonlinearity choices as in our simulations: (1) nonlinear recursion
A(·)/Afw(·), (2) nonlinear encoder K(·)/Kfw(·), (3) nonlinear decoders Cy(·) and Cz(·), and
a fully linear variant, linear BRAID. We included m = [1, 2, 4, 8]-steps-ahead predictions in the
BRAID loss, which for m > 1 engage the intrinsic behaviorally relevant dynamics (Afw) and allow
their learning. To evaluate the learned intrinsic dynamics, we report neural-behavioral forecasting
accuracy for different step-ahead horizons (figures 3b-c, and A.3 for LFP), while tabulating the 4-
steps-ahead (i.e., 200ms) results to highlight BRAID’s advantage in forecasting (tables 3 and A.4).
In addition to these results in the low-dimensional regime (stage 1 only, nx = n1 = 16), we also
report the results in the high-dimensional regime (both stages, nx = 64, n1 = 16) (table 3, figures
A.5 and A.6). Among nonlinearity configurations, BRAID with nonlinear decoders provided the
best fit to neural-behavioral data (table A.4). Moreover, BRAID’s behavior forecasting performance
improved as more neurons were included (table A.7).

Next, we compared BRAID’s neural-behavioral forecasting to several ablation baselines (table 3
and figures 3 and A.5). First, BRAID outperformed linear BRAID, i.e., a similar but fully linear
model. Second, BRAID outperformed DPAD (Sani et al., 2024), which can have decoder nonlin-
earities but does not consider inputs. BRAID’s advantage shows the importance of considering the
effects of sensory inputs on neural-behavioral dynamics. Third, we compared to U-BRAID, which
removes the first stage of BRAID and thus loses prioritization. BRAID consistently outperformed
U-BRAID in behavioral forecasting, but did not match the neural forecasting of U-BRAID unless it
was given enough latent state dimensions (table 3, nx = 64), which is expected given U-BRAID’s
singular objective being neural prediction. This comparison shows the benefit of prioritization for
learning low-dimensional representations of intrinsic behaviorally relevant dynamics, and confirms
that with its stage 2, BRAID can capture any remaining non-behavioral neural dynamics. Finally,
BRAID’s low dimensional latent state trajectories were better separated for different movement di-
rections compared to those of U-BRAID and DPAD, suggesting that BRAID’s latent states are more
congruent with behavior, i.e., more behaviorally relevant (figure A.4).

We also compared BRAID’s neural-behavioral forecasting performance to mmPLRNN, which mod-
els multi-modal data using piecewise-linear RNNs, and has the option to model inputs although prior

8

Published as a conference paper at ICLR 2025

Table 3: Forecasting performance (4-step-ahead) compared to baselines in NHP dataset for models
with low (nx=16) and high-dimensional (nx=64) latent states. n1=16 for BRAID, linear BRAID,
and DPAD. R2 results were similar (table A.8). Tables A.4, A.5 and A.6 have additional results.

Method Behavior forecasting CC Neural forecasting CC
nx = 16 nx = 64 nx = 16 nx = 64

linear BRAID 0.7453 ± 0.0066 0.7409 ± 0.0059 0.1767 ± 0.0054 0.3784 ± 0.0078
DPAD 0.6706 ± 0.0096 0.7352 ± 0.0079 0.2067 ± 0.0062 0.3611 ± 0.0080
U-BRAID 0.7663 ± 0.0069 0.8049 ± 0.0068 0.4089 ± 0.0076 0.4185 ± 0.0074
mmPLRNN 0.6851 ± 0.0143 0.7328 ± 0.00361 0.3162 ± 0.0107 0.3570 ± 0.0223

BRAID (ours) 0.8042 ± 0.0085 0.7970 ± 0.0086 0.3274 ± 0.0078 0.4123 ± 0.0077

work had not explored this input option. BRAID outperformed input-driven mmPLRNN networks
in forecasting both behavior and neural activity, across all forecasting horizons, with the exception of
2-steps-ahead neural prediction (table 3, figure 3). Note that BRAID’s better decoding is achieved
despite the fact that mmPLRNN, by design, incorporates behavior as an input during inference,
whereas BRAID and DPAD do not. Also, we compared BRAID to TNDM (Hurwitz et al., 2021),
a nonlinear sequential autoencoder that models neural-behavioral dynamics, but does not include
the effect of external inputs. We extended TNDM beyond the original work to create a version that
also adds sensory inputs as an additional input besides neural activity (appendix A.2.6). We analyzed
non-smoothed spike counts from the same dataset and found that BRAID significantly outperformed
TNDM in behavior decoding while achieving comparable neural prediction (table A.5). Extending
TNDM to include inputs significantly improved its behavior decoding, but it still did not reach that
of BRAID (table A.5). Finally, we compared BRAID with CEBRA (Schneider et al., 2023), which
is a non-dynamic convolutional encoder with a contrastive loss on behavior (section A.2.8), and with
LFADS (Pandarinath et al., 2018), which is an unsupervised sequential autoencoder (section A.2.7).
BRAID outperformed both these baselines in neural-behavioral prediction (table A.6).

(a) Smoothed spike
counts 𝑦𝑘

Target position 𝑢𝑘 Cursor position
and velocity 𝑧𝑘

1

3
2

2s

BRAID Nonlinear decoders � (steps-ahead=[1,2,4,8])
Linear BRAID (steps-ahead=[1,2,4,8])

DPAD Nonlinear decoders (steps-ahead=[1,2,4,8])
mmPLRNN Nonlinear decoders

(b) (c)

D
ec

od
in

g
C

C

0.2

0.4

0.6

0.8

steps ahead
1 2 4 8 16 32

N
eu

ra
l p

re
di

ct
io

n
C

C

0.2

0.4

0

steps ahead
1 2 4 8 16 32

Figure 3: BRAID outperforms baselines in neural-behavioral forecasting. (a) Dataset and task
visualization. (b, c) Behavior and neural activity forecasting correlation coefficient (CC) for BRAID,
linear BRAID, DPAD, and mmPLRNN at low state dimension regime (nx=16). Shaded areas show
the s.e.m. across the 7 recording sessions and 5 cross-validation folds.

5 DISCUSSION

We introduced BRAID, a method for input-driven nonlinear dynamical modeling that disentangles
intrinsic shared dynamics between two observation modalities from the effect of input. Here, we
assume some external inputs are measured (e.g., from sensory stimuli or other brain regions) and

9

Published as a conference paper at ICLR 2025

are available for modeling. This approach is distinct from the input-inference approach, where
unmeasured inputs are inferred from measured neural activity (Pandarinath et al., 2018; Schimel
et al., 2022). These two approaches are in a sense complementary. In our approach, any measured
inputs can be explicitly incorporated into the model to dissociate their dynamics from the intrinsic
dynamics of the measured neural-behavioral data. Practically, one cannot measure all inputs to a
given brain area, so our approach does not rule out the influence of unmeasured inputs on the learned
intrinsic dynamics. One could thus use the input-inference approach to infer such unmeasured inputs
from all measured signals. Note, however, that inferred inputs are ultimately a function of measured
signals and thus do not add any new information (unlike measured inputs); rather they can be thought
of as a decomposition of the measured signals based on certain assumptions (e.g., smoothness).

While BRAID’s learning is supervised by behavior, it only uses neural activity and input (not be-
havior) during inference. This supervision allows stage 1 to extract behaviorally relevant intrinsic
dynamics with priority, while later stages learn neural-specific or behavior-specific dynamics in in-
dependent optimizations. This multi-stage learning has similarities to some prior works (Sani et al.,
2021; Vahidi et al., 2024; Sani et al., 2024; Oganesian et al., 2024), but is fundamentally different
from other works that use a single multi-modal optimization loss (Kramer et al., 2022; Gondur et al.,
2024; Hurwitz et al., 2021), which may miss prioritization of shared dynamics over unshared dy-
namics (Sani et al., 2024). Some of the latter group are indeed focused on multi-modal inference and
fuse all shared and unshared information into the same latent space (Kramer et al., 2022; Gondur
et al., 2024). Multi-stage methods avoid this fusion by focusing on shared dynamics during a first
optimization stage with only cross-modality prediction (e.g., behavior decoding) as the objective.

To disentangle input dynamics from intrinsic dynamic, BRAID consists of three stages, each learn-
ing a predictor and a generator model. In each stage, BRAID’s predictor model in that stage (e.g.,
RNN1) infers the latent states, which are subsequently employed as the input to compute m-step-
ahead predictions via the associated generative model (e.g., RNN1fw). BRAID’s predictor and gen-
erative models are learned jointly to maximize the m-step-ahead log-likelihood. This has analogies
to the encoder-decoder architectures such as those commonly used in variational inference (Kingma
& Welling, 2013). Specifically, the predictor and generator RNNs in BRAID have roles similar to
those of the encoder and decoder in variational inference, respectively. However, in variational in-
ference, the posterior distribution of the unobserved variables given the data is parametrized and a
part of the optimization loss aims to enforce that distribution on the inferred latent variables (Chung
et al., 2015; Krishnan et al., 2015; Fraccaro et al., 2016; Luk et al., 2024). In contrast, we do not
impose such parametrization on the latent states in BRAID. Developing variational methods with the
same multi-section architecture and multi-stage learning as BRAID is an interesting future direction.

Similar to many prior works including some in neuroscience (Abbaspourazad et al., 2024; Sani et al.,
2024; Chung et al., 2015; Krishnan et al., 2015; Fraccaro et al., 2016; Luk et al., 2024), BRAID has
a causal formulation and performs inference by recursively inferring the next latent state after each
new observation. This is distinct from some nonlinear methods in neuroscience (Gao et al., 2016;
Pandarinath et al., 2018; Hernandez et al., 2020; Hurwitz et al., 2021; Keshtkaran et al., 2022;
Gondur et al., 2024; Karniol-Tambour et al., 2024) that perform inference non-causally in time.
Thus, BRAID may be useful for real-time decoding in brain-computer interfaces (Shanechi, 2019).

BRAID, as presented, is designed for single-session settings. Extending it for cross-session gener-
alization is an interesting future direction that can follow approaches used in the literature, such as
aligning neural manifolds across sessions (Farshchian et al., 2019), adaptive modeling approaches
(Ahmadipour et al., 2021; Yang et al., 2021a), or incorporating session-specific read-in and read-
out mappings while keeping shared model parameters fixed (Pandarinath et al., 2018). The latter
allows training across multiple sessions and adapting to new sessions with minimal data by learning
session-specific matrices. Furthermore, BRAID’s ability to disentangle intrinsic dynamics may also
facilitate generalization across tasks with different sensory instructions.

A fundamental challenge for nonlinear latent state models is that many alternative models may ex-
plain the data equally well. Thus, evaluating learned dynamics relies on computable quantities from
measured signals, primarily m-step-ahead neural-behavioral predictions. While our results suggest
that in our dataset having nonlinear decoders provides higher performance than other nonlinearities,
this might not be case in another dataset. In practice, the optimal nonlinearity can be selected based
on the desired metric as done by BRAID. For linear models, all correct latent models have the same
eigenvalues (Katayama, 2006), allowing direct evaluation of learned dynamics (figure 2).

10

Published as a conference paper at ICLR 2025

6 ACKNOWLEDGMENTS

This work was supported, in part, by the following organizations and grants: National Institutes of
Health (NIH) R01MH123770, NIH BRAIN Initiative R61MH135407, NIH RF1DA056402, NIH
Director’s New Innovator Award DP2-MH126378, Foundation for OCD Research (FFOR), the Of-
fice of Naval Research (ONR) Young Investigator Program under contract N00014-19-1-2128, and
the Army Research Office (ARO) under contract W911NF-16-1-0368 as part of the collaboration
between the US DOD, the UK MOD and the UK Engineering and Physical Research Council (EP-
SRC) under the Multidisciplinary University Research Initiative (MURI). We sincerely thank the
Sabes lab at the University of California San Francisco for making the NHP datasets that we used
here publicly available.

7 AUTHOR CONTRIBUTIONS

P.V., O.G.S., and M.M.S. developed the new BRAID method and wrote the manuscript. P.V. and
O.G.S. implemented the code for the method and the analyses. P.V. performed the analyses. M.M.S.
supervised the work.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we are sharing the code for BRAID along with a Python
notebook demonstrating its usage at https://github.com/ShanechiLab/BRAID. We also
provide model architecture and training details in appendix A.1.4. Finally, the dataset we used
(O’Doherty et al., 2017) is publicly available for anyone interested in reproducing the results re-
ported in section 4.2.

REFERENCES

Hamidreza Abbaspourazad, Mahdi Choudhury, Yan T Wong, Bijan Pesaran, and Maryam M
Shanechi. Multiscale low-dimensional motor cortical state dynamics predict naturalistic reach-
and-grasp behavior. Nature communications, 12(1):607, 2021.

Hamidreza Abbaspourazad, Eray Erturk, Bijan Pesaran, and Maryam M Shanechi. Dynamical flex-
ible inference of nonlinear latent factors and structures in neural population activity. Nature
Biomedical Engineering, 8(1):85–108, 2024.

Mehdi Aghagolzadeh and Wilson Truccolo. Inference and decoding of motor cortex low-
dimensional dynamics via latent state-space models. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 24(2):272–282, 2015.

Parima Ahmadipour, Yuxiao Yang, Edward F Chang, and Maryam M Shanechi. Adaptive tracking
of human ecog network dynamics. Journal of Neural Engineering, 18(1):016011, 2021. doi: 10.
1088/1741-2552/abae42. URL https://dx.doi.org/10.1088/1741-2552/abae42.

William E Allen, Michael Z Chen, Nandini Pichamoorthy, Rebecca H Tien, Marius Pachitariu,
Liqun Luo, and Karl Deisseroth. Thirst regulates motivated behavior through modulation of
brainwide neural population dynamics. Science, 364(6437):eaav3932, 2019.

Dean V Buonomano and Wolfgang Maass. State-dependent computations: spatiotemporal process-
ing in cortical networks. Nature Reviews Neuroscience, 10(2):113–125, 2009.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Ben-
gio. A recurrent latent variable model for sequential data. Advances in neural information pro-
cessing systems, 28, 2015.

Mark M Churchland, John P Cunningham, Matthew T Kaufman, Justin D Foster, Paul Nuyujukian,
Stephen I Ryu, and Krishna V Shenoy. Neural population dynamics during reaching. Nature, 487
(7405):51–56, 2012.

11

https://github.com/ShanechiLab/BRAID
https://dx.doi.org/10.1088/1741-2552/abae42

Published as a conference paper at ICLR 2025

John P Cunningham and Byron M Yu. Dimensionality reduction for large-scale neural recordings.
Nature neuroscience, 17(11):1500–1509, 2014.

Daniel Durstewitz. A state space approach for piecewise-linear recurrent neural networks for iden-
tifying computational dynamics from neural measurements. PLoS computational biology, 13(6):
e1005542, 2017.

Daniel Durstewitz, Georgia Koppe, and Max Ingo Thurm. Reconstructing computational system
dynamics from neural data with recurrent neural networks. Nature Reviews Neuroscience, 24
(11):693–710, 2023.

Tatiana A Engel and Nicholas A Steinmetz. New perspectives on dimensionality and variability
from large-scale cortical dynamics. Current opinion in neurobiology, 58:181–190, 2019.

Ali Farshchian, Juan A. Gallego, Joseph P. Cohen, Yoshua Bengio, Lee E. Miller, and Sara A.
Solla. ADVERSARIAL DOMAIN ADAPTATION FOR STABLE BRAIN-MACHINE IN-
TERFACES. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=Hyx6Bi0qYm.

Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential neural models
with stochastic layers. Advances in neural information processing systems, 29, 2016.

Yuanjun Gao, Evan W Archer, Liam Paninski, and John P Cunningham. Linear dynamical neural
population models through nonlinear embeddings. Advances in neural information processing
systems, 29, 2016.

Rabia Gondur, Usama Bin Sikandar, Evan Schaffer, Mikio Christian Aoi, and Stephen L Keeley.
Multi-modal gaussian process variational autoencoders for neural and behavioral data. In Inter-
national Conference on Learning Representations, 2024.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Daniel Hernandez, Antonio Khalil Moretti, Ziqiang Wei, Shreya Saxena, John Cunningham, and
Liam Paninski. Nonlinear evolution via spatially-dependent linear dynamics for electrophysiol-
ogy and calcium data, 2020. URL https://arxiv.org/abs/1811.02459.

Cole Hurwitz, Akash Srivastava, Kai Xu, Justin Jude, Matthew Perich, Lee Miller, and Matthias
Hennig. Targeted neural dynamical modeling. Advances in Neural Information Processing Sys-
tems, 34:29379–29392, 2021.

James J Jun, Nicholas A Steinmetz, Joshua H Siegle, Daniel J Denman, Marius Bauza, Brian Barbar-
its, Albert K Lee, Costas A Anastassiou, Alexandru Andrei, Çağatay Aydın, et al. Fully integrated
silicon probes for high-density recording of neural activity. Nature, 551(7679):232–236, 2017.

Jonathan C Kao, Paul Nuyujukian, Stephen I Ryu, Mark M Churchland, John P Cunningham, and
Krishna V Shenoy. Single-trial dynamics of motor cortex and their applications to brain-machine
interfaces. Nature communications, 6(1):7759, 2015.

Orren Karniol-Tambour, David M Zoltowski, E Mika Diamanti, Lucas Pinto, Carlos D Brody,
David W Tank, and Jonathan W Pillow. Modeling state-dependent communication between brain
regions with switching nonlinear dynamical systems. In The Twelfth International Conference on
Learning Representations, 2024.

Tohru Katayama. Subspace Methods for System Identification. Springer Science & Business Me-
dia, 2006. ISBN 978-1-84628-158-7. URL https://link.springer.com/book/10.
1007%2F1-84628-158-X.

Mohammad Reza Keshtkaran, Andrew R Sedler, Raeed H Chowdhury, Raghav Tandon, Diya Bas-
rai, Sarah L Nguyen, Hansem Sohn, Mehrdad Jazayeri, Lee E Miller, and Chethan Pandarinath.
A large-scale neural network training framework for generalized estimation of single-trial popu-
lation dynamics. Nature Methods, 19(12):1572–1577, 2022.

12

https://openreview.net/forum?id=Hyx6Bi0qYm
https://openreview.net/forum?id=Hyx6Bi0qYm
https://arxiv.org/abs/1811.02459
https://link.springer.com/book/10.1007%2F1-84628-158-X
https://link.springer.com/book/10.1007%2F1-84628-158-X

Published as a conference paper at ICLR 2025

Timothy D Kim, Thomas Z Luo, Jonathan W Pillow, and Carlos D Brody. Inferring latent dy-
namics underlying neural population activity via neural differential equations. In International
Conference on Machine Learning, pp. 5551–5561. PMLR, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. URL
http://arxiv.org/abs/1412.6980.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013. URL https:
//arxiv.org/abs/1312.6114.

Dmitry Kobak, Wieland Brendel, Christos Constantinidis, Claudia E Feierstein, Adam Kepecs,
Zachary F Mainen, Xue-Lian Qi, Ranulfo Romo, Naoshige Uchida, and Christian K Machens.
Demixed principal component analysis of neural population data. elife, 5:e10989, 2016.

Daniel Kramer, Philine L Bommer, Carlo Tombolini, Georgia Koppe, and Daniel Durstewitz. Re-
constructing nonlinear dynamical systems from multi-modal time series. In Proceedings of the
39th International Conference on Machine Learning, volume 162, pp. 11613–11633. PMLR, 17–
23 Jul 2022.

Rahul G. Krishnan, Uri Shalit, and David Sontag. Deep kalman filters, 2015. URL https://
arxiv.org/abs/1511.05121.

Enoch Luk, Eviatar Bach, Ricardo Baptista, and Andrew Stuart. Learning optimal filters using
variational inference, 2024. URL https://arxiv.org/abs/2406.18066.

Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent
computation by recurrent dynamics in prefrontal cortex. nature, 503(7474):78–84, 2013.

Erfan Nozari, Maxwell A Bertolero, Jennifer Stiso, Lorenzo Caciagli, Eli J Cornblath, Xiaosong
He, Arun S Mahadevan, George J Pappas, and Dani S Bassett. Macroscopic resting-state brain
dynamics are best described by linear models. Nature biomedical engineering, 8(1):68–84, 2024.

Joseph E. O’Doherty, Mariana M. B. Cardoso, Joseph G. Makin, and Philip N. Sabes. Nonhuman
Primate Reaching with Multichannel Sensorimotor Cortex Electrophysiology, May 2017. URL
https://doi.org/10.5281/zenodo.583331.

Lucine L Oganesian, Omid G Sani, and Maryam Shanechi. Spectral learning of shared dynamics
between generalized-linear processes. Advances in Neural Information Processing Systems, 37:
89150–89183, 2024.

Dan O’Shea and Chethan Pandarinath. Lfads run manager, December 2021. URL https://doi.
org/10.5281/zenodo.5790161.

Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky,
Jonathan C Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg,
et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nature
methods, 15(10):805–815, 2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Evan D Remington, Seth W Egger, Devika Narain, Jing Wang, and Mehrdad Jazayeri. A dynamical
systems perspective on flexible motor timing. Trends in cognitive sciences, 22(10):938–952, 2018.

Virginia Rutten, Alberto Bernacchia, Maneesh Sahani, and Guillaume Hennequin. Non-reversible
gaussian processes for identifying latent dynamical structure in neural data. Advances in neural
information processing systems, 33:9622–9632, 2020.

Omid G Sani, Hamidreza Abbaspourazad, Yan T Wong, Bijan Pesaran, and Maryam M Shanechi.
Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification.
Nature Neuroscience, 24(1):140–149, 2021.

13

http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1511.05121
https://arxiv.org/abs/1511.05121
https://arxiv.org/abs/2406.18066
https://doi.org/10.5281/zenodo.583331
https://doi.org/10.5281/zenodo.5790161
https://doi.org/10.5281/zenodo.5790161

Published as a conference paper at ICLR 2025

Omid G Sani, Bijan Pesaran, and Maryam M Shanechi. Dissociative and prioritized modeling of
behaviorally relevant neural dynamics using recurrent neural networks. Nature Neuroscience, pp.
1–13, 2024.

Britton A Sauerbrei, Jian-Zhong Guo, Jeremy D Cohen, Matteo Mischiati, Wendy Guo, Mayank
Kabra, Nakul Verma, Brett Mensh, Kristin Branson, and Adam W Hantman. Cortical pattern
generation during dexterous movement is input-driven. Nature, 577(7790):386–391, 2020.

Marine Schimel, Ta-Chu Kao, Kristopher T Jensen, and Guillaume Hennequin. ilqr-vae: control-
based learning of input-driven dynamics with applications to neural data. biorxiv. In International
Conference on Learning Representations, 2022.

Steffen Schneider, Jin Hwa Lee, and Mackenzie Weygandt Mathis. Learnable latent embeddings for
joint behavioural and neural analysis. Nature, 617(7960):360–368, 2023.

Jeffrey S Seely, Matthew T Kaufman, Stephen I Ryu, Krishna V Shenoy, John P Cunningham,
and Mark M Churchland. Tensor analysis reveals distinct population structure that parallels the
different computational roles of areas m1 and v1. PLoS computational biology, 12(11):e1005164,
2016.

Maryam M Shanechi. Brain–machine interfaces from motor to mood. Nature neuroscience, 22(10):
1554–1564, 2019.

Krishna V Shenoy and Jonathan C Kao. Measurement, manipulation and modeling of brain-wide
neural population dynamics. Nature communications, 12(1):633, 2021.

Nicholas A Steinmetz, Peter Zatka-Haas, Matteo Carandini, and Kenneth D Harris. Distributed
coding of choice, action and engagement across the mouse brain. Nature, 576(7786):266–273,
2019.

Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Charu Bai Reddy, Matteo Carandini, and
Kenneth D Harris. Spontaneous behaviors drive multidimensional, brainwide activity. Science,
364(6437):eaav7893, 2019.

Damar Susilaradeya, Wei Xu, Thomas M Hall, Ferran Galán, Kai Alter, and Andrew Jackson. Ex-
trinsic and intrinsic dynamics in movement intermittency. Elife, 8:e40145, 2019.

David Sussillo, Sergey D Stavisky, Jonathan C Kao, Stephen I Ryu, and Krishna V Shenoy. Making
brain–machine interfaces robust to future neural variability. Nature communications, 7(1):13749,
2016.

Parsa Vahidi, Omid G Sani, and Maryam M Shanechi. Modeling and dissociation of intrinsic
and input-driven neural population dynamics underlying behavior. Proceedings of the National
Academy of Sciences, 121(7):e2212887121, 2024.

Peter Van Overschee and Bart De Moor. Subspace Identification for Linear Systems. Springer US,
Boston, MA, 1996. ISBN 978-1-4613-8061-0. doi: 10.1007/978-1-4613-0465-4.

Saurabh Vyas, Matthew D Golub, David Sussillo, and Krishna V Shenoy. Computation through
neural population dynamics. Annual review of neuroscience, 43(1):249–275, 2020.

Anqi Wu, Nicholas A Roy, Stephen Keeley, and Jonathan W Pillow. Gaussian process based non-
linear latent structure discovery in multivariate spike train data. Advances in neural information
processing systems, 30, 2017.

Yuxiao Yang, Allison T Connolly, and Maryam M Shanechi. A control-theoretic system iden-
tification framework and a real-time closed-loop clinical simulation testbed for electrical brain
stimulation. Journal of neural engineering, 15(6):066007, 2018.

Yuxiao Yang, Omid G Sani, Edward F Chang, and Maryam M Shanechi. Dynamic network model-
ing and dimensionality reduction for human ecog activity. Journal of neural engineering, 16(5):
056014, 2019.

14

Published as a conference paper at ICLR 2025

Yuxiao Yang, Parima Ahmadipour, and Maryam M Shanechi. Adaptive latent state modeling of
brain network dynamics with real-time learning rate optimization. Journal of Neural Engineering,
18(3):036013, 2021a. doi: 10.1088/1741-2552/abcefd. URL https://dx.doi.org/10.
1088/1741-2552/abcefd.

Yuxiao Yang, Shaoyu Qiao, Omid G Sani, J Isaac Sedillo, Breonna Ferrentino, Bijan Pesaran, and
Maryam M Shanechi. Modelling and prediction of the dynamic responses of large-scale brain net-
works during direct electrical stimulation. Nature biomedical engineering, 5(4):324–345, 2021b.

Ding Zhou and Xue-Xin Wei. Learning identifiable and interpretable latent models of high-
dimensional neural activity using pi-vae. Advances in Neural Information Processing Systems,
33:7234–7247, 2020.

15

https://dx.doi.org/10.1088/1741-2552/abcefd
https://dx.doi.org/10.1088/1741-2552/abcefd

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 METHOD DETAILS

A.1.1 TWO-SECTION FORMULATION

In equations 1, 2, and 3, we combined both latent state sections of our model (x(1)
k and x

(2)
k) for

simpler exposition. Here, we present the complete two-section formulation. The predictor form part
of the model (equation 2) can be written as follows:

[
x
(1)
k+1|k

x
(2)
k+1|k

]
=

[
A(1)(x

(1)
k|k−1)

A(2)(x
(2)
k|k−1)

]
+

[
K(1)(yk,uk)

K(2)(yk,uk,x
(1)
k|k−1)

]
ŷk|k−1 = C

(1)
y (x

(1)
k|k−1,uk) +C

(2)
y (x

(2)
k|k−1,uk)

ẑk|k−1 = C
(1)
z (x

(1)
k|k−1,uk) +C

(2)
z (x

(2)
k|k−1,uk)

(A.1)

where we have also included the two-section formulation for the prediction of observations as lines
2-3 of the equation. As before, yk ∈ Rny and zk ∈ Rnz are the observed high-dimensional neural
activity and behavior respectively while uk ∈ Rnu represents the measured inputs to the dynami-
cal system. Here, the overall latent state, xk ∈ Rnx , which describes the dynamics underlying the
neural-behavioral data, is constructed such that the behaviorally relevant neural dynamics, repre-
sented by x

(1)
k ∈ Rn1 , are dissociated from the the irrelevant ones, represented by x

(2)
k ∈ Rnx−n1 .

The predictor form RNNs in equation A.1 (i.e., RNN1 and RNN2) are complemented by another
set of RNNs (i.e., RNN1fw and RNN2fw) that constitute the generative form part of the model
(equation 3), and enable m-step-ahead (for m > 1) prediction of latent states and neural-behavioral
data. The generative RNNs were again shown with a combined latent state in equation 3 for simpler
exposition. The following equations show the complete two-section formulation:

[
x
(1)
k+m|k

x
(2)
k+m|k

]
=

[
A

(1)
fw(x

(1)
k+m−1|k)

A
(2)
fw(x

(2)
k+m−1|k)

]
+

[
K

(1)
fw(uk+m−1)

K
(2)
fw(uk+m−1,x

(1)
k+m−1|k)

]
ŷk+m|k = C

(1)
y (x

(1)
k+m|k,uk+m) +C

(2)
y (x

(2)
k+m|k,uk+m)

ẑk+m|k = C
(1)
z (x

(1)
k+m|k,uk+m) +C

(2)
z (x

(2)
k+m|k,uk+m)

(A.2)

where m > 1, and x
(1)
k+1|k and x

(2)
k+1|k (i.e., m= 1) are taken from equation A.1. A visualization

of how the formulations in equations A.1 and A.2 are connected is provided in figure 1. In equa-
tion A.2, we have also included the two-section formulation for the prediction of neural-behavioral
observations as lines 2-3 of the equation, showing that applying the same decoders C(1)

y /C(2)
y and

C
(1)
z /C(2)

z as in equation A.1 to the m-step-ahead predicted latents x
(1)
k+m|k/x(2)

k+m|k gives the m-
step-ahead predictions of the neural-behavioral data (ŷk+m|k and ẑk+m|k).

Equations A.1 and A.2 together constitute the two-section formulation of the BRAID model, which
consists of 12 transformations in total: A(·), Afw(·), K(·), Kfw(·), Cz(·), and Cy(·), each having
two sections denoted with the .(1) and .(2) superscripts.

A.1.2 LEARNING ALGORITHM STEPS

In sections A.1.2-A.1.3, we provide detailed formulations of the optimization stages used in BRAID
during learning. For simplicity, we explain the optimizations in terms of 1-step ahead predictions,
which involve predictor form parameters of the model. Formulations for m-step-ahead predictions,
which constitute additional terms in the overall loss (equations 4), are analogous to those provided
here, but instead of the predictor form parameters (equation A.1) they engage the generative form
parameters (equation A.2).

16

Published as a conference paper at ICLR 2025

Note that regardless of what step-ahead predictions were included during training, the learned model
can be used to predict the latent state and neural-behavioral data at m-steps ahead for any desired
m using equations 2 and 3 (or A.1 and A.2) together. For example, in figure 3, only [1, 2, 4, 8]
step ahead predictions are included in the optimization loss (equation 4, but we evaluate the learned
models with predictions up to 32-steps ahead.

We develop a two-stage optimization algorithm for learning parameters of the two sections of the
BRAID model (equation A.1). We note that the following 2 stages are sequential. This means that
parameters associated with behaviorally relevant states (x(1)

k) are fully learned with RNN1, then if
needed, the remaining parameters corresponding to non-relevant dynamics (x(2)

k) can be learned via
RNN2. In all the optimizations described below, we use the mean-squared-error (MSE) of predicting
observations as the loss function, but we note that the MSE is proportional to the negative log-
likelihood (NLL) for isotropic Gaussian-distributed data. Below we provide the details for the 4
optimizations that are performed in the two learning stages of BRAID.

Stage 1:
1a First, BRAID learns a recurrent neural network (RNN1) with n1 states, to minimize behavior

prediction MSE given past neural data and inputs (equation A.3). This ensures that RNN1 only
learns neural dynamics that are relevant to (i.e., predictive of) behavior. The states of RNN1
constitute the first set of latent states in the BRAID model: x(1)

k . This optimization step can be
formulated as:

x
(1)
k+1 = A(1)(x

(1)
k) +K(1)(yk,uk)

zk = C
(1)
z (x

(1)
k ,uk)

loss : MSE(zk,C
(1)
z (x

(1)
k ,uk))

. (A.3)

1b Next, in a second optimization, we learn a transformation C
(1)
y (·) that maps x(1)

k to neural activity
while minimizing neural prediction MSE (equation A.4):{

yk = C
(1)
y (x

(1)
k ,uk)

loss : MSE(yk,C
(1)
y (x

(1)
k ,uk))

. (A.4)

The above 2 steps conclude stage 1 of learning, i.e., learning intrinsic behaviorally relevant
dynamics x(1)

k . Next we explain the (optional) remaining stage 2, which can learn any remaining
dynamics in neural activity x2

k.

Stage 2:
2a We learn a second recurrent neural network (RNN2) with n2 := nx − n1 states, to minimize

the MSE loss of predicting the residual neural activity, i.e., y′
k := yk − C

(1)
y (x

(1)
k ,uk), given

past neural activity and inputs (equation A.5). States of RNN2, i.e., x(2)
k , together with x

(1)
k from

stage 1 constitute the full neural dynamics, i.e., xk =
[
x
(1)
k x

(2)
k

]T
. This optimization step can

be formulated as:
x
(2)
k+1 = A(2)(x

(2)
k) +K(2)(yk,uk,x

(1)
k)

y′
k = C

(2)
y (x

(2)
k ,uk)

loss : MSE(y′
k,C

(2)
y (x

(2)
k ,uk))

. (A.5)

2b Finally, another readout, C(2)
z , can be learned to map x

(2)
k to the residual behavior, i.e., z′k :=

zk −C
(1)
z (x

(1)
k ,uk), to minimizing the overall behavioral loss (equation A.6):{

z′k = C
(2)
z (x

(2)
k ,uk)

loss : MSE(z′k,C
(2)
z (x

(2)
k ,uk)

. (A.6)

17

Published as a conference paper at ICLR 2025

Note that the optimization in stage 2b does not change RNN2 or x
(2)
k that were learned in stage

2a. So although stage 2b is supervised by behavior, the second set of states x
(2)
k are still learned

unsupervised with respect to behavior.

In case a very low state dimension is specified by the user for stage 1 (n1 lower than the ground truth
shared dimensionality), RNN1 would not have enough capacity to learn all behaviorally relevant
dynamics. In that case, some behaviorally relevant neural dynamics will be left for RNN2 in stage
2 to learn. This is why the C

(2)
z transformation from x

(2)
k to behavior is included in the model, to

allow such behaviorally relevant information in x
(2)
k to be utilized to improve behavior decoding.

A.1.3 NON-ENCODED BEHAVIOR-SPECIFIC DYNAMICS

To remove the non-encoded behavior-specific dynamics, as a preprocessing step, we fit a high-
dimensional (nx = 150 in all real data analyses) unsupervised RNN to extract neural dynamics
alone by minimizing neural prediction MSE (equation A.7):

x
(0)
k+1 = A(0)(x

(0)
k) +K(0)(yk,uk)

yk = C
(0)
y (x

(0)
k ,uk)

loss : MSE(yk,C
(0)
y (x

(0)
k ,uk))

. (A.7)

Then a readout C(0)
z is trained to map these neurally relevant states x(0)

k to behavior:

{
zk = C

(0)
z (x

(0)
k)

loss : MSE(zk,C
(0)
z (x

(0)
k))

(A.8)

After parameters of the above are learned, we run inference on the training data to obtain the filtered
behavior as output of the preprocessing RNN model (first line in equation A.8) and subsequently
use it in place of the original behavior in BRAID (in equations A.1, A.3 , A.6). In simulations, we
validate that this additional stage can successfully remove any input-driven behavior dynamics not
encoded in the neural recordings (figure A.2). We include this preprocessing step in all reported real
data analyses with BRAID.

Stage 3: As mentioned in 3.3, if desired, BRAID can also learn behavior-specific dynamics as sep-
arate dissociated latent states using a post-hoc learning step. This step is performed after BRAID’s
main learning is done and is meant to be used in conjunction with BRAID’s preprocessing stage ex-
plained above. In this post-hoc learning step (stage 3), we first infer the behavior using the originally
learned BRAID model. We then obtain the residual behavior (z′′k) by subtracting the inferred behav-
ior from the measured behavior. We then learn a third RNN (RNN3) that optimizes the prediction of
the residual behavior using only the external inputs. The following equations summarize this step:

z′′k := zk − [C
(1)
z (x

(1)
k ,uk)−C

(2)
z (x

(2)
k ,uk)]

x
(3)
k+1 = A(3)(x

(3)
k) +K(3)(uk)

z′′k = C
(3)
z (x

(3)
k ,uk)

loss : MSE(z′′k ,C
(3)
z (x

(3)
k ,uk))

. (A.9)

We summarize BRAID’s three stages and their use-case in table A.1.

A.1.4 MODEL ARCHITECTURE DETAILS AND HYPERPARAMETERS

Throughout the manuscript, to model nonlinearities within any of the transformations i.e., A(·),
Afw(·), K(·), Kfw(·), Cz(·), and Cy(·), we use a multi-layer perceptron (MLP), also known as
a feedforward neural network, with a single hidden layer, 64 units in the hidden layer, and a ReLU
nonlinearity as activation function. Otherwise, to keep a transformation linear, we replace the MLP
with a linear mapping implementing a matrix multiplication, which is a special case of an MLP with

18

Published as a conference paper at ICLR 2025

Table A.1: Summary of the three stages of BRAID and their use-case in learning various dynamics.
Each stage has two RNNs: a predictor form and a generator form RNN, denoted without and with a
fw subscript, respectively.

Stage Models Functionality
1 RNN1, RNN1fw Intrinsic behaviorally relevant neural dynamics
2 RNN2, RNN2fw Residual neural-specific intrinsic dynamics
3 RNN3, RNN3fw Residual behavior-specific dynamics not encoded in neural activity

no hidden layers and a linear activation function. For example, linear BRAID is a BRAID model
with all mappings being linear whereas BRAID Nonlinear Cz has a nonlinear MLP as the behavior
decoder (both C

(1)
z and C

(2)
z) while all of its other transformations are linear.

We use an Adam optimizer (Kingma & Ba, 2017) in all BRAID optimizations. We train models up
to a maximum number of 2500 epochs to ensure convergence, while employing early stopping to
avoid overfitting. We provide example learning curves in figure A.7. Details of the hyperparameters
used for BRAID are provided in table A.2.

Table A.2: BRAID hyperparameters used in real data experiments and simulations
Hyperparameter Value
Number of hidden layers in nonlinear maps 1
Number of hidden units in nonlinear maps 64
Nonlinear activation ReLU
Learning rate 0.001
Batch size 32
Sequence length 128
Optimizer Adam

We also show that BRAID can locate the correct structure of nonlinearity within all possible com-
binations in our simulations (table 2). Here, we set each of the following four groups of transfor-
mations i.e., A(·)/Afw(·), K(·)/Kfw(·), Cy(·), Cz(·), as linear or nonlinear, resulting in a total of
24 cases. To select one final configuration for the nonlinearity, we follow an automatic nonlinearity
selection procedure for a given dataset. In this procedure, within the training data, we perform a
2-fold inner cross-validation in which we fit BRAID models with all 24 nonlinearity configurations
and then pick the nonlinearity structure with the best cross-validated behavior decoding on the held-
out section of the training data. Then we retrain a BRAID model with that selected structure on the
entire training data to get our final model. Finally, we evaluate that final model on the unseen test
data. We refer to this approach as automatic nonlinearity selection (table 2).

In simulations, state dimensions are set to be the same as that of the true model underlying the
data. In real data analyses, to investigate the effect of nx, we vary the state dimension in nx ∈
[1, 2, 4, 8, 16, 32, 64] and report the results (figure A.5). For BRAID and DPAD models, we always
learn the first 16 dimensions via stage 1 i.e., x(1)

k ∈ Rn1 with n1 = min(16, nx), and if there is
any more capacity left (i.e., if nx − n1 = n2 is positive), it is dedicated to the irrelevant states
x
(2)
k ∈ Rnx−n1 and is learned using stage 2. We pick 16 as the dimensionality of the behaviorally

relevant states as in our experiments, because BRAID reached close to its peak behavior decoding
at this dimension. We refer to models with state dimensions nx = 16 and 64 as low and high-
dimensional regimes, respectively.

A.1.5 INTRINSIC DYNAMICS AND EIGENVALUES

To evaluate how well the intrinsic behaviorally relevant neural dynamics are learned, in simulations
(figures 2, A.1), we assess the eigenvalues of the generative transition Afw which characterize the
intrinsic dynamics. Note that the ground truth and learned models in these simulations both have a
linear intrinsic state transition Afw and the nonlinearity either lies in the transformation from latent

19

Published as a conference paper at ICLR 2025

states to behavior (figure 2) or transformation from external inputs to the latent space (figure A.1).
We learn the forward recursion parameters Afw and Kfw of equations 1 and 3 as we optimize
multi-step-ahead predictions. We take the eigenvalues of the intrinsic transition Afw and compare
them to that of the ground truth model. For the ground truth (λi) and identified (λ̂i) eigenvalues we
first pair them as {λ1, λ2, . . . , λn1

} and {λ̂1, λ̂2, . . . , λ̂n1
} such that the sum of squared distances of

pairs is minimized. We then calculate the normalized eigenvalue error as:√
n1∑
i=1

∥λi − λ̂i∥2√
n1∑
i=1

∥λi∥2
. (A.10)

A.2 BASELINES

First, to assess the impact of the nonlinearities learned by BRAID, we compare it against two fully
linear dynamical methods: IPSID (Vahidi et al., 2024) and linear BRAID. Second, to highlight the
significance of modeling the effect of measured inputs on the neural-behavioral dynamics, we take
an autonomous dynamical model, DPAD (Sani et al., 2024), as another baseline. Another important
aspect of BRAID is supervision of the behaviorally relevant dynamics in presence of inputs in its
first stage. To assess prioritization of the behaviorally relevant dynamics due to this supervision,
we take an equivalent unsupervised baseline termed U-BRAID detailed below. We also compare
BRAID against a multi-modal nonlinear method that allows accounting for external inputs termed
mmPLRNN (Kramer et al., 2022). Finally, we compare BRAID to TNDM (Hurwitz et al., 2021), a
second autonomous method for modeling neural-behavioral dynamics.

A.2.1 IPSID

IPSID, similar to BRAID, models the effect of measured external inputs on neural-behavioral dy-
namics but operates under a fully linear framework. It fits the parameters of a linear version of
equation A.1 via a projection-based analytical algorithm called subspace identification (Van Over-
schee & De Moor, 1996).

A.2.2 LINEAR BRAID

Linear BRAID serves as another linear baseline, retaining the same architecture and learning stages
as BRAID but with all transformations replaced by linear mappings. In essence, linear BRAID
and IPSID have a similar model that are learned differently. Linear BRAID uses the same numerical
optimization used in BRAID. BRAID reduces to linear BRAID by removing all hidden layers within
model transformations and setting all activation functions to linear. In simulations, we find that linear
BRAID and IPSID perform similarly as expected (figure 2).

A.2.3 DPAD

Dissociative Prioritized Analysis of Dynamics (DPAD) (Sani et al., 2024), learns a nonlinear model
that dissociates and prioritizes dynamics shared between neural activity and behavior, but it impor-
tantly does not account for the external inputs. Originally, DPAD also does not allow for multi-
step-ahead optimization and thus does not learn a generative form representation of the dynamics,
which is in contrast to the learning of Afw in BRAID. We extend DPAD to add optimization of
multi-step-ahead predictions into the DPAD framework for a more fair comparison to BRAID in
terms of forecasting.

A.2.4 U-BRAID

U-BRAID is an unsupervised method, which only performs stage 2 of the BRAID learning proce-
dure. As such, U-BRAID learns all neural dynamics irrespective of their relevance to the behavior,
but still while considering inputs (equation A.5). U-BRAID does not utilize behavior information in

20

Published as a conference paper at ICLR 2025

learning dynamics, and the extracted latent states are later mapped to the behavior data via a down-
stream decoder (equation A.6 but without x(1)

k). In fact, U-BRAID is special case of BRAID with
n1 = 0 and nx = n2.

A.2.5 MMPLRNN

Multi-modal piecewise-linear RNN (mmPLRNN) is a method previously introduced for multi-
modal dynamical modeling with piecewise-linear RNNs (Kramer et al., 2022). This method allows
for modeling external inputs, although this aspect of it has not been investigated in any prior work.
Nevertheless, we compare BRAID to an input-driven mmPLRNN to further assess its performance.
mmPLRNN builds on a prior work, PLRNN (Durstewitz, 2017), by fusing information from two
modalities (e.g., neural activity and behavior). By design, mmPLRNN utilizes both modalities (and
input) during inference, which is in contrast to BRAID that only uses neural activity (and input)
during inference. Although this provides the benefit of using more data for behavior decoding to
mmPLRNN and confounds the comparison with BRAID, we still include the mmPLRNN results.
We train mmPLRNN models with nonlinear readouts comparable to BRAID and compare their
neural-behavioral forecasting. mmPLRNN is a generative model whose parameters are learned via
variational inference. We used the recommended hyperparameters from the original work1.

A.2.6 TNDM

Targeted Neural Dynamical Modeling (TNDM) (Hurwitz et al., 2021) is a method based on sequen-
tial autoencoders that learns two sets of dynamics: one contributing to both neural and behavioral
data, and the other only contributing to neural data. TNDM uses a non-causal, bidirectional RNN as
the encoder to infer the initial conditions for its relevant and irrelevant generator/decoder RNNs. The
dynamical model is learned via variational inference with both neural and behavioral reconstructions
optimized simultaneously with a combined loss. Unlike BRAID, TNDM does not account for mod-
eling the effect of external inputs on neural-behavioral dynamics. Therefore, for comparisons, we
also implement an extension of TNDM to allow the inclusion of external inputs. In this version, we
provide the external inputs to TNDM model as input by concatenating them with the neural activity
as the input to the model. Importantly, we do not add reconstruction of inputs as part of the loss
to keep the loss the same as that of the original TNDM and keep the learned model focused on
neural-behavioral reconstruction.

We compare BRAID to TNDM (with and without addition of sensory stimuli as external input) in
our real data experiments. Unlike BRAID that models the neural observations with a Gaussian distri-
bution, TNDM uses a Poisson observation model for the neural data. Therefore, in our comparisons
to TNDM, we analyze non-smoothed spike counts in 50ms bins (for both TNDM and BRAID). We
use the default hyperparameters from the original work2 for TNDM.

A.2.7 LFADS

Latent Factor Analysis via Dynamical Systems (LFADS) (Pandarinath et al., 2018) is an unsuper-
vised method that combines nonlinear dynamical modeling with sequential autoencoders. Similar to
TNDM, LFADS uses a non-causal, bidirectional RNN as the encoder to infer the initial conditions
for a generator/decoder RNN. The dynamical model is learned via variational inference for unsu-
pervised neural reconstruction. LFADS has a version that uses additional RNNs called controller
networks to infer unmeasured inputs from the neural data and use those inferred inputs to drive its
generator RNN. We use this version of LFADS (O’Shea & Pandarinath, 2021)3, to serve as an addi-
tional benchmark in comparison to BRAID’s modeling of measured inputs. For a full visualization
of the LFADS model including the controller networks see Supplementary Fig. 12 in Pandarinath
et al., 2018. Briefly, without a controller network, all the information about the complete trial has
to be encoded into the initial state of the LFADS generator RNN, which then autonomously evolves
to extract states and factors over the course of the trial. In contrast, a controller network acts as a
regular non-autonomous RNN for LFADS and allows its generator RNN to take corrections from the
neural data throughout the trial, hence improving its capacity to accommodate non-smooth changes

1We use the implementation provided in https://github.com/DurstewitzLab/mmPLRNN
2We use the implementation provided in https://github.com/HennigLab/tndm
3We use the implementation provided in https://lfads.github.io/lfads-run-manager/

21

https://github.com/DurstewitzLab/mmPLRNN
https://github.com/HennigLab/tndm
https://lfads.github.io/lfads-run-manager/

Published as a conference paper at ICLR 2025

in the middle of trials (Pandarinath et al., 2018). The controller network itself does not directly take
neural data as input, rather an additional bidirectional RNN called the controller-encoder operates
on the neural data of each trial, and the states of this controller-encoder are passed as input to the
controller network. As a result, the ‘inferred inputs’ in LFADS are also non-causally inferred. To
compare results with BRAID, we set the number of factors, and the latent states of the generator and
the controller-encoder networks to be the same as BRAID. We also pass the same smoothed neural
data to LFADS and use the Gaussian neural loss option accordingly. Other hyperparameters were
set as those in the original work (Pandarinath et al., 2018).

A.2.8 CEBRA

CEBRA (Schneider et al., 2023) is a recent method proposed for extracting latent embeddings from
neural data in a way that can be guided by behavior. CEBRA uses a 1-dimensional convolutional net-
work to extract embeddings from small windows of neural data and guides the extraction of latents
via a contrastive loss. The supervised version of CEBRA (i.e., CEBRA-Behavior) uses a contrastive
loss on behavior to learn embeddings that dissociate samples with different behavior data, and are
thus behaviorally relevant. Due to its use of a convolutional network to extract embeddings, CEBRA
does not learn explicit recursive dynamics and also extracts embedding from a finite window of neu-
ral data at a time. CEBRA also does not learn any models to decode behavior or neural data form
the extracted embeddings. Thus, as done in the original work (Schneider et al., 2023), we fit k-NN
regression4 models to decode neural-behavioral data from the extracted CEBRA embeddings. For
a fair comparison, we also provided the measured sensory inputs time-series of the task to CEBRA
by concatenating them with neural activity as the input. We use the default hyperparameters from
the original work5 for CEBRA.

A.3 NON-HUMAN PRIMATE ELECTROPHYSIOLOGICAL RECORDINGS FROM

We analyzed a publicly available dataset (O’Doherty et al., 2017) in which a macaque (monkey
I) performs a motor task. Spiking activity was recorded from primary motor cortex (M1), while
the subject controlled a 2D cursor to reach targets that appeared on random locations on a grid
within a virtual reality environment. Targets appeared back to back, without any time gaps. We
took the subject’s 2D fingertip position and velocity as the behavior time-series zk, and the sensory
input, taken as 2D location of the current target, as the input signal uk. We analyzed the first
spike dimension available for each channel-resulting in 89 to 92 units from the first 7 available
recording sessions and randomly selected half of these units to model as our neural activity. For
neural modality, we use spike counts within 50 ms non-overlapping windows. Finally, we smoothed
the spike counts by a Gaussian kernel with a 50 ms s.d. (except for in table A.5) and took that as the
neural time-series yk. We report the mean and standard error of the mean (s.e.m.) computed across
7 sessions and 5 cross-validated folds.

As a second neural modality, we also model the raw local field potential (LFP) activity recorded
from the same monkey during the same task. As the only preprocessing, we apply a 10 Hz anti-
aliasing filter to be able to downsample the raw LFP to the sampling rate of behavior (i.e., 20 Hz).
We refer to this modality as raw LFP data. Results for raw LFP data (figure A.3) were consistent
with those obtained for spiking activity (figure 3).

A.4 SIMULATION DETAILS

We analyze three simulated datasets based on dynamical systems. In all the three, we generate 10
different sets of random linear matrices for equation A.11, then generate the ground truth latent
states xk, neural activity yk and behavior observations zk. In equation A.11, wk, vk, and ϵk are
zero-mean white Gaussian noises accounting for unmeasured excitations, neural observation noise,
and behavioral observation noise respectively. fCz

(·) and fB(·) are nonlinear functions, as described
below for each simulation.

4sklearn.neighbors.KNeighborsRegressor (Pedregosa et al., 2011)
5We use the implementation provided in https://github.com/AdaptiveMotorControlLab/

CEBRA

22

https://github.com/AdaptiveMotorControlLab/CEBRA
https://github.com/AdaptiveMotorControlLab/CEBRA

Published as a conference paper at ICLR 2025

{
xk+1 = Afwxk + fB(Buk) +wk

yk = Cyxk +Dyuk + vk

zk = fCz (Czxk) +Dzuk + ϵk
(A.11)

To generate a temporally structured input in all cases, we simulate a separate random linear state
space model according to equation A.12 and take its output as the external input uk to the main
model of equation A.11. {

xu
k+1 = Au

fwx
u
k +wu

k

uk = Cux
u
k + vu

k
(A.12)

A.4.1 SIMULATION 1: SPIRAL BEHAVIOR MANIFOLD

For the first simulation, we generate data with a spiral behavior manifold. To do so, we apply a
pointwise nonlinear mapping fCz (ν) =

[
ν
2 cos(ν)

ν
2 sin(ν)

]T
to the readout from the latent

states (third line in equation A.11). The bar over the function input ν indicates a scaling factor
that normalizes it before nonlinear function is applied. See figure 2a for a visualization of the
nonlinearity. We take fB(·) as identity, set dimensions to ny = nz = nu = nx = n1 = 2, and take
Dy = Dz = 0 for this simulation.

A.4.2 SIMULATION 2: TRIGONOMETRIC BEHAVIOR MANIFOLD

For the second simulation with trigonometric behavior map, we apply another nonlinearity, point-
wise sinusoidal nonlinear function, fCz

(ν) = a sin(ν) + bν, to the latent states to generate the
behavior zk. See figure 2e for a visualization of the nonlinearity. In this simulation fB(·) is taken as
identity function and we set ny = nz = nu = nx = n1 = 1.

A.4.3 SIMULATION 3: TRIGONOMETRIC INPUT-ENCODER

For the third simulation, as we iterate over the state equation (first line in equation A.11), we apply
a pointwise sinusoidal nonlinear function, fB(ν) = a sin(ν)+ bν, to the input. See figure A.1a for a
visualization of the nonlinearity. Here fCz (·) is taken to be an identity function. In this simulation,
we set ny = nz = nu = nx = n1 = 1.

We also perform two additional simulations (figure A.2) that are similar in nonlinearity structure to
the second and third simulations explained above, but incorporate an additional 1-dimensional latent
state x

(3)
k , as in figure 1a, representing input-driven behavior-specific dynamics not encoded in the

neural activity, as follows:

[
x
(1)
k+1

x
(3)
k+1

]
=

[
A

(1)
fwx

(1)
k

A
(3)
fwx

(3)
k

]
+

[
fB(B

(1)uk)
B(3)uk

]
+wk

yk = C
(1)
y x

(1)
k +Dyuk + vk

zk = fCz
(C

(1)
z x

(1)
k) +C

(3)
z x

(3)
k +Dzuk + ϵk

. (A.13)

A.5 SUPPLEMENTARY RESULTS

A.5.1 BRAID CAN EXCLUDE NON-ENCODED BEHAVIOR-SPECIFIC DYNAMICS

Here, we demonstrate that the optional preprocessing step in BRAID (detailed in section 3.3) can
dissociate behavior-specific dynamics (i.e., those that are not encoded in the neural activity) during
learning and make sure they are not conflated with intrinsic neural dynamics and are not mixed into
the neural states (x(1)

k and x
(2)
k). We conducted two additional simulations similar in structure to the

second and third simulations explained in section 4.1.2. However, here, for all simulated models,
we added input-driven dynamics that influenced behavior but were not encoded in neural activity
(denoted as x(3)

k in figure 1a and equation A.13). The preprocessing step is intentionally expected to
yield latent states that are potentially less predictive of behavior, but are encoded in neural activity.
When desired, BRAID provides the option to further learn behavior-specific dynamics post-hoc

23

Published as a conference paper at ICLR 2025

with a separate latent state (x(3)
k). The preprocessing and post-hoc learning steps allow BRAID to

avoid conflation of non-encoded behavior dynamics with others, while also being able to learn these
dynamics and thus not incurring any overall reduction in behavior decoding.

We fitted BRAID models with the preprocessing, and both with and without post-hoc learning of
behavior-specific dynamics. With the preprocessing, BRAID reached the neural prediction perfor-
mance of the ground truth model indicating correct removal of behavior-specific dynamics (figure
A.2). Moreover, the optional learning of behavior-specific dynamics led to reaching the behavior
decoding performance of the ground truth model (figure A.2), suggesting that one could option-
ally learn these dynamics as well within BRAID to gain interpretability (by learning a disentangled
model) without compromising decoding performance.

A.5.2 ADDITIONAL SUPPLEMENTARY TABLES

In this section we include additional supplementary tables that further support the results from the
main text. The caption for each supplementary table includes all the details, but here we provide a
list of these tables:
• Table A.3: Ablation analysis showing the importance of the RNNfw generative model in BRAID

for learning intrinsic dynamics.
• Table A.4: BRAID results for different nonlinearity configurations in real NHP data.
• Table A.5: Comparison with TNDM in real NHP data.
• Table A.6: Comparison with LFADS and CEBRA in real NHP data.
• Table A.7: BRAID results for modeling different number of neurons in real NHP data.
• Table A.8: Same as table 3 shown in terms of the R2 metric.

Table A.3: A separate generative model is essential to learn the intrinsic dynamics accurately
with BRAID.
Row 1: BRAID, when learning a separate generative model (RNNfw), more accurately learns the
intrinsic dynamics as quantified by the error in identifying eigenvalues of the ground truth intrinsic
dynamics in the simulated dataset with spiral manifold in figure 2a.
Row 2: The error when ablating the forward RNN from BRAID.
Rows 3-4: DPAD, even when optimized with m-step-ahead prediction loss and/or with input (uk),
does not learn the intrinsic dynamics accurately.

Method log10 normalized eigenvalue error
BRAID -1.3963 ± 0.2551
BRAID without RNNfw 0.0635 ± 0.2212
DPAD + m-step loss 0.0357 ± 0.1587
DPAD + input (uk) + m-step loss -0.6512 ± 0.0354

Table A.4: Comparison of BRAID model’s nonlinearity configurations in the NHP dataset (nx =
n1 = 16, 4-step-ahead).

Model nonlinearity Behavior forecasting CC Neural forecasting CC
Linear 0.7453 ± 0.0066 0.1767 ± 0.0054
Recursion (A,Afw) 0.7121 ± 0.0059 0.2719 ± 0.0061
Encoder (K,Kfw) 0.7181 ± 0.0078 0.1646 ± 0.0049
Decoder (Cz,Cy) 0.8042 ± 0.0085 0.3274 ± 0.0078

24

Published as a conference paper at ICLR 2025

Table A.5: Comparison to TNDM, both when sensory input is additionally provided to the TNDM
model and when it is not (see appendix A.2.6). All models are learned in low-dimensional regime,
i.e., BRAID with nx = n1 = 16, and TNDM with 16 relevant factors only. We used non-smoothed
spike counts as the neural signals in this analysis. BRAID performances are for causal 1-step-ahead
prediction, whereas the TNDM performances are non-causal smoothing performances, which are
the only option for TNDM since it is a sequential autoencoder.

Method Behavior decoding CC Neural prediction CC
TNDM 0.3752 ± 0.0170 0.3021 ± 0.0051
TNDM with sensory input 0.6219 ± 0.0103 0.3075 ± 0.0050
BRAID (ours) 0.7841 ± 0.0079 0.2935 ± 0.0053

Table A.6: Comparison to LFADS (with controller), and CEBRA (CEBRA-behavior). LFADS
inferred the external input to the dynamical system (appendix A.2.7). For CEBRA, w.s.i. (with
sensory input) indicates that sensory input is additionally provided to the model to obtain the em-
beddings (appendix A.2.6). All models are learned with both low-dimensional (nx=16) and high-
dimensional (nx = 64) latent states (n1 = 16 for BRAID). BRAID performances are for causal
1-step-ahead prediction, whereas LFADS and CEBRA performances are non-causal smoothing, and
0-step-ahead reconstruction respectively.

Method Behavior decoding CC Neural prediction CC
nx = 16 nx = 64 nx = 16 nx = 64

LFADS 0.4714 ± 0.0192 0.5891 ± 0.0135 0.5615 ± 0.0086 0.5920 ± 0.0072
CEBRA w.s.i. 0.7544 ± 0.0073 0.7514 ± 0.0072 0.5070 ± 0.0053 0.5693 ± 0.0041

BRAID (ours) 0.8109 ± 0.0074 0.8085 ± 0.0076 0.5571 ± 0.0051 0.8401 ± 0.0061

Table A.7: Effect of the number of neurons on BRAID’s performance. Results of the BRAID
modeling when different numbers of neurons included as the neural signal. We included neurons
from the same channel sets across different sessions and the ranges indicate the number of neurons
available from those channels across different sessions. In all 3 rows, neural predictions are eval-
uated on the same common set neurons (i.e., the smallest set shown in row 1) to make the neural
forecasting results comparable across rows. Behavior forecasting improved with more neurons and
neural forecasting remained largely stable. These results suggest that BRAID can aggregate behav-
iorally relevant information across larger populations of neurons, while still being able to model this
higher-dimensional population activity well.

Scale Behavior forecasting CC Neural forecasting CC
nx = 16 nx = 64 nx = 16 nx = 64

20-21 neurons 0.7727 ± 0.0091 0.7709 ± 0.0089 0.3206 ± 0.0081 0.4115 ± 0.0094
41-43 neurons 0.8042 ± 0.0085 0.7970 ± 0.0086 0.3220 ± 0.0088 0.4202 ± 0.0091
89-92 neurons 0.8337 ± 0.0061 0.8302 ± 0.0072 0.3329 ± 0.0082 0.4195 ± 0.0088

25

Published as a conference paper at ICLR 2025

Table A.8: R2 results for the same analyses provided in table 3. Forecasting performance (4-step-
ahead) compared to baselines in NHP dataset for models with low-dimensional (nx=16) and high-
dimensional (nx = 64) latent states. n1 = 16 for BRAID, linear BRAID, and DPAD. 1 of the 7
sessions were excluded from this table due to a very negative outlier in the mmPLRNN results.

Method Behavior forecasting R2 Neural forecasting R2

nx = 16 nx = 64 nx = 16 nx = 64

linear BRAID 0.5821 ± 0.0056 0.5763 ± 0.0084 0.0239 ± 0.0036 0.1519 ± 0.0067
DPAD 0.4561 ± 0.0141 0.5497 ± 0.0101 0.0321 ± 0.0042 0.1344 ± 0.0069
U-BRAID 0.6047 ± 0.0097 0.6684 ± 0.0088 0.1768 ± 0.0068 0.1860 ± 0.0064
mmPLRNN 0.4737 ± 0.0118 0.6127 ± 0.0369 0.0734 ± 0.0079 0.0563 ± 0.0670

BRAID (ours) 0.6680 ± 0.0118 0.6578 ± 0.0129 0.1083 ± 0.0060 0.1792 ± 0.0064

26

Published as a conference paper at ICLR 2025

A.5.3 ADDITIONAL SUPPLEMENTARY FIGURES

In this section we include supplementary figures that further support the results from the main text.
The caption for each supplementary figure include all the details, but here we provide a list of these
supplementary figures:
• Figure A.1: Simulation results for simulation 3 with a trigonometric nonlinear input-encoder.
• Figure A.2: Validation of the optional third stage of learning in BRAID for learning behavior-

specific input driven dynamics.
• Figure A.3: Results of modeling the raw LFP modality in the real NHP data.
• Figure A.4: Average low-dimensional latent state trajectory extracted from real NHP data.
• Figure A.5: Results in real NHP data for different latent state dimensions.
• Figure A.6: Example BRAID decoded time series in real NHP data.
• Figure A.7: Example plot showing loss versus epochs for BRAID.

0

0.2

0.4

0.6

0.8

D
ec

od
in

g
C

C

0

0.2

0.4

0.6

0.8

N
eu

ra
l p

re
di

ct
io

n
C

C

lo
g 10

 n
or

m
al

iz
ed

 E
V

er
ro

r

-1.5

-1

-0.5

0

-2

-2.5
IPSID

Linear BRAID
(steps-ahead=[1,2,3,4,5])

BRAID Nonlinear
(steps-ahead=[1,2,3,4,5])

DPAD Nonlinear
(steps-ahead=[1,2,3,4,5])

𝐾�

𝐾�

(a)

𝑢

𝑓
(𝑢

)

Trigonometric
input-encoder

𝐵�

D
ec

od
in

g
C

C

0.2

0.4

0.6

0.8

steps ahead
1 2 4 8 16 32

0

0.2

0.4

0.6

0.8

N
eu

ra
l p

re
di

ct
io

n
C

C

steps ahead
1 2 4 8 16 32

(e) (f)

(b) (c) (d)

10%

1%

Figure A.1: BRAID results, optimized for forecasting, in simulation with trigonometric input-
encoder. (a) Visualization of example nonlinearity in the simulation. (b-c) 1-step-ahead behavior
decoding and neural prediction for nonlinear BRAID, nonlinear DPAD, linear BRAID, and IPSID.
(d) Error in identifying intrinsic dynamics of the true model, quantified by the eigenvalues of the
state transition matrix Afw. (e-f) Behavior and neural forecasting accuracy for 1 to 32 steps ahead,
enabled by learning the intrinsic dynamics (Afw), with predictions optimized for [1, 2, 3, 4, 5]-steps-
ahead (section 3.1).

27

Published as a conference paper at ICLR 2025

D
ec

od
in

g
C

C

N
eu

ra
l p

re
di

ct
io

n
C

C

BRAID (without preprocessing
and non-encoded dynamics)

BRAID (with preprocessing
and non-encoded dynamics)

BRAID (with preprocessing)

True model (Ideal)

(a) (b)

0.2

0.4
0.6
0.8

0
0.2

0.4

0.6

0.8

0

0.25

0.5

0.75

1

0

(e) (f)

N
eu

ra
l p

re
di

ct
io

n
C

C

(c)

(d)

D
ec

od
in

g
C

C

0.2

0.4

0.6

0.8

0

Trigonometric
behavior manifold

𝑢

𝑓
(𝑢

)

Trigonometric
input-encoder

𝐵�

𝑥�

𝑓
(𝑥

)
𝐶� 𝑧

�

Figure A.2: Behavior preprocessing successfully excludes non-encoded, behavior-specific dy-
namics in simulations. 1-step-ahead behavior decoding and neural predictions for simulations with
(a-c) trigonometric behavior decoder, and (d-f) input-encoder. Note that the true model includes
behavior-specific dynamics, so here we expect that decoding of BRAID with preprocessing but
without the post-hoc learning of behavior-specific dynamics (shown as green), to be worse than that
of true model. Once the post-hoc learning step is also performed (shown as red), BRAID reaches
ideal performance, but importantly does so while these behavior-specific dynamics are dissociated
into a separate latent state C(3)

z . In contrast, without the preprocessing step (shown as blue), BRAID
reaches ideal decoding performance, but does so without having dissociated behavior specific dy-
namics to not be included in C

(1)
z . See section A.1.3 for details.

steps ahead
1 2 4 8 16 32

steps ahead
1 2 4 8 16 32

D
ec

od
in

g
C

C

0.2

0.4

0.6

0.8

0

N
eu

ra
l p

re
di

ct
io

n
C

C

0.2

0.4

0

BRAID Nonlinear decoders � (steps-ahead=[1,2,4,8])
Linear BRAID (steps-ahead=[1,2,4,8])

DPAD Nonlinear decoders (steps-ahead=[1,2,4,8])
mmPLRNN Nonlinear decoders

(a) (b)

LFP modality

Figure A.3: Analysis of Local Field Potential (LFP) neural modality. BRAID outperforms
baselines in neural-behavioral forecasting. We used LFP neural data as a second different modal-
ity and performed analysis similar to the one in figure 3 for smoothed spike counts. (a) Behavior
and, (b) neural activity forecasting correlation coefficient (CC) for BRAID, linear BRAID, DPAD,
and mmPLRNN for nx=16. Shaded areas show the s.e.m., across the 3 recording sessions and 5
cross-validation folds. NHP results in all other figures and tables are for spiking data.

28

Published as a conference paper at ICLR 2025

BRAID DPAD U-BRAID

Position Velocity
(a)

(b) (c) (d)

Figure A.4: Latent states trajectories revealed on non-human primate reaching dataset. We
divide reach trials to 8 conditions based on reach direction (shown by colors) and find the condition-
averaged (4-step-ahead) latent states trajectories for 2 dimensional models. (a) Condition-averaged
behavior i.e., movement position and velocity. (b-d) Condition-averaged latent state trajectories for
(b) BRAID, (c) DPAD and (d) U-BRAID. BRAID learns the most well-separated posterior (latent)
trajectories for the 8 conditions in the task. U-BRAID’s trajectories are the least separated, showing
that BRAID is more successful in extracting the behaviorally relevant intrinsic dynamics that are
more congruent with behavior. Also, DPAD’s trajectories are not as well-separated as BRAID’s,
although they are more separated than the unsupervised version (U-BRAID) as expected.

U-BRAID Nonlinear decoders
(steps-ahead=[1,2,4,8])

(a) (b)
BRAID Nonlinear decoders �
(steps-ahead=[1,2,4,8])

Linear BRAID
(steps-ahead=[1,2,4,8])

DPAD Nonlinear decoders
(steps-ahead=[1,2,4,8])

0.2

0.4

0.6

0.8

D
ec

od
in

g
C

C

0 10 5020 30 40 60 0 10 5020 30 40 60

N
eu

ra
l p

re
di

ct
io

n
C

C

0.1

0.2

0.3

0.4

𝑛𝑥 𝑛𝑥

Figure A.5: Forecasting (4-step-ahead predictions) correlation coefficient across latent dimen-
sions. BRAID predicts both (a) behavior and (b) neural activity more accurately than DPAD due to
modeling input, and than linear BRAID due to modeling nonlinearity. As state dimension increases
beyond 16 (dedicated to behaviorally relevant dynamics, i.e., n1 = 16), BRAID uses stage 2 to
learn neural specific dynamics, thus reaching the unsupervised baseline, i.e., U-BRAID, in neural
prediction. For BRAID and DPAD, the first 16 state dimensions are dedicated to the behaviorally
relevant neural dynamics (i.e., n1 = 16) while any remaining dimensions (nx > 16) are dedicated to
the residual non-shared neural dynamics. 4-steps-ahead in this dataset corresponds to 200ms ahead.

29

Published as a conference paper at ICLR 2025

160 180 200 220 240 260
Time (s)

Po
si

tio
n

- X
Po

si
tio

n
- Y

Ve
lo

ci
ty

 -
X

Ve
lo

ci
ty

 -
Y

True behavior
Predicted behavior

Figure A.6: Predicted behavior visualization. True behavior versus BRAID’s (4-step-ahead) pre-
dicted behavior for a representative session corresponding to the results in table 3 (nx = 64).

Example 1

Stage 1a learning curve

Lo
ss

Training
Validation

Training epochs
50 300

0.5

3.0

2.5

2.0

1.5

1.0

100 2500 150 200

Stage 1b learning curve
1.4

1.2

1.0

0.8

Training epochs
10 6020 500 30 40 70

Stage 1a learning curve

Example 2

Stage 1b learning curve

Training epochs
10 20 500 30 40

Lo
ss

Lo
ss

3.0

2.5

2.0

1.5

1.0

Training epochs
50 300100 2500 150 200 350

1.4

1.2

1.0

0.8

Lo
ss

(a) (b)

Figure A.7: Learning curve examples for BRAID model. Loss values as a function of number
of epochs for training and validation datasets for two example runs of BRAID. Top row: learning
curve examples for the RNN1, RNN1fw, i.e., stage 1a, in section 3.2. Bottom row: learning curves
examples for stage 1b in section 3.2. These examples are taken from the same models whose per-
formances are reported in figure 3 and table 3.

30

	Introduction
	Related Work
	Methods
	BRAID Model
	Prioritization of behaviorally relevant over other neural dynamics
	Dissociation of behavior-specific dynamics
	Inference and Evaluation Metrics

	Experimental Results
	Simulation Experiments
	BRAID achieves near optimal neural-behavioral predictive accuracy in nonlinear input-driven simulations
	BRAID dissociates intrinsic dynamics from input dynamics in simulations

	Non-human primate motor cortical activity during reaching

	Discussion
	Acknowledgments
	Author contributions
	Reproducibility Statement
	Appendix
	Method details
	Two-section formulation
	Learning algorithm steps
	Non-encoded behavior-specific dynamics
	Model architecture details and hyperparameters
	Intrinsic dynamics and eigenvalues

	Baselines
	IPSID
	linear BRAID
	DPAD
	U-BRAID
	mmPLRNN
	TNDM
	LFADS
	CEBRA

	Non-human primate electrophysiological recordings from
	Simulation details
	Simulation 1: Spiral behavior manifold
	Simulation 2: Trigonometric behavior manifold
	Simulation 3: Trigonometric input-encoder

	Supplementary Results
	BRAID can exclude non-encoded behavior-specific dynamics
	Additional Supplementary Tables
	Additional Supplementary Figures

