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Abstract

Encoder-decoder models have achieved remark-
able success in speech and text tasks, yet
efficiently adapting these models to diverse
uni/multi-modal scenarios remains an open
challenge. In this paper, we propose Whisper-
UT, a unified and efficient framework that
leverages lightweight adapters to enable seam-
less adaptation across tasks, including a multi-
modal machine translation (MMT) task that
explicitly conditions translation on both speech
and source language text inputs. By incorpo-
rating ASR hypotheses or ground-truth tran-
scripts as prompts, this approach not only en-
ables the system to process both modalities si-
multaneously but also significantly enhances
speech translation (ST) performance through
a 2-stage decoding strategy. We demonstrate
our methods using the Whisper model, though
in principle they are general and could be ap-
plied to similar multitask models. We high-
light the effectiveness of cross-modal and
cross-task fine-tuning, which improves perfor-
mance without requiring 3-way parallel data.
Our approach even outperforms using ground-
truth transcripts using an in-domain fine-tuned
NLLB model on multiple challenging conver-
sational speech translation corpora.

1 Introduction

The task of speech-to-text translation (ST) encom-
passes converting spoken language from one lan-
guage to another, aiming to overcome linguistic bar-
riers. Traditionally, the task involves an automatic
speech recognition (ASR) module to transcribe spo-
ken words, followed by a machine translation (MT)
module to convert the transcribed text into the tar-
get language in a cascaded manner (Ney, 1999).
The recent development of end-to-end neural ar-
chitectures and large pre-trained models have sub-
stantially propelled advancements in downstream
speech tasks, including speech translation, via ei-
ther self-supervised learning (SSL) (Baevski et al.,

2020; Hsu et al., 2021; Chen et al., 2022) or
fully supervised learning. Among the pre-trained
acoustic models, Whisper (Radford et al., 2022),
a transformer-based encoder-decoder multi-task
model trained with large-scale data in a supervised
manner, has exhibited strong performance on vari-
ous ST corpora.

However, in real-world scenarios, input modal-
ities and data conditions vary widely. In offline
settings, for instance, translating conversational
or dialectal speech—characterized by disfluen-
cies, code-switching, and noisy acoustic environ-
ments—poses significant challenges to end-to-end
models, often resulting in degraded performance.
Conversely, scenarios like business meetings or
translated media archives frequently provide both
source-language speech and transcripts (manual or
ASR-generated), yet existing systems fail to exploit
this multi-modal synergy.

To address this, we systematically investigate
how multi-task encoder-decoder models—using
Whisper as a representative case study—can be ef-
ficiently adapted to these heterogeneous scenarios.
First, we examine fine-tuning strategies for conven-
tional ST (using 3-way parallel speech-transcript-
translation data), speech-to-text tasks (ASR-only
data), and MT, while also methods for multi-modal
translation where both speech and transcripts are
available. Our analysis reveals two key insights:

* Cross-task training induces synergistic bene-
fits—fine-tuning on in-domain ASR data im-
proves speech translation (ST) performance,
while ST training conversely enhances ASR
accuracy, suggesting mutual reinforcement be-
tween tasks even without 3-way parallel data;
and

* Multi-modal inputs (speech + text) consis-
tently enhance translation quality when fused,
even with imperfect ASR transcripts.



Building on these findings, we propose Whis-
per for Unified Translation!, or Whisper-UT, a
framework that transforms Whisper’s decoder into
a unified conditional generation model, capable of
dynamically conditioning on speech, text, or both
modalities. The framework repurposes Whisper’s
encoder-decoder architecture as a versatile multi-
modal interface through two innovations:

1 A multi-task learning paradigm with a stochas-
tic task-selection mechanism to adapt the sys-
tem across ASR, MT, ST, and multimodal
translation tasks using a single set of LoRA
parameters;

2 A two-phase decoding strategy, where the de-
coder first generates ASR transcripts from
speech, then reuses them as context for trans-
lation when the transcript is not provided, em-
ulating human thinking process.

Crucially, Whisper-UT requires no architectural
modifications—only fine-tuning—ensuring com-
patibility with any encoder-decoder model.

Experiments on conversational telephony speech
(CTS) corpora—Fisher-CallHome Spanish and
BOLT Chinese-English demonstrate state-of-the-
art performance. Notably, Whisper-UT outper-
forms the 1.3B-parameter NLLB model in multi-
modal settings (speech + ground-truth text) and
achieves superior speech-only translation via hy-
pothesis prompting.

Our work highlights the untapped potential of
multi-task models in adaptive translation systems.
By unifying modality handling and enabling effi-
cient task specialization, Whisper-UT bridges the
gap between rigid single-modality systems and the
dynamic needs of real-world applications.

2 Related Work
2.1 Whisper

Whisper is an end-to-end multi-task speech model
that adopts a transformer-like encoder-decoder ar-
chitecture. Its LARGE-V2 version is pre-trained on
680,000 hours of speech data with multiple supervi-
sions. The model consists of several convolutional
blocks, a series of position-encoded transformer-
encoder blocks and transformer-decoder blocks.
As with the original transformer model (Vaswani
et al., 2023), the loss function Whisper used at its
pre-training time is the cross-entropy objective for
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all tasks, including language identification (LID),
voice activity detection (VAD), multilingual ASR,
ST and speech alignment.

Whisper’s decoder supports a prompting mecha-
nism, originally designed for better capturing long-
range dependencies of the transcripts/translations
to resolve local audio ambiguities. Particularly,
long utterances are segmented into chunks and the
decoder generates its hypothesis for the current
segment conditioning on the previous segment’s
transcripts. Inspired by the effectiveness of GPT-
like decoder-only models in machine translation,
we hypothesize that Whisper’s decoder, which may
be viewed as an audio-conditional language model,
is also capable of performing machine translation
conditioned on audio inputs.

2.2 Multi-modal speech translation systems

Recent developments in multi-modal speech trans-
lation systems are exploring new ways to combine
audio and text to improve language translation.
mSLAM (Bapna et al., 2022), a multilingual speech
and language model, has emerged as a pioneering
approach. It aims to construct a shared representa-
tion space for both speech and text through joint
pre-training on both self-supervised and supervised
tasks with various loss objectives, including the
translation language modeling (TLM) loss for ST.

SeamlessM4T (Communication et al., 2023) is
another innovative model that further refines the
integration of multi-modal inputs for speech and
text translation tasks. As a single model designed
for ASR, text-to-text translation, text-to-speech
translation, speech-to-text translation and speech-
to-speech translation, it consists of multiple build-
ing blocks to leverage mono-modal data, including
a w2v-BERT (Chung et al., 2021) as the speech en-
coder, a 1.3B NLLB model (Team et al., 2022) as
the text encoder and decoder, a transformer-based
text-to-unit encoder-decoder model, and a vocoder
for converting the units to speech. They adopted a
staged training strategy to make use of mono-modal
data for initializing each building block, followed
by several fine-tuning stages to fuse the compo-
nents for the target tasks.

These systems, along with most existing meth-
ods, primarily seek to utilize text and speech modal-
ities by aligning their representations. However,
such a design restricts the model to accept inputs in
only one modality during inference, preventing it
from attending to signals in another modality when
available, which is a gap we aim to fill.



3 Methodology

Traditional translation systems treat ST, MT, and
ASR as distinct tasks, each requiring separate mod-
els or specialized architectures. In this work, we
propose a unified translation framework that uni-
fies these tasks under a single encoder-decoder
paradigm, treating all forms of language conver-
sion—including audio-to-text, text-to-text, and
multi-modal translation—as conditional generation
tasks. Our approach enables seamless adaptation to
various input modalities and data conditions with-
out requiring fundamental architectural changes.

At the core of our method is the insight that
ASR can be reformulated as a source-language
transcription task, ST as a direct speech-to-text
translation task, and MT as a standard text-to-text
translation task—all of which can be expressed as
instances of sequence-to-sequence learning. Ex-
tending this idea, we introduce a multi-modal
translation task, for which the model conditions on
both speech and its corresponding transcript (either
human-annotated or ASR-generated) to improve
translation quality. This formulation generalizes
the conventional ST and MT paradigms, leverag-
ing available transcripts to enhance translation in
scenarios where speech alone may be ambiguous
Or error-prone.

3.1 Translation with Multi-modal Inputs

We first provide a formal definition of the multi-
modal translation (MMT) task, or more precisely,
the task of speech-and-text-conditioned translation.
Let X = (x1,x9,- -+ ,x) denote the speech sig-
nal of an utterance, Y = (y1,y2,- - -, yar) denote
the ground-truth transcript of the utterance, and
Z = (z1,22, - ,2n) denote its corresponding
text translation. The goal of the task is then to
find the conditional distribution P(Z|X,Y"). We
hypothesize that often H(Z|X,Y) < H(Z|Y) in
practice, where H denotes the information entropy.
In other words, the speech signal may contain addi-
tional information for a more accurate translation
of the utterance, as it may be able to aid resolving
ambiguities such as homographs, tonal variations,
and omitted content—such as repetitions and filler
words—that may be present in human-annotated
transcripts.

In light of the remarkable performance observed
with decoder-only language models in machine
translation, we presume that encoder-decoder mod-
els’ audio-conditioned decoder possesses the po-
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Figure 1: Overview of our approach. Note that special
tokens are abbreviated in the figure for simplicity. ASR-
HYP refers to the ASR hypothesis generated. When
GT is used, the task is MMT, otherwise it is referred as
2-Stage-ST. The & symbol refers to the XOR operation.

tential for undertaking the audio-conditioned text
translation task. In particular, one may prompt the
decoder with source language text, generated either
by human annotators or any ASR system, in the
translation process, as shown in Figure 1(b). Con-
sequently, the resulting model is trained to learn
the distribution P(Z|X,Y).

3.2 Translation with Speech-only Inputs

The problem of speech translation can be directly
modeled as P (Z]X) or modeled by marginalizing
over an underlying latent variable, Y, representing
valid transcripts of the audio X:

P(Z|X) =) P(Z,Y'|X)
Y/
=S Py, X)PYIX) (1)
Y/

However, the summation over Y is generally in-
tractable. One common solution, also adopted by
cascaded approaches to speech translation, is to
approximate the summation with the single highest
weight term in the summation, i.e.,

> Pz, X)P(Y'|X)
Y/
A max P(ZIY', X)P(Y'|X),

and furthermore to assume that the best transcript
is the most likely one:

Y = argmax P(Z|Y', X)P(Y'|X)
Y/

= argmax P(Y'|X). (2)
Y/



However, cascaded speech translation further
assumes that the translation is conditionally inde-
pendent of the audio given the transcript,

P(Z|Y,X) = P(Z|Y), 3)

which is practical in that it enables modular training
of components, i.e.,

P(Z|X) = P(Z|Y)P(Y|X), (4)

where P(Z|Y) and P(Y|X) can be trained sep-
arately, but it at the cost of a possible uneeded
additional approximation.

End-to-end systems such as Whisper, however,
model the problem without explicitly condition-
ing on the ASR transcripts, Y. Its single-decoder
multi-task paradigm presumably captures a higher-
level abstract semantics of the speech signals, such
that the ST decoding process is implicitly entangled
with the model’s ASR ability.

We seek to combine the modeling advantages
of the cascaded and end-to-end systems and gen-
eralize the multi-modal translation setting to re-
formulate the system’s speech-only translation pro-
cess for approximating Equation 1. Specifically,
we relax the conditional independence assumption
of cascade approaches, by endowing end-to-end
speech translation models with the capacity to also
condition on either a ground-truth or hypothesized
transcript defined by Equation 2, i.e.:

P(Z|X)=P(Z|Y,X)P(Y|X) (5)

In our implementation, we carry out a two-stage
decoding process. In the first stage, the model is
used to produce the ASR hypotheses, and subse-
quently, in the second stage, the model conditions
on them to generate the translations.

An alternative perspective on this modeling is
that it fully leverages the system’s source-language
modeling capability. In end-to-end multi-task mod-
els, the decoder can be viewed as implicitly “par-
titioned” into two roles: source-language model-
ing and target-language generation. While these
functions share parameters and benefit from joint
optimization, they may still develop distinct com-
petencies. By conditioning translation on both
speech and textual transcripts, this approach ex-
plicitly harnesses a well-trained source-language
model—potentially even from an external ASR
system—allowing the decoder to generate more
accurate and fluent translations. This perspective

highlights how multi-modal conditioning can serve
as a mechanism to refine and reinforce the system’s
understanding of the source language, ultimately
improving translation quality.

3.3 Translation with Text-only Inputs

Integrating MT functionality into a multi-modal
encoder-decoder model presents unique challenges.
In conventional encoder-decoder MT systems, the
source language text is processed through the en-
coder, which generates contextual representations
for the decoder to cross-attend to. However, in
our case, the encoder is designed specifically for
processing speech features, making direct text en-
coding potentially ineffective without substantial
adaptation. Training the encoder to handle text
inputs would require a significant amount of addi-
tional data and could lead to catastrophic forgetting,
where the model loses its ability to process speech
effectively.

Inspired by the success of decoder-only MT mod-
els such as GPT-based architectures, we adopt an
alternative strategy: instead of modifying the en-
coder to accommodate text, we encode the source
text directly within the decoder, as illustrated in
Figure 1(a). Specifically, we prepend the source
text as a prefix to the decoder input, leveraging
the self-attention mechanism to implicitly model
source-to-target dependencies. However, imple-
menting this method within an encoder-decoder
framework requires careful handling of the cross-
attention mechanism. Since the decoder in our
system is designed to attend to encoded speech rep-
resentations, directly bypassing the encoder would
disrupt the model’s expected structure. To address
this, we introduce a single learnable vector in the
encoder, serving as an indicator that informs the
decoder that text input is being processed. The re-
maining encoder output is padded with zeros, and
we modify the cross-attention mask such that the
decoder attends only to this learnable embedding.
This design ensures that the model’s architecture
remains structurally intact while effectively repur-
posing the decoder for text-based translation. By
adopting this strategy, we enable seamless integra-
tion of MT capabilities into our unified translation
system without requiring extensive modifications
to the speech encoder.

3.4 Whisper-UT: Unified Translation System

To achieve a unified translation framework that
encompasses multiple translation paradigms, we



propose Whisper-UT, a system designed to handle
ASR, ST, MT, and MMT within a single model.
Our approach is built on multi-task learning, lever-
aging 3-way parallel data and text-only MT data to
optimize multiple objectives in a stochastic fashion.

3.4.1 3-way Parallel Data Objectives

We formulate the learning process with six distinct
training objectives, categorized based on the avail-
ability of parallel data.

For the 3-way dataset that provide speech, tran-
scripts, and translations { X, Y, Z}, we define three
primary objectives:

ASR Objective. Learning the mapping X — Y,
i.e., predicting the source language transcript from
speech.

E2E-ST Objective. Directly predicting the tar-
get language text Z from speech X.

MMT Objective. Predicting Z while attending
to both X (speech) and Y (source transcript).

3.4.2 Text-Only Data Objectives

Since 3-way parallel datasets are scarce in real-
ity, we incorporate text-only MT data {Y, Z} and
define additional objectives:

Source Language Modeling (SLM): Predict-
ing the next source token in Y, acting as an ASR
surrogate for text-only samples.

Target Language Modeling (TLM): Predicting
the next token in Z, improving the decoder’s target
language modeling ability.

Machine Translation (MT): Translating Y —
Z using the decoder.

For MMT and MT objectives, we allow gradi-
ents to propagate back through the source language
tokens, implicitly enhancing the model’s source
language modeling ability.

3.4.3 Dynamic Loss Weighting

To balance the competing objectives, we employ
a stochastic task selection mechanism with beta-
distributed loss weighting inspired by (Zhang and
Patel, 2024):

a ~ Beta(f1, f2), (6)

which determines the final multi-task loss:
L = (1= )L +aLi", (7

where £EF is the ASR loss (or SLM loss for text-

asr
only samples), and £ is either the ST loss or the

MMT loss, selected via stochastic task selection.

The stochastic weighting scheme is motivated by
empirical findings that equal task weighting leads
to gradient interference, degrading performance
across tasks.

3.4.4 Utterance-Level Task Selection

Each batch is sampled from a mixture of the 3-way
parallel data and text-only MT data. We define the
loss computation as follows:

* ASR Loss: Always computed for speech-
based samples; replaced with SLM loss for
text-only samples (zero-padded input except
for a learnable vector).

* ST vs. MMT Objective:

— With probability ¢, apply standard ST
loss; for text-only data, this is equivalent
to the TLM loss.

— With probability (1 — ¢q), apply MMT
loss, where the decoder cross-attends to
both speech features and source text to-
kens; for text-only data, this becomes the
conventional MT loss.

3.4.5 Masking in Multi-Modal Translation

For MMT, we introduce a masking mechanism to
enhance robustness:

* With probability b, the source language tokens
are partially masked.

* Each token in the source text is independently
masked with probability ¢.

This simulates real-world noise in transcripts
(e.g., ASR errors, omissions), encouraging the
model to rely on both modalities for translation.

3.5 Unified Training Framework

In summary, our unified training framework inte-
grates ASR, ST, MMT, and MT into a single multi-
task learning process. To achieve this, we first con-
catenate both speech-text and text-only datasets,
allowing for random sampling within each batch.
For every batch, we compute the ASR loss, which
corresponds to the source language modeling loss
when dealing with text-only samples. The ASR and
ST loss weights are dynamically balanced by sam-
pling a weight o from a Beta distribution. Next, we
stochastically determine whether the batch follows
the ST/TLM objective or the MMT/MT objective.



If the batch is selected for MMT training, mask-
ing is applied with a certain probability to simu-
late transcription imperfections and enhance robust-
ness. By combining these components, Whisper-
UT serves as a unified model for ASR, ST, MT, and
MMT, leveraging both textual and speech inputs
efficiently.

4 Experiments

4.1 Experimental Setup
4.1.1 Tasks and Datasets

In this work, we focus primarily on the translation
of conversational telephony speech (CTS). We fine-
tune and evaluate our approach on two datasets,
including the Fisher-CallHome Spanish-to-English
corpus with 186 hours, and the BOLT Chinese-to-
English corpus with 110 hours, of conversational
telephony speech in Spanish and Chinese in their
training partition, respectively.

4.1.2 Pre-processing

CTS corpora usually consist of short utterances seg-
mented from a full recording, reflecting the alter-
nating speech of participants during conversations.
However, we found empirically that fine-tuning on
such segments, presumably due to a mismatch in
sample lengths compared to Whisper’s pre-training
data, leads to significant performance degradation.
The resulting model tends to repetitively produce
frequent filler words in the training corpus at in-
ference time regardless of the input. Therefore,
we re-segmented the utterances by merging them
chronologically, with durations (in seconds) sam-
pled from a Gaussian distribution, e.g. (15, 5%).
As Whisper’s feature extractor automatically pads
the features up to 30 seconds, such re-segmentation
also significantly reduced the training cost in terms
of memory and time.

4.1.3 Data Augmentation

We apply the conventional speed perturbation (Ko
et al., 2015) with parameters 0.9, 1.0, 1.1 to the
speech prior to the training stage. Additionally,
we adopt SpecAug (Park et al., 2019) to randomly
mask extracted speech features during training.

4.1.4 Parameter Efficient Fine-tuning

To efficiently adapt the model to these conversa-
tional scenarios without overfitting or incurring
excessive computational cost, we leveraged several
parameter-efficient fine-tuning (PEFT) techniques.

For this study, we concentrate on the LARGE-V2
version of Whisper with 1.6 billion parameters. In
order to fit it into our hardware, we adopted a list
of strategies:

* Low-Rank Adaptation (LoRA). LoRA (Hu
et al., 2021) introduces a trainable adapter
comprised of rank decomposition matrices on
top of the fixed pre-trained model’s weight
matrices in specified layers so that the number
of trainable parameters can be considerably
reduced.

* Gradient checkpointing. Gradient check-
pointing (Chen et al., 2016) stores intermedi-
ate activations in the forward pass, and re-
computes the remaining activations during
back-propagation.

e Zero Redundancy Optimizer (ZeRO).
ZeRO (Rajbhandari et al., 2020) is an algo-
rithm that partitions data, optimizer states,
gradients, and parameters for speeding up the
training of large neural models with low com-
munication costs.

4.1.5 Baselines

To evaluate our approach, we compared our re-
sults against several strong baselines spanning both
end-to-end and cascaded systems. For MT, we em-
ployed NLLB as our primary baseline. For ST and
ASR, we used Whisper-large-v2 in its pre-trained
form as well as after fine-tuning. For each fine-
tuned model, we also tune the number of train-
able parameters and report results for the best-
performing configuration.

4.1.6 Evaluation

For both ASR and ST, we normalize the text by
lower-casing all characters and removing all punc-
tuations before computing the metrics. In addition,
we also apply the global map scoring (GLM) to
standardize digits and abbreviations. For the Fisher
Spanish corpus, the BLEU score is computed on
the first set of references, in contrast to the multi-
reference BLEU reported in other work (Weiss
et al., 2017). The evaluation script used is provided
in the code.

4.2 Training

To demonstrate the effectiveness of our proposed
approach, we adopt Whisper as the base model
and fine-tune it for our unified translation model-
ing. By leveraging its robust speech and language



Table 1: Results on the Fisher Spanish test set. The Objective column specifies under which training objective the
model system is fine-tuned. The UT objective refers to the unified-translation objective described in section 3.5.
The Task column specifies the target inference task. E2E-ST refers to the promptless E2E speech translation setting,
MMT refers to the translation process that conditions on both the ground-truth transcript and the speech signals,
while 2-Stage-ST refers to the MMT process which conditions on the model’s own ASR hypotheses.

Model Objective Task (num_beams = 1)
ASR E2E-ST MT MMT 2-Stage-ST
(WER|) (BLEU1) (BLEU1) (BLEUT) (BLEUT)
I NLLB-13B| MT | - - 43.4 - -
2 None 26.7 30.9 - - -
3 ASR 19.1 36.7 - - -
4 ST 20.3 40.0 - - -
5 Whisper ASR + ST 16.3 40.6 - - -
6 MT 60.3 30.8 41.3 40.2 -
7 MMT 16.4 36.2 1.1 44.3 38.6
8 UT 15.6 40.3 29.8 44.6 44.2
Table 2: Results on the BOLT Chinese-English test set.
Model Objective Task (num_beams = 1)
ASR E2E-ST MT MMT 2-Stage-ST
(WER}) (BLEU?1) (BLEU?) (BLEUT) (BLEUY)
1 NLLB-1.3B ‘ MT ‘ - - 22.7 - -
2 None 32.2 13.0 - - -
3 ASR 18.9 16.2 - - -
4 Whisper ST 23.1 16.8 - - -
5 ASR + ST 18.5 20.2 - - -
6 UT 17.5 20.6 11.1 25.3 25.2

modeling capabilities, we aim to showcase how a
single model can be adapted to perform various
speech/text tasks through our proposed multi-task
learning framework.

For the Unified Translation (UT)-trained system,
we extend the training data to include additional
MT text-only data. Specifically, for Spanish, we in-
corporate the transcript and translation of 197 hours
of audio from CoVoST 2(Wang et al., 2020b), mT-
EDx(Salesky et al., 2021), and Europarl-ST(Koehn,
2005). For Chinese, we include 130 hours from
CoVoST(Wang et al., 2020a), GALE(Song et al.,
2016) and a collection of in-house datasets. We
refer to these additional MT datasets as the OOD
set (out-of-domain). To ensure a fair comparison
across models, we maintain a consistent number
of training steps for all systems, including the UT-
trained system, despite the addition of the OOD
set.

4.3 Analysis of Experimental Results

The results presented in Table 1 and 2 provide key
insights into the effectiveness of our proposed uni-
fied translation model. Since the trends observed
are consistent across both datasets, the following

analysis will primarily focus on the Fisher Spanish
data as a representative example.

4.3.1 Cross-task Synergy

Our findings reveal that fine-tuning on one task
does not only improve performance on the target
task but also benefits other tasks as well. Notably,
ASR fine-tuning enhances ST performance, and
ST fine-tuning reciprocally benefits ASR. This is
likely due to the incorporation of in-domain data,
which aids the overall language modeling capa-
bility and adaptation to the target acoustic envi-
ronment. For instance, ASR fine-tuning improves
ST performance from 30.9 to 36.7, while ST fine-
tuning boosts ASR accuracy, reducing WER from
26.7 to 20.3. This observation motivated us to
explore a unified model approach, as real-world
scenarios often lack task-specific training data, yet
leveraging in-domain data from other modalities
can serve as a proxy objective for improving target
task performance.

4.3.2 Effectiveness of Multi-task Learning

In Row 5, we conducted a straightforward multi-
task fine-tuning experiment by duplicating the
speech dataset with both ASR and ST supervision,



concatenating the datasets, and employing random
sampling within each batch. This experiment con-
firms that multi-task training is beneficial, as it
enhances BLEU score from 40.0 to 40.6 and WER
is reduced from 19.1 to 16.3. This suggests that
jointly optimizing multiple relevant objectives al-
lows the model to better capture linguistic patterns
and improve generalization across tasks.

4.3.3 Text-only MT Training and Its Effects

Row 6 presents the MT-only fine-tuning exper-
iment, which reveals that even with limited in-
domain data, the model achieves strong perfor-
mance in text translation (BLEU 41.3). This sug-
gests that Whisper’s decoder inherently possesses
some text translation capabilities or at least has
sufficiently strong source and target language mod-
eling abilities such that minimal adaptation enables
it to perform the MT task. Interestingly, this MT
training also gives the system MMT ability, as sug-
gested by the 40.2 BLEU score, despite MMT be-
ing a novel objective that the model was not explic-
itly trained on. This finding reinforces our earlier
observation of cross-task synergy.

However, while MT fine-tuning does not degrade
ST performance (compared to the baseline), it sig-
nificantly worsens ASR performance, increasing
WER from 26.7 to 60.3. This suggests that fine-
tuning without an ASR objective may lead to catas-
trophic forgetting in speech modeling. Thus, incor-
porating an ASR objective is essential to prevent
such degradation and to regularize the model.

4.3.4 MMT-Multi-task Training and Its
Implications

Row 7 evaluates an MMT-Multi-task fine-tuned
model, that is, the model is trained with ¢ = 1
and b = 0. Notably, the system’s MMT infer-
ence result outperforms even the strong fine-tuned
NLLB-1.3B baseline’s MT performance (44.3 vs.
43.4), demonstrating that MMT provides tangible
benefits over traditional cascaded MT approaches.
Additionally, the training also enhances the E2E-
ST results, increasing ST BLEU from 30.9 to 36.2,
further supporting the idea of cross-task synergy.
However, a gap remains between different MMT
settings. Specifically, when using the ASR hypoth-
esis as input instead of the ground-truth transcript,
performance degrades from 44.3 to 38.6. Although
this still surpasses the direct ST performance (36.2),
it indicates that transcript quality plays a crucial
role. This highlights both the effectiveness of ex-

plicit modeling and the limitations introduced by
ASR errors.

4.3.5 Unified Translation (UT) Training

Finally, the UT-trained system (Row 8) achieves
the best MMT and 2-Stage-ST results, with MMT
reaching 44.6 BLEU and 44.2 BLEU respectively,
proving the method’s effectiveness. Applying the
masking strategy in this training scheme makes
the two-stage approach more robust; only a minor
gap between MMT and two-stage ST performance
remains.

This system enhances ST performance, indicat-
ing that in the absence of a transcript, the two-stage
approach generates high-quality translations. How-
ever, MT performance remains limited, likely due
to two factors: (1) it’s trained only on the OOD
data, and (2) the decision to maintain fair training
conditions by not increasing training steps. This
suggests that to leverage the full potential of the
UT framework may require further optimization
and additional training.

4.3.6 Summary

Our results highlight the benefits of cross-task
learning, multi-task training, and explicit model-
ing techniques. The strong synergy between tasks
suggests that a unified modeling approach is an
effective way to enhance performance across ASR,
ST, and MT tasks, particularly in low-resource or
cross-modality scenarios.

5 Conclusion

In this paper, we introduced Whisper-UT, a uni-
fied translation framework that integrates ASR, ST,
MT, and MMT within a single multi-task learning
paradigm. In addition to this unified framework, we
propose an explicit modeling approach for speech
translation that conditions on both speech signals
and textual prompts, effectively leveraging ASR hy-
potheses or ground-truth transcripts. Our training
strategy, incorporating stochastic task selection and
modality-aware masking, ensures effective multi-
task learning while mitigating catastrophic forget-
ting. Experimental results show that Whisper-UT
achieves strong performance across various transla-
tion tasks, demonstrating the benefits of cross-task
synergy. Future work will explore scaling to more
languages and extending to broader multi-modal
scenarios.



6 Limitations and Ethical Considerations

While our approach demonstrates strong improve-
ments, several limitations remain. To ensure fair
comparisons, we kept training steps consistent
across models, meaning our best-performing sys-
tem may not have reached its full potential with
extended training.

Due to resource constraints, we fine-tuned Whis-
per rather than training from scratch, which might
limit the full integration of the objectives. Ideally,
to demonstrate cross-task fine-tuning, we would
start from a pretrained model that natively sup-
port each of our tasks, (MT, MMT, ST, ASR), but
building state-of-the-art, or close to state-of-the-art
systems requires building from existing models,
such as Whisper, and adapting to Whisper to addi-
tionally perform these tasks, while a contribution
in its own right, ultimately requires a two-stage
fine-tuning approach that complicates analysis of
the effectiveness of cross-task fine-tuning. Further-
more, while we believe our method to be general,
i.e., it could be applied to similar models such as
the OWSM model (Peng et al., 2024), we have only
demonstrated our results using the Whisper model.

Training of machine learning models is a costly,
energy-intensive process, so our method, which
introduces a novel means of efficiently adapting
existing large pre-trained models to new tasks, may
limit the ethical concerns about the costs, financial,
environmental, or other, associated with training
ML models. Furthermore, the success of our ap-
proach, specifically cross-task fine-tuning, implies
that speech translation systems can be more easily
trained for new domains, including languages with
limited training resources.
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A Hyperparameter Settings

Table 3 presents the hyperparameter configurations
used for training our Whisper-UT model.

Hyperparameter Value
LoRA Rank 128
LoRA Alpha 256
LoRA Dropout 0.1
Max Training Steps 8000
Batch Size 8
Gradient Accumulation Steps 1
Warmup Steps 500
Learning Rate le=d
Weight Decay 5e~4

SpecAug Mask Feature Probability 0.1
SpecAug Mask Time Probability 0.05

Table 3: Hyperparameter configurations used for train-
ing.

Experiments in this work are conducted with
8 V100-32GB GPUs. However, PEFT methods
outlined in Section 4.1.4 render the use of 8 GPUs
redundant, yet they are deployed to accelerate the
training process.
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