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Abstract001

Encoder-decoder models have achieved remark-002
able success in speech and text tasks, yet003
efficiently adapting these models to diverse004
uni/multi-modal scenarios remains an open005
challenge. In this paper, we propose Whisper-006
UT, a unified and efficient framework that007
leverages lightweight adapters to enable seam-008
less adaptation across tasks, including a multi-009
modal machine translation (MMT) task that010
explicitly conditions translation on both speech011
and source language text inputs. By incorpo-012
rating ASR hypotheses or ground-truth tran-013
scripts as prompts, this approach not only en-014
ables the system to process both modalities si-015
multaneously but also significantly enhances016
speech translation (ST) performance through017
a 2-stage decoding strategy. We demonstrate018
our methods using the Whisper model, though019
in principle they are general and could be ap-020
plied to similar multitask models. We high-021
light the effectiveness of cross-modal and022
cross-task fine-tuning, which improves perfor-023
mance without requiring 3-way parallel data.024
Our approach even outperforms using ground-025
truth transcripts using an in-domain fine-tuned026
NLLB model on multiple challenging conver-027
sational speech translation corpora.028

1 Introduction029

The task of speech-to-text translation (ST) encom-030

passes converting spoken language from one lan-031

guage to another, aiming to overcome linguistic bar-032

riers. Traditionally, the task involves an automatic033

speech recognition (ASR) module to transcribe spo-034

ken words, followed by a machine translation (MT)035

module to convert the transcribed text into the tar-036

get language in a cascaded manner (Ney, 1999).037

The recent development of end-to-end neural ar-038

chitectures and large pre-trained models have sub-039

stantially propelled advancements in downstream040

speech tasks, including speech translation, via ei-041

ther self-supervised learning (SSL) (Baevski et al.,042

2020; Hsu et al., 2021; Chen et al., 2022) or 043

fully supervised learning. Among the pre-trained 044

acoustic models, Whisper (Radford et al., 2022), 045

a transformer-based encoder-decoder multi-task 046

model trained with large-scale data in a supervised 047

manner, has exhibited strong performance on vari- 048

ous ST corpora. 049

However, in real-world scenarios, input modal- 050

ities and data conditions vary widely. In offline 051

settings, for instance, translating conversational 052

or dialectal speech—characterized by disfluen- 053

cies, code-switching, and noisy acoustic environ- 054

ments—poses significant challenges to end-to-end 055

models, often resulting in degraded performance. 056

Conversely, scenarios like business meetings or 057

translated media archives frequently provide both 058

source-language speech and transcripts (manual or 059

ASR-generated), yet existing systems fail to exploit 060

this multi-modal synergy. 061

To address this, we systematically investigate 062

how multi-task encoder-decoder models—using 063

Whisper as a representative case study—can be ef- 064

ficiently adapted to these heterogeneous scenarios. 065

First, we examine fine-tuning strategies for conven- 066

tional ST (using 3-way parallel speech-transcript- 067

translation data), speech-to-text tasks (ASR-only 068

data), and MT, while also methods for multi-modal 069

translation where both speech and transcripts are 070

available. Our analysis reveals two key insights: 071

• Cross-task training induces synergistic bene- 072

fits—fine-tuning on in-domain ASR data im- 073

proves speech translation (ST) performance, 074

while ST training conversely enhances ASR 075

accuracy, suggesting mutual reinforcement be- 076

tween tasks even without 3-way parallel data; 077

and 078

• Multi-modal inputs (speech + text) consis- 079

tently enhance translation quality when fused, 080

even with imperfect ASR transcripts. 081
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Building on these findings, we propose Whis-082

per for Unified Translation1, or Whisper-UT, a083

framework that transforms Whisper’s decoder into084

a unified conditional generation model, capable of085

dynamically conditioning on speech, text, or both086

modalities. The framework repurposes Whisper’s087

encoder-decoder architecture as a versatile multi-088

modal interface through two innovations:089

1 A multi-task learning paradigm with a stochas-090

tic task-selection mechanism to adapt the sys-091

tem across ASR, MT, ST, and multimodal092

translation tasks using a single set of LoRA093

parameters;094

2 A two-phase decoding strategy, where the de-095

coder first generates ASR transcripts from096

speech, then reuses them as context for trans-097

lation when the transcript is not provided, em-098

ulating human thinking process.099

Crucially, Whisper-UT requires no architectural100

modifications—only fine-tuning—ensuring com-101

patibility with any encoder-decoder model.102

Experiments on conversational telephony speech103

(CTS) corpora—Fisher-CallHome Spanish and104

BOLT Chinese-English demonstrate state-of-the-105

art performance. Notably, Whisper-UT outper-106

forms the 1.3B-parameter NLLB model in multi-107

modal settings (speech + ground-truth text) and108

achieves superior speech-only translation via hy-109

pothesis prompting.110

Our work highlights the untapped potential of111

multi-task models in adaptive translation systems.112

By unifying modality handling and enabling effi-113

cient task specialization, Whisper-UT bridges the114

gap between rigid single-modality systems and the115

dynamic needs of real-world applications.116

2 Related Work117

2.1 Whisper118

Whisper is an end-to-end multi-task speech model119

that adopts a transformer-like encoder-decoder ar-120

chitecture. Its LARGE-V2 version is pre-trained on121

680,000 hours of speech data with multiple supervi-122

sions. The model consists of several convolutional123

blocks, a series of position-encoded transformer-124

encoder blocks and transformer-decoder blocks.125

As with the original transformer model (Vaswani126

et al., 2023), the loss function Whisper used at its127

pre-training time is the cross-entropy objective for128

1We open source our code at [link-hidden-for-review]

all tasks, including language identification (LID), 129

voice activity detection (VAD), multilingual ASR, 130

ST and speech alignment. 131

Whisper’s decoder supports a prompting mecha- 132

nism, originally designed for better capturing long- 133

range dependencies of the transcripts/translations 134

to resolve local audio ambiguities. Particularly, 135

long utterances are segmented into chunks and the 136

decoder generates its hypothesis for the current 137

segment conditioning on the previous segment’s 138

transcripts. Inspired by the effectiveness of GPT- 139

like decoder-only models in machine translation, 140

we hypothesize that Whisper’s decoder, which may 141

be viewed as an audio-conditional language model, 142

is also capable of performing machine translation 143

conditioned on audio inputs. 144

2.2 Multi-modal speech translation systems 145

Recent developments in multi-modal speech trans- 146

lation systems are exploring new ways to combine 147

audio and text to improve language translation. 148

mSLAM (Bapna et al., 2022), a multilingual speech 149

and language model, has emerged as a pioneering 150

approach. It aims to construct a shared representa- 151

tion space for both speech and text through joint 152

pre-training on both self-supervised and supervised 153

tasks with various loss objectives, including the 154

translation language modeling (TLM) loss for ST. 155

SeamlessM4T (Communication et al., 2023) is 156

another innovative model that further refines the 157

integration of multi-modal inputs for speech and 158

text translation tasks. As a single model designed 159

for ASR, text-to-text translation, text-to-speech 160

translation, speech-to-text translation and speech- 161

to-speech translation, it consists of multiple build- 162

ing blocks to leverage mono-modal data, including 163

a w2v-BERT (Chung et al., 2021) as the speech en- 164

coder, a 1.3B NLLB model (Team et al., 2022) as 165

the text encoder and decoder, a transformer-based 166

text-to-unit encoder-decoder model, and a vocoder 167

for converting the units to speech. They adopted a 168

staged training strategy to make use of mono-modal 169

data for initializing each building block, followed 170

by several fine-tuning stages to fuse the compo- 171

nents for the target tasks. 172

These systems, along with most existing meth- 173

ods, primarily seek to utilize text and speech modal- 174

ities by aligning their representations. However, 175

such a design restricts the model to accept inputs in 176

only one modality during inference, preventing it 177

from attending to signals in another modality when 178

available, which is a gap we aim to fill. 179
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3 Methodology180

Traditional translation systems treat ST, MT, and181

ASR as distinct tasks, each requiring separate mod-182

els or specialized architectures. In this work, we183

propose a unified translation framework that uni-184

fies these tasks under a single encoder-decoder185

paradigm, treating all forms of language conver-186

sion—including audio-to-text, text-to-text, and187

multi-modal translation—as conditional generation188

tasks. Our approach enables seamless adaptation to189

various input modalities and data conditions with-190

out requiring fundamental architectural changes.191

At the core of our method is the insight that192

ASR can be reformulated as a source-language193

transcription task, ST as a direct speech-to-text194

translation task, and MT as a standard text-to-text195

translation task—all of which can be expressed as196

instances of sequence-to-sequence learning. Ex-197

tending this idea, we introduce a multi-modal198

translation task, for which the model conditions on199

both speech and its corresponding transcript (either200

human-annotated or ASR-generated) to improve201

translation quality. This formulation generalizes202

the conventional ST and MT paradigms, leverag-203

ing available transcripts to enhance translation in204

scenarios where speech alone may be ambiguous205

or error-prone.206

3.1 Translation with Multi-modal Inputs207

We first provide a formal definition of the multi-208

modal translation (MMT) task, or more precisely,209

the task of speech-and-text-conditioned translation.210

Let X = (x1, x2, · · · , xT ) denote the speech sig-211

nal of an utterance, Y = (y1, y2, · · · , yM ) denote212

the ground-truth transcript of the utterance, and213

Z = (z1, z2, · · · , zN ) denote its corresponding214

text translation. The goal of the task is then to215

find the conditional distribution P (Z|X,Y ). We216

hypothesize that often H(Z|X,Y ) < H(Z|Y ) in217

practice, where H denotes the information entropy.218

In other words, the speech signal may contain addi-219

tional information for a more accurate translation220

of the utterance, as it may be able to aid resolving221

ambiguities such as homographs, tonal variations,222

and omitted content—such as repetitions and filler223

words—that may be present in human-annotated224

transcripts.225

In light of the remarkable performance observed226

with decoder-only language models in machine227

translation, we presume that encoder-decoder mod-228

els’ audio-conditioned decoder possesses the po-229

Figure 1: Overview of our approach. Note that special
tokens are abbreviated in the figure for simplicity. ASR-
HYP refers to the ASR hypothesis generated. When
GT is used, the task is MMT, otherwise it is referred as
2-Stage-ST. The ⊕ symbol refers to the XOR operation.

tential for undertaking the audio-conditioned text 230

translation task. In particular, one may prompt the 231

decoder with source language text, generated either 232

by human annotators or any ASR system, in the 233

translation process, as shown in Figure 1(b). Con- 234

sequently, the resulting model is trained to learn 235

the distribution P (Z|X,Y ). 236

3.2 Translation with Speech-only Inputs 237

The problem of speech translation can be directly 238

modeled as P (Z|X) or modeled by marginalizing 239

over an underlying latent variable, Y ′, representing 240

valid transcripts of the audio X: 241

P (Z|X) =
∑
Y ′

P (Z, Y ′|X) 242

=
∑
Y ′

P (Z|Y ′, X)P (Y ′|X) (1) 243

However, the summation over Y ′ is generally in- 244

tractable. One common solution, also adopted by 245

cascaded approaches to speech translation, is to 246

approximate the summation with the single highest 247

weight term in the summation, i.e., 248∑
Y ′

P (Z|Y ′, X)P (Y ′|X) 249

≈ max
Y ′

P (Z|Y ′, X)P (Y ′|X), 250

and furthermore to assume that the best transcript 251

is the most likely one: 252

Ŷ = argmax
Y ′

P (Z|Y ′, X)P (Y ′|X) 253

= argmax
Y ′

P (Y ′|X). (2) 254
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However, cascaded speech translation further255

assumes that the translation is conditionally inde-256

pendent of the audio given the transcript,257

P (Z|Ŷ , X) = P (Z|Ŷ ), (3)258

which is practical in that it enables modular training259

of components, i.e.,260

P (Z|X) = P (Z|Ŷ )P (Ŷ |X), (4)261

where P (Z|Y ) and P (Y |X) can be trained sep-262

arately, but it at the cost of a possible uneeded263

additional approximation.264

End-to-end systems such as Whisper, however,265

model the problem without explicitly condition-266

ing on the ASR transcripts, Y ′. Its single-decoder267

multi-task paradigm presumably captures a higher-268

level abstract semantics of the speech signals, such269

that the ST decoding process is implicitly entangled270

with the model’s ASR ability.271

We seek to combine the modeling advantages272

of the cascaded and end-to-end systems and gen-273

eralize the multi-modal translation setting to re-274

formulate the system’s speech-only translation pro-275

cess for approximating Equation 1. Specifically,276

we relax the conditional independence assumption277

of cascade approaches, by endowing end-to-end278

speech translation models with the capacity to also279

condition on either a ground-truth or hypothesized280

transcript defined by Equation 2, i.e.:281

P (Z|X) = P (Z|Ŷ , X)P (Ŷ |X) (5)282

In our implementation, we carry out a two-stage283

decoding process. In the first stage, the model is284

used to produce the ASR hypotheses, and subse-285

quently, in the second stage, the model conditions286

on them to generate the translations.287

An alternative perspective on this modeling is288

that it fully leverages the system’s source-language289

modeling capability. In end-to-end multi-task mod-290

els, the decoder can be viewed as implicitly “par-291

titioned” into two roles: source-language model-292

ing and target-language generation. While these293

functions share parameters and benefit from joint294

optimization, they may still develop distinct com-295

petencies. By conditioning translation on both296

speech and textual transcripts, this approach ex-297

plicitly harnesses a well-trained source-language298

model—potentially even from an external ASR299

system—allowing the decoder to generate more300

accurate and fluent translations. This perspective301

highlights how multi-modal conditioning can serve 302

as a mechanism to refine and reinforce the system’s 303

understanding of the source language, ultimately 304

improving translation quality. 305

3.3 Translation with Text-only Inputs 306

Integrating MT functionality into a multi-modal 307

encoder-decoder model presents unique challenges. 308

In conventional encoder-decoder MT systems, the 309

source language text is processed through the en- 310

coder, which generates contextual representations 311

for the decoder to cross-attend to. However, in 312

our case, the encoder is designed specifically for 313

processing speech features, making direct text en- 314

coding potentially ineffective without substantial 315

adaptation. Training the encoder to handle text 316

inputs would require a significant amount of addi- 317

tional data and could lead to catastrophic forgetting, 318

where the model loses its ability to process speech 319

effectively. 320

Inspired by the success of decoder-only MT mod- 321

els such as GPT-based architectures, we adopt an 322

alternative strategy: instead of modifying the en- 323

coder to accommodate text, we encode the source 324

text directly within the decoder, as illustrated in 325

Figure 1(a). Specifically, we prepend the source 326

text as a prefix to the decoder input, leveraging 327

the self-attention mechanism to implicitly model 328

source-to-target dependencies. However, imple- 329

menting this method within an encoder-decoder 330

framework requires careful handling of the cross- 331

attention mechanism. Since the decoder in our 332

system is designed to attend to encoded speech rep- 333

resentations, directly bypassing the encoder would 334

disrupt the model’s expected structure. To address 335

this, we introduce a single learnable vector in the 336

encoder, serving as an indicator that informs the 337

decoder that text input is being processed. The re- 338

maining encoder output is padded with zeros, and 339

we modify the cross-attention mask such that the 340

decoder attends only to this learnable embedding. 341

This design ensures that the model’s architecture 342

remains structurally intact while effectively repur- 343

posing the decoder for text-based translation. By 344

adopting this strategy, we enable seamless integra- 345

tion of MT capabilities into our unified translation 346

system without requiring extensive modifications 347

to the speech encoder. 348

3.4 Whisper-UT: Unified Translation System 349

To achieve a unified translation framework that 350

encompasses multiple translation paradigms, we 351
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propose Whisper-UT, a system designed to handle352

ASR, ST, MT, and MMT within a single model.353

Our approach is built on multi-task learning, lever-354

aging 3-way parallel data and text-only MT data to355

optimize multiple objectives in a stochastic fashion.356

3.4.1 3-way Parallel Data Objectives357

We formulate the learning process with six distinct358

training objectives, categorized based on the avail-359

ability of parallel data.360

For the 3-way dataset that provide speech, tran-361

scripts, and translations {X,Y, Z}, we define three362

primary objectives:363

ASR Objective. Learning the mapping X → Y ,364

i.e., predicting the source language transcript from365

speech.366

E2E-ST Objective. Directly predicting the tar-367

get language text Z from speech X .368

MMT Objective. Predicting Z while attending369

to both X (speech) and Y (source transcript).370

3.4.2 Text-Only Data Objectives371

Since 3-way parallel datasets are scarce in real-372

ity, we incorporate text-only MT data {Y,Z} and373

define additional objectives:374

Source Language Modeling (SLM): Predict-375

ing the next source token in Y , acting as an ASR376

surrogate for text-only samples.377

Target Language Modeling (TLM): Predicting378

the next token in Z, improving the decoder’s target379

language modeling ability.380

Machine Translation (MT): Translating Y →381

Z using the decoder.382

For MMT and MT objectives, we allow gradi-383

ents to propagate back through the source language384

tokens, implicitly enhancing the model’s source385

language modeling ability.386

3.4.3 Dynamic Loss Weighting387

To balance the competing objectives, we employ388

a stochastic task selection mechanism with beta-389

distributed loss weighting inspired by (Zhang and390

Patel, 2024):391

α ∼ Beta(β1, β2), (6)392

which determines the final multi-task loss:393

Lmtl = (1− α)LCE
asr + αLCE

st , (7)394

where LCE
asr is the ASR loss (or SLM loss for text-395

only samples), and LCE
st is either the ST loss or the396

MMT loss, selected via stochastic task selection.397

The stochastic weighting scheme is motivated by 398

empirical findings that equal task weighting leads 399

to gradient interference, degrading performance 400

across tasks. 401

3.4.4 Utterance-Level Task Selection 402

Each batch is sampled from a mixture of the 3-way 403

parallel data and text-only MT data. We define the 404

loss computation as follows: 405

• ASR Loss: Always computed for speech- 406

based samples; replaced with SLM loss for 407

text-only samples (zero-padded input except 408

for a learnable vector). 409

• ST vs. MMT Objective: 410

– With probability q, apply standard ST 411

loss; for text-only data, this is equivalent 412

to the TLM loss. 413

– With probability (1 − q), apply MMT 414

loss, where the decoder cross-attends to 415

both speech features and source text to- 416

kens; for text-only data, this becomes the 417

conventional MT loss. 418

3.4.5 Masking in Multi-Modal Translation 419

For MMT, we introduce a masking mechanism to 420

enhance robustness: 421

• With probability b, the source language tokens 422

are partially masked. 423

• Each token in the source text is independently 424

masked with probability t. 425

This simulates real-world noise in transcripts 426

(e.g., ASR errors, omissions), encouraging the 427

model to rely on both modalities for translation. 428

3.5 Unified Training Framework 429

In summary, our unified training framework inte- 430

grates ASR, ST, MMT, and MT into a single multi- 431

task learning process. To achieve this, we first con- 432

catenate both speech-text and text-only datasets, 433

allowing for random sampling within each batch. 434

For every batch, we compute the ASR loss, which 435

corresponds to the source language modeling loss 436

when dealing with text-only samples. The ASR and 437

ST loss weights are dynamically balanced by sam- 438

pling a weight α from a Beta distribution. Next, we 439

stochastically determine whether the batch follows 440

the ST/TLM objective or the MMT/MT objective. 441
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If the batch is selected for MMT training, mask-442

ing is applied with a certain probability to simu-443

late transcription imperfections and enhance robust-444

ness. By combining these components, Whisper-445

UT serves as a unified model for ASR, ST, MT, and446

MMT, leveraging both textual and speech inputs447

efficiently.448

4 Experiments449

4.1 Experimental Setup450

4.1.1 Tasks and Datasets451

In this work, we focus primarily on the translation452

of conversational telephony speech (CTS). We fine-453

tune and evaluate our approach on two datasets,454

including the Fisher-CallHome Spanish-to-English455

corpus with 186 hours, and the BOLT Chinese-to-456

English corpus with 110 hours, of conversational457

telephony speech in Spanish and Chinese in their458

training partition, respectively.459

4.1.2 Pre-processing460

CTS corpora usually consist of short utterances seg-461

mented from a full recording, reflecting the alter-462

nating speech of participants during conversations.463

However, we found empirically that fine-tuning on464

such segments, presumably due to a mismatch in465

sample lengths compared to Whisper’s pre-training466

data, leads to significant performance degradation.467

The resulting model tends to repetitively produce468

frequent filler words in the training corpus at in-469

ference time regardless of the input. Therefore,470

we re-segmented the utterances by merging them471

chronologically, with durations (in seconds) sam-472

pled from a Gaussian distribution, e.g. N (15, 52).473

As Whisper’s feature extractor automatically pads474

the features up to 30 seconds, such re-segmentation475

also significantly reduced the training cost in terms476

of memory and time.477

4.1.3 Data Augmentation478

We apply the conventional speed perturbation (Ko479

et al., 2015) with parameters 0.9, 1.0, 1.1 to the480

speech prior to the training stage. Additionally,481

we adopt SpecAug (Park et al., 2019) to randomly482

mask extracted speech features during training.483

4.1.4 Parameter Efficient Fine-tuning484

To efficiently adapt the model to these conversa-485

tional scenarios without overfitting or incurring486

excessive computational cost, we leveraged several487

parameter-efficient fine-tuning (PEFT) techniques.488

For this study, we concentrate on the LARGE-V2 489

version of Whisper with 1.6 billion parameters. In 490

order to fit it into our hardware, we adopted a list 491

of strategies: 492

• Low-Rank Adaptation (LoRA). LoRA (Hu 493

et al., 2021) introduces a trainable adapter 494

comprised of rank decomposition matrices on 495

top of the fixed pre-trained model’s weight 496

matrices in specified layers so that the number 497

of trainable parameters can be considerably 498

reduced. 499

• Gradient checkpointing. Gradient check- 500

pointing (Chen et al., 2016) stores intermedi- 501

ate activations in the forward pass, and re- 502

computes the remaining activations during 503

back-propagation. 504

• Zero Redundancy Optimizer (ZeRO). 505

ZeRO (Rajbhandari et al., 2020) is an algo- 506

rithm that partitions data, optimizer states, 507

gradients, and parameters for speeding up the 508

training of large neural models with low com- 509

munication costs. 510

4.1.5 Baselines 511

To evaluate our approach, we compared our re- 512

sults against several strong baselines spanning both 513

end-to-end and cascaded systems. For MT, we em- 514

ployed NLLB as our primary baseline. For ST and 515

ASR, we used Whisper-large-v2 in its pre-trained 516

form as well as after fine-tuning. For each fine- 517

tuned model, we also tune the number of train- 518

able parameters and report results for the best- 519

performing configuration. 520

4.1.6 Evaluation 521

For both ASR and ST, we normalize the text by 522

lower-casing all characters and removing all punc- 523

tuations before computing the metrics. In addition, 524

we also apply the global map scoring (GLM) to 525

standardize digits and abbreviations. For the Fisher 526

Spanish corpus, the BLEU score is computed on 527

the first set of references, in contrast to the multi- 528

reference BLEU reported in other work (Weiss 529

et al., 2017). The evaluation script used is provided 530

in the code. 531

4.2 Training 532

To demonstrate the effectiveness of our proposed 533

approach, we adopt Whisper as the base model 534

and fine-tune it for our unified translation model- 535

ing. By leveraging its robust speech and language 536

6



Table 1: Results on the Fisher Spanish test set. The Objective column specifies under which training objective the
model system is fine-tuned. The UT objective refers to the unified-translation objective described in section 3.5.
The Task column specifies the target inference task. E2E-ST refers to the promptless E2E speech translation setting,
MMT refers to the translation process that conditions on both the ground-truth transcript and the speech signals,
while 2-Stage-ST refers to the MMT process which conditions on the model’s own ASR hypotheses.

Model Objective Task (num_beams = 1)
ASR E2E-ST MT MMT 2-Stage-ST

(WER↓) (BLEU↑) (BLEU↑) (BLEU↑) (BLEU↑)

1 NLLB-1.3B MT - - 43.4 - -

2

Whisper

None 26.7 30.9 - - -
3 ASR 19.1 36.7 - - -
4 ST 20.3 40.0 - - -
5 ASR + ST 16.3 40.6 - - -
6 MT 60.3 30.8 41.3 40.2 -
7 MMT 16.4 36.2 1.1 44.3 38.6
8 UT 15.6 40.3 29.8 44.6 44.2

Table 2: Results on the BOLT Chinese-English test set.

Model Objective Task (num_beams = 1)
ASR E2E-ST MT MMT 2-Stage-ST

(WER↓) (BLEU↑) (BLEU↑) (BLEU↑) (BLEU↑)

1 NLLB-1.3B MT - - 22.7 - -

2

Whisper

None 32.2 13.0 - - -
3 ASR 18.9 16.2 - - -
4 ST 23.1 16.8 - - -
5 ASR + ST 18.5 20.2 - - -
6 UT 17.5 20.6 11.1 25.3 25.2

modeling capabilities, we aim to showcase how a537

single model can be adapted to perform various538

speech/text tasks through our proposed multi-task539

learning framework.540

For the Unified Translation (UT)-trained system,541

we extend the training data to include additional542

MT text-only data. Specifically, for Spanish, we in-543

corporate the transcript and translation of 197 hours544

of audio from CoVoST 2(Wang et al., 2020b), mT-545

EDx(Salesky et al., 2021), and Europarl-ST(Koehn,546

2005). For Chinese, we include 130 hours from547

CoVoST(Wang et al., 2020a), GALE(Song et al.,548

2016) and a collection of in-house datasets. We549

refer to these additional MT datasets as the OOD550

set (out-of-domain). To ensure a fair comparison551

across models, we maintain a consistent number552

of training steps for all systems, including the UT-553

trained system, despite the addition of the OOD554

set.555

4.3 Analysis of Experimental Results556

The results presented in Table 1 and 2 provide key557

insights into the effectiveness of our proposed uni-558

fied translation model. Since the trends observed559

are consistent across both datasets, the following560

analysis will primarily focus on the Fisher Spanish 561

data as a representative example. 562

4.3.1 Cross-task Synergy 563

Our findings reveal that fine-tuning on one task 564

does not only improve performance on the target 565

task but also benefits other tasks as well. Notably, 566

ASR fine-tuning enhances ST performance, and 567

ST fine-tuning reciprocally benefits ASR. This is 568

likely due to the incorporation of in-domain data, 569

which aids the overall language modeling capa- 570

bility and adaptation to the target acoustic envi- 571

ronment. For instance, ASR fine-tuning improves 572

ST performance from 30.9 to 36.7, while ST fine- 573

tuning boosts ASR accuracy, reducing WER from 574

26.7 to 20.3. This observation motivated us to 575

explore a unified model approach, as real-world 576

scenarios often lack task-specific training data, yet 577

leveraging in-domain data from other modalities 578

can serve as a proxy objective for improving target 579

task performance. 580

4.3.2 Effectiveness of Multi-task Learning 581

In Row 5, we conducted a straightforward multi- 582

task fine-tuning experiment by duplicating the 583

speech dataset with both ASR and ST supervision, 584
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concatenating the datasets, and employing random585

sampling within each batch. This experiment con-586

firms that multi-task training is beneficial, as it587

enhances BLEU score from 40.0 to 40.6 and WER588

is reduced from 19.1 to 16.3. This suggests that589

jointly optimizing multiple relevant objectives al-590

lows the model to better capture linguistic patterns591

and improve generalization across tasks.592

4.3.3 Text-only MT Training and Its Effects593

Row 6 presents the MT-only fine-tuning exper-594

iment, which reveals that even with limited in-595

domain data, the model achieves strong perfor-596

mance in text translation (BLEU 41.3). This sug-597

gests that Whisper’s decoder inherently possesses598

some text translation capabilities or at least has599

sufficiently strong source and target language mod-600

eling abilities such that minimal adaptation enables601

it to perform the MT task. Interestingly, this MT602

training also gives the system MMT ability, as sug-603

gested by the 40.2 BLEU score, despite MMT be-604

ing a novel objective that the model was not explic-605

itly trained on. This finding reinforces our earlier606

observation of cross-task synergy.607

However, while MT fine-tuning does not degrade608

ST performance (compared to the baseline), it sig-609

nificantly worsens ASR performance, increasing610

WER from 26.7 to 60.3. This suggests that fine-611

tuning without an ASR objective may lead to catas-612

trophic forgetting in speech modeling. Thus, incor-613

porating an ASR objective is essential to prevent614

such degradation and to regularize the model.615

4.3.4 MMT-Multi-task Training and Its616

Implications617

Row 7 evaluates an MMT-Multi-task fine-tuned618

model, that is, the model is trained with q = 1619

and b = 0. Notably, the system’s MMT infer-620

ence result outperforms even the strong fine-tuned621

NLLB-1.3B baseline’s MT performance (44.3 vs.622

43.4), demonstrating that MMT provides tangible623

benefits over traditional cascaded MT approaches.624

Additionally, the training also enhances the E2E-625

ST results, increasing ST BLEU from 30.9 to 36.2,626

further supporting the idea of cross-task synergy.627

However, a gap remains between different MMT628

settings. Specifically, when using the ASR hypoth-629

esis as input instead of the ground-truth transcript,630

performance degrades from 44.3 to 38.6. Although631

this still surpasses the direct ST performance (36.2),632

it indicates that transcript quality plays a crucial633

role. This highlights both the effectiveness of ex-634

plicit modeling and the limitations introduced by 635

ASR errors. 636

4.3.5 Unified Translation (UT) Training 637

Finally, the UT-trained system (Row 8) achieves 638

the best MMT and 2-Stage-ST results, with MMT 639

reaching 44.6 BLEU and 44.2 BLEU respectively, 640

proving the method’s effectiveness. Applying the 641

masking strategy in this training scheme makes 642

the two-stage approach more robust; only a minor 643

gap between MMT and two-stage ST performance 644

remains. 645

This system enhances ST performance, indicat- 646

ing that in the absence of a transcript, the two-stage 647

approach generates high-quality translations. How- 648

ever, MT performance remains limited, likely due 649

to two factors: (1) it’s trained only on the OOD 650

data, and (2) the decision to maintain fair training 651

conditions by not increasing training steps. This 652

suggests that to leverage the full potential of the 653

UT framework may require further optimization 654

and additional training. 655

4.3.6 Summary 656

Our results highlight the benefits of cross-task 657

learning, multi-task training, and explicit model- 658

ing techniques. The strong synergy between tasks 659

suggests that a unified modeling approach is an 660

effective way to enhance performance across ASR, 661

ST, and MT tasks, particularly in low-resource or 662

cross-modality scenarios. 663

5 Conclusion 664

In this paper, we introduced Whisper-UT, a uni- 665

fied translation framework that integrates ASR, ST, 666

MT, and MMT within a single multi-task learning 667

paradigm. In addition to this unified framework, we 668

propose an explicit modeling approach for speech 669

translation that conditions on both speech signals 670

and textual prompts, effectively leveraging ASR hy- 671

potheses or ground-truth transcripts. Our training 672

strategy, incorporating stochastic task selection and 673

modality-aware masking, ensures effective multi- 674

task learning while mitigating catastrophic forget- 675

ting. Experimental results show that Whisper-UT 676

achieves strong performance across various transla- 677

tion tasks, demonstrating the benefits of cross-task 678

synergy. Future work will explore scaling to more 679

languages and extending to broader multi-modal 680

scenarios. 681
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6 Limitations and Ethical Considerations682

While our approach demonstrates strong improve-683

ments, several limitations remain. To ensure fair684

comparisons, we kept training steps consistent685

across models, meaning our best-performing sys-686

tem may not have reached its full potential with687

extended training.688

Due to resource constraints, we fine-tuned Whis-689

per rather than training from scratch, which might690

limit the full integration of the objectives. Ideally,691

to demonstrate cross-task fine-tuning, we would692

start from a pretrained model that natively sup-693

port each of our tasks, (MT, MMT, ST, ASR), but694

building state-of-the-art, or close to state-of-the-art695

systems requires building from existing models,696

such as Whisper, and adapting to Whisper to addi-697

tionally perform these tasks, while a contribution698

in its own right, ultimately requires a two-stage699

fine-tuning approach that complicates analysis of700

the effectiveness of cross-task fine-tuning. Further-701

more, while we believe our method to be general,702

i.e., it could be applied to similar models such as703

the OWSM model (Peng et al., 2024), we have only704

demonstrated our results using the Whisper model.705

Training of machine learning models is a costly,706

energy-intensive process, so our method, which707

introduces a novel means of efficiently adapting708

existing large pre-trained models to new tasks, may709

limit the ethical concerns about the costs, financial,710

environmental, or other, associated with training711

ML models. Furthermore, the success of our ap-712

proach, specifically cross-task fine-tuning, implies713

that speech translation systems can be more easily714

trained for new domains, including languages with715

limited training resources.716
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A Hyperparameter Settings849

Table 3 presents the hyperparameter configurations850

used for training our Whisper-UT model.851

Hyperparameter Value

LoRA Rank 128
LoRA Alpha 256
LoRA Dropout 0.1

Max Training Steps 8000
Batch Size 8
Gradient Accumulation Steps 1
Warmup Steps 500
Learning Rate 1e−5

Weight Decay 5e−4

SpecAug Mask Feature Probability 0.1
SpecAug Mask Time Probability 0.05

Table 3: Hyperparameter configurations used for train-
ing.

Experiments in this work are conducted with852

8 V100-32GB GPUs. However, PEFT methods853

outlined in Section 4.1.4 render the use of 8 GPUs854

redundant, yet they are deployed to accelerate the855

training process.856
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