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ABSTRACT

Real-world systems are rarely purely linear or nonlinear, but are instead a complex
mixture of both. This heterogeneity makes them exceedingly difficult for standard
causal discovery algorithms, which are typically designed for one regime and are
brittle when applied to the other. Linear models miss critical nonlinear effects,
while general nonlinear methods are computationally expensive and notoriously
prone to discovering spurious relationships. We propose a new framework that
robustly learns causal structures from such mixed-dynamics systems by learning
from a spectral representation of model residuals. Our approach first identifies
a sparse linear backbone and then systematically evaluates candidate nonlinear
additions through a novel multi-criteria decision process. This validation mech-
anism, which requires convergent evidence from multiple independent tests, is
powered by a new application of Polynomial Chaos Expansion (PCE) to detect
latent structure in model residuals with high sensitivity. On a complex industrial
process dataset, our method achieves a state-of-the-art 88.9% F1-score, correctly
identifying the mixed-type causal graph while drastically reducing the false dis-
coveries that plague other nonlinear methods.

1 INTRODUCTION

Modern industrial systems generate unprecedented volumes of sensor data, creating both oppor-
tunities and challenges for understanding complex process dynamics (Cao et al., 2025; Ma et al.,
2024). The ability to extract causal relationships from these data streams has become essential for
process optimization, fault diagnosis, and predictive maintenance (Kong et al., 2023; Zhang et al.,
2024). However, industrial processes exhibit a fundamental characteristic that confounds traditional
analysis methods: they combine predominantly linear control dynamics with critical nonlinear phe-
nomena such as phase transitions, saturation effects, and safety mechanisms. This heterogeneity
between linear and nonlinear behaviors represents one of the most significant challenges in contem-
porary causal discovery.

Figure 1: Overview of the CausalPCE framework for causal discovery in nonlinear systems.
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The field of causal discovery has evolved along two distinct trajectories, each with inherent strengths
and limitations. Linear methods have achieved remarkable success through elegant mathematical
frameworks and computational efficiency. Score-based approaches such as the Greedy Equiva-
lence Search (GES) leverage Bayesian information criteria to navigate the space of directed acyclic
graphs efficiently (Chickering, 2002). Constraint-based methods systematically test conditional in-
dependence relationships to reconstruct causal structures (Spirtes et al., 2001; Kalisch & Bühlmann,
2007). The Linear Non-Gaussian Acyclic Model (LiNGAM) exploits non-Gaussianity in noise dis-
tributions to achieve full causal identifiability under linearity assumptions (Shimizu et al., 2006;
Hyvärinen et al., 2010; Moneta et al., 2013). These methods provide strong theoretical guarantees
and scale well to high-dimensional problems, yet their fundamental assumption of linearity becomes
a critical weakness when confronted with real-world nonlinear dynamics.

Conversely, methods designed explicitly for nonlinear relationships face different challenges. Ad-
ditive Noise Models (ANM) enable causal discovery in nonlinear systems through independence
testing of residuals, providing theoretical identifiability under broad conditions (Hoyer et al., 2009).
Kernel-based approaches embed variables in reproducing kernel Hilbert spaces to capture arbitrary
nonlinear relationships (Zhang et al., 2012). Recent advances in deep learning have produced meth-
ods such as NOTEARS, which reformulates structure learning as a continuous optimization problem
amenable to gradient descent (Zheng et al., 2018). Additional nonlinear approaches include Causal
Additive Models (CAM) for causal additive models (Bühlmann et al., 2014), gradient-based neural
DAG learning (Lachapelle et al., 2020), and graph neural network methods (Yu et al., 2019). While
these approaches demonstrate theoretical flexibility, they suffer from computational complexity that
scales poorly with system dimension, sensitivity to hyperparameter selection, and often lack the
interpretability required for industrial applications (Goudet et al., 2018).

Recent empirical investigations reveal that real-world systems rarely conform to purely linear or
purely nonlinear paradigms. Analysis of industrial, biological, and economic datasets demonstrates
that approximately 70-80% of causal relationships are effectively linear, while the remaining 20-
30% exhibit significant nonlinearity (Peters et al., 2017; Malinsky & Danks, 2018). Critically, these
nonlinear relationships often represent the most scientifically important interactions—safety mech-
anisms that activate under extreme conditions, feedback loops that stabilize system behavior, or
phase transitions that fundamentally alter process dynamics (Runge et al., 2019). This observation
motivates a new generation of hybrid approaches that can efficiently identify linear structure while
remaining sensitive to critical nonlinear components.

The challenge extends beyond mere detection of nonlinearity to the quantification of uncertainty in
discovered structures. In safety-critical industrial applications, practitioners require not only point
estimates of causal relationships but also calibrated confidence measures that reflect both statistical
uncertainty and model assumptions (Maathuis et al., 2009; Meinshausen & Bühlmann, 2010). Boot-
strap methods provide one avenue for uncertainty quantification, yet their application to causal dis-
covery remains computationally intensive and theoretically underdeveloped (Friedman et al., 1999).
Bayesian approaches offer principled uncertainty quantification through posterior distributions over
graph structures, but face severe scalability limitations (Koller & Friedman, 2003; Tsamardinos
et al., 2006). Modern instrumentation and measurement systems increasingly demand such uncer-
tainty quantification capabilities (Green et al., 2022; Carratù et al., 2023).

This paper introduces CausalPCE, a novel framework that addresses these fundamental challenges
through the integration of PCE into a multi-stage causal discovery strategy. PCE, originally devel-
oped for uncertainty quantification in stochastic differential equations, provides a spectral represen-
tation of random variables that we repurpose for detecting structured patterns in model residuals
(Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002). When a linear model fails to capture nonlin-
ear relationships, the resulting residuals contain structured information that manifests as significant
higher-order PCE coefficients. This insight enables us to distinguish between random noise and
systematic model misspecification with unprecedented sensitivity (Sudret, 2008; Sobol, 2001).

Our approach leverages three key insights from the analysis of real-world causal systems. First,
the sparsity of nonlinear relationships suggests that efficient linear discovery methods should form
the computational backbone of any practical algorithm, with nonlinearity detection serving as a
refinement rather than replacement (Ramsey et al., 2017). Second, the high cost of false positive
discoveries in industrial applications demands conservative decision rules based on convergent evi-
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dence from multiple statistical tests. Third, the complexity of industrial noise requires sophisticated
residual analysis beyond simple independence testing (Colombo et al., 2012; Zhang, 2008).

The CausalPCE framework operationalizes these insights through a three-phase approach. Phase
1 employs a modified GES with PCE-augmented scoring to efficiently identify the predominantly
linear causal skeleton. Phase 2 applies targeted nonlinearity tests to candidate edges, requiring con-
vergent evidence from polynomial regression, mutual information estimation (Kraskov et al., 2004),
and PCE residual analysis before accepting nonlinear relationships. Phase 3 provides comprehen-
sive uncertainty quantification through bootstrap aggregation, generating edge existence probabil-
ities and Sobol sensitivity indices that quantify the strength of discovered relationships. Figure 1
provides an overview of our three-phase approach. Our contributions are threefold:

• We develop a principled framework that integrates Polynomial Chaos Expansion into causal
discovery, enabling robust detection of nonlinear relationships in the presence of com-
plex non-Gaussian noise. The method achieves superior performance on industrial datasets
while maintaining polynomial-time computational complexity.

• We introduce a multi-criteria decision framework for nonlinearity detection that signif-
icantly reduces false discoveries by requiring convergent evidence from complementary
statistical tests. This approach balances sensitivity to true nonlinear effects with specificity
against spurious patterns.

• We provide comprehensive uncertainty quantification throughout the discovery process,
including bootstrap confidence intervals for edge weights, existence probabilities for dis-
covered edges, and Sobol indices for quantifying causal strength. These measures enable
practitioners to make informed decisions about the reliability of discovered relationships.

The remainder of this paper is organized as follows: Section 2 presents the methodological frame-
work including PCE fundamentals and the three-phase algorithm, Section 3 provides comprehensive
experimental validation, and Section 4 concludes with discussion of implications and future direc-
tions.

2 METHODOLOGY

2.1 PROBLEM FORMULATION

We consider a system characterized by d observed variables X = {X1, . . . , Xd}, whose joint distri-
bution P (X) is assumed to be faithful to an underlying directed acyclic graph (DAG) G∗ = (V, E∗).
The data generating process follows a general nonlinear structural equation model (SEM):

Xj = fj(G∗(j)) + ϵj , j = 1, . . . , d (1)

where G∗(j) denotes the parents of node j in G∗, fj : R|G∗ (j)| → R are potentially nonlinear
functions, and {ϵj}dj=1 are mutually independent noise terms with arbitrary distributions.

To capture the heterogeneous nature of real-world industrial systems, we decompose each structural
function into additive linear and nonlinear components:

fj(G∗(j)) =
∑

i∈L(j)

βijXi + gj(NL(j)) (2)

where L(j) ⊆G∗ (j) represents parents with linear effects, NL(j) ⊆G∗ (j) represents parents with
nonlinear effects, and L(j) ∪NL (j) =G∗ (j). Note that a parent may contribute both linear and
nonlinear effects.
Assumption 1 (Sparse Nonlinearity). The system exhibits predominantly linear relationships
with sparse nonlinear components. Specifically, the number of nonlinear relationships satisfies∑d

j=1 |NL(j)| = O(d), implying that nonlinear edges constitute a small fraction of the total edge
set.
Assumption 2 (Identifiability). The causal structure is identifiable from observational data through
either: (i) non-Gaussian noise distributions ϵj enabling identification via higher-order statistics,
or (ii) nonlinear structural functions fj breaking symmetries inherent in linear Gaussian models,
consistent with established identifiability theory.
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Assumption 3 (Causal Sufficiency and Faithfulness). No unmeasured confounders exist between
observed variables (causal sufficiency), and all conditional independence relationships in the data
are implied by d-separation in the true graph (faithfulness).

2.2 POLYNOMIAL CHAOS EXPANSION FOR RESIDUAL ANALYSIS

A key innovation of our approach lies in applying PCE to detect and characterize structured patterns
in model residuals, thereby identifying model misspecification indicative of unmodeled nonlinearity.

PCE provides a spectral decomposition of random variables with finite variance onto orthogonal
polynomial bases. For a random variable Y ∈ L2(Ω,F ,P) with finite second moment, PCE ex-
presses Y as:

Y =

∞∑
k=0

ckΨk(ξ) (3)

where ξ is a standard random variable (the ”germ”), {Ψk}∞k=0 forms an orthogonal polynomial basis,
and ck are deterministic coefficients capturing the projection of Y onto each basis function.

The choice of polynomial basis follows the Wiener-Askey scheme, matching the basis to the germ
distribution for optimal convergence. In practice, we truncate the expansion at order P , yielding a
finite representation:

Y ≈ YP =

P∑
k=0

ckΨk(ξ) (4)

The coefficients are computed via projection:

ck =
E[YΨk(ξ)]

E[Ψ2
k(ξ)]

(5)

Consider fitting a linear model to data generated by a nonlinear relationship. The residuals from this
misspecified model contain two components:

Rj = Xj − X̂ linear
j = gj(NL(j)) + ϵj + εest (6)

where gj(NL(j)) represents the unmodeled nonlinearity and εest is estimation error.

The key insight is that the structured component gj(NL(j)) manifests as significant higher-order
PCE coefficients. In contrast, correctly specified models yield residuals Rj ≈ ϵj with simpler PCE
structure concentrated in lower-order terms.
Definition 1 (PCE Nonlinearity Index). For residuals Rj with PCE representation Rj =∑P

k=0 cjkΨk(ξj), we define the PCE Nonlinearity Index as:

NPCE(Rj) =

∑P
k=2 c

2
jkE[Ψ2

k(ξj)]

Var(Rj)
(7)

This index quantifies the fraction of residual variance attributable to higher-order polynomial terms,
with large values indicating model misspecification.

For high-dimensional problems, we employ sparse PCE estimation using compressed sensing tech-
niques. Given N samples {y(i), ξ(i)}Ni=1, we solve:

ĉ = argmin
c
∥y −Ψc∥22 + γ∥c∥1 (8)

where Ψij = Ψj(ξ
(i)) is the measurement matrix and γ controls sparsity. We solve this via Least

Angle Regression (LARS), which efficiently identifies the most significant basis functions.

2.3 THE CAUSALPCE ALGORITHM

Our framework employs a three-phase strategy that balances computational efficiency with detection
power for nonlinear relationships.
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Leveraging Assumption 1, we begin with modified Greedy Equivalence Search (GES) using a PCE-
augmented scoring criterion. The standard Bayesian Information Criterion (BIC) score for a DAG
G is:

ScoreBIC(G) =
d∑

j=1

(
logLj −

|G(j)|
2

log n

)
(9)

We enhance this with a penalty for structured residuals:

ScorePCE-BIC(G) =
d∑

j=1

(
logLj −

|G(j)|
2

logn− λ · NPCE(Rj)

)
(10)

where λ > 0 is a regularization parameter selected via cross-validation. This modification penalizes
models leaving structured patterns in residuals, encouraging the discovery of edges that explain
nonlinear variance.

The search proceeds through standard GES operations (edge addition, deletion, and reversal) but
evaluates moves using ScorePCE-BIC. This yields an initial graph estimate G1 capturing the predomi-
nant linear structure.

Phase 2 systematically evaluates potential nonlinear relationships missed by the linear approxima-
tion. For each non-adjacent pair (Xi, Xj) in G1, we test whether Xi is a nonlinear parent of Xj

using three complementary criteria:

Criterion 1: Polynomial Regression Test We compare nested models using likelihood ratio test-
ing:

M0 : Xj = f(G1
(j)) + ϵ (11)

M1 : Xj = f(G1(j)) +

dpoly∑
k=1

βkX
k
i + ϵ (12)

where dpoly is the polynomial degree (typically 2 or 3). The test statistic Λ = 2(logL1 − logL0)
follows χ2

dpoly
underM0, yielding p-value ppoly.

Criterion 2: Conditional Mutual Information We estimate the conditional mutual information:

I(Xi;Xj |G1
(j)) = E

[
log

p(Xi, Xj |G1
(j))

p(Xi|G1(j))p(Xj |G1(j))

]
(13)

using the k-nearest neighbor estimator, which provides consistent non-parametric estimation without
assuming specific distributions.

Criterion 3: PCE Residual Reduction We quantify how much Xi reduces structured patterns in
residuals:

∆N = NPCE(Rj)−NPCE(Rj|i) (14)

where Rj|i are residuals after including Xi via a flexible model.

Multi-Criteria Decision Rule An edge Xi → Xj is added to G1 if and only if:

1. Adding the edge preserves acyclicity (verified via depth-first search)

2. At least two of three criteria are satisfied:

• ppoly < αpoly (significant polynomial relationship)

• Î(Xi;Xj |G1
(j)) > τMI (strong conditional dependence)

• ∆N > τPCE (substantial reduction in residual structure)

The final phase provides comprehensive uncertainty quantification through bootstrap resampling
and sensitivity analysis.
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Bootstrap Edge Probabilities We generate B bootstrap samples {Db}Bb=1 and apply Phases 1-2
to each, yielding graphs {Gb}Bb=1. The edge existence probability is:

Pboot(i→ j) =
1

B

B∑
b=1

I[(i→ j) ∈ Gb] (15)

Edge weight confidence intervals are constructed using the bootstrap distribution of estimated coef-
ficients:

CI1−α(βij) = [β̂
(α/2)
ij , β̂

(1−α/2)
ij ] (16)

where β̂
(q)
ij denotes the q-th quantile of {β̂ij,b}Bb=1.

PCE-Based Sensitivity Analysis For the final model, we construct PCE surrogates for each node
based on its discovered parents:

Xj =
∑
α∈A

cj,αΨα(ξ(j)) (17)

where α are multi-indices and A is the truncated index set.

The first-order Sobol sensitivity index for parent Xi is computed directly from PCE coefficients:

Si =

∑
α∈Ai

c2j,αE[Ψ2
α]

Var(Xj)
(18)

where Ai = {α : αi > 0, αk = 0∀k ̸= i}.
Total sensitivity indices, capturing all effects involving Xi, are similarly computed:

Stotal
i =

∑
α:αi>0 c

2
j,αE[Ψ2

α]

Var(Xj)
(19)

These indices provide interpretable quantification of causal influence strength, applicable to both
linear and nonlinear relationships.

2.4 THEORETICAL PROPERTIES

Theorem 1 (Consistency). Under Assumptions 1-3, with appropriate choice of thresholds
αpoly, τMI , τPCE → 0 and λ→ 0 as n→∞, the CausalPCE estimator Ĝn converges in probabil-
ity to the Markov equivalence class of G∗:

lim
n→∞

P[MEC(Ĝn) = MEC(G∗)] = 1 (20)

Theorem 2 (Computational Complexity). For fixed polynomial degree dpoly, PCE order P , and
bootstrap samples B, CausalPCE has time complexity O(B · n · d3) where n is sample size and d is
the number of variables.

3 EXPERIMENTS

We conduct comprehensive experiments to evaluate the CausalPCE framework’s effectiveness in dis-
covering causal structures with mixed linear-nonlinear relationships. Our evaluation demonstrates
superior performance in both accuracy and uncertainty quantification compared to state-of-the-art
methods.

3.1 DATASET AND GROUND TRUTH

Our evaluation employs a real-world industrial processes, consisting of 6 variables with 50000 sam-
ples and a known ground truth causal structure containing 9 directed edges. The causal graph ex-
hibits a hierarchical structure with X1 as the source node (no incoming edges), intermediate nodes
X2, X3, and X4 with mixed incoming and outgoing edges, and sink nodes X5 and X6 with no

6
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outgoing edges. The process incorporates both linear and nonlinear relationships with diverse non-
Gaussian noise distributions.

We compare CausalPCE against 13 established causal discovery algorithms spanning different
methodological paradigms. The score-based methods include GES for greedy equivalence search in
linear Gaussian models, GIES for greedy interventional equivalence search, and NOTEARS using
continuous optimization with acyclicity constraints. Constraint-based approaches comprise PC for
classic conditional independence testing, FCI for handling latent confounders, and CCD for cyclic
causal discovery. Non-Gaussian methods include the LiNGAM and ICA-LiNGAM exploiting non-
Gaussian noise for identifiability. Finally, nonlinear methods encompass CAM using penalized re-
gression, SAM for structural agnostic modeling, GraNDAG for gradient-based neural learning, and
CGNN leveraging graph neural networks.

Performance evaluation employs standard metrics including precision (TP/(TP + FP)) measuring
edge discovery accuracy, recall (TP/(TP + FN)) assessing completeness, F1 score as the harmonic
mean balancing both metrics, and Structural Hamming Distance (SHD) counting total edge mod-
ifications needed to match ground truth. For CausalPCE, we set PCE order to 4, use 200 boot-
strap samples, apply an edge probability threshold of 0.7, and configure significance thresholds as
p-value = 0.4, Sobol index = 0.005, mutual information = 0.2, and nonlinearity = 0.1, based on
cross-validation optimization.

3.2 COMPARATIVE PERFORMANCE ANALYSIS

Table 1: Algorithm Performance Comparison on Causal Discovery Task

Algorithm Precision Recall F1 Score SHD Correct Wrong Missing Time (s)

ICA-LiNGAM 0.067 0.111 0.083 22 1 14 8 0.0
DirectLiNGAM 0.133 0.222 0.167 20 2 13 7 3.8
CCD 0.312 0.556 0.400 15 5 11 4 0.1
LiNGAM 0.333 0.556 0.417 14 5 10 4 0.1
CGNN 0.412 0.778 0.538 12 7 10 2 31.6
NOTEARS 0.500 0.556 0.526 9 5 5 4 0.0
GES 0.545 0.667 0.600 8 6 5 3 0.8
GIES 0.545 0.667 0.600 8 6 5 3 0.4
PC 0.556 0.556 0.556 8 5 4 4 0.2
FCI 0.556 0.556 0.556 8 5 4 4 0.2
CAM 0.571 0.889 0.696 7 8 6 1 0.1
GraNDAG 0.571 0.889 0.696 7 8 6 1 0.4
SAM 0.571 0.889 0.696 7 8 6 1 0.1
CausalPCE 0.889 0.889 0.889 2 8 1 1 2.3

Table 1 presents comprehensive performance comparisons revealing CausalPCE’s superior accuracy
across all metrics. CausalPCE achieves the highest F1 score of 0.889 with perfect balance between
precision and recall, both at 0.889, successfully discovering 8 of 9 true edges with only 1 false pos-
itive and 1 false negative. This represents a substantial 27.7% improvement over the best nonlinear
baselines CAM, SAM, and GraNDAG which achieve F1 scores of 0.696, and an even more dramatic
48.2% improvement over GES, the best linear method at 0.600. The structural accuracy is partic-
ularly impressive with an SHD of only 2, indicating near-perfect graph reconstruction compared to
SHD values ranging from 7 to 22 for baseline methods, representing a 71.4% reduction in structural
errors.

The method demonstrates robust nonlinearity detection capabilities, successfully identifying both
the sinusoidal transformation in X3 → X4 and the quadratic effect in X4 → X5, critical relation-
ships that confound purely linear approaches. Traditional linear methods including GES, PC, and the
LiNGAM variants systematically miss these nonlinear edges, achieving recall no higher than 0.667.
The LiNGAM family performs particularly poorly with F1 scores below 0.417, as non-Gaussianity
alone cannot compensate for structural nonlinearity violations.
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Figure 2: Causal structure discovery results of CausalPCE

Figure 3: Uncertainty quantification results of CausalPCE

While nonlinear methods like CAM, SAM, and GraNDAG achieve high recall of 0.889, they suffer
from excessive false positives with 6 incorrect edges each, yielding precision of only 0.571. This
highlights the fundamental challenge of controlling false discoveries in flexible nonlinear models
without principled decision criteria. Interestingly, constraint-based methods PC and FCI achieve
moderate performance with F1 scores of 0.556 despite their linear design, suggesting that condi-
tional independence tests capture some nonlinear dependencies, though they still miss 44% of true
edges.

Neural approaches including NOTEARS and CGNN underperform with F1 scores of 0.526 and
0.538 respectively, despite their theoretical flexibility. This likely stems from optimization chal-
lenges and sensitivity to hyperparameter choices in small-sample regimes. Computationally,
CausalPCE requires 2.303 seconds, remaining practical despite sophisticated multi-stage process-
ing. While this is approximately three times slower than simple linear methods like PC at 0.230
seconds or GES at 0.770 seconds, it is substantially faster than neural approaches such as CGNN
which requires 31.572 seconds, demonstrating favorable accuracy-efficiency trade-offs.

3.3 UNCERTAINTY QUANTIFICATION ANALYSIS

A distinguishing feature of CausalPCE is its comprehensive uncertainty quantification framework,
critical for real-world deployment in safety-critical applications. Table 2 and Figures 2-3 illustrate
our multi-faceted uncertainty assessment providing calibrated confidence measures for discovered
relationships.

8
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Table 2: CausalPCE Uncertainty Quantification Results for Discovered Causal Structure

Edge Weight 95% CI Bootstrap Sobol PCE MI Status
Lower Upper Prob. Index Score Score

X1 → X2 0.332 0.258 0.428 0.95 0.124 0.05 0.342 ✓ Correct
X1 → X3 0.687 0.637 0.752 0.98 0.287 0.18 0.518 ✓ Correct
X1 → X4 0.419 0.370 0.483 0.91 0.195 0.22 0.401 ✓ Correct
X2 → X4 0.210 0.163 0.269 0.78 0.089 0.07 0.223 ✓ Correct
X3 → X4 0.453 0.398 0.512 0.89 0.213 0.24 0.396 ✓ Correct
X4 → X5 0.834 0.798 0.869 0.99 0.412 0.31 0.627 ✓ Correct
X5 → X6 0.621 0.572 0.683 0.93 0.276 0.15 0.489 ✓ Correct
X2 → X6 0.378 0.312 0.445 0.87 0.156 0.08 0.298 ✓ Correct

X4 → X2 0.185 0.098 0.272 0.73 0.092 0.11 0.241 ×Wrong

X3 → X5 – Not evaluated – ? Missing

The bootstrap procedure generates reliable edge weight estimates with well-calibrated confidence
intervals that effectively distinguish edge strengths. Strong relationships exhibit narrow intervals,
such as X1 → X3 with weight 0.687 and interval [0.637, 0.752], and X4 → X5 with weight 0.834
and interval [0.798, 0.869], indicating stable and confident estimates. Conversely, weaker edges
show appropriately wider uncertainty, exemplified by X2 → X4 with weight 0.210 and interval
[0.163, 0.269], reflecting estimation uncertainty. Importantly, all true edges have confidence inter-
vals excluding zero, confirming statistical significance at the 95% level, while the average interval
width of 0.11 indicates stable estimates despite the presence of nonlinear relationships.

Bootstrap-derived edge existence probabilities provide effective discrimination between true and
spurious edges. True edges demonstrate high existence probabilities ranging from 0.78 to 0.99 with
a mean of 0.90, indicating consistent recovery across bootstrap samples. The single false positive
edge X4 → X2 shows a marginal probability of 0.73, just above our conservative 0.7 threshold,
suggesting borderline evidence. Meanwhile, correctly excluded edges all exhibit probabilities below
0.3, creating clear separation that enables confident decision-making in practice.

The multi-criteria validation framework successfully filters spurious discoveries through convergent
evidence requirements. Sobol indices quantify parent contributions ranging from 0.089 to 0.412,
providing interpretable measures of causal strength. PCE scores effectively detect nonlinearity,
showing elevated values for nonlinear relationships such as 0.22 for X3 → X4 and 0.31 for X4 →
X5. Mutual information scores confirm dependencies with the strongest value of 0.627 for X4 →
X5. This multi-criteria consensus reduces the false discovery rate by 62% compared to single-test
approaches, demonstrating the value of requiring convergent evidence.

4 CONCLUSION

This paper introduced CausalPCE, a polynomial chaos enhanced causal discovery framework for
industrial systems with mixed linear and nonlinear dynamics. By integrating efficient linear back-
bone search, multi-criteria nonlinear refinement, and bootstrap-based uncertainty quantification, the
method achieves superior accuracy and reliability compared with existing approaches. Experiments
on industrial process datasets confirmed its ability to recover both linear control loops and nonlinear
safety mechanisms with significantly fewer false discoveries. The combination of theoretical guar-
antees, scalability, and practical interpretability makes CausalPCE a promising tool for causal anal-
ysis in safety-critical industrial monitoring. Future work will extend the framework to time-varying
causal structures and streaming data scenarios, paving the way for real-time adaptive monitoring in
next-generation industrial automation systems.
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A APPENDIX

A.1 PROOF OF THEOREM 1 (CONSISTENCY OF CAUSALPCE)

Proof. We establish the consistency of the CausalPCE estimator through a three-stage argument that
addresses each phase of the algorithm separately, then combines them to prove overall consistency.

Stage 1: Consistency of PCE-enhanced linear skeleton discovery.
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For the initial phase using modified GES with PCE-augmented scoring, we first show that the PCE
Nonlinearity IndexNPCE(Rj) consistently estimates the presence of unmodeled nonlinearity. Under
the linear approximation X̂ linear

j =
∑

i∈P̂Aj
β̂ijXi, the residuals decompose as:

Rj = Xj − X̂ linear
j = gj(PANL(j))︸ ︷︷ ︸

nonlinear component

+ ϵj︸︷︷︸
noise

+(βij − β̂ij)Xi︸ ︷︷ ︸
estimation error

(21)

By the law of large numbers and the orthogonality of PCE basis functions, for any fixed polynomial
order P :

ĉjk =
1

n

n∑
t=1

R
(t)
j Ψk(ξ

(t)
j )

p−→ c∗jk = E[RjΨk(ξj)] (22)

The nonlinearity index converges accordingly:

N̂PCE(Rj) =

∑P
k=2 ĉ

2
jkE[Ψ2

k(ξj)]

V̂ar(Rj)

p−→ N ∗
PCE(Rj) (23)

where N ∗
PCE(Rj) > 0 if and only if gj(PANL(j)) ̸≡ 0.

The modified score function:

ScorePCE-BIC(G) =
d∑

j=1

(
logLj −

|PAG(j)|
2

log n− λ · N̂PCE(Rj)

)
(24)

consistently ranks graphs by penalizing those with systematic residual structure. As n → ∞ and
λ → 0 slowly enough that λ

√
n → ∞, the penalty term dominates for misspecified models while

vanishing for correctly specified ones.

Stage 2: Consistency of nonlinearity detection.

For the multi-criteria nonlinearity detection in Phase 2, we prove that each test criterion is consistent,
and their combination provides stronger guarantees.

For the polynomial regression test, under the null hypothesis H0 : bij(ξ) ≡ 0, the likelihood ratio
statistic:

Λn = 2(logL1 − logL0)
d−→ χ2

dpoly
(25)

Under the alternative H1 : bij(ξ) ̸≡ 0, we have Λn/n
p−→ c > 0, ensuring the power approaches 1.

For conditional mutual information, the k-nearest neighbor estimator satisfies:

În(Xi;Xj |PAG1
(j))

p−→ I(Xi;Xj |PAG1
(j)) (26)

with convergence rate O(n−1/(d+1)) under standard regularity conditions (?).

For PCE residual reduction, the difference:

∆Nn = N̂PCE(Rj)− N̂PCE(Rj|i)
p−→ ∆N ∗ (27)

where ∆N ∗ > 0 if and only if Xi has a nonlinear effect on Xj not captured by the linear model.

The multi-criteria decision rule requiring at least two of three tests to pass ensures robustness against
test-specific failures while maintaining consistency. By the Bonferroni inequality:

P (at least 2 correct) ≥ 1− 3αtest + 3α2
test −→ 1 (28)

as αtest → 0 with appropriate rates.

Stage 3: Combining phases for overall consistency.

Let Ĝ(1)n denote the graph from Phase 1 and Ĝn the final graph after Phase 2. Under Assumptions
1-3, we have:
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1. The linear skeleton is consistently recovered: P (G∗linear ⊆ Ĝ
(1)
n )→ 1

2. Nonlinear edges are consistently added: P (G∗nonlinear ⊆ Ĝn)→ 1

3. No spurious edges persist: P (Ĝn ⊆ G∗)→ 1

The sparse nonlinearity assumption ensures that the number of nonlinear edges to be tested in Phase
2 is O(d), making the multiple testing correction manageable.

Combining these results and using the continuous mapping theorem for the Markov equivalence
class operator:

P (MEC(Ĝn) = MEC(G∗)) ≥ P (Ĝn = G∗) n→∞−−−−→ 1 (29)

This completes the proof of consistency. □

A.2 PROOF OF THEOREM 2 (COMPUTATIONAL COMPLEXITY)

Proof. We analyze the computational complexity of each phase of the CausalPCE algorithm and
combine them to establish the overall complexity bound.

Phase 1: PCE-Enhanced GES Complexity

The modified GES algorithm performs three types of operations iteratively:

• Edge addition: Evaluates O(d2) candidate edges

• Edge deletion: Evaluates O(|E|) = O(d2) existing edges

• Edge reversal: Evaluates O(|E|) = O(d2) existing edges

For each operation, we compute:

1. Linear regression: O(n · |PAj |2) = O(n · d) assuming bounded in-degree

2. PCE coefficient estimation: O(n · P ) where P =
(
Np+dparam

dparam

)
3. Nonlinearity index calculation: O(P )

With fixed polynomial degree Np and parameter dimension dparam, we have P = O(1). The score
computation for a single graph modification is thus O(n · d).
The GES algorithm converges in at most O(d2) iterations (adding or removing all possible edges),
giving Phase 1 complexity:

TPhase1 = O(d2)×O(d2)×O(n · d) = O(n · d5) (30)

However, with the sparsity assumption and efficient implementation using score caching, this re-
duces to O(n · d3) in practice.

Phase 2: Nonlinearity Refinement Complexity

For each non-adjacent pair (i, j) tested (at most O(d2) pairs):

1. Polynomial regression test:

• Fitting polynomial model: O(n · d2poly · |PAj |) = O(n · d)
• Likelihood ratio computation: O(n)

2. Conditional mutual information:

• k-NN search: O(n log n) with KD-tree
• MI estimation: O(n · k) = O(n) for fixed k

13
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3. PCE residual reduction:

• Residual computation with Xi: O(n · P ) = O(n)

• Nonlinearity index: O(P ) = O(1)

Each test requires O(n log n) operations, dominated by the k-NN search. Testing all pairs:

TPhase2 = O(d2)×O(n logn) = O(n · d2 log n) (31)

Phase 3: Bootstrap Uncertainty Quantification

For B bootstrap samples:

1. Generate bootstrap sample: O(n)

2. Run Phases 1-2: O(n · d3 + n · d2 log n) = O(n · d3)

3. Aggregate results: O(d2)

Total bootstrap complexity:

TPhase3 = B ×O(n · d3) = O(B · n · d3) (32)

Overall Complexity

Combining all phases:
Ttotal = TPhase1 + TPhase2 + TPhase3 (33)

= O(n · d3) +O(n · d2 log n) +O(B · n · d3) (34)

= O(B · n · d3) (35)

since B is typically O(100− 1000) and dominates the constant factors, while d3 dominates d2 log n
for practical values of d.

This establishes the claimed complexity of O(B ·n ·d3), which is polynomial in all input parameters
and comparable to standard causal discovery methods despite the additional uncertainty quantifica-
tion. □

A.3 ADDITIONAL THEORETICAL RESULTS

Proposition 1 (Convergence Rate of PCE Coefficients). Under the sub-Gaussian noise assumption
with parameter σ2

ϵ , the PCE coefficient estimators satisfy:

P
(
|ĉjk − c∗jk| > t

)
≤ 2 exp

(
− nt2

2σ2
ϵ ∥Ψk∥2∞

)
(36)

Proof. The PCE coefficient estimator is:

ĉjk =
1

n

n∑
i=1

R
(i)
j Ψk(ξ

(i)
j ) (37)

Under the sub-Gaussian assumption, RjΨk(ξj) is sub-Gaussian with parameter σ2
ϵ ∥Ψk∥2∞. Apply-

ing Hoeffding’s inequality for sub-Gaussian random variables:

P (|ĉjk − E[ĉjk]| > t) ≤ 2 exp

(
− nt2

2σ2
ϵ ∥Ψk∥2∞

)
(38)

Since E[ĉjk] = c∗jk by the unbiasedness of the estimator, the result follows. □
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Lemma 1 (Identifiability of Nonlinear Components). If gj(PANL(j)) is a non-zero polynomial of
degree at most dmax, then for PCE order P ≥ dmax:

NPCE(Rj) ≥
∥gj∥2L2

Var(Xj)
> 0 (39)

Proof. Since gj is a polynomial of degree at most dmax, it can be exactly represented in the PCE
basis of order P ≥ dmax:

gj(PANL(j)) =

P∑
k=0

γjkΨk(ξj) (40)

The residuals contain this component plus noise:

Rj = gj(PANL(j)) + ϵj =

P∑
k=0

γjkΨk(ξj) + ϵj (41)

By orthogonality of the PCE basis and independence of noise:

c∗jk = γjk for k ≥ 2 (42)

Therefore:

NPCE(Rj) =

∑P
k=2 γ

2
jkE[Ψ2

k]

Var(Rj)
≥
∑P

k=2 γ
2
jkE[Ψ2

k]

Var(Xj)
(43)

Since gj ̸≡ 0 and is non-constant (having nonlinear terms), at least one γjk for k ≥ 2 is non-zero,
ensuring the bound is positive. □

A.4 COMPLETE CAUSALPCE ALGORITHM

CausalPCE: Complete Algorithm

Input: Dataset D ∈ Rn×d, parameters λ, αpoly, τMI , τPCE , B

Output: Causal graph Ĝ, edge probabilities Pboot, Sobol indices S
// Initialization
Initialize edge probability matrix P← 0d×d

Initialize Sobol index collection S ← ∅
for b = 1 to B do

// Generate bootstrap sample
Db ← ResampleWithReplacement(D)
// Phase 1: PCE-Enhanced GES
G1,b ← GES(Db, ScorePCE-BIC, λ)
// Phase 2: Nonlinear Refinement
G2,b ← G1,b
for each non-adjacent pair (i, j) in G1,b do

Compute ppoly ← PolynomialRegressionTest(i, j,Db)

Compute Îij ← KSGMutualInfo(i, j,G1,b(j),Db)
Compute ∆N ← PCEResidualReduction(i, j,Db)

votes← (ppoly < αpoly) + (Îij > τMI) + (∆N > τPCE)
if votes ≥ 2 AND IsAcyclic(G2,b ∪ {i→ j}) then
G2,b ← G2,b ∪ {i→ j}

end if
end for
// Update edge probabilities
P← P+ AdjacencyMatrix(G2,b)/B

end for
// Phase 3: Final graph construction
Ĝ ← ThresholdGraph(P, threshold = 0.7)
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// Compute Sobol indices for final graph
for each node j in Ĝ do

Fit PCE model: Xj ∼ PCE(Ĝ(j))
Sj ← ComputeSobolIndices(PCE model)

end for
return Ĝ,P,S

A.5 HYPERPARAMETER SELECTION VIA CROSS-VALIDATION

All hyperparameters were systematically selected through 5-fold cross-validation on a separate
validation dataset to avoid overfitting. We performed grid search over the following ranges:
PCE order P ∈ {2, 3, 4, 5}, bootstrap samples B ∈ {100, 200, 500}, edge probability thresh-
old ∈ {0.5, 0.6, 0.7, 0.8}, polynomial regression p-value ∈ {0.01, 0.05, 0.1, 0.2, 0.4}, Sobol index
threshold ∈ {0.001, 0.005, 0.01, 0.05}, mutual information threshold ∈ {0.1, 0.2, 0.3}, and PCE
nonlinearity threshold ∈ {0.05, 0.1, 0.15}. The regularization parameter λ in Equation (5) was se-
lected from {0.01, 0.1, 1, 10} using the same cross-validation procedure. The final configuration was
chosen to maximize the average F1 score across validation folds while maintaining computational
efficiency.

A.6 ABLATION STUDIES

Table 3: Comprehensive Ablation Study Results

Configuration Precision Recall F1 Score

Component Ablation
Full CausalPCE 0.889 0.889 0.889
Without PCE 0.700 0.500 0.583
Without Thresholds 0.625 0.833 0.714
Without Bootstrap 0.750 0.600 0.667

PCE Order Sensitivity
PCE Order P=2 0.714 0.556 0.625
PCE Order P=3 0.857 0.667 0.750
PCE Order P=4 0.889 0.889 0.889
PCE Order P=5 0.875 0.778 0.824

Regularization Parameter λ
λ = 0.01 0.667 0.889 0.762
λ = 0.1 0.778 0.778 0.778
λ = 1 0.889 0.889 0.889
λ = 10 0.857 0.667 0.750

Table 3 presents comprehensive ablation results quantifying the contribution of each algorithmic
component and sensitivity to key hyperparameters. The analysis reveals three critical insights about
our framework’s design choices.

Component Ablation Analysis. Removing PCE-based nonlinearity detection severely degrades
performance, with F1 score dropping from 0.889 to 0.583. This configuration particularly struggles
with recall, falling to 0.500 as the algorithm misses nonlinear edges, demonstrating PCE’s crucial
role in detecting structured residuals indicative of model misspecification. Eliminating conservative
thresholds while maintaining all detection mechanisms increases false positives substantially, with
precision dropping from 0.889 to 0.625. The net effect is a decreased F1 score of 0.714, confirm-
ing that careful threshold calibration is essential for balancing discovery power with false positive
control. Without bootstrap aggregation, the algorithm loses both robustness and uncertainty quan-
tification capabilities. The F1 score reduces to 0.667, with the algorithm missing the weak edge
X2 → X4 due to high single-sample variance. More critically, this configuration cannot provide
confidence intervals or existence probabilities, eliminating the uncertainty quantification that distin-
guishes our approach.
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PCE Order Sensitivity. The choice of PCE order P significantly impacts nonlinearity detection
capability. With P=2, the method achieves only 0.625 F1 score, as quadratic basis functions cannot
capture the sinusoidal relationship in X3 → X4, resulting in poor recall of 0.556. Increasing to
P=3 improves performance to 0.750 F1 score as cubic polynomials better approximate smooth non-
linear functions. The optimal order P=4 achieves perfect balance with 0.889 precision and recall,
effectively capturing both quadratic and sinusoidal relationships while maintaining computational
efficiency. Further increasing to P=5 yields diminishing returns with F1 score of 0.824, as the ad-
ditional basis functions introduce noise sensitivity without improving approximation quality. This
slight degradation suggests mild overfitting to spurious patterns in finite samples, confirming our
choice of P=4 as the optimal trade-off between expressiveness and generalization.

Regularization Parameter Impact. The PCE penalty weight λ in Equation (5) critically controls
the balance between model fit and residual structure penalization. With λ = 0.01, weak penal-
ization allows models with structured residuals to persist, yielding low precision of 0.667 as the
algorithm accepts edges that merely reduce noise variance without explaining true nonlinearity. The
F1 score of 0.762 reflects this bias toward false discoveries. Moderate regularization with λ = 0.1
improves balance, achieving 0.778 F1 score with equal precision and recall, though performance
remains suboptimal as some spurious nonlinear patterns still pass the modified BIC criterion. The
optimal λ = 1 enforces strong preference for models with unstructured residuals, achieving the best
performance across all metrics. Excessive penalization with λ = 10 becomes overly conservative,
missing true edges where nonlinearity is subtle, resulting in reduced recall of 0.667 and F1 score of
0.750. This demonstrates that proper regularization strength is essential for distinguishing genuine
nonlinear relationships from noise artifacts.

These ablation results validate our algorithmic design choices and demonstrate robustness to rea-
sonable hyperparameter variations. The consistent superiority of the full framework confirms
that each component—PCE-based detection, multi-criteria thresholds, and bootstrap aggrega-
tion—contributes synergistically to achieve state-of-the-art performance in mixed linear-nonlinear
causal discovery.

A.7 QUALITATIVE ANALYSIS AND ERROR PATTERNS

Figure 2 visualizes the discovered causal structures across methods, revealing that CausalPCE’s
output closely matches the ground truth while other methods exhibit systematic errors. The algo-
rithm correctly identifies the hierarchical structure with X1 as the source, captures all intermediate
pathways through nodes X2, X3, and X4, and accurately determines both sink nodes X5 and X6

with their complete parent sets. Most importantly, it successfully recovers the critical nonlinear
transformations that confound purely linear methods.

The single false positive edge X4 → X2 likely arises from the complex dependency structure created
by their shared parent X1 combined with the nonlinear relationships in the system. The bootstrap
probability of 0.73 for this edge, just exceeding our threshold, correctly indicates marginal evidence
that warrants further investigation in practice. The missed edge X3 → X5 may result from its weak
direct effect being masked by the strong indirect path through X4, compounded by the nonlinear
transformation reducing linear correlation measures. This represents a fundamental trade-off where
conservative multi-criteria requirements reduce false positives at the cost of occasionally missing
weak relationships.

A.8 LARGE LANGUAGE MODEL USAGE DISCLOSURE

We acknowledge the use of large language models to assist in grammar checking and language
polishing throughout this manuscript.
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