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Abstract: We present a framework for robot skill acquisition, which 1) efficiently scale
up data generation of language-labelled robot data and 2) effectively distills this data down
into a robust multi-task language-conditioned visuo-motor policy. For (1), we use a large
language model (LLM) to guide high-level planning, and sampling-based robot planners
(e.g. motion or grasp samplers) for generating diverse and rich manipulation trajectories.
To robustify this data-collection process, the LLM also infers a code-snippet for the
success condition of each task, simultaneously enabling the data-collection process to
detect failure and retry as well as the automatic labeling of trajectories with success/failure.
For (2), we extend the diffusion policy single-task behavior-cloning approach to multi-task
settings with language conditioning. Finally, we propose a new multi-task benchmark
with 18 tasks across five domains to test long-horizon behavior, common-sense reasoning,
tool-use, and intuitive physics. We find that our distilled policy successfully learned the
robust retrying behavior in its data collection procedure, while improving absolute success
rates by 33.2% on average across five domains. All code, data, and qualitative policy
results are available at our project website.

Figure 1: Language-guided Skill Acquisition enables scalable robot learning. In the data generation stage, a LLM
takes as input task descriptions (a) and uses sampling-based robotic planners and privileged simulation information (b) to
perform task-directed exploration. This enables the scaling up of language and task-success labeled dataset generation (c).
In the second stage, the dataset is filtered for success and distilled down into a closed-loop language-conditioned
visuomotor policy for real world deployment (d).

1 Introduction
How can we scalably acquire robust, reusable, real-world manipulation skills? This question has been the driv-
ing force behind extensive research in robot learning. Attempts in the field have focused on two primary aspects:
First, how to scale up the data collection for a diverse range of manipulation skills, which involves efforts
such as improving the hardware [1, 2] and software [3, 4] which support demonstration collection, utilization
of non-robotics datasets [5, 6], or trial-and-error explorations [7]. The second aspect of this question concerns
effective learning from the collected data, which delves into exploring effective action representations [8–10]
and policy formulations [11, 12] that can robustly model the training data and generalize to novel scenarios.

This paper proposes a new framework that provides a comprehensive solution for both aspects by
leveraging language guidance, while using no expert demonstrations or reward specification/engineering.
We contribute two key components with our framework:

• Scaling Up Language-Guided Data Generation: Our data-collection policy is a large language model
(LLM) which has access to a suite of 6DoF exploration primitives (i.e., sampling-based robot planners and
utilities). Given an input task description, this policy first simplifies the task by recursively decomposing
it into subtasks, resulting in a hierarchical plan (i.e., task tree). Next, this plan is grounded into a sequence
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of 6DoF exploration primitives, which generates diverse robot trajectories for the task. Finally, the data
collection policy verifies the trajectories’ success with an inferred success function and retries the task
until it succeeds. This verify & retry step not only improves the data-collection policy’s success, but also
adds robot experience on how to recover from failure, an important trait for downstream policy distillation.
This data generation approach is scalable, enabling significantly more efficient autonomous task-directed
exploration than unguided alternatives (i.e., reinforcement learning) while not being limited by the lack
of low-level understanding of the LLM-only solution.

• Distilling Down to Language-Conditioned Visuomotor Policy: We distill these robot experiences into
a visuo-linguo-motor policy that infers control sequences from visual observations and a natural language
task description. To enable effective learning of high entropy, diverse robot trajectories, we extend the
diffusion policy [12] to handle language-based conditioning for multi-task learning. This allows the learned
policy to be reused and recomposed through language-based planners. We found that our distilled policy
successfully learned the robust retrying behavior from its data collection policy, while improving upon
its absolute success rate across five domains by 33.2%. Further, we demonstrate that our policy directly
transfers to the real-world without fine-tuning using domain randomization.

Our framework combines these two components to get the best of both worlds – leverage LLM’s
common-sense reasoning abilities for efficient exploration while learning robust and re-usable 6DoF
skills for real-world deployment. In summary, the key contribution of this paper is a new framework for
visuo-linguo-motor policy learning that is enabled by three novel components:
• A new language-guided data collection framework that combines language-based task planner with 6DoF

robot utilities (e.g. motion planning, grasp sampling).
• New formulation of diffusion-based policy that effectively learns multi-task language-conditioned

closed-loop control policies.
• In addition to our algorithmic contributions, we also contribute a new multi-task benchmark that includes

18 tasks across five domains, requiring long-horizon (≈ 800 control cycles), common sense, tool-use,
and intuitive physics understanding – capabilities lacking in existing manipulation benchmarks.

2 Related Works
Scaling visuo-linguo-motor data. In learning vision-and-language-conditioned motor policies for
real-world deployment [9, 10, 13–18], one of the most important questions is how to scale up “robot-complete
data” – data that has robot sensory inputs (e.g. vision), action labels (e.g. target end-effector & gripper
commands), and task labels (e.g. language description, success). The most prevalent paradigm is to use
humans to annotate both actions (e.g. teleoperation) and language [9, 10, 13–18]. When providing action
labels, humans can either provide task-specific [9, 10, 15, 18], or task-agnostic (“play”) data [13, 14, 16, 19].
A primary limitation, however, is that data scalability is human-limited.

Other prior works have proposed strategies to enable more-autonomously-scalable data. To scale language
annotation, prior works study using visual-language models [20, 21], or procedurally post-hoc provided
in simulation [19]. To scale action labels, methods study how to use autonomous sub-optimal policies from
random [7] to learned [22] policies. Human egocentric videos [6, 23, 24] has also been shown to be relevant to
robot learning [5, 25], but is not robot-complete (lacks action labels), and requires cross-embodiment transfer.
Towards unsupervised exploration, prior works have also investigated evolving environments [26, 27] and
embodiments [28], automatic task generation [29], leveraging language guidance [30, 31] and world-model
error [32], but have not been demonstrated to scale to 6 DoF robotic skill learning. While these approaches
reduce human efforts, they are still limited in optimality, generality, and/or completeness of robot data labels.

Another option for the autonomous data collection policy is to use a model-based policy, e.g. task and
motion planning (TAMP) [33]. Our approach extends such methods in terms of flexibility and task generality
by leveraging LLM’s common-sense knowledge. However, in contrast to recent works which use LLMs
as the final policy [34–40], we use the LLM-based planner as a suboptimal data-collection policy. We then
distill only successful trajectories into an observable-information [41–43] policy, allowing the distilled policy
to improve upon its LLM data collection policy’s performance.

Policy Representations and Multi-task Policy Distillation. One primary question in visuo-motor
learning [44] has been how to represent the policy for effective learning, i.e. to enable high precision,
multi-modal robot behavior [2, 11, 12, 45, 46]. Another related question has been how to best train multi-task
policies [47, 48], including those conditioned on language [9, 10, 13, 15, 16, 18]. Our work presents the
novel formulation of bringing diffusion-based [49, 50] policies [12] into the language-conditioned [51, 52]
visuomotor domain. Additionally, prior works in multi-task language-conditioning typically focus on
cloning policies from experts, meanwhile we study distilling data from a success-filtered suboptimal policy.
Success-filtering [11, 53] can be viewed as the simplest form of offline RL [54].

2



Figure 2: Benchmark. We validate our approach on a new multi-task benchmark addressing challenging long-horizon
tasks (i.e., 800 control cycles) requiring language understanding (e.g., put [object] to [top] drawer), common sense
knowledge (e.g., send a package for return requires raising the mailbox flag), tool-use (e.g., catapult), and intuitive physics
(e.g., balance the bus). The tasks are best viewed on our our project website.

3 Approach
We propose a new framework for robot learning that performs automatic data collection and policy learning
from only a task description. Our design is grounded on four key observations:

• We recognize the importance of random exploration in reinforcement learning, but aim to not be constrained
by its inefficiency for long-horizon, sparse reward tasks.

• We acknowledge the usefulness of LLM’s common-sense and zero-shot capabilities, but believe language
is not by itself the ideal representation for robust, rich, and precise robotic manipulation.

• We are inspired by the effectiveness of robotic planning methods, e.g. TAMP, but wish to be flexible
to novel tasks and domains and non-reliant on ground truth state during policy inference.

• We aim to achieve the simplicity and effectiveness of behavior cloning in distilling collected robot
experience into a policy for real-world deployment, while side-stepping the requirement for costly human
demonstrations or play data collection.

Using no human demonstration or manually specified reward, our framework combines the strengths
of these four areas into a unified framework for both efficient task-directed exploration and multi-task
visuo-linguo-motor policy learning.

Method Overview. In the data generation phase, we use an LLM to recursively decompose (§3.1) tasks
into a hierachical plan (i.e., task tree) for exploration and ground the plan into sampling-based robot utilities
and motion primitives (§3.2). Next, the LLM infers success-detection functions for each task in the plan
(§3.3), providing success-labeling. This autonomous data generation process outputs a replay buffer of
task-directed exploration experience, labeled with language descriptions and success labels. In the training
phase (§3.4), we filter this data for success according to the LLM inferred success condition and distill it
into a multi-task vision-and-language-conditioned diffusion policy [12].

3.1 Simplify: Task Planning and Decomposition
Given a task description, the first step is to generate a high-level task plan. To improve the flexibility to
work with any tasks and 3D assets, we opted for an LLM-based planner to leverage their common-sense and
zero-shot reasoning skills. Unlike classical TAMP planners, our framework does not require domain-specific
engineering and transition function design to work with new tasks.

Concretely, our recursive LLM planner takes as input the task description, the simulation state, and outputs
a plan in the form of a task tree (Fig. 3a). To do so, the LLM first checks whether the task description
involves the robot interacting with multiple or only one object. For instance, “move the package into the
mailbox” involves opening the mailbox before picking up the package and putting the mailbox in, and should
be considered a multi-object task. Meanwhile, “with the mailbox opened, move the package into the mailbox”
should be a single-object task. For the base case of single-object tasks, we prompt the LLM to which object
part name to to interact. For the case of multi-object tasks, we prompt the LLM to decompose the task into
subtasks, and recurse down each subtask.
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Figure 3: Language-Driven Robot Data Generation takes as input the task description and simulation state, and
outputs a replay buffer, labelled with language descriptions and success. It starts by using an LLM to simplify tasks
recursively (a) until the task involves only one object, resulting in a hierarchical exploration plan. Next, the plan is
grounded (b) into a sequence of 6 DOF exploration primitives (e.g. grasp samplers, motion planners, etc.) and rolled out
in simulation to give an unlabelled robot trajectory. Finally, an LLM infers a success function code-snippet, and uses it to
verify (c) and label it with succeeded or failed. If the trajectory failed, the LLM retries the exploration plan with a different
random seed (e.g. a different grasp pose from the grasp sampler). If the robot succeeds or run out of time, the labeled
trajectory is returned.

3.2 Ground: Compiling a Plan into Robot Utilities
With the generated task tree §3.1, the next step is to ground the high-level plan into physical actions. Here,
the choice of the low-level robot API critically defines the system’s capability and, therefore, becomes a
key differentiating factor between different systems. In principle, there are three desired properties we want
to see in the action space design:
• Flexibility. Planar actions [10, 37] aren’t flexible enough to manipulate prismatic and revolute joints.

• Scalable. Namely, actions should not require human demonstrations to acquire [9, 10, 13–16, 35].

• Language-friendly. While joint sequences can encode any action, it is not language-friendly.
We propose to ground the LLM’s plan with API calls into a set of robot utility functions, which include a

sampling-based motion planner, a geometry-based grasp and placement sampler, and motion primitives for ar-
ticulated manipulation. We refer to these utilities as 6 DOF Exploration Primitives (Fig 3b) because, by virtue of
being pseudo-random, the sampling-based utilities generate diverse robot trajectories, enabling effective explo-
ration for rich 6 DoF manipulation settings. For instance, our grasp and placement samplers samples uniformly
amongst all points in the object part’s point cloud to find good grasps and placements poses, respectively, which
are used as input into a rapidly-exploring random trees [55] motion planner that samples uniformly in joint
space. This results in diverse grasps, placements, and motion trajectories connecting grasps and placements.

For each leaf node in the inferred task tree (§ 3.1), the grounding process takes as input the node’s task de-
scription (e.g. “open the mailbox”), its associated object part name (e.g. “mailbox lid”), and the simulation state,
and outputs a sequence of 6 DoF Exploration Primitive API calls. Using the object part name, we can parse
the object’s kinematic structure from the simulation state and handle articulated and non-articulated (i.e., rigid,
deformable) objects separately. For non-articulated objects, the LLM is prompted to choose the pick & place
object names, used to sample grasp and placement pose candidates. For articulated objects (with either revolute
or prismatic joints), the leaf node’s associated object part name is used to sample a grasp candidate followed
by a rotation or translation primitive conditioned on its joint parameters (i.e., joint type, axis, and origin).

Exploration Plan Rollout. Each node in the exploration plan is grounded only when it is being executed,
where the order of execution follows a pre-order tree traversal. By keeping track of the subtask’s state,
sub-segments of robot trajectory can be labelled with the subtask’s description, thereby providing dense and
automatic text labels for the trajectory. For instance, all actions taken during the inferred subtask “open the
mailbox” can be labeled with both the subtask’s description “open the mailbox” and the root task description
“move the package into the mailbox”.

Since grounding happens only when a task node is visited, each node’s grounding process is independent
of the other leaf nodes, depending only on the simulation state when it is evaluated. While this simplifies
planning significantly, it also means that failed execution can occur. For instance, a grasp candidate may
render all placement candidates infeasible.
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3.3 Verify & Retry: Robustifying the Data Collection Policy
Recall, the planning and grounding step can fail, especially when we consider long-horizon tasks. To address
this, we propose a verify & retry (Fig. 3c) scheme, which uses environment feedback to detect failed execution.

Verify. For each task, the LLM infers a success function code snippet given the task description,
simulation state, and API functions to for query simulation state (e.g., checking contact or joint values, etc).
This amounts to prompting the LLM to complete a task success function definition that outputs a boolean
value, indicating task success. For instance, given the task “raise the mailbox flag”, the LLM’s inferred
code snippet should check whether the mailbox’s flag hinge is raised (Fig. 3c, highlighted green).

Retry. When a trajectory is labeled failed, the robot retries the same sequence of robot utilities with a
different random seed (i.e., for the sampling-based robotic utilities) without resetting the simulation state
until the task succeeds. For instance, in the bus balance task (Fig. 2, top left), the robot would repeatedly
try different grasp and place candidates until the bus is balanced. In the tree traversal process § 3.2, nodes
only yield execution to its parent task when the node’s inferred success condition returns true. This design
not only leads to higher success rates in data generation but also provides useful demonstrations on how
to recover from failure. In the output replay buffer, the only failed trajectories are ones which timed-out
or led to invalid states (e.g. object dropped on the floor).

3.4 Language-conditioned Policy Distillation

Figure 4: Language-Conditioned Policy Distillation.
The policy takes as input a task description, two RGB cam-
era views, and gripper proprioception data, and outputs a
sequence of gripper poses and closing command.

We extend diffusion policy [12], a state-of-the-art ap-
proach for single-task behavior cloning, to the multi-
task domain by adding language-conditioning. This
policy takes as input a task description CLIP [56]
feature, proprioception history, and visual observa-
tions, and outputs a sequence of end effector control
commands. Following Robomimic [4]’s findings,
we use a wrist-mounted view in addition to a global
(workspace) view to help with tasks requiring precise
manipulation. We use their ResNet18-based [57]
vision encoders, one for each view. We found that
using only the latest visual observation along with the full observation horizon of proprioception maintains
the policy’s high performance while reducing training time. When used in conjunction with the DDIM [58]
noise scheduler, we found that we could use a 10× shorter diffusion process at inference (5 timesteps at
inference, 50 timesteps at training) while retaining a comparable performance. Quantitatively, when using a
10 dimensional action space*, our policy can be run at ≈35Hz on an NVIDIA RTX3080.

4 Evaluation Domain Complex
geometry

Artic-
ulation

Common
sense

Tool
use

Multi-
task

Long
horizon

Balance 7 7 7 7 7 7
Catapult 7 3 3 3 3 7
Transport 3 7 7 7 7 7
Mailbox 7 3 3 7 7 3
Drawer 3 3 7 7 3 3

Table 1: Benchmark Suite.

Our experiments try to validate two questions: 1) Can our data
generation approach efficiently perform task-directed explo-
ration? 2) Can our policy learning approach effectively distill a
multi-modal, multi-task dataset into a generalizable and robust
visuo-linguo-motor policy?

Our Benchmark contains 18 tasks across 5 domains (Fig. 2 Tab. 1), with the following properties:

• 6DoF & articulated manipulation, for deadling with complex object geometry and articulation.

• Geometry Generalization. In our bin transport domain, the robot must generalize its bin transport skill to
unseen object instances, with novel shapes, sizes, and colors.

• Intuitive physics. Robots should understand the physical properties of the world and use this knowledge
to perform tasks. In the bus balance domain, the robot needs to learn the precise grasping and placement to
balance a large bus toy on a small block. In the catapult domain, where the block is placed along a catapult
arm determines how far the block will be launched, and, thus, which bin (if any) the block will land in.

• Common-sense reasoning & Tool-use. Natural language task description is user-friendly but often
under-specifies the task. Common-sense can help to fill in the gaps. In the mailbox domain, given the task
“send the package for return”, the robot should understand that it not only needs put the package inside, but
also raise the mailbox flag to indicate that the package is ready for pickup. In the catapult domain, the robot
needs to understand that pressing the catapult’s button will activate the catapult, and that the block needs to
be placed on the catapult arm to be launched.

*3 for position, 6 for rotation using the upper rows of the rotation matrix, and a gripper close command
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Figure 5: High Entropy yet Precise Language-Guided Action Sequences. Running the pseudorandom language-
conditioned diffusion process with different seeds on the same observations yields language-consistent (a-c, different
colors for different task descriptions), high entropy actions when possible (a-f, object grasping, transports, & placements)
and precise actions when necessary (d, narrow mailbox with large package). Further, domain randomization enables a
simulation trained policy (e) to generalize to the real world (f).

• Multi-task conditioning. Given the same visual observations but different task description, the robot
should perform different and task-relevant actions. The catapult domain has 3 tasks for three target bins,
and the drawer domain has 12 tasks.

• Long horizon behaviour. Our longest horizon domain, mailbox, takes at least 4 subtasks to complete
(open the mailbox, put the package in the mailbox while its opened, close the mailbox, then raise the
mailbox flag) which can require up to 800 control cycles. In the drawer domain, the robot needs to open the
drawer, move the object into the drawer, then close it, which takes about 300 control cycles.

The benchmark is built on top of the MuJoCo [3] simulator, using assets from the Google Scanned
dataset [59, 60]. We use a table-top manipulation set-up with a 6DoF robot arm. The task success in evaluation
is a manually designed function, instead of LLM generated function used for data collection.

Metrics. We report the success rates (%) averaged over 200 episodes in Table 2, a task completion
efficiency plot in Fig. 6, and qualitative results in Fig. 5. If a domain has multiple tasks then we report the
average performance of all tasks. We also compare different LLMs in Table 4 (10 samples per task) and
investigate the sources of error in our system for the mailbox domain in Table 3 (200 trials per execution).

Data Generation Baselines. Code-as-Policy [37] is a state-of-the-art approach for using an LLM directly
as a robot policy by making state (e.g. query present objects) and action primitive API calls to a robot. Given
an LLM-inferred code string, they execute the snippet in an open-loop fashion. Crucially, in their table
top manipulation setting, they assume access to planar action primitives. Thus, we introduce the following
baselines, which build on top of Code-as-Policy and each other as follows:
• LLM-as-Policy (2D): Similar to code-as-policy using planar pick-and-place, but we use ground truth

object segmentation instead of their off-the-shelf object detectors [61, 62].
• (+) 6 DOF robot utils: Builds on top of the previous baseline by adding access to 6 DOF robot utilities

for grasping, placement, motion planning, and articulated manipulation.
• (+) Verify & Retry: Adding to the previous baselines, this baseline uses the LLM’s predicted success

condition to label trajectories and retry failed ones. Since the robot utilities involve pseudo-random samplers
(e.g. RRT, grasp sampling), retrying the task means running these samplers again using the pseudo-random
state and environment state from where failed trajectory left it. Since we use this approach as our data
generation policy, it also serves as an ablation of our approach.
Policy Distillation Ablations. We compare against BC-Z [15]’s single-task policies which does not use

FiLM conditioning (used in their bin emptying and door opening tasks). To understand the effects of our
policy learning design decisions in the single-task regime, we fix training time and dataset size (2 days using
at least 500 successful trajectories), and provide the following ablations:
• Action Generation: Instead of using diffusion processes conditioned on the policy input embedding to

decode actions, it is typical use multi-layer perceptrons. Following Jang et al. [15], we use one MLP with
two hidden layers and ReLU activations for end effector position, one for the orientation, and another for
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gripper command. This standard policy architecture is deterministic, and is trained with mean-squared error
loss for pose and binary cross entropy loss for gripper command.

• Action Space: Besides our absolute end effector pose action space, Delta-Action and velocity control
spaces is another popular action space choice [4, 15, 63–65]. We also ablate BC-Z’s execution action
horizon (Exec) while keeping their original prediction horizon (Pred).

• Observation Encoder: All approaches encode images using a ResNet18 [57] architecture. Although the
original architecture was designed with an average pooling layer, its typical for robotic policies to use a
spatial softmax pooling [44] layer instead.

• Data usage: No-Retry trains on successful trajectories generated from the data generation approach
without Verify & Retry, so it does not observe any recovery behavior.

4.1 Data Collection Policy Evaluation
Approach Planar 6DoF Average

Balance Catapult Transport Mailbox Drawer

LLM-as-Policy (2D) 28.0 33.3 21.5 0.0 0.0 27.6
(+) 6DoF Robot Utils 5.5 2.5 35.0 0.0 1.3 8.8
(+) Verify & Retry 45.0 7.3 82.0 3.0 31.8 33.8

Distill No Retry 67.5 38.5 32.5 0.0 22.7 32.2
Distill Ours 79.0 58.3 80.0 62.0 55.8 67.0

Table 2: Success Rates (%) for data generation (top) and
distillation approaches (bottom) over 200 trials.

6DoF exploration is critical. First, we verify
different approach’s ability to perform and ex-
plore in 6DoF, which is crucial for general manip-
ulation. When 6DoF exploration is introduced,
we first observe a drop in the average success
rate for simple tasks that could be accomplished
with planar actions (Balance, Transport, Tab. 2).
However, this ability is critical for exploring com-
plex tasks, providing data to improve upon in the
later distilling stage. In particular, we observed that 6DoF actions are important for grasping diverse objects
with complex geometry (Transport, Tab. 2), and manipulating articulated objects (Drawer, Mailbox, Tab. 2).

Subtask Planning Verify Execution

Open mailbox 100 100 43.5
Put package in mailbox 100 100 28.5
Raise mailbox flag 100 100 62.0
Close mailbox 100 100 94.2

Table 3: Sources & Propagation of
Error. Accuracy (%) of planning, veri-
fication, and execution success rate (%)
for each mailbox subtask.

Moreover, 6DoF exploration also helps in diversifying the data
collection strategy, which provides the possibility to improve
upon in the later distilling stage. For example in the catapult
domain, LLM-as-Policy (2D) is only able to solve one of three pos-
sible goals (the closest bin) using a deterministic strategy. However,
it provides no useful data for learning the other two goals, making
it a poor data-collection policy. In contrast, incorporating 6 DOF
robot utilities achieves lower but non-zero average success rates in
all bins (16.3%, 3.3%, and 2.2%, full table in appendix), which
provide much better exploration data for distillation.

Verify & Retry always helps. In the verify & retry step, the LLM retries all tasks until they are successful.
This simple addition improves performance in all domains, with 2×, 3×, 8×, and 13× in transport, catapult,
balance, and drawer domains. Without this crucial step, we observe 0.0% success rate in the mailbox domain,
underscoring the difficulty of flawlessly executing long sequences of 6 DOF actions, and the importance of
recovery after failure.

Model Size Planning Success

LLAMA2 7B 42.0 10.0
13B 62.0 48.3

GPT3 175B 82.0 91.1

Table 4: LLM Evaluation.

Language Model Scaling. In addition to the final task success, we
provide more detailed analysis of planning and success condition inference
accuracy in Tab. 4. We evaluate on the proprietary GPT3 [66] (175B
text-davinci-003) and the open LLAMA2 [67] (7B and 13B). We found
that Llama models struggles in complex planning domains because they
do not follow instructions provided in the prompts. For instance, in the drawer domain, both models fail to
account for drawer opening and closing. However, we observe an upwards trend with respect to Llama model
size, with the 13B model outperforming the 7B model by +20.0% and +38.3% in planning and success
verification accuracy respectively.

4.2 Distilled Policy Evaluation
Robustness In, Robustness Out. By filtering trajectories with LLM’s inferred success condition, distilled
policies inherit the robustness of their data collection policies while improving upon success rates (+23.4%
and +33.2% for no-retry and ours, Tab. 2). Since our distilled policy learned from a robust data collection
policy, it also recovers from failures (e.g. failed grasps or placements) and continuously retries a task until it
succeeds. Meanwhile, since the no-retry distilled policy learned from a data collection policy which did not
retry upon failure, it is sensitive and brittle, leading to −34.8% lower average success rate across all domains
compared to ours (Tab. 2).

High Performance From Diverse Retry Attempts. Plotting how long policies take to solve the bal-
ance task (Fig. 6), we observed that our policy and its data collection policy continuously tries a diverse
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set of grasps and placements after each failed attempt until it succeeds. This results in higher success
rates as the policy is given more time, and is reflected in their monotonically increasing success rates.

su
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time t (seconds)

Ours 79.0%

LLM-Policy 28.0%

(2D) 

Distill 67.5%

(No Retry) 
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LLM-Policy 45.0%
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Figure 6: Distilled Robustness. Our policy inherits
robust recovery from failure behavior from its data
collection policy, while improving upon success rate.

In contrast, baselines plateau after their first grasp/plate-
ment attempts. This highlights the synergy of two design
decisions. First, the verify & retry step (§ 3.3) is crucial
for demonstrating retrying behavior, but is by itself insuffi-
cient if each retrying action is the identical as the previous
one. Instead, opting for a diffusion policy (§ 3.4) for
learning from and generating high-entropy, diverse retry
attempts (Fig 5) is also essential for high performance.

Policy Learning Baselines. We investigate policy
learning design decisions on the single-task balance do-
main, and remove language conditioning. While BC-Z
found spatial softmax hurt their performance and opted for
a mean pool, we observed using spatial softmax improved
performance by +5.0%. Further, we found that switching
from delta to absolute action spaces improved success
rates +6.5% and +9.5% when using the MLP action
decoder and our diffusion action decoder, respectively,
confirming Chi et al. [12]’s findings. Lastly, we find that using our pseudo-random diffusion-based action
encoder consistently outperforms a deterministic MLP action mappings, regardless of other design decisions.

Method Output Input Success

Generation Rep. ExecPredPool Proprio (%)

BC-Z FeedForwardDelta 1 10 Avg 7 0.0
FeedForwardDelta 4 10 Avg 7 15.0
FeedForwardDelta 8 10 Avg 7 18.5

Ours FeedForwardDelta 8 16 Spatial 3 29.0
FeedForwardAbs 8 16 Spatial 3 35.5
Diffusion Delta 8 16 Spatial 3 69.5
Diffusion Abs 8 16 Avg 3 76.5
Diffusion Abs 8 16 Spatial 3 79.0

Table 5: Policy Learning Ablations. Ac-
tion generation using diffusion models [50]
robustly outperforms feed-forward models
across other policy design decisions.

Sim2Real Transfer. We evaluated a policy trained on do-
main randomized synthetic data in a real world transport task
with five novel objects (Fig. 5e). Averaging across ten episodes
per object, our policy achieved 76% success rate, demonstrat-
ing the effectiveness of our approach in Sim2Real transfer.

4.3 Limitations

By using priviledged simulation state information, the LLM
can infer success conditions which uses ground truth contact,
joint information, and object poses. This means our imple-
mentation of the data generation phase is limited to simulation
environments, and our policy requires sim2real transfer. Fur-
ther, Our data generation method relies on existing 3D assets
and environments, which presents a further opportunity for scaling up with assets from 3D generative models
or procedural generation. Finally, while our approach’s dataset contains text labels and success labels for all
subtasks, we have only evaluated its effectiveness in learning the root task. Learning from all subtasks and
growing a robot’s set of learned, reusable sub-skills over time to enable compositional generalization is left for
future work.

5 Conclusion

We proposed “Scaling Up and Distilling Down”, a framework that combines the strengths of LLMs, sampling-
based planners, and policy learning into a single system that automatically generates, labels, and distills
diverse robot-complete exploration experience into a multi-task visuo-linguo-motor policy. The distilled policy
inherits long-horizon behaviour, rich low-level manipulation skills, and robustness from its data collection
policy while improving upon performance beyond its training distribution. We believe that this integrated
approach is a step towards putting robotics on the same scaling trend as that of LLM development while not
compromising on the rich low-level control.
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