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Abstract
Recent mathematical benchmarks indicate that
large language models (LLMs) achieve strong
performance in mathematical competitions such
as AIME, with leading models attaining scores
comparable to or exceeding those of top hu-
man participants. However, these benchmarks
evaluate models solely based on final numeri-
cal answers, neglecting rigorous reasoning and
proof generation which are essential for real-
world mathematical tasks. To address this, we
introduce a comprehensive evaluation of full-
solution reasoning for challenging mathematical
problems. Using expert human annotators, we
evaluated several state-of-the-art reasoning mod-
els on the six problems from the 2025 USAMO
within hours of their release. Our results show
that all tested models struggle significantly, with
none exceeding a score of 30%, and most achiev-
ing only trivial scores below 5%. Through a de-
tailed analysis of reasoning traces, we identify
the most common failure modes and find sev-
eral unwanted artifacts arising from the optimiza-
tion strategies employed during model training.
Overall, our results underscore the limitations of
current LLMs in tasks requiring deep mathemat-
ical understanding and emphasize the need for
significant advances in reasoning and proof gen-
eration capabilities.

1. Introduction
The advancement of reasoning models has significantly
improved the mathematical capabilities of large language
models (LLMs). Evaluation efforts demonstrate that these
models achieve impressive performance in mathematical
competitions such as AIME (Google DeepMind, 2025;
OpenAI, 2025). However, these competitions only evaluate

1INSAIT, Sofia University "St. Kliment Ohridski" 2ETH
Zurich. Correspondence to: Ivo Petrov <ivo.petrov@insait.ai>.

The second AI for MATH Workshop at the 42nd International
Conference on Machine Learning, Vancouver, Canada, Vancou-
ver, Canada, 2025. Copyright 2025 by the author(s).

final numerical answers and do not require rigorous proof-
based reasoning essential for most mathematical tasks.

Benchmarking mathematical reasoning Current
benchmarks that mitigate this issue either rely on formal
verification tools such as Lean (Zheng et al., 2022; Liu
et al., 2023; Tsoukalas et al., 2024) or focus on the
evaluation of constructive proofs (Balunovic et al., 2025).
While these approaches are useful, the former does not
leverage the LLMs’ strong natural language generation
capabilities, and the latter covers only a limited subset
of proofs. Only Frieder et al. (2023) and Mahdavi et al.
(2025) evaluate LLMs on full-solution reasoning, but
both of these evaluations are limited to a static analysis
of mathematical capabilities. As a result, neither presents
their work as a benchmark, and both include problems
that could potentially have appeared in the training data.
Therefore, it remains uncertain whether current reasoning
LLMs can reliably address complex mathematical ques-
tions requiring rigorous reasoning, which is crucial in
real-world mathematical contexts.

Our approach To overcome these limitations, we con-
duct the first evaluation of natural language proofs by
LLMs on challenging problems from the 2025 USA Mathe-
matical Olympiad (USAMO). The USAMO represents one
of the highest tiers of high school mathematics competi-
tions in the United States, demanding detailed proofs and
explanations analogous to the International Mathematical
Olympiad (IMO). Participants qualify through prior com-
petitions, including the AIME, but USAMO problems re-
quire significantly more rigorous solutions.

Overall, we find that current LLMs struggle significantly
on USAMO problems, with the best-performing model
achieving an average score of less than 30%, and the ma-
jority obtaining less than 5%. Our evaluation reveals sev-
eral critical failure modes, including flawed logic, unjusti-
fied assumptions, and a lack of creativity. These findings
underscore the substantial limitations of current LLMs in
generating rigorous proofs. In this report, we first describe
the landscape of mathematical benchmarking in §2, outline
our evaluation methodology in §3, present detailed results
and identify critical weaknesses in §4, and discuss qualita-
tive observations in §5.
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Main contributions Our key contributions include:
• A standardized framework for unbiased evaluation of

mathematical proofs.

• A thorough evaluation of 11 of the best reasoning
LLMs on the USAMO 2025 competition.

• A qualitative analysis of common artifacts and issues
in the solution traces.

2. Related Work
The benchmarking of mathematical reasoning in LLMs
can be roughly divided into three categories: answer-based
benchmarks, formal verification, and full-proof evaluation.
We discuss each of these approaches below.

Answer-based Benchmarks The most prominent
benchmarks for mathematical reasoning evaluate problems
by comparing numerical or algebraic expressions to a
ground truth. Early datasets like GSM8K (Cobbe et al.,
2021) and MATH (Lightman et al., 2024) are effectively
“solved” by the latest large-language models (Guo et al.,
2025; Qwen, 2025), and even more advanced collections
of competition-style problems such as Omni-MATH (Gao
et al., 2025), OlympiadBench (He et al., 2024), and AIME
2024/25, are now approaching saturation with the release
of systems such as GEMINI-2.5-PRO and O4-MINI. More-
over, these benchmarks fail to penalize flawed reasoning,
as models can produce the correct final answer despite
serious logical errors (Guan et al., 2025). Since all of these
datasets are publicly accessible, there is also a significant
risk of inadvertent data contamination.

Private benchmarks such as FrontierMath (Glazer et al.,
2024) mitigate leakage and present substantially tougher
problems, but their hidden nature hinders transparent track-
ing of progress in the field. Furthermore, the benchmark
also relies on answer-based evaluation, which does not cap-
ture the full complexity of mathematical reasoning.

Formal Verification An alternative evaluation approach
relies on formal proof verification. These benchmarks re-
quire models to generate proofs in formal languages such as
Lean or Isabelle, where correctness can be rigorously vali-
dated (Tsoukalas et al., 2024; Zheng et al., 2022). However,
while this approach ensures rigor, it struggles to leverage
the natural language capabilities of LLMs, even with spe-
cialized training. Additionally, minor errors can cause an
otherwise valid proof to be rejected, making this evaluation
method overly punitive for mostly correct reasoning.

Full-proof evaluation Studies evaluating LLMs’ ability
to produce complete and correct mathematical proofs are
still rare. Frieder et al. (2023) evaluates full-proof solutions
but only on two older, non-reasoning models, providing a
limited perspective on current capabilities.

A concurrent study has also found that LLMs struggle with
solving proof-based problems (Mahdavi et al., 2025). Their
evaluation focuses on problems from the IMO Shortlist,
which are comparable in difficulty to those from the US-
AMO. However, our work evaluates more recent LLMs that
exhibit significant improvements in mathematical reason-
ing, such as GEMINI-2.5-PRO and O4-MINI. Additionally,
instead of labelling each solution as simply correct or incor-
rect, we evaluate model responses on a continuous grading
scale. This provides a more nuanced measure of perfor-
mance, which is crucial in real-world use cases.

3. Methodology
This section outlines the methodology used for evaluat-
ing the mathematical reasoning capabilities of the selected
LLMs. Our approach prioritized accuracy, fairness, and
transparency throughout each step, involving careful prepa-
ration and grading procedures.

3.1. Problem Selection and Preparation

We selected the USAMO 2025, a highly prestigious math-
ematics competition comprising six proof-based problems
administered over two days, as our benchmark. This com-
petition aligns perfectly with our evaluation objectives, as
the questions are challenging, require detailed proofs for
full credit, and are uncontaminated. In Fig. 1, we present
two problems from the competition, with the remaining
four available in §B.

For evaluation, we provided each model with the problems,
prompting them explicitly to produce comprehensive and
detailed proofs formatted in LATEX. The full prompt in-
structions and details of used hyperparameters are avail-
able in §A.2. To reduce variance, each model solved every
problem four separate times. Solutions, excluding thought
traces, were anonymized and converted into PDF format
for grading. GROK 3, GEMINI-2.5-PRO, O3, O4-MINI,
and DEEPSEEK-R1 (05/28) were evaluated after our ini-
tial grading and were therefore not fully anonymous when
presented to the judges.

3.2. Judge Selection and Training

Our grading team consisted of four experts, each having
substantial mathematical problem-solving experience as a
former national IMO team member or having participated
in final-stage team selection process for their respective
country. Prior to the grading, judges received instruc-
tions detailing evaluation goals and methodologies. These
guidelines are accessible in the supplementary material. A
trial run with three USAMO 2024 problems was conducted
to familiarize evaluators with the grading approach and re-
solve ambiguities. Small misunderstandings were clarified
during this session.
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Problem 1: Let k and d be positive in-
tegers. Prove that there exists a positive
integer N such that for every odd integer
n > N , the digits in the base-2n represen-
tation of nk are all greater than d.

Problem 5: Determine, with proof, all
positive integers k such that

1

n+ 1

n∑

i=0

(
n

i

)k

is an integer for all positive integers n.

Figure 1: Two problems of USAMO 2025. The other problems are available in §B

3.3. Grading Procedure

Each of the six problems from USAMO 2025 was indepen-
dently evaluated by two evaluators, with each judge respon-
sible for grading three unique problems. This double grad-
ing method, modelled after the IMO’s evaluation process,
ensures consistency in our grading and decreases biases.

Since the official USAMO does not release standard solu-
tions or grading schemes, we carefully developed a stan-
dardized grading scheme for each problem, drawing from
reliable mathematical community resources, particularly
the Art of Problem Solving (AoPS) forums. All solutions
from these sources were verified by our evaluators for ac-
curacy before creating the grading scheme. Following US-
AMO conventions, each solution was graded out of a maxi-
mum of seven points with partial credit given for significant
and meaningful progress. The finalized grading schemes
are available in the supplementary material. An example
can be found in §A.3.

Judges independently reviewed each assigned solution
against the pre-established grading scheme. When a solu-
tion did not perfectly align with the scheme, the approach
was awarded points where appropriate. Each judge docu-
mented their reasoning, including justification for each par-
tial credit awarded. These notes are also accessible on our
website, with an example provided in §A.3.

Evaluators also documented prominent failure modes ob-
served during grading, defined as the first instance of in-
correct or inadequately explained reasoning. Specifically,
mistakes were categorized into four classes:

• Logic: Errors due to logical fallacies or unjustified
leaps disrupting the reasoning.

• Assumption: Errors coming from the introduction
of unproven or incorrect assumptions that under-
mined subsequent steps.

• Creativity: Errors resulting from fundamentally in-
correct solution strategies due to the inability to iden-
tify the correct approach.

• Algebra/Arithmetic: Errors arising from critical al-
gebraic or arithmetic miscalculations.

We show examples of these errors in §C.1.

Additionally, noteworthy behaviors or trends in model-
generated solutions were systematically logged for further
analysis. These observations were used to identify common
pitfalls and areas for improvement in the models’ reasoning
capabilities and are presented in §5.

4. Results
We now present the results of our evaluation. In §4.1, we
detail our primary findings, demonstrating that few mod-
els achieve a score above 5%, with GEMINI-2.5-PRO be-
ing the only one available before the public release of the
USAMO 2025 problems that scores a non-trivial result of
around 25%. In §4.2, we analyze common failure pat-
terns in depth, identifying typical mistakes and trends in
the models’ reasoning. Finally, in §4.3, we try and fail to
automatically grade the models’ solutions by giving a judge
model the grading scheme and a ground-truth solution.

4.1. Main Results
Model performance We evaluate eleven state-of-the-art
reasoning models on the 2025 USAMO problems. Specifi-
cally, we chose QWQ (Qwen, 2025), the original and May
versions of DEEPSEEK-R1 (Guo et al., 2025), GEMINI-
2.5-PRO (Google DeepMind, 2025), FLASH-THINKING
(Reid et al., 2024), O1-PRO (Jaech et al., 2024), O3-MINI
(OpenAI, 2025a), O3, O4-MINI (OpenAI, 2025b), GROK
3 (xAI, 2025) and CLAUDE 3.7 (Anthropic, 2025). For
brevity, we use a shorthand notation for each model in the
main text, and we refer to §A.1 for the full model names.
The chosen hyperparameters and prompt can be found in
§A.2.

We provide a detailed, per-problem breakdown of model
performance in Table 1, with average scores computed
across four evaluation runs. Each USAMO problem is
scored out of 7 points, with a total maximum score of 42
points per run. The table also includes the total cost of run-
ning each model over all problems and evaluation runs. If
the model is free, we indicate this with "N/A".

While state-of-the-art LLMs perform comparably to top
human competitors in competitions focused on numeri-
cal answers, our evaluation reveals a substantial gap in
their ability to generate rigorous mathematical proofs.
Only four models — GEMINI-2.5-PRO, O3, O4-MINI, and
DEEPSEEK-R1 (05/28) — scored above 5%, with most
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Table 1: The main results of our evaluation. Listed scores are averaged over four runs. We measure cost in USD, and report
the average score across all generations and graders for each problem. We highlight in green all models that were released
before the competition problems were made public.

Rank Model P1 P2 P3 P4 P5 P6 Total Cost

1-4 DEEPSEEK-R1 (05/28) 7.0 0.0 0.0 5.3 0.0 0.5 12.8 0.91
1-4 GEMINI-2.5-PRO 6.5 0.0 0.1 3.5 0.0 0.0 10.1 6.23
1-4 O3 4.0 0.0 0.0 4.4 0.3 0.5 9.2 24.17
1-5 O4-MINI 6.3 0.0 0.0 1.8 0.0 0.0 8.1 2.21
5-11 DEEPSEEK-R1 0.5 0.0 0.0 1.5 0.0 0.0 2.0 2.03
4-11 GROK 3 2.0 0.0 0.0 0.0 0.0 0.0 2.0 N/A
5-11 FLASH-THINKING 1.5 0.0 0.0 0.0 0.2 0.0 1.8 N/A
5-11 CLAUDE 3.7 0.5 0.5 0.0 0.0 0.0 0.6 1.5 9.03
5-11 QWQ 1.2 0.0 0.0 0.0 0.0 0.0 1.2 0.42
5-11 O1-PRO 0.5 0.0 0.0 0.0 0.2 0.4 1.2 203.44
5-11 O3-MINI 0.5 0.1 0.0 0.0 0.0 0.2 0.9 1.11

of their points coming from Problems 1 and 4, the easiest
problems. All other models scored below 5%, highlighting
a severe limitation in handling the complexity and rigor of
USAMO-level problems. Notably, among nearly 175 solu-
tions from the lower-scoring models, the only perfect 7/7
score was a single GROK 3 attempt on Problem 1.

Although the USAMO is more challenging than previously
tested competitions, the near-total failure of most models
to solve more than one problem demonstrates that current
LLMs are still far from capable of rigorous olympiad-level
reasoning. Even the top four models, despite outperform-
ing others, struggled significantly. This limitation suggests
that existing optimization methods like GRPO (Shao et al.,
2024) may currently be insufficient for tasks requiring de-
tailed logical precision.

Rank variance To estimate the statistical significance of
our ranking, we also compute a confidence interval for the
model ranks using a paired permutation test at a signifi-
cance level of α = 0.95. In Table 1 we see that our bench-
mark clearly differentiates the top 4 models from the rest
but is not sufficiently powerful to statistically claim any-
thing about the ordering of the two groups. The only ex-
ception to this is that the test allows an inversion between
GROK 3 and O4-MINI, implying that the small sample size
makes it unreliable to rank the models with high precision.

4.2. Failure Modes

The most frequent failure mode among human participants
is the inability to find a correct solution. Typically, hu-
man participants have a clear sense of whether they solved
a problem correctly. In contrast, all evaluated LLMs con-
sistently claimed to have solved the problems. The only
exceptions to this were 2 attempts by O3 on problem 2,
where it conceded that it would not be able to produce a rig-

orous solution. This discrepancy poses a significant chal-
lenge for mathematical applications of LLMs as mathemat-
ical results derived using LLMs cannot be trusted without
rigorous human validation. To further investigate this limi-
tation, we conducted a thorough analysis of the errors iden-
tified during grading using the categories defined in §3.

Figure 2 illustrates the distribution of these error categories
as determined by our judges. The most common errors
were related to flawed logic, with solutions frequently us-
ing unjustified reasoning steps, incorrect rationale, or mis-
interpretations of previous progress. Another significant is-
sue was the models’ tendency to treat certain critical proof
steps as trivial without proper justification. Notably, O3-
MINI, despite being one of the best reasoning models, fre-
quently skipped essential proof steps by labelling them as
"trivial", even when their validity was crucial.

Another important observation is the lack of creativity in
the models’ reasoning. Each model often attempted the
same (and wrong) solution strategy across all attempts, fail-
ing to explore alternative approaches. One exception to this
observation was FLASH-THINKING, which attempted mul-
tiple strategies in the same run, but as a consequence only
shallowly explored each one, failing to reach a valid con-
clusion. An example of this behavior is shown in §C.2.

However, the models generally demonstrated strong perfor-
mance in algebraic and arithmetic computations, success-
fully performing symbolic manipulations without external
computational support. Still, DEEPSEEK-R1 showed a no-
tably higher frequency of algebraic or arithmetic errors,
indicating a clear area for targeted improvement in this
model. This improvement is indeed reflected in the most
recent update (DEEPSEEK-R1 (05/28)), where it did not
make a single critical computational mistake.
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Figure 2: Distribution of first encountered failure mode.

4.3. Automated Grading
We explored the feasibility of replacing human graders
with LLM-based evaluators, selecting O4-MINI, O3-MINI
and CLAUDE 3.7 as graders. All models were provided
with the correct grading scheme, along with a verified so-
lution and an example evaluation for reference. In §A.2,
we provide the full prompt used for this evaluation.

As detailed in Table 2, neither O3-MINI nor CLAUDE
3.7 accurately graded the solutions, consistently overes-
timating their quality. Specifically, the models frequently
awarded points for incorrect or unjustified reasoning, in-
flating the scores by a factor of up to 20. Notably, FLASH-
THINKING and GROK 3 received significantly lower scores
from these two automated graders compared to other mod-
els. We hypothesize this discrepancy arises because both
tend to generate multiple solutions per attempt or present
the solutions in a chaotic manner, potentially confusing
the LLM-based judges and resulting in lower scores. Con-
versely, QWQ achieved considerably higher scores, likely
because it often generates simpler solution attempts, which
are easier for the automated judges to interpret.

In contrast, O4-MINI exhibited much closer alignment with
human evaluations, particularly in identifying and penal-
izing critical errors that invalidate solutions. However, it
also showed a clear bias in favor of responses generated
by OpenAI models. To evaluate this bias, we compared
the scores assigned to OpenAI and non-OpenAI solutions
across randomly permuted labels, computing the difference
between human-assigned and model-assigned scores. At a
significance level of α = 5%, O4-MINI awarded OpenAI-
generated responses 41.3% more points. In comparison,
CLAUDE 3.7 showed a smaller bias of 8.1% in favor of
OpenAI models, while O3-MINI gave 3.7% fewer points to
them. Full details of the statistical test used are provided
in §A.4. These findings indicate that, although O4-MINI
more closely mirrors human judgment, its systematic bias
renders it unsuitable as a standalone evaluator.

Table 2: Results of automated grading. The table shows the
average total score which is at most 42.

Model Ours O4-MINI O3-MINI CLAUDE 3.7

DEEPSEEK-R1 (05/28) 12.8 12.0 18.4 15.2
GEMINI-2.5-PRO 10.1 13.8 19.6 19.3
O3 9.2 13.2 20.4 21.8
O4-MINI 8.1 15.9 21.3 23.3
DEEPSEEK-R1 2.0 6.4 19.3 14.9
GROK 3 2.0 5.1 15.1 9.1
FLASH-THINKING 1.8 4.4 10.5 14.1
CLAUDE 3.7 1.5 2.0 19.0 18.4
QWQ 1.2 7.1 23.8 18.8
O1-PRO 1.2 12.8 19.3 21.0
O3-MINI 0.9 11.1 19.5 17.1

5. Qualitative Discussion
During the evaluation, judges also documented common is-
sues and noteworthy behaviors exhibited by the models. In
this section, we discuss some of the most prominent issues
that we observed.

Answer Boxing Current reinforcement learning opti-
mization techniques rely on extracting rewards from a
clearly identifiable final answer. To facilitate accurate re-
ward extraction, models are typically instructed to enclose
their final answers within a \boxed{} environment. How-
ever, this requirement often produces unintended artifacts
in the solutions for the USAMO problems. Specifically,
even though most of the evaluated problems do not require
a final boxed answer, many models consistently provided
answers within a boxed environment. In a particularly no-
table instance from problem 5, QWQ confused itself by dis-
missing the possibility of a non-integer solution, despite no
such restriction existing in the statement. Consequently,
it ultimately boxed only the number 2 as the final an-
swer, even though it had otherwise correctly deduced that
all even numbers satisfy the given conditions (see §C.3).
This behavior illustrates how alignment techniques such as
GRPO (Shao et al., 2024) inadvertently encourage models
to treat every mathematical problem as requiring an explic-
itly boxed final answer, negatively affecting their overall
reasoning.
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Generalizing Patterns Models frequently exhibited a
tendency to overgeneralize patterns observed in smaller nu-
merical cases to larger, untested cases. While this heuristic
approach might be effective for problems that only require
a numerical answer, it is fundamentally flawed for prob-
lems that demand rigorous proof. Models often incorrectly
asserted that these patterns observed for small cases would
hold generally, without providing formal proof for such a
claim (see §C.4).

Non-Existent Citations One of the most frequent and
concerning mistakes made by GEMINI-2.5-PRO is the gen-
eration of citations to sources that do not exist. This is-
sue is especially prevalent in problems where the model
struggles significantly and fails to produce a correct solu-
tion. In such cases, it often fabricates references to theo-
rems or lemmas that appear plausible but, to the best of our
knowledge, are not real. For example, in P6, all four gen-
erations include citations to works that we were unable to
verify or locate. We suspect this behavior stems from the
model’s training with internet access: when it is unable to
use the internet in the thought process, it appears to gener-
ate a convincing-sounding citation instead. An illustration
of this phenomenon is provided in §C.5. This tendency is
particularly troubling, as it can result in the spread of mis-
information which seem to use credible academic sources.

Solution Structure and Clarity There was significant
variation in the clarity and structural coherence of the
solutions provided by different models. Models such
as O3-MINI and O1-PRO generally presented their solu-
tions clearly, logically, and in an easily interpretable man-
ner. Conversely, models like FLASH-THINKING and QWQ
frequently produced chaotic and barely interpretable re-
sponses, sometimes confusing multiple unrelated ideas
within a single solution. Further, GEMINI-2.5-PRO also
had significant issues with the clear presentation of results,
sometimes boxing entire proofs or letting its full thought
process slip through in its proof (§C.6). The noticeable
clarity in models trained by OpenAI suggests that addi-
tional training focused on solution coherence substantially
improved their readability, an aspect evidently less empha-
sized in other models.

Synthetic Solving of Geometry Problems Finally, a
persistent issue across all models was their tendency to
tackle the geometry problem (P4) through brute-force
methods, relying on lengthy and tedious computations. Of
the 9 out of 44 correct solutions, none included any syn-
thetic geometric insights that could lead to the solution;
instead, all depended solely on algebraic brute-force ap-
proaches. Most of the incorrect responses also attempted
this method but failed to produce coherent, step-by-step
explanations. This behavior is particularly concerning, as

computational approaches rarely scale to harder problems
and do little to enhance understanding of the geometric
properties underlying the problem.

6. Limitations
As we discuss in §3, the accuracy of our results and the ob-
served insights rely on human participants carefully going
through every solution. This kind of approach is difficult
to scale up by a significant degree without involving more
judges over a longer period. This limitation, alongside the
small problem sample size, makes it difficult to differen-
tiate between similarly performing models, as we showed
with the statistical test in §4.1.

7. Conclusion
In this study, we conducted a thorough evaluation of eleven
state-of-the-art LLMs on challenging problems from the
USAMO 2025 competition. Employing a rigorous human
evaluation protocol, we found that all models performed re-
markably poorly: even the best model demonstrated an av-
erage accuracy of only around 30%. Our in-depth analysis
of the models’ reasoning revealed recurring failure modes,
including notable artifacts arising from the optimization
strategies employed during model training. These results
provide compelling evidence of the severe limitations cur-
rent LLMs face in rigorous mathematical reasoning and
proof generation at the level required by olympiad compe-
titions. Substantial advances will be necessary to close this
gap and enable LLMs to meet the demands of high-level
mathematical problem solving.
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A. Additional experimental details
Here we describe any additional information related to our evaluation setup and details.

A.1. Model Names

For brevity and visual clarity, we have shortened the model names as follows:

• O4-MINI (HIGH) as O4-MINI

• O3 (HIGH) as O3

• O3-MINI (HIGH) as O3-MINI

• O1-PRO (HIGH) as O1-PRO

• DEEPSEEK R1 as DEEPSEEK-R1

• The version of DEEPSEEK R1, released on May 28th as DEEPSEEK-R1 (05/28)

• QWQ-32B as QWQ

• GEMINI-2.0-FLASH-THINKING-EXP as FLASH-THINKING

• CLAUDE-3.7-SONNET-THINKING as CLAUDE 3.7

• GROK 3 BETA (THINK) as GROK 3

• GEMINI-2.5-PRO-EXP-03-25 as GEMINI-2.5-PRO

A.2. Hyperparameters and Prompt

Model Hyperparameters For O4-MINI, O3, O3-MINI, O1-PRO, GEMINI-2.5-PRO, CLAUDE 3.7, GROK 3, and FLASH-
THINKING, we used the default hyperparameters provided by their official API. For the OpenAI models, we used the
high reasoning setting, which provides the highest available reasoning budget. For CLAUDE 3.7, GEMINI-2.5-PRO, and
FLASH-THINKING, we set the maximum reasoning token limit to 64000.

As recommended by the authors of both DEEPSEEK-R1 versions and QWQ, we used a temperature of 0.6 and a top-p value
of 0.95. Additionally, for QWQ, we set top-k to 40. These hyperparameters sets correspond to the default hyperparameters
used by the official HuggingFace models1. The token limit was set to 64000. We use the TogetherAPI for these 3 models.

Prompt Every problem was ran with the following user prompt:

Prompt

Give a thorough answer to the following question. Your answer will be graded by human judges based on accuracy, correctness, and your
ability to prove the result. You should include all steps of the proof. Do not skip important steps, as this will reduce your grade.
It does not suffice to merely state the result. Use LaTeX to format your answer.

{problem}

Judge Prompt To judge model solutions, we used the same hyperparameters for generation as before. Additionally, we
use the following prompt:

Judge Prompt

# Instruction

You are an expert mathematician that grades solutions of high-school olympiad-level problems. You will be given a mathematical problem
, as well as a grading scheme that you should adhere to. Your task is to accurately grade a solution according to that grading scheme.

# Problem and Scheme

##Problem statement

{problem_statement}

1See https://huggingface.co/deepseek-ai/DeepSeek-R1 and https://huggingface.co/Qwen/QwQ-32B

9

https://huggingface.co/deepseek-ai/DeepSeek-R1
https://huggingface.co/Qwen/QwQ-32B


Proof or Bluff? Evaluating LLMs on 2025 USA Math Olympiad

## Grading scheme

{grading_scheme}

# Example

Here how an example grading can look like:

## Example solution:

{correct_solution}

## Example grading

{example_grading}

# Evaluation

Produce a scoring using the same format for the following solution. Reason carefully about the contents of the solution and make sure
that all steps of the proof are included and rigorous.

## Formatting instructions

Follow a JSON-style formatting as the above example, namely:

- The categories should be in the same order
- The awarded number of points for each category should follow after the 'points' key
- The reasoning for each decision should be explained after the 'desc' key.
- Output only the JSON response.

Here is the solution you should grade:
{solution}

Both the grading scheme and example grading are provided in json format. Examples of these can be found in §A.3.

A.3. Example Grading Scheme and Grading

Example Grading Scheme The grading scheme for each problem was developed by our expert judges. The grading
scheme for Problem 1 is shown below:

Grading Scheme

{
"id": "1",
"points": 7,
"scheme": [

{
"title": "Initial closed form expression for each digit",
"points": 1,

"desc": "Uses the base-2n representation of nk to find a closed form expression of each digit ai =
⌊

nk

(2n)i

⌋
mod (2n)"

},
{

"title": "Interchanging the floor and mod",
"points": 3,
"desc": "Transforms the digit expression into a easily boundable one by interchanging the floor and modulo operations."

},
{

"title": "Bounding the expression",
"points": 2,
"desc": "Correctly bounds the aforementioned expression, usually by showing the numerator is divisible by n, so that

ai >=
⌊

n

2i

⌋
∥."

},
{

"title": "Finishing",
"points": 1,
"desc": "Chooses a provably sufficiently large N. The point is not awarded if it has not proven that n^k has at most k
digits."

}
]

}
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Example Grading An example grading for Problem 1 is shown below for a (human-generated) completely correct
solution:

Example Grading

{
"points": 7,
"details": [

{
"title": "Initial closed form expression for each digit",
"points": 1,
"desc": "Correctly uses the base-2n representation of n^k to find a closed form expression of each digit

ai =
⌊

nk

(2n)i

⌋
mod(2n)"

},
{

"title": "Interchanging the floor and mod",
"points": 3,
"desc": "Transforms the digit expression into a easily boundable one by interchanging the floor and modulo operations."

},
{

"title": "Bounding the expression",
"points": 2,
"desc": "Correctly bounds the aforementioned expression, usually by showing the numerator is divisible by n, so that

ai >=
⌊

n

2i

⌋
."

},
{

"title": "Finishing",
"points": 1,

"desc": "Chooses a provably sufficiently large N and has proven that nk has more than k digits."
}

]
}

A.4. Measuring LLM Statistical Biases

To evaluate whether a judge model shows systematic bias toward one type of solution (OpenAI-generated vs. non-OpenAI-
generated), we use a permutation test. For each solution and grader model m, we compute ∆m

i = Sm
i − Shuman

i , the
difference between the model and human scores. We compute the observed mean difference in these differences between
OpenAI and non-OpenAI solutions:

∆m
obs = ∆m

OpenAI −∆m
non−OpenAI

To estimate the level of bias expected by chance, we randomly permute the OpenAI/non-OpenAI labels 10,000 times,
recomputing ∆m

obs for each permutation to build a distribution for the null hypothesis - that there is no observable bias
between the 2 categories. We then report the 95th percentile (∆m

0.95) of this distribution, normalized by the mean model-
assigned score Sm:

bias5%(m) =
∆m

0.95

Sm

This value reflects the relative bias expected at the 5% significance level of model m, relative to typical scores assigned by
the same model.

B. USAMO Problems
We show the six problems from the USAMO 2025 competition in this section.

Problem 1

Let k and d be positive integers. Prove that there exists a positive integer N such that for every odd integer n > N, the digits in

the base-2n representation of nk are all greater than d.
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Problem 2

Let n and k be positive integers with k < n. Let P (x) be a polynomial of degree n with real coefficients, nonzero constant term,

and no repeated roots. Suppose that for any real numbers a0, a1, . . . , ak such that the polynomial akx
k + · · · + a1x + a0 divides

P (x), the product a0a1 · · · ak is zero. Prove that P (x) has a nonreal root.

Problem 3

Alice the architect and Bob the builder play a game. First, Alice chooses two points P and Q in the plane and a subset S of the
plane, which are announced to Bob. Next, Bob marks infinitely many points in the plane, designating each a city. He may not place two
cities within distance at most one unit of each other, and no three cities he places may be collinear. Finally, roads are constructed
between the cities as follows: for each pair A, B of cities, they are connected with a road along the line segment AB if and only
if the following condition holds:
\begin{center}
For every city C distinct from A and B, there exists R ∈ S such
that △PQR is directly similar to either △ABC or △BAC.
\end{center}
Alice wins the game if (i) the resulting roads allow for travel between any pair of cities via a finite sequence of roads and (ii) no
two roads cross. Otherwise, Bob wins. Determine, with proof, which player has a winning strategy.

Note: △UVW is directly similar to △XY Z if there exists a sequence of rotations, translations, and dilations sending U to X,
V to Y , and W to Z.

Problem 4

Let H be the orthocenter of acute triangle ABC, let F be the foot of the altitude from C to AB, and let P be the reflection of
H across BC. Suppose that the circumcircle of triangle AFP intersects line BC at two distinct points X and Y . Prove that C

is the midpoint of XY .

Problem 5

Determine, with proof, all positive integers k such that\frac{1}{n+1} \sum_{i=0}^n \binom{n}{i}^kis an integer for all positive
integers n.

Problem 6

Let m and n be positive integers with m ≥ n. There are m cupcakes of different flavors arranged around a circle and n people who
like cupcakes. Each person assigns a nonnegative real number score to each cupcake, depending on how much they like the cupcake.
Suppose that for each person P , it is possible to partition the circle of m cupcakes into n groups of consecutive cupcakes so that
the sum of P 's scores of the cupcakes in each group is at least 1. Prove that it is possible to distribute the m cupcakes to the n
people so that each person P receives cupcakes of total score at least 1 with respect to P .

C. Example traces
C.1. Examples of different error modes

C.1.1. EXAMPLE OF LOGICAL ERROR

Here, CLAUDE 3.7 generalizes over all indices j, when it has proven it for a single one - a clear leap in logic.

CLAUDE 3.7

...
Since P (x) has at least n distinct real roots and k < n, we have at least n − (k − 1) ≥ 2 choices for sk. If we choose sk = rm
and then sk = rl (where rm, rl ̸∈ {s1, s2, . . . , sk−1}), we get:

For sk = rm: σj = Tj + rm · Tj−1

For sk = rl: σj = Tj + rl · Tj−1

If both of these result in σj = 0 for the same j, then:
Tj + rm · Tj−1 = 0 and Tj + rl · Tj−1 = 0

Subtracting, we get: (rm − rl) · Tj−1 = 0
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Since rm ̸= rl (as the roots of P (x) are distinct), we must have Tj−1 = 0.

Continuing this logic, we would find that all Tj = 0, which is impossible, especially since T0 = 1.

Therefore, we can always find a choice of sk such that all σj ̸= 0 for j = 1, 2, . . . , k, which means all coefficients of our divisor
are nonzero.
...

C.1.2. EXAMPLE OF CREATIVITY ERROR

On problem 3, which is a game between 2 players - Alice and Bob, O3-MINI (and most other models) argued that Bob
should win from the beginning while it can be proven that Alice has an optimal strategy.

O3-MINI

We will show that regardless of how Alice chooses the two fixed points P,Q ∈ R2 and the "template-set" S ⊂ R2, Bob can place his
cities so that the resulting road network fails to meet at least one of the two winning conditions for Alice. (Alice wins only if the
road network is both connected and drawn with no two roads crossing.) In other words, Bob has a winning strategy.
...

C.1.3. EXAMPLE OF ASSUMPTION ERROR

On problem 4, many assumption errors are made, like this one from O3-MINI, where it assumes (not explicitly) that C is
external to the circumcircle of AFP , which is incorrect.

O3-MINI

...
A key step is to prove the following claim:

----------------------------

CA is tangent to ω = ⊙(AFP ).

----------------------------

Once we have tangency, the radius drawn to the tangency point is perpendicular to the tangent line. Since that radius (from the center
of ω) lies on the perpendicular bisector of any chord, we will see that the perpendicular from the center of ω to BC must pass

through C.

...

C.1.4. EXAMPLE OF ALGEBRAIC/ARITHMETIC ERROR

Here, DEEPSEEK-R1 incorrectly computes a sum of combinations and arrives at the incorrect conclusion. The correct
value of the sum is 3,395,016, which is divisible by 8.

DEEPSEEK-R1

...
4. **Case k = 4**:
- Testing small values of n (up to n = 6) shows the expression is an integer. However, for n = 7:

- The sum
∑7

i=0

(7
i

)4
= 1, 894, 391.

- The expression 1,894,391
8 = 236, 798.875 is not an integer.

- Thus, k = 4 fails for n = 7.
...

C.2. FLASH-THINKING struggling on problem 6

Below, we see FLASH-THINKING attempting multiple strategies in the same run, leading to a confusing solution that fails
to reach a valid conclusion.
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FLASH-THINKING

Consider a bipartite graph. People on one side, cupcakes on the other side.
Let's consider a different network flow approach.
Source S, Sink T . Nodes P1, . . . , Pn. Nodes C1, . . . , Cm.
For each person Pi, consider the partitions. Let's fix one partition for each person Pi, say Gi,1, . . . , Gi,n.
Nodes Gi,k for i = 1, . . . , n, k = 1, . . . , n.
Edge S → Pi capacity 1. Edge Pi → Gi,k capacity 1. Edge Gi,k → Cj if Cj ∈ Gi,k capacity 1. Edge Cj → T capacity 1.
We want to show max flow is n.

Assume for contradiction that it is impossible to distribute the cupcakes as required.
We will use Hall's Marriage Theorem, but need to define the sets correctly.
For each person Pi, let Gi be the set of all consecutive groups of cupcakes that give score at least 1 to person Pi. We need to
select Ai ∈ Gi such that Ai ∩ Aj = ∅.

Let's reconsider the network flow approach. Construct a network as follows:
Source S, Sink T . Nodes for people P1, . . . , Pn. Nodes for cupcakes C1, . . . , Cm.
For each person Pi and each cupcake Cj, create an edge from Pi to Cj.
Edge S → Pi capacity 1 for i = 1, . . . , n. Edge Pi → Cj capacity 1 for i = 1, . . . , n, j = 1, . . . ,m. Edge Cj → T capacity 1 for
j = 1, . . . ,m.
Cost on edge (Pi, Cj) is −sij. Cost on other edges is 0.
We want to send flow of value n from S to T with minimum cost.
If we can send flow of value n, then we have selected n paths from S to T . Each path is S → Pi → Cj → T . Let xij be the flow on
edge (Pi, Cj). Then

∑m
j=1 xij ≤ 1,

∑n
i=1 xij ≤ 1,

∑n
i=1

∑m
j=1 xij = n. This is not right.

Consider a different graph. Bipartite graph with people P1, . . . , Pn on one side, and cupcakes C1, . . . , Cm on the other side. Edge
between Pi and Cj. We want to select a matching M such that for each Pi,

∑
Cj∈M and (Pi,Cj)∈M sij ≥ 1. This is not matching.

Let's use Hall's Theorem. For each person Pi, let Fi be the family of sets of consecutive cupcakes F such that
∑

Cj∈F sij ≥ 1. We

want to choose Ai ∈ Fi for each i = 1, . . . , n such that Ai ∩ Aj = ∅ for i ̸= j.
For any subset of people X ⊆ {P1, . . . , Pn}, let F(X) =

⋃
Pi∈X Fi. We need to show that for any X ⊆ {P1, . . . , Pn}, we can choose

|X| disjoint sets from F(X). This is not Hall's theorem directly.

We need to show that there exist disjoint sets A1, . . . , An such that Ai is a consecutive group from some partition for Pi and score
for Pi from Ai is at least 1.
Since for each person Pi, there is a partition into n groups Gi,1, . . . , Gi,n with score ≥ 1. Let's consider these groups as possible
choices.
For each person Pi, we have n choices Gi,1, . . . , Gi,n. We need to select one choice Ai ∈ {Gi,1, . . . , Gi,n} for each i such that
Ai ∩ Aj = ∅ for i ̸= j.

Consider a bipartite graph. People P1, . . . , Pn on one side, and n2 groups Gi,j on the other side. Edge from Pi to Gij. We need to
find a matching of size n such that each Pi is matched to some Gi,ji

, and G1,j1
, . . . , Gn,jn are disjoint.

Final Answer:
We will prove this by contradiction. Suppose it is impossible to distribute the cupcakes such that each person Pi receives cupcakes of
total score at least 1.
For each person Pi, we are given that there exists a partition of the circle of m cupcakes into n consecutive groups
Gi,1, Gi,2, . . . , Gi,n such that for each k = 1, . . . , n,

∑
Cj∈Gi,k

sij ≥ 1.

Consider a bipartite graph B = (U ∪ V,E) where U = {P1, . . . , Pn} and V =
⋃n

i=1{Gi,1, Gi,2, . . . , Gi,n}. We add an edge between
Pi ∈ U and G ∈ V if and only if G ∈ {Gi,1, Gi,2, . . . , Gi,n}. We want to show that there exists a matching of size n in B. By Hall
's Marriage Theorem, we need to show that for any subset X ⊆ U, |N(X)| ≥ |X|, where N(X) =

⋃
Pi∈X{Gi,1, Gi,2, . . . , Gi,n}.

For any X ⊆ U, |N(X)| = |
⋃

Pi∈X{Gi,1, Gi,2, . . . , Gi,n}| ≤
∑

Pi∈X |{Gi,1, Gi,2, . . . , Gi,n}| =
∑

Pi∈X n = n|X|. This does not

help.

Let's consider a different approach using flows. Consider the network constructed earlier... Further investigation is needed to
construct the correct argument.

Final Answer: The final answer is Y es

C.3. QwQ boxes an integer

Here, we show QWQ confusing itself by requiring an integer answer, even though the solution is the set of all even integers.

QWQ

...
### Conclusion:
The expression is an integer for all n if and only if k is even. Therefore, the solution is all positive even integers.

### Final Answer:
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The positive integers k are all even numbers. Thus, the solution is 2m for any positive integer m. However, since the problem

requires a boxed answer and the minimal solution is typically expected, the answer is 2 . But strictly speaking, the correct answer

is all even positive integers. Given the problem's requirements, the boxed answer is:

2

C.4. Overgeneralizing patterns

Here, FLASH-THINKING chooses an explicit polynomial to test out on problem 2, but then decides to generalize its con-
clusion to all polynomials.

FLASH-THINKING

Now, let us choose specific real roots for P (x). Let ri = i for i = 1, 2, . . . , n. Let P (x) = c(x − 1)(x − 2) · · · (x − n) for some
nonzero real number c. Then P (x) is a polynomial of degree n with real coefficients, nonzero constant term, and no repeated roots.

Consider the divisor Q(x) = (x − 1)(x − 2) · · · (x − k) =
∑k

i=0 aix
i.

Then r1 = 1, r2 = 2, . . . , rk = k. For this choice, ai = (−1)k−iek−i(1, 2, . . . , k).
Since 1, 2, . . . , k are all positive, ej(1, 2, . . . , k) > 0 for j = 1, 2, . . . , k. Also e0(1, 2, . . . , k) = 1 > 0.

Thus, for i = 0, 1, . . . , k, ai = (−1)k−iek−i(1, 2, . . . , k) ̸= 0.

Therefore, for this divisor Q(x) = akx
k + · · · + a0, the product a0a1 · · · ak ̸= 0.

However, the given condition states that for any real numbers a0, a1, . . . , ak such that akx
k + · · · + a1x + a0 divides P (x), the

product a0a1 · · · ak is zero.
This is a contradiction.
Hence, our assumption that P (x) has only real roots must be false.
Therefore, P (x) has a nonreal root.

Final Answer: The final answer is P (x) has a nonreal root

C.5. Hallucinating Citations

A common failure mode of GEMINI-2.5-PRO was its tendency to generate fake citations to support its points. One of the
best examples is the case below, where the model hallucinates a paper with an emoji in the title.

GEMINI-2.5-PRO

We will use the following lemma, which is a known result in fair division theory. This result can be found, for example, as Lemma 7

in "Fair partitioning of " by Cardinal, Langerman, Palvolgyi (2021), or Theorem 2 in "Fair division of a discrete item" by
Algaba et al. (2019). These papers attribute the proof technique to Gale (1993) and Scarf (1967).

**Fair Partition Lemma:** Let v1, . . . , vm ∈ Rn
≥0. Suppose that for each i ∈ {1, . . . , n}, there exists a partition of {1, . . . ,m}

into n sets Ji,1, . . . , Ji,n such that (
∑

j∈Ji,k
vj)i ≥ 1 for all k ∈ {1, . . . , n}. Then there exists a partition of {1, . . . ,m} into

n sets K1, . . . , Kn such that (
∑

j∈Ki
vj)i ≥ 1 for all i ∈ {1, . . . , n}.

C.6. Boxing solutions

The majority of models also struggled with presenting clear and structured solutions, making evaluation and understanding
significantly more difficult. In the instance below, GEMINI-2.5-PRO boxed an entire solution at the end of its generation.

GEMINI-2.5-PRO

...
The representation is (2, 16, 11)22. The digits are a0 = 11, a1 = 16, a2 = 2. All are greater than d = 1. The proof holds.

Final Answer: The final answer is Let B = 2n. We want to show that there exists a positive

integer N such that for every odd ...

...As shown above, this implies ai > d for all digits ai in

the base-2n representation of nk. This completes the proof.
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