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ABSTRACT

We show rigorous bounds on the generalization error for Neural Networks with
ReLU activation under the condition that the network size doesn’t grow with the
training set size. In order to prove these bounds we weaken the notion of uniform
stability of a learning algorithm in a probabilistic way by positing the notion of
almost sure (a.s.) support stability and proving that if an algorithm has low enough
a.s. support stability its generalization error tends to 0 as the training set size
increases. Further we show that for Stochastic Gradient Descent to be almost
surely support stable we only need the loss function to be locally Lipschitz and
locally smooth with probability 1, thereby showing low generalization error with
weaker conditions than have been used in the literature. We then show that Neural
Networks with ReLU activation and a doubly differentiable loss function possess
these properties, thereby proving low generalization error. The caveat is that the
size of NN must not grow with the size of the training set. Finally we present
experimental evidence to validate our theoretical results.

1 INTRODUCTION

Given the importance of the generalization error in machine learning there have been numerous
theoretical approaches to bounding it, one of the most significant being the concept of algorithmic
stability whose origins can be traced back to Vapnik & Chervonenkis (1974). In this paradigm the
definition of uniform stability by Bousquet & Elisseeff (2002) was a landmark because it allowed
the authors to prove sharp concentration bounds showing that the generalization error for the algo-
rithms that satisfy this property tends to 0 as the training set size increases. Thanks to the success
of Bousquet & Elisseeff (2002) on a variety of non-neural methods, when Hardt et al. (2016) showed
that a learning function computed by optimizing certain loss functions through Stochastic Gradient
Descent is uniformly stable under mild conditions on the loss function, this clearly raised the ex-
pectation that the next step would be to show that Neural Network-based models are also uniformly
stable and, hence, have a low generalization error. This analysis was then expected to corroborate the
empirically observed fact that the generalization error is low for NN models (c.f., e.g., Krizhevsky
et al. (2012), Hinton et al. (2012).) Case closed. However, this triumphal march of algorithmic
stability was rudely interrupted by Zhang et al. (2017), who showed explicit examples of distribu-
tions that cannot be learned with low generalization error and yet can be learned with an NN of an
appropriate size. Zhang et al. (2017) speculated that the problem arose from the fact that the concept
of uniform stability was based only on properties of the algorithm and not on the properties of the
unknown data distribution. While this was a reasonable speculation, it left open some questions: Is
there a reasonable definition of stability that incorporates distribution properties and leads to small
generalization error? And can we show that NNs with non-linear activation functions such as ReLU
at the neurons have this property?

In this paper we give a strongly affirmative answer to the first question and a partially affirmative
answer to the second question. We define a notion called almost sure (a.s.) support stability which is
a probabilistic weakening of uniform stability. Unlike the data-dependent notions of stability defined
in Kuzborskij & Lampert (2018), Lei & Ying (2020) that bound generalization error in expectation,
a.s. support stability can be used to show high probability bounds on generalization error. This
proof entails proving a mild generalization of McDiarmid’s Inequality that could be of independent
interest. The major contribution of our paper is that we show how to handle the non-linearity of
ReLU in a mathematically rigorous way by modifying a result of Milne (2019) to show that ReLU
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affects the smoothness of the gradients computed by Stochastic Gradient Descent with probability 0
for well-behaved distributions. To the best of our knowledge such a result has not been reported in
the literature.

Clearly the question arises: What about the evidence presented by Zhang et al. (2017) that there exist
unknown distributions that can be learned by an NN but will always have unbounded generalization
error? To answer this we need to understand that our analysis of SGD presented requires the loss
function to be smooth and Lipschitz in the parameter space (though with an appropriate probabilistic
weakening of these properties.) Our analysis is able to demonstrate that these properties hold for
NNs whose size doesn’t grow with the size of the training set. So, our specific answer that we have
for the second question listed above: Almost support stability can be used to demonstrate that the
generalization error for NNs with ReLU as long as the size of the NN doesn’t grow too fast with the
training set size, and if the unknown distribution places probability 0 on sets of Lebesgue measure
0. This leaves open the matter of a theoretical explanation for why certain heavily overparametrized
NNs generalize well in practice. However, we do provide some directions on how our analytical
framework may be used to prove such results.

In particular our contributions are:

• In Section 3 we define a new notion of stability called a.s. support stability and show in Theorem 2
that algorithms with a.s. support stability o(1/ log2 m) have generalization error tending to 0 as
m → ∞ where m is the size of the training set.

• In Section 4 we show that if we run stochastic gradient descent on a parametrized optimization
function that is only locally Lipschitz and locally smooth in the parameter space and that too only
on input points selected with probability 1, then the replace-one error is bounded even if the training
is conducted for c logm epochs. This implies (Corollary 7) that any learning algorithm trained
this way has generalization error that goes to 0 as m → ∞ for learning rate α0/t at step t for an
appropriately selected value of α0 that does not depend on m.

• In Section 5 we show that the output of an NN with ReLU activations when used with a doubly
differentable loss function is locally Lipschitz and locally smooth in the parameter space for all
inputs except those from a set of Lebesgue measure 0 (Theorem 9). This allows us to show a.s.
support stability and a generalization error bound for NNs with size that doesn’t grow with m.

• We experimentally verify our theoretical results in Section 6, showing that our bounded Lipschitz
and bounded smoothness conditions hold in practice.

2 RELATED WORK

Several authors have that although NNs are known to generalize well in practice, many different the-
oretical approaches have been tried without satifactorily explaining this phenomenon, c.f., Jin et al.
(2020); Chatterjee & Zielinski (2022). We refer the reader to the work of Jin et al. (2020) which
presents a concise taxonomy of these different theoretical approaches. There are also several works
that seek to understand what a good theory of generalization should look like, c.f. Kawaguchi et al.
(2017); Chatterjee & Zielinski (2022). Our own work falls within the paradigm that seeks to use no-
tions of algorithmic stability to bound generalization error that began with Vapnik & Chervonenkis
(1974) but gathered steam with the publication of the work by Bousquet & Elisseeff (2002).

The applicability of the algorithmic stability paradigm to the study of generalization error in NNs
was brought to light by Hardt et al. (2016) who showed that functions optimized via Stochastic
Gradient Descent have the property of uniform stability defined by Bousquet & Elisseeff (2002),
implying that NNs should also have this property. Subsequently, there was renewed interest in uni-
form stability and a sequence of papers emerged using improved probabilistic tools to give better
generalization bounds for uniformly stable algorithms, e.g., Feldman & Vondrak (2018; 2019a) and
Bousquet et al. (2020). Some other works, e.g. Klochkov & Zhivotovskiy (2021), took this line for-
ward by focussing on the relationship of uniform stability with the excess risk. However the work
of Zhang et al. (2017) complicated the picture by pointing out examples where the theory suggests
the opposite of what happens in practice. This led to two different strands of research. In one thread
an attempt was made to either discover those cases where uniform stability, (e.g. Charles & Papail-
iopoulos (2018)), or to show lower bounds on stability that ensure that uniform stability does not
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exists, (e.g. Zhang et al. (2022)). The other strand of research, our work falls in this category, fo-
cuses on weakening the notion of uniform stability, specifically by making it data-dependent, thereby
following the suggestion made by Zhang et al. (2017). Kuzborskij & Lampert (2018) defined “on-
average stability” which is weaker than our definition of a.s. support stability. Consequently, their
definition leads to a weaker in-expectation bound on the generalization error where the expectation
is over the training set as well as the random choices of the algorithm. Our Theorem 2, on the other
hand, provides a sharp concentration bound on the choice of training set. Lei & Ying (2020) de-
fine an “on-average model stability” that requires the average replace-one error over all the training
points to be bounded in expectation. While their smoothness requirements are less stringent, the
problem is that their generalization results are all relative to the optimal choice of the weight vector,
which implies a high generalization error in case of early stopping.

3 A.S. SUPPORT STABILITY AND GENERALIZATION

In this section we present a weakening of the notion of uniform stability defined by Bousquet &
Elisseeff (2002) and show that exponential concentration bounds on the generalization error can be
proved for learning algorithms that have this weaker form of stability.

3.1 TERMINOLOGY

Let X and Y be the input and output spaces respectively. We assume we have a training set S ∈ Zm

of size m where each point is chosen independently at random from an unknown distribution D
over Z ⊂ X × Y. For z = (x, y) ∈ Z we will use the notation xz to denote x and yz to denote
y. Let R be the set of all finite strings on some finite alphabet, and let us call the elements of R
decision strings and let us assume that there is some probability distribution Dr according to which
we will select r randomly from R. Further, let F be the set of all functions from X to Y . In machine
learning settings we typically compute a map from Zm × R to F . We will denote the function
computed by this map as AS,r. Since the choice of S and r are both random, AS,r is effectively a
random function and can also be thought of as a randomized algorithm.

Given a bound M > 0, we assume that we are given a bounded loss function ℓ : Y × Y → [0,M ].
We define the risk of AS as

R(A,S, r) = Ez∼D [ℓ(AS,r(xz), yz)] ,
where the expectation is over the random choice of point z according to data distribution D. Note
that the risk is a random variable since both S and r are randomly chosen. The empirical risk of AS

is defined as
Re(A,S, r) =

1

|S|
∑
z∈S

ℓ(AS,r(xz), yz).

We are interested in bounding the generalization error
|R(A,S, r)−Re(A,S, r)| .

3.2 A WEAKENING OF UNIFORM STABILITY

Given S = {Z1, . . . , Zm} chosen randomly according to Dm, we choose {Z1+m, . . . , Z2m} also
from Dm independently from S and, for each i ∈ [m], we define

Si = {Z1, . . . , Zi−1, Zi+m, Zi+1, . . . , Zm}.
Definition 1 (Almost (Sure) Support Stability). We say an algorithm AS,r has η-almost support
stability β with respect to the loss function ℓ(·, ·) if for Z1, . . . , Z2m chosen i.i.d. according to an
unknown distribution D defined over Z ,

∀i ∈ [m] : ∀z ∈ supp (D) : Er

[
|ℓ(AS,r(xz), yz)− ℓ(ASi,r(xz), yz)|

]
≤ β

with probability 1− η. If η = 0 then we say the algorithm has almost sure (a.s.) support stability β.

We note that this notion weakens the notion of uniform stability introduced by Bousquet & Elisseeff
(2002) by requiring the bound on the difference in losses to hold with a certain probability. This
probability is defined over the random choices of Z1, . . . , Z2m. Besides the condition on the loss
is required to hold only for those data points that lie in the support of D. These conditions make
almost support stability a data-dependent quantity on the lines of the suggestion made by Zhang
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et al. (2017). We also observe that almost support stability is comparable to but stronger than the
hypothesis stability of Kearns & Ron (1999) as formulated by Bousquet & Elisseeff (2002).

3.3 EXPONENTIAL CONVERGENCE OF GENERALIZATION ERROR

A.s. support stability can be used in place of uniform stability in conjunction with the techniques
of Feldman & Vondrak (2019a) to give guarantees on generalization error. In particular we can
derive the following theorem.
Theorem 2. Let AS,r be a algorithm that is symmetric in distribution and has a.s. stability β with
respect to the loss function ℓ(·, ·) such that 0 ≤ ℓ(AS,r(xz), yz) ≤ 1 for all S ∈ Zm, for all r ∈ R
and for all z = (xz, yz) ∈ Z. Then, there is a constant c > 0 s.t. for any m ≥ 1 and δ ∈ (0, 1),
with probability 1− δ,

Er [R(S, r)−Re(S, r)] ≤ c

(
β log(m) log

(m
δ

)
+

√
log(1/δ)

m

)
.

Proof outline. We give a high-level outline here. Feldman & Vondrak (2019b) used two steps to
get a better generalization guarantees. The first step is range reduction, where the range of the loss
function is reduced. For this they define a new clipping function in Lemma 3.1 Feldman & Vondrak
(2019a) which preserves uniform stability and hence it will also preserve a.s. support stability.
They also use uniform stability in Lemma 3.2 Feldman & Vondrak (2019a) where they show the
shifted and clipped function will still be stable which is done by applying McDiarmid’s inequality
to β sensitive functions. Here use a modification of McDiarmid’s Inequality (Lemma 12 given in
Appendix A) to get bounds for a.s. support stability. The second step is dataset size reduction (as
described in Section 3.3 Feldman & Vondrak (2019a)) which will remain the same for a.s. support
stability as this only involves stating the result for a smaller dataset and the probability, and then
taking a union bound. Therefore both steps of the argument given in Feldman & Vondrak (2019a)
go through for a.s. support stability.

4 A. S. SUPPORT STABILITY OF STOCHASTIC GRADIENT DESCENT

A large family of machine learning algorithms follow a paradigm in which the learned function is
parametrized by a vector w ∈ Rn for some n ≥ 1, i.e., we have some fixed function g : Rn ×X →
Y . The training set is used to learn a suitable parameter vector w ∈ Rn such that the value g(w, xz)
is a good estimate of yz for all z ∈ Z . This value of w is learned by running Stochastic Gradient
Descent (SGD) using a training set drawn from the unknown distribution. We will say that the size of
the training set is m and the number of steps for which SGD is trained is T with the parameter vector
at step t being denoted wt for 0 ≤ t ≤ T . Assuming that T is a multiple of m, the algorithm moves
in epochs of m steps. To frame the learned function output by this algorithm in the terms defined in
Section 3.1, the random decision string r consists of the pair (w0, (π0, . . . , π T

m−1), i.e., the random
initial parameter vector w0 from which SGD begin and the set of T/m random permutations used
in the T/m epochs.

4.1 SOME PROPERTIES OF PARAMETERIZED FUNCTION

In Hardt et al. (2016), proving that the learning algorithm derived by SGD is stable requires smooth-
ness and Lipschitz properties of f , but only for partial derivatives taken on Rn, i.e., on the parameter
space. The requirement there is that every function in the family of functions {f(·, z) : z ∈ Z} is
smooth and has a bounded Lipschitz constant. Our key insight is that this requirement is stronger
than required. All we need is that the functions induced by the data points that we pick to train SGD
have these properties. We now present some definitions that encapsulate this idea.
Definition 3 (Almost Locally Parameter Lipschitz functions). Given a distribution D defined over
Z , a parametrized function f : Rn × Z → R is said to be β-almost Locally Ll Lipschitz w.r.t D
for some β ∈ (0, 1] if for any w ∈ Rn there exists constants Ll > 0 and ϵ > 0 such that, with
probability β (over the choice of z), for all w′ ∈ Rn, ∥w′ −w∥ < ϵ implies

|f(w′, z)− f(w, z)| ≤ Ll∥w′ −w∥.
Note that Ll can depend on z. If β = 1 then we say that f is almost surely locally Ll-parameter
Lipschitz (a.s. Ll-LPL for short).
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Definition 4 (Almost Locally Parameter-Smooth functions). Given a distribution D defined over
Z , a parametrized function f : Rn × Z → R is said to be γ-almost Kl-Parameter Smooth w.r.t
D for some γ ∈ (0, 1] if for any w ∈ Rn there exist constants Kl > 0 and ϵ > 0 such that, with
probability γ (over the choice of z), for all w′ ∈ Rn, ∥w′ −w∥ < ϵ implies

∥∇f(w′, z)−∇f(w, z)∥ ≤ Kl∥w′ −w∥.
Note that Kl can depend on z. If γ = 1 then we say that f is almost surely locally Kl-parameter
smooth (a.s. Kl-LPS for short).

If the function (or its gradient) is locally bounded, and, if we only look at this function at a finite
number of points, we get a “global” property within this finite set of points:
Lemma 5. Given f : Rn → R we have that (1) if f is bounded and is locally Lipschitz at a finite
set of points A ⊆ Rn, then there is a constant L such that for every pair w,w′ ∈ A

|f(w)− f(w′)| ≤ L∥w −w′∥, and
2) if ∇f is bounded and is locally smooth at a finite set of points A ⊆ Rn, then there is a constant
K such that for every pair w,w′ ∈ A

∥∇f(w)−∇f(w′)∥ ≤ K∥w −w′∥.

The proof is in Appendix B.

4.2 A.S. SUPPORT STABILITY OF SGD

We now work towards the a.s. support stability of SGD. First we state a theorem that bounds the
replace-one error of SGD upto a certain number of epochs.
Theorem 6. Suppose we are given a labelled data set Z and probability distribution D defined over
it. Suppose we have a parametrized loss function f : Rn ×Z → R that is a.s. Ll-LPL and a.s. Kl-
LPS w.r.t D. Suppose for some T > 0 multiple of m, for each i ∈ [m] we run Stochastic Gradient
Descent on the f for T/m epochs using a training set S of size m chosen i.i.d. according to D with
random choices r and, parallely, with the same set of random choices r, on a set Si wherein the
i-th data point zi of S has been replaced by another data point z′i chosen from D independent of all
other random choices and with a decreasing learning rate of αt ≤ α0

t . Then, if for all t > 0, we
denote by wt and w′

t the parameter vectors obtained while training with S and Si respectively, we
have that with probability 1

Er [f(wT , z)− f(w′
T , z)] ≤

LSLg

Kg
F (T/m) · (m

α0Kg − 1)

m
, (1)

where F (T/m) := (2T/m)α0Kg · 2T/m, and Lg and Kg are the “global” Lipschitz and “global”
smoothness constants we get from Lemma 5 and LS is a data-dependent Lipschitz constant which
depends only on points picked according to the unknown distribution D.

Proof outline. The proof follows the lines of the argument presented by Hardt et al. (2016) with the
difference that we allow for a probabilistic relaxation of the smoothness conditions in line with our
definition of a.s. stability. Also, note that we have to account for an expectation over the random
string r, and that we have been able to extend the argument to multiple epochs. The complete proof
of Theorem 6 is in Appendix B.

Data dependence and LS . A key feature of the bound presented in equation 1 is that the dependence
on the data is expressed through the data-dependent Lipschitz constant LS . This constant depends
on the training points and the replacement point z′i which is also picked from the data distribution.
In general we expect that if the unknown distribution D has low variance then LS will be small.
Further, a line of research in the optimization literature has shown that the gradients associated with
SGD decay as training proceeds, even for non-convex loss functions, c.f. Section 4 of Bottou et al.
(2018). Therefore we can conclude that the a.s. stability bound of equation 1 is closely connected
to the data distribution and is likely to be useful for cases where SGD returns a meaningful solution
and vacuous for bad cases like the one presented by Zhang et al. (2017).
Corollary 7. For a learning algorithm that is symmetric in distribution and trained as described in
the statement of Theorem 6 under the condition that Lg is a constant w.r.t. m, there is a constant
c > 0 that depends on α0 and Kg such that if it is trained for at most c logm epochs the expectation
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of the generalization error of the algorithm taken over the random choices of the algorithm decreases
as O

(
m−(1−α0Kg) +m−1/2

)
with probability at least 1 − 1/m over the choice of the training set

if α0 < 1/(Kg).

Proof. It is easy to check from Theorem 6 that with the conditions given in the statement of Corol-
lary 7 the learning algorithm has a.s. support stability β where β is o(1/m) if α0 < 1/(Kg). We
can therefore apply Theorem 2 with δ = 1/m to get the result.

If we compare this corollary with Theorem 4 of Kuzborskij & Lampert (2018), we note that their
analysis requires an α0 that decreases with m whereas our analysis allows for a value of α0 that is
constant. Importantly, their analysis bounds generalization error only up to the end of a single epoch
whereas we can bound the error well beyond that. Kuzborskij & Lampert (2018) also require the
Hessian to have a bounded Lipschitz constant, i.e., the third derivative of the loss function has to be
bounded. We do not need this constraint.

5 NEURAL NETWORKS WITH RELU ACTIVATION

The main result of this section presents the conditions required for low generalization error for
Neural Networks with ReLU activation:

Theorem 8. For a neural network with ReLU activation and 1 output neuron, trained on set S ∈ Dm

using SGD for T steps, where D is over Rd × Y , such that Y is countable and for each y ∈ Y
we get a countable set {x ∈ Rd : PrD {lab(x) = y} > 0} , where lab(x) is label of x. For a
doubly differentiable loss function with bounded first and second order derivatives and learning
rate αt =

α0

t . If the data points of S and the spectral norms of weight matrices explored by SGD
are bounded, and Lg and Kg are the “global” Lipschitz and smoothness constant and LS is the
data-dependent Lipschitz constant then,

Er [|R(S, r)−Re(S, r)|] ≤ O

(
LSLg

Kg

F (T/m) log(m)2

m1−α0Kg
+

√
log(m)

m

)
,

with probability at least 1− 1/m, where F (T/m) := (2T/m)α0Kg · 2T/m.

The proof of the theorem is at the end of Section 5.1.

First we will now establish that the theory of a.s. support stability applies to NNs under the condi-
tions specified.

5.1 SUPPORT STABILITY OF NEURAL NETWORKS WITH RELU ACTIVATION

The key to showing the support stability of NNs with ReLU is to establish that they are parameter-
Lipschitz and locally parameter-smooth. We show that this happens with good probability.
Theorem 9. For every w ∈ Rn, a doubly differentiable loss function, ℓ : R×R → R, applied to the
output of a NN with ReLU activation is locally parameter-Lipschitz and locally parameter-smooth
for all x ∈ Rd except for a set of measure 0.

Proof outline. The proof of this theorem is based on the argument that for a given w a point of
discontinuity exists at a given neuron if the input x lies in the set of solutions to a family of equations,
i.e., in a lower dimensional subspace of Rd. This proof is an adaptions of an idea of Milne (2019)
and can be found in Appendix C.

Theorem 9 begs the question: How large are these Lipschitz and smoothness constants? We provide
some general bounds that can be improved for specific architectures:
Proposition 10. Suppose we have a fully connected NN with ReLU activation at the inner nodes
that has depth H + 1. Then, if the spectral norms of weight matrices are bounded for every layer
i.e. ∥W i∥σ ≤ si,∀i ∈ [H], and size of each layers be {d0, . . . , dH} then,

Lg ≤

√√√√ H∑
i=1

(
(di−1 · di)

∏H
l=1 ∥W l∥σ
∥W i∥σ

)
× ∥x∥2
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The proof of the proposition is in Appendix C. The bound on Lg should be compared to the bounds
given in the context of Rademacher complexity by Bartlett et al. (2017) and Golowich et al. (2018).
Our bound is related to the spectral complexity and can potentially be independent of the size of the
network. We are now ready to prove our main theorem.

Proof of Theorem 8. Theorem 9 tells us that a NN with ReLU activations is locally parameter-
Lipschitz and locally parameter-smooth. From Proposition 10 we see that the boundedness of the
first and second derivatives of the loss function and the boundedness of the spectral norm of weight
matrices and data points ensures that the Lipschitz constants and smoothness constants associated
with the NN’s training are bounded w.r.t. m. With all these in place we can apply Theorem 6 to
get the a.s. support stability followed by Theorem 2 to get the desired result. The bound on the
smoothness constant also tells us that the constraint on α0 needed to apply Corollary 7 is not too
stringent, i.e., α0 can be chosen to be a value that is a constant w.r.t. m.

5.2 DISCUSSION

Several of the constraints we have placed above are only for ease of exposition. We discuss which
of these constraints can be removed.

• Removing the fully connectedness constraint. Although Theorem 8 is stated for a fully connected
network, it can be applied to networks like CNNs which have partially connected convolutional
layers with intermediate pooling and normalization layers (e.g., LeNet, AlexNet, etc.). In such cases
the symmetry in distribution condition required for Theorem 2 holds as long as the training set is
chosen i.i.d. from the unknown distribution.

• Adding regularization terms to the loss function. Several popular regularizers, the ℓ2 regularizer
being a prominent example, are doubly differentiable and therefore Theorem 8 can be applied when
such regularizers are used along with a doubly differentiable loss function.

• Activation functions apart from ReLU. We present a comprehensive treatment of ReLU activation
but that does not mean that our results are restricted to this kind of activation. Non-linearities like
max-pool can also be handled in our framework by proving that, like with ReLU, the points of
discontinuity of such a non-linearity also lie in a set of Lebesgue measure 0.

• The case of multiple outputs Although we state the Theorem 8 for the case of a NN with a single
output, it is not difficult to extend the technique to cover the case of multiple outputs.

What about overparametrization? The question put by Zhang et al. (2017) as rearticulated by var-
ious authors, including Chatterjee & Zielinski (2022), can be put as follows: How do we speak
theoretically about generalization in the overparametrized regime where NNs often generalize well
even though they have enough parameters to overfit? Chatterjee & Zielinski (2022) make the point
that some property of the training set is at play here, a claim more specific than the general claim that
there is some property of the data distribution that has been missed. These are related, of course, but
it is our feeling that a more fine-grained analysis of the growth in the replace-one error is required.
We feel that it is possible to look at the local Lipschitz and local smoothness constants in greater
detail taking both network structure and input point values in mind. We hope that the polynomial
characterization of the NN presented in Section C.1.2 will help this process. We conjecture that it
may be able to show that for certain distributions the constants actually improve (decrease) as the
training proceeds, and this could lead to a proof of a.s. support stability in these cases.

6 EXPERIMENTS

In this section we will experimentally show that the Parameter Lipschitz and Parameter Smoothness
constants that we reasoned with are indeed bounded, and that the theoretical upper bound that we
derived for the generalization error of a neural network holds in practice.

Setup. For our experiments we use MNIST and FashionMNIST datasets. In both datasets, we
randomly selected 20, 000 as training and 1, 000 as test points. All experiments were conducted
using a fully connected feed forward neural network with single hidden layer and ReLU activation.
We train the model using SGD (batch size = 1), with cross-entropy loss, starting with randomly
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Figure 1: Maximum of the Lipschitz and smoothness constants at every p (= 20) interval of updates
of SGD (we plot both the running average and the highest value found so far). Notice that these
constants have a clear upper bound throughout the training process.
initialized weights. As suggested in our analysis we use a decreasing learning rate αt =

α0

t . In each
epoch we consider a random permutation of the training set. Lg and Kg are computed by calculating
the norm of gradients and Hessian across the training steps and taking their max.

Experiment 1. Our first experiment is aimed towards establishing that the “global” Lipschitz (Lg)
and smoothness (Kg) values estimated using local values at each step are bounded. Figure 1 sum-
marizes the results of these experiments over MNIST and FashionMNIST datasets (α0 = 0.001).
The plots contain the maximum of the local parameter Lipschitz and smoothness values obtained
after running each experiment 10 times with random weight initialization. These results support our
Theorem 9, since the upper bound values quickly stabilize and do not grow with the size of train-
ing set in both datasets. Similarly, the bounded smoothness constant supports our constraint on the
learning rate, α0 ≤ 1

4Kg
. We find Lg to be 8.1174 (MNIST) & 12.5737 (FashionMNIST), and Kg

to be 58.185 (MNIST) and 102.7096 (FashionMNIST).

Experiment 2. We now turn our attention to the experiment to support our main result, i.e., the
empirical generalization error estimated using validation set is upper bounded by our theoretical
upper bound. We first split each dataset in 20:1 ratio into training and validation set, and train
the model at varying size of training set. We empirically compute the generalization error at each
training set size using the validation set. Figure 2 compares this empirical generalization error
(in red) with the theoretical upper bound (in blue)From these results, we can see that our bound
decreases along with the generalization error thus empirically validating our reasoning.

7 CONCLUSION

We have devised a theoretical framework in this paper for using algorithmic stability to prove gen-
eralization bounds for NNs with ReLU nonlinearities. We feel that it is possible to prove stronger
results in this framework than the ones we have presented here, and more widely applicable ones.
Immediate lines of research that suggest themselves are to apply our methods for CNNs and to
investigate what other architectures can be approached with our method. It would be particularly
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Figure 2: Comparison of empirical generalization error (red) vs. theoretical upper bound (blue) with
varying training set size for different datasets.
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interesting to see if there is some analog of our polynomial characterisation for GNNs. Another
clear challenge is the overparametrized case. We have not been able to tackle it but we feel a more
fine-grained analysis in our framework may possibly lead to such a result.
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A MODIFICATION OF MCDIARMID’S THEOREM

We first define a probabilistic weakening of Lipschitz functions.

Definition 11. Given 2m i.i.d. random variables X1, . . . , X2m drawn from some domain Z ac-
cording to some probability distribution D, for some β > 0 and η ∈ [0, 1], a function f : Zm → R
is called η-almost β-Lipschitz w.r.t. D if

∀i ∈ {1, · · · ,m} : |f (X1, . . . , Xm)− f (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xm)| ≤ β,

with probability at least 1 − η. In case η = 0 we say that f is almost surely β-Lipschitz w.r.t D.
When D is understood we will omit it, and for the case η = 1 we will simply write that f is almost
surely (or just a.s.) β-Lipschitz.

We now state a modified version of McDiarmid’s theorem that holds for η-almost β-Lipschitz func-
tions.
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Lemma 12. Let X1, . . . , Xm be i.i.d. random variables. If f is η-almost β-Lipschitz and takes
values between 0 and M , then,

Pr {f(X1, . . . , Xm)− E [f(X1, . . . , Xm)] ≥ ϵ} ≤ exp

[
−2ϵ2

m ((1− η)β +Mη)
2

]
+ η.

For simplicity, we adopt the notation Ai,j = Ai, · · · , Aj (i.e. with subscript (i,j) we represent
j − i+ 1 variables) and Ai represents only one variable in the rest of the section. Before we prove
Theorem 12, we state and prove the following lemma:
Lemma 13. Let f : Zm → R be a function such that 0 ≤ f(·) ≤ M . Define Vi =
Ei+1,m [f(X1,m)] − Ei,m [f(X1,m)] , where Ei,j [·] denotes EXi,··· ,Xj

[·] . Then, if f is η-almost
β-Lipschitz, then with probability 1− η, ∀i, Vi ≤ (1− η)β + ηM.

Proof.
Vi = Ei+1,m [f(X1,m)]− Ei,m [f(X1,m)]

=

∫
· · ·
∫

yi+1···ym

f(X1,i, yi+1,m)dµ(yi+1,m)−
∫

· · ·
∫

yi···ym

f(X1,i−1, yi,m)dµ(yi,m)

=

∫
· · ·
∫

yi+1···ym

[
f(X1,i, yi+1,m)dµ(yi+1,m)−

∫
yi

f(X1,i−1, yi,m)dµ(yi,m)dµ(yi)

]
dµ(yi+1,m)

where µ is the measure associated with the random variables. Thus, Vi, a function of X1,i, is an ex-
pectation over the random variables yi+1,m. Thus, we can write Vi = Eyi+1,m [Φ(X1,i, yi,m)|X1,i] .

Now, let’s define two sets as follows:
Si = {x ∈ Zi : ∃y ∈ Zm−i : Φ(x, y) ≤ β},

S′
x = {y ∈ Zm−i : Φ(x, y) ≤ β}.

Then, since f is η-almost β-Lipschitz, and renaming yi as yi+m in Φ, since they are i.i.d., for any
x ∈ Si, we have

E [Φ(x, y)|x] ≤
∑
y∈S′

x

Pr {y}β +

1−
∑
y∈S′

x

Pr {y}

M, (2)

and for any x /∈ Si, we have
E [Φ(x, y)|x] ≤ M.

We further note that
∑

x∈Si
Pr {x} ≥ 1− η, and

∑
y∈S′

x
Pr {y} ≥ 1− η. Therefore, applying these

bounds to Equation 2, we get, with probability at least 1− η,
Vi ≤ (1− η)β + ηM.

Proof of Theorem 12. We will use Azuma’s inequality to prove the result. First we show that the
sequence V1, · · · , Vm is a martingale difference sequence with respect to X1,m. To see this, we first
notice that Vi is a function of X1,i. Also, E [|Vi|] is finite since f is bounded. Finally,

E [Vi+1|X1,i] = Ei+1,m [Ei+1,m [f(X1,m)]− Ei,m [f(X1,m)] |X1,i]

= 0

Let E be the event that |f(X1,m) − E [f(X1,m)] | ≥ ϵ, and F the event that Vi is bounded by
β(1− η) + ηM . We have,

Pr {E} ≤ Pr {E|F }Pr {F }+ Pr
{
F
}
. (3)

Using Lemma 13, we have that with probability 1− η, for all i, Vi is bounded by β(1− η) + ηM .

Applying Azuma’s inequality to Pr {E|F }, we have the result.

B A.S. SUPPORT STABILITY OF SGD PROVED

Proof of Lemma 5. If f is locally Lipschitz at w ∈ A, there is an εw > 0 and an Lw > 0 such that
for all w′ ∈ Rn with ∥w−w′∥ ≤ εw, |f(w)−f(w′)| ≤ Lw∥w−w′∥. So, let us turn our attention
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to those w′ ∈ A that lie outside the ball of radius εw around w. Note that for such a w′, if B > 0
is the bound on f , we have that

|f(w)− f(w′)|
∥w −w′∥

≤ 2B

εw
.

Therefore the “global” Lipschitz constant for f within A is max{Lw, 2B/εw : w ∈ A} which
is bounded since A is finite. This proves the first part of the lemma. The second part follows
similarly.

Proof of Theorem 6. For some i ∈ [m] we couple the trajectory of SGD on S and Si where zi ∈ S
has been replaced with z′i. Our random string r in this case is a random choice of an initial parameter
vector, w0, and a random set of T/m i.i.d permutations π0, . . . , πT/m−1 of [m] chosen uniformly
at random. We use these random choices for training both the algorithms with S and Si. For
0 ≤ j ≤ T/m − 1, we denote π−1

j (i) by Ij , i.e., Ij is the (random) position where the ith training
point is encountered in the jth training epoch. The key quantity we will track through the coupled
training process will be

δt = ∥wt −w′
t∥,

for 1 ≤ t ≤ T . If we can show that Er [δT ] is bounded by some quantity B almost surely, we
can invoke the fact that f is a.s. Ll-LPL to say that ∥Er [f(wt, z)− f(w′

t, z)] ∥ ≤ LgB for all
z ∈ supp (D), where Lg is the “global” Lipschitz constant we get from Lemma 5, which is defined
for all z.

We argue differently for the first epoch and differently for later epochs. For the first epoch we note
that for t ≤ I0, δt = 0 since SGD performs identical moves in both cases. At t = I0 + 1
δI0+1 = ∥wI0 −αI0∇f(wI0 , zi)−(w′

I0 −αI0∇f(w′
I0 , z

′
i))∥ = αI0∥∇f(wI0 , zi)−∇f(w′

I0 , z
′
i)∥,

where the second equality follows from the fact that wI0 = w′
I0

by the definition of I0. Using
Lemma 5 we can say that δI0+1 ≤ 2αI0LS almost surely. Notice here we used data-dependent
Lipschitz constant LS which is only defined for points in set S unlike “global” Lipschitz constant.
Now,

δI0+2 ≤ ∥wI0+1 −w′
I0+1∥+ αI0+1∥∇f(wI0+1, zi)−∇f(w′

I0+1, z
′
i))∥.

Here although the parameter vectors wI0+1 and w′
I0+1 are not the same, zπ0(I0+1) and z′π0(I0+1)

are the same by the definition of I0 (assuming that I0 ̸= m). Therefore we get that
δI0+2 ≤ δI0+1 + αI0+1KgδI0+1

with probability 1 since, from Lemma 5 we have that f has a “global” smoothness property for the
entire set of at most 2T parameter vectors that will be encountered during the coupled training of S
and Si. Noting that a similar recursion can be applied all the way to the end of the first epoch, i.e.
till t = m we get

δm ≤ 2αI0LS

m∏
t=I0+1

(1 + αtKg) ≤ 2αI0LS exp

{
m∑

t=I0+1

αtKg

}
, (4)

with probability 1. Moving on to the next epoch we note that we can make the argument above till
the next point where the two training sequences differ, i.e., till the m + I1 + 1st step. At this point
we have,

δm+I1+1 ≤ δm+I1 + αm+I1∥∇f(wm+I1 , zi)−∇f(w′
m+I1 , z

′
i))∥.

Since neither the parameter vector nor the training points are the same in the second term, we have
no option but to use the almost data-dependent Lipschitz constant to say that

δm+I1+1 ≤ δm+I1 + αm+I12LS .
Since αm+I1 < αI0 , observing that our current bound for δm+I1 is larger than αm+I12LS . There-
fore

δm+I1+1 ≤ 2δm+I1 .

So, we see that in the second and subsequent epochs, for time step jm+ Ij + 1, 1 ≤ j < T/m we
have the bound

δm+Ij+1 ≤ 2δm+Ij ,

and for all t > m+ I1, t ̸= I1, . . . , IT/m−1 we have, as before, by the smoothness property that
δt+1 ≤ δt(1 + αt+1Kg).

12
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Therefore, we have that

δT ≤ 2αI0LS(2)
T
m−1 exp

{
T∑

t=I0+1

αtKg

}
≤ α0LS2

T/m

(
2T

m

)α0Kg mα0Kg

(1 + I0)1+α0Kg
. (5)

where, in the first inequality for ease of calculation we have retained the terms of the form (1 +
αIjKg), 2 ≤ j < T/m in the product on the right although we can ignore them. In the second
inequality we have substituted αt = α0/t and used the fact that log n ≤ Hn ≤ log 2n for the n-th
Harmonic number Hn.

Finally, in order to compute Er [δT ] we observe that, since π0 is uniformly drawn from the set of
permutations of [m], I0 is uniformly distributed on [m]. Summing up the last term of (5) over
I0 ∈ [m] and dividing further by m we get the result.

C NEURAL NETWORKS: CHARACTERIZATION AND PROOFS

In order to prove Theorem 9 we first need to describe a characterization of Neural Networks that
allows us to get a better insight into their smoothness properties. We present the characterization in
Section C.1 and the proof in Section C.2.

C.1 A POLYNOMIAL-BASED CHARACTERIZATION NEURAL NETWORKS

C.1.1 NEURAL NETWORK TERMINOLOGY

Neural networks provide a family of parametrized functions of the form we have discussed in Sec-
tion 4. The parameter vector w ∈ Rn is applied over a network structure with layers. In this case
we specify Z to be Rd × R, i.e., the data points are from Rd and the label is from R, i.e., the NN
has a single output. We will denote the depth of the network by H . The layers will be numbered
0 to H with layer 0 being the input layer. The number of neurons in layer i will be ki. For this
discussion we assume a fully connected network. We will denote by wi

j,k the weight of the edge
from the j neuron of the ith layer to the kth neuron of the i+ 1st layer. For the NN with parameters
w at a point x ∈ Rd we will denote the input into the jth neuron of the ith layer by ini,j(w,x) and
its output by outi,j(w,x). These will be equal only if the former is non-negative. Further, we will
assume that all neurons in all layers of the network except the input layer and the output layer have
ReLU activation applied to them. In case the output of a node is 0 due to ReLU activation we will
say the ReLU gate is closed otherwise we will say it is open. The label output by the network will
be outH,1 = out(w,x). For each of exposition we will assume that out(w,x) = 1 if in(w,x) > 0
and 0 otherwise, i.e., there are only two labels in Y .

C.1.2 MULTIVARIATE POLYNOMIALS ASSOCIATED WITH A NEURAL NETWORK

Given a set of indeterminates x = x1, . . . , xl, let P(x) be the set of multivariate polynomials on
x1, . . . , xl with real coefficients. For any polynomial p(x), i1, . . . , iq ∈ [l] and any α1, . . . , αq ∈ R
for some q ≤ l, we will denote by p(x)

{
xij

=αj :j∈[q]
}

the polynomial in P(x \ {xi1 , . . . , xiq}) that
is obtained by setting all occurences of xij to αj in p(x). In particular, p(x) {xi=0} is the polynomial
p(x) with all monomials containing xi removed, and p(x) {xi=1} retains all the monomials of p(x)
but those monomials that contain xi appear without the term xi.

Returning to NNs, let us consider two sets of indeterminates: x = {xi : i ∈ [d]} and w = {w(i)
j,k :

0 ≤ i < H, 1 ≤ j ≤ ki, 1 ≤ k ≤ ki+1} and k0 = d. For a fully connected NN defined in Sec. C.1.1
we will say that it has the following polynomial associated with it:

ϕ(w,x) =

k0∑
j0=1

k1∑
j1=1

· · ·
kH−1∑

jH−1=1

xj0w
(0)
j0,j1

w
(1)
j1,j2

· · ·w(H−1)
jH−1,1

.

Note that the output layer has only one neuron. We will refer to this as the base polynomial of the
NN. The base polynomial associated with the jth neuron in layer i can be derived from the base
polynomial of the network as follow

13
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ϕi,j(w,x) =
ϕ(w,x)

{
w

(i)
l1,l2

=0,w
(l3)

l4,l5
=1:l1∈[ki]\{j},l2∈[ki+1],l3>i,l4∈[kl3

],l5∈[kl3+1]
}∏H

p=i+1 ki
.

Due to ReLU activations varying at different points there is no single polynomial that captures the
output of the NN everywhere in Rn × Rd. However, the following observation shows a way of
defining polynomials that describe the output over certain subsets of the space.

Observation 14. Given w ∈ Rn and x ̸= (0, . . . , 0) ∈ Rd, i ∈ [H], and j ∈ [ki] such that
inl1,l2(w,x) ̸= 0 for all 1 ≤ l1 ≤ i and all 1 ≤ l2 ≤ kl1 , there is a ε > 0 depending on w,x such
that, for all w′ with ∥w −w′∥ < ε,

ini,j(w
′,x) = outi,j(w′,x) = ϕi,j(w

′,x)
{
w

(l1)

l2,l3
=0:l1<i,l2∈[kl1

],l3∈[kl2+1] and inl1,l2
(w,x)<0

}
.

Proof. Since ini,j(w,x) is strictly separated from 0 and there are only a finite number of neurons
in the network, there must be a ε small enough for which all open ReLU gates remain open and
all closed gates remain closed. It is easy to verify that the description of out(w′,x) given above
is correct since it simply sets to 0 all the variables corresponding to weights originating in neurons
whose ReLU gate is closed.

C.2 PROOF OF THEOREM 9

Proof of Theorem 9. The idea behind this proof is due to Milne (2019) who used it for a differ-
ent purpose. From Observation 14 it follows that if we have x ̸= (0, . . . , 0) ∈ Rd such that
ini,j(w,x) ̸= 0 for all 1 ≤ i ≤ H and all 1 ≤ j ≤ ki, then out(w,x) is, in fact, just the polynomial
ϕ(w′,x) within a small neighbourhood of w. Therefore it is doubly differentiable. Since the loss
function is also differentiable, we are done for all such values of x.

So now let us consider the set of points x for which i is the smallest layer index such that
ini,j(w,x) = 0. In case there are two such indices, we break ties using the neuron index j. By
Observation 14, in a neighbourhood of w, ini,j(w,x) is a polynomial in w and x for each x.

Now, we consider two cases. In the first case, outi−1,j′(w,x) = 0 for all j′ ∈ [ki−1], i.e., all the
ReLU gates from the previous layers are closed because ini−1,j′(w,x) < 0 for all j′ ∈ [ki−1].
In this case out(w′,x) = 0 everywhere in the neighbourhood guaranteed by Observation 14 and
therefore ℓ(out(w′,x), lab(x)) is doubly differentiable in the parameter space at w for all such x,
where we assume that each data point has a label lab(x) ∈ {0, 1} associated with it. We note that
this argument is easily portable to the case of a more general label set Y with the property described
in the statement of Theorem 8 since inH,1 will be 0 everywhere in a small neighbourhood.

In the second case we have some j′ ∈ [ki−1] such that outi−1,j′(w,x) > 0. Let Ci,j ⊆ Rd be those
x for which this case holds. Ci,j contains the solutions to ini,j(w,x) = 0. Since we are working
with a specific value of w, this simply becomes a polynomial in x. In fact, inspecting the definition
of base polynomials we note that when w is fixed ini,j(w,x) is simply a linear combination of
x1, . . . , x

d
R. This implies that Ci,j is a hyperplane in Rd. We note that this argument can also be

made of the output node under the condition on the labelset given in the statement of Theorem 8
because for inH,1(w,x) to give a value that lies on the boundary between two sets with different
labels for a given w, x must be drawn from a set of Lebesgue measure 0.

Since the network size is finite the set of all possible values of x for which case 2 occurs, i.e.,⋃
i∈[H],j∈[ki]

Ci,j is a finite union of hyperplanes in Rd and therefore a set of Lebesgue measure
0.

Proof of Proposition 10. Let us consider partial derivative w.r.t w(i)
ℓ1,ℓ2

.For this let Iil1,l2 be the matrix
of size W i such that all Iil1,l2 [l1, l2] = 1 and rest all entries are zero. So we can write the partial
derivative as,

∂ϕ(w,x)

∂w
(i)
ℓ1,ℓ2

= WH ×WH−1 . . .W i+1 × Iil1,l2 ×W i−1 . . .W 1 × x
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Although we have scalar values both the side, we take spectra norm (∥.∥σ) on both the sides, and
upper bound R.H.S by product of individual norms.∣∣∣∣∣∂ϕ(w,x)

∂w
(i)
ℓ1,ℓ2

∣∣∣∣∣ ≤
∏H

l=1 ∥W l∥σ
∥W i∥σ

× ∥x∥2

Now taking ∥.∥2 over gradient vector we get the desired result.

D REPLY OF REVIEWS

D.1 REVIEWER 1, UXNU

¿ the authors may need to provide some examples to quantify how weak it is and how much im-
provement we can get by using this weaker version of stability

The standard definition of stability cannot handle non-linearities. We are giving a much weaker
version of stability to widen the usability of stability to more realistic frameworks. Specifically
when non-linearities are used neural networks cannot be globally parameter Lipschitz and smooth,
so in order to fit this assumption we used a.s. support stability to allow for the absence of smoothness
with small probability.

¿ What’s the difference between Theorem 7 and the generalization results in [Hardt et al., 2016], if
ignoring the difference in terms of the assumptions?

Yes, Theorem 7 and Generalization result of Hardt et al looks similar but this probabilistic approach
widens the application of stability, we used the a.s. version with η = 0 which allowed us to give
generalization bound for neural networks with non-linearities like ReLU. Moreover support stability
allows for data dependent assumptions over set S and the replaced point z

′

i . Notice now we have
added a more stronger generalization error bound for a.s. support stability in Theorem 4

¿ It seems that the major goal of Section 5 is to (1) verify that Assumptions (Definitions 4 & 5) are
satisfied. Then why Section 5.1.1 and Section 5.1.2 are necessary, at least in the main part of this
paper?

We thank the reviewer for catching this. We have moved the material from Section 5.1 to Appendix.

¿ As claimed in the beginning of this paper, one potential advantage of the developed theoretical
framework is to leverage the information of data distribution, or simply, the support of data distri-
bution. However, I do not see this in the theorem or discussion after the theorems. I believe this
should be a key point of the new theory, so the authors may need to thoroughly discuss whether or
how considering this point can give better generalization results.

We thank the reviewer for pointing this out. In fact our results had the potential for making a clearer
connection with data dependence and we have now established it. The stability bound of Theorem 6
now has a data dependent Lipschitz constant LS in it. We have added a discussion below Theorem
6 on how this allows us to argue that for “good” unknown distributions we expect our stability
bound to be good. Here “good” can either mean that D has low variance or it can mean that it is a
distribution for which SGD converges.

¿ The definition of i,j(w,x) needs more explanation, why this definition is useful and how to leverage
it should be particularly discussed.

¿ In Observation 10, why the results do not rely on the negativeness or positiveness of ini,j(w’ , x)?

¿ Novelty seems good, but it still lacks a thorough comparison with prior works.

D.2 REVIEWER 2, 8TFR

¿ This is because the paper’s results are mostly based on the assumptions on the local Lipschitzness
and smoothness of the loss function, and there are very few assumptions on the data distribution
which is the key to the good generalization performance of deep convolutional nets on image data
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¿ the smoothness coefficient of standard deep neural networks could be extremely large in practice,
which makes the generalization bound overly large for actual deep learning experiments.

¿ Theorem 9 is an asymptotic convergence result and does not provide a non-asymptotic generaliza-
tion error bound that holds for finite training data.

¿ The paper’s experiments use a one-layer neural network with ReLU activation (the width of the
network is not specified in the text). This setting seems too simple for experimenting the gener-
alization framework, and that would be better to include numerical results for more realistic deep
learning problems, e.g. a deep CNN or ResNet applied to a more challenging image dataset.

D.3 REVIEWER 3, GUYV

¿ The authors are required to clarify why the “a.s.” is helpful. Is it designed to match the zero-
measure nonlinear points in the activation functions?

He has answered his own question! But we need to discuss further. Discuss example presented for
UXNu.

¿ the paper needs a proof sketch in the main text. Based on the sketch, the authors need to clarify
the significance and difficulty of the proofs.

¿ the authors are required to give a more detailed discussion on the differences and advantages of
the a.s. support stability with the many existing stability measures.

¿ To me, the proofs are quite straightforward: the relationship between the stability and the general-
ization bound needs merely an additive decomposition on the probability compared with the existing
results; the a.s. locally smooth and a.s. locally Lipschitz continuous are straightforward given the
nonlinear points in ReLU are of zero measure; and the a.s. support stability of the whole ReLU net-
work comes from (1) the stability of a single layer (linear mapping of the weight matrix + a.s. linear
mapping of the ReLU) and (2) composition of the multiple layers. These undermines the quality of
this paper. Please correct me in the responses if I was wrong.

Response: We request the reviewer to take a closer look at the proof of Theorem 11. The proof is
more complicated than he thinks, it is not, in fact, a composition of stabilities across layers. It is
a deeper case analysis. Hopefully this will convince the reviewer that the mathematical content is
non-trivial. We also request the reviewer to appreciate that from modifying McDiarmid’s theorem
to analysing SGD to showing the smoothness of ReLU, we have connected a number of different
concepts. Often deep mathematics involves building a big structure out of a large number of small
steps.

¿ While the authors give estimates for these constants, the upper bounds grow as a linear function
of the number of parameters, and an exponential function on the depth. This implies these results
can only apply to neural networks with small complexity. An advantage of stability analysis is that
it can imply dimension-independent bounds. However, the results of this paper does not inherit this
property.

¿ in the recent analysis generalization bounds for the order O(log(m) + 1/m) have been developed
for β-uniformly stable algorithms, which is much better than the bounds in Thm 3. While Thm 3
considers a relaxation of uniform stability, the results do not recover the existing bounds if η = 0.

HP: Our a.s. Support stability can also be directly used in conjunction with Feldman and Von-
drak’s techniques. We have added a theorem stating this in Sec 3.4 and given a proof outline in the
appendix.

¿ The upper bounds of Thm 7 also seem to be suboptimal. For example, if 0=0 we expect the gen-
eralization error to be 0. However, in this case, the upper bounds there become O(Lg22T/m/(Kgm))

We have fixed it thankyou for pointing it out.

¿ Furthermore, the step size is of the order O(1/t). The step size decays very fast for which the
training errors by SGD decay very slowly. Therefore, it is hard to find a good model with this step
size scheme.
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¿ If we combine Proposition 12 and Thm 7 together, the generalization bounds would involve O(n
K2H), where n is the number of parameters and H is the depth. It seems that this approach does
not show advantage over complexity-based approach. For example, size-independent generalization
bounds have been derived based on Rademacher complexity analysis, see, e.g., Ref [1,2]. There-
fore, it is not quite clear to me the usefulness of the support stability since there are no convincing
applications. I would suggest the authors to make a detailed comparison between these bounds.

¿ Section 4: In 3.1 should be in Section 3.1 ¿ Section 4: and and ¿ Thm 9: what is the meaning
of ab(x) ¿ Section 5.3: it is possible look ¿ Proof of Thm 7: you define t = —Er[wt - wt’]— .
According to the proof, it seems that t= wt - wt’ ¿ Proof of Thm 3: ”the concavity of the absolute
value function” should be ”the convexity of absolute value function”
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