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Abstract

Weight decay is a broadly used technique for training state-of-the-art deep networks.
Despite its widespread usage, its role remains poorly understood. In this work, we
highlight that the role of weight decay in modern deep learning is different from its
regularization effect studied in classical learning theory. For overparameterized
deep networks, we show how weight decay modifies the optimization dynamics
enhancing the ever-present implicit regularization of SGD via loss stabilization.

1 Introduction

Weight decay (WD) is a widely studied topic in machine learning and numerous hypotheses have
been formulated trying to explain its effect. For instance, it serves as a constraint for the network
capacity [4], it appears in generalization bounds [17] and it influences the training dynamics via an
effective learning rate [19]. We argue that despite its widespread usage, its impact on generalization
remains poorly understood: in some cases, it acts as a regularizer and in other cases as a tool for
better optimization. For example, the difference in test errors in Fig. 1 shows that minimizing
the regularized objective alone does not ensure good generalization. Therefore, the regularized
objective is insufficient to explain the benefits of WD and a high learning rate appears necessary for
optimal performance. This experiment reaffirms the widely acknowledged consensus that implicit
regularization induced by the LR is crucial [7, 9, 1].

It is natural then to wonder whether weight decay’s improvement primarily stems from its ability to
control the norm. Fig. 3a clearly illustrates that distinct training trajectories, while resulting in the
same final ℓ2 norm of parameters, can still yield different generalization. Therefore, the ℓ2-norm of
the learned model’s parameters is inconsequential. This suggests that once the norm is constrained
by weight decay, the critical factor influencing the model’s generalization is the subsequent choice of
LR. Understanding how WD induces these optimization dynamics is crucial for grasping its benefits
in generalization. We start by examining the evolution of the norm in Fig. 3a. It rapidly decreases to
stabilize within a narrow interval. After the rapid decrease, the optimization resembles the dynamics
of SGD projected onto a sphere with a certain radius. We assert that this stage is pivotal for training
with weight decay and hypothesize the following key mechanism:

Weight decay maintains parameters norm in a small bounded interval. The resulting projected
noise-driven process induces an implicit regularization effect.

The objective of this work is to gain a comprehensive understanding of how the interaction between
weight decay and learning rate influences the training dynamics. In particular, we aim to explain the
difference in generalization between the yellow and turquoise curves in Fig. 1 by conjecturing and
empirically verifying the existence of an implicit regularization mechanism.
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Figure 1: Training with and w/o weight decay. We report the test error for VGG (1a) and ResNet (1b, 1c)
trained on CIFAR10/100 with and without weight decay and with small and large learning rates. After the first
500 epochs the learning rate is decayed to η = 10−4 for all the curves.

2 Weight decay for overparameterized deep networks

We start the analysis in a simplified setup that provides foundational insights which help understand
the role of weight decay in more general training scenarios.

Notations. Let (xi, yi)
n
i=1 be the training inputs and labels where xi ∈ D, yi ∈ Rc, and c is number

of classes. Let h : Rp ×D → Rc be the hypothesis class of neural network and for any parameter
w ∈ Rp where the function h(w, ·) : D → Rc represents the network predictions. We assume
for this section that the network is overparameterized and capable of achieving perfect training
accuracy. The training loss L and the ℓ2-regularized training loss Lλ are given respectively as:
L(w) := 1

N

∑N
i=1 ℓ (yi, h(w, xi)) and Lλ(w) := L(w) + λ

2

∥∥w∥∥2, where ℓ(·, ·) : Rc × Rc → R
denotes the cross-entropy loss function. With it ∼ U([N ]), the SGD algorithm on Lλ(w) (here with
batch size 1 and with replacement) with a learning rate (LR) η is

wt+1 = wt − η∇wℓ (yit , h(wt, xit))− ηλwt. (1)

Experimental setup. We train VGG [18] without BatchNorm and ResNet [6] models on CIFAR-
10/CIFAR-100 using SGD and step-decay [6] as LR schedule. Moreover, we compare different values
of ℓ2-regularization coefficient λ. By decaying the LR we divide the training into two separate phases:
(1) large-LR phase which exploits the SGD noise, and (2) fine-tuning phase which uses a small LR.

2.1 Warmup: optimization on the sphere with scale invariance

To isolate the implicit regularization effect from the large initial drop of the norm, we consider a
simplified setting. We train scale-invariant networks [10] with projected SGD on the sphere S(p−1):

wt+1 = ΠS(p−1) (wt − η∇wℓ (yit , h(wt, xit))) where ΠS(p−1) : w 7→ w/
∥∥w∥∥

2
. (2)

The training framework still consists of two phases separated by a LR decay. The primary insight
from the sphere analysis is depicted in Fig. 2: the test performance achieved in the fine-tuning
phase depends on the LR used in the large-LR phase and moreover, there is an optimal value. Our
investigation reveals that the key to understand this behavior and the dependence on the LR lies in
the noisy dynamics in the first phase.

The noise driven process. We introduce the key ingredients of SGD noise and subsequently
exploit the properties of their approximations to investigate the implicit regularization. Let gt =
∇wL(wt)−∇wℓ (yit , h(wt, xit)) denote the noise in the gradient.

(P1) Under reasonable approximations (details in Prop. 3) the scale of the noise is proportional to
the train cross-entropy loss, i.e., E

[
∥gt∥2

]
∼ L(wt). Hence, a higher training loss implies a

larger noise in the stochastic gradients. The experiments in Fig. 5,6 show that in the large LR
phase, the training loss remains nearly constant. Based on this, we assume E

[
∥gt∥2

]
≍ σ2

η .

(P2) We empirically observe that the covariance of the noise Σt = E
[
gtg

⊤
t

]
and the Hessian

∇2
wL(wt) have the same shape, see App B.4.

For regression, the shape of the covariance of the stochastic gradients, when the labels are injected
with Gaussian noise, also matches the shape of the Hessian. This crucial observation is used in several
works [2, 12, 3] to demonstrate the implicit regularization properties of SGD. Specifically, Damian
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Figure 2: Training scale-invariant ResNets on the sphere. We train on CIFAR10 with three different large
LR for the first 100 epochs and decay it to η = 10−4 afterwards. Figure (2a) reports the test error with respect
to different LRs in the first phase showing the existence of an optimal value. Figure (2d) reports the test error
along the iterations. Figures (2c, 2d) report the decreasing trend of the trace of the Hessian and test error after
fine-tuning for 100 epochs with η = 10−4 every 2 epochs.

et al. [3], Pillaud-Vivien et al. [15] show that the SGD trajectory closely tracks the solution of a
regularized problem. Leveraging (P2), we conjecture that a similar result should hold in our analysis
and that the dynamics of SGD on the sphere for classification tracks closely a regularized process.

Conjecture 1. Consider the algorithm Eq. 2 with w0 initialized from a distribution µ0

(
S(p−1)

)
.

For any input x, let wt, h(wt, x) be the random variables that denote the iterate at time t and its
functional value. The stochastic process (h(wt, x))t∈N will converge to a stationary distribution
µ∞
η (x) with mean µ̄η(x) for which the following property holds,

µ̄η(x) = h
(
w∗

η, x
)
, where w∗

η := argmin
w∈S(p−1)

L(w) + ησ2
η Tr

(
∇2L(w)

)
. (3)

The important difference is that, unlike [2, 3], we do not need to add noise to the labels at each
iteration, instead, the large-LR phase induces a label noise-like behaviour similar to [1].

What is the purpose of the fine-tuning phase? Even at stationarity1, the values of the loss L(wt)
and of Tr

(
∇2L(wt)

)
are still dominated by the noise. This noise obscures any discernible trend

along the trajectory, making it challenging to argue convincingly about convergence to the minimum
of the regularized loss. While Langevin dynamics suggest LR annealing to approach the mean of the
stationary distribution, this technique does not fully resolve the issue. The noise is state-dependent and
decreasing the LR might change the stationary distribution and potentially the regularized objective.
An alternative approach is to project the iterate wt onto a manifold where the loss matches the value
evaluated at the mean. Analyzing the evolution of Tr

(
∇2L

)
at these projected iterates might reveal

evidence of a regularized process. For an illustration, refer to Fig. 4. This projection corresponds to
the fine-tuning phase and is accomplished with early-stopped gradient flow (SGD with a small LR).

Interpretation of the conjecture and links to generalization. The empirical observations in Fig. 2
show that when two different LRs ηl (large) and ηs (small) are used in the Large-LR phase, models
with different generalization properties are obtained after the fine-tuning phase. Our conjecture
explains this gap as two solutions µ̄ηl

and µ̄ηs of the regularized problem having different strength of
regularization (ηlσ2

ηl
vs ηsσ2

ηs
). The conjecture further explains the U-shape generalization curve in

Fig. 2a where optimal regularization results in good test performance, and models beyond that level
are over-regularized. The regularization is implicit and is solely due to the noisy dynamics.

Revealing the implicit regularization mechanism. Directly measuring the loss L or Tr
(
∇2L

)
at wt fails to reveal any decreasing trend due to the noise. Thus, we use the fine-tuning process
to exhibit such trend. During fine-tuning, the iterate wt is projected to a nearby point, denoted as
w̃t, such that L(w̃t) ∼ L(w∗

η). Since their loss values are similar, we compare Tr
(
∇2L(.)

)
at w∗

η

and w̃t. In the experiments in Fig. 2c, we report Tr
(
∇2L(.)

)
along the fine-tuned iterates w̃t and

observe a decreasing trend. The trajectory of the iterates (wt)t≥0 closely follows the trajectory of the
fine-tuned iterates (w̃t)t≥0 which converge to w∗

η . This mechanism elucidates how the trajectory of
SGD implicitly biases the model towards a regularized solution that leads to enhanced generalization.

2.2 A unifying theme: beyond scale invariance and spherical optimization

The spherical case studied in the previous subsection paints a clear picture. When isolated from the
evolution of the norm, the stochastic dynamics induced by SGD and large LRs provide better control

1Assuming the existence of a stationary distribution, the iterates wt are eventually realizations from it.
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Figure 3: Training standard ResNets with weight decay. We train on CIFAR-10 with λWD = 0.015, three
different large LRs for the first 100 epochs and decay them to η = 10−3 afterwards. The norm in Fig. 3a
converges to the same value after the LR decay while the test error in Fig. 3b is different. Fig. (3c, 3d) report the
decreasing trend of Tr(∇2) and test error after fine-tuning for 100 epochs with η = 10−3 every 2 epochs.

over the trace of the Hessian of the model and thus enforce a useful regularization which translates
into good generalization properties. In this section, we demonstrate that a similar picture holds in the
case of standard training with weight decay. We extend the Conjecture 1, to hold beyond spherical
optimization and for networks which are not scale invariant.

Conjecture 2. Consider the algorithm in Eq. 1 with w0 initialized from a distribution µ0

(
R(p)

)
.

For any input x, let wt, h(wt, x) be the random variables that denote the iterate at time t and
its functional value. The stochastic process (h(wt, x))t∈N converges to the stationary distribution
µ∞
η,λ(x) with mean µ̄η,λ(x) for which the following property holds,

µ̄η,λ(x) = h
(
w∗

η,λ, x
)
, where w∗

η,λ := argmin
w∈Rp

Lλ(w) + ησ2
η,λ Tr

(
∇2L

)
. (4)

There are two differences compared to Conjecture 1: (a) the loss term in the regularized objective
is replaced by a ℓ2-regularized loss and (b) most importantly the strength of the regularization ση,λ,
now depends on both the LR and the WD parameter λ. Our experiments in Fig. 3, provide empirical
validation for this conjecture. When trained with different LRs and then fine-tuned, the training
converges to models with different test performances. This difference is primarily attributed to the
varying regularization strengths ση,λ. When fine-tuning every two epochs along the trajectory as
reported in Fig. 3c, the quantity Tr(∇2) is decreasing closely following a regularized process. A
similar trend can be observed in Fig. 3d for the test performance when fine-tuning along the trajectory.
These observations strongly indicate the benefits of generalization arising from implicit regularization.

Exponential moving average. As discussed in the spherical case, the iterates are noisy realizations
and measuring either L or Tr(∇2) at the iterates is not informative. However, we can reduce the
noise by averaging.2 Intuitively the average should be close to w∗

η,λ and the experiment in Fig. 3b
confirms this intuition. We consider an exponential moving average (EMA) of the SGD iterates
with parameter β = 0.999 and show that the test error is lower for large LR which enjoy better
regularization. This provides further justification for our conjecture and also highlights the practical
advantage of obtaining the best model by a simple exponential moving average instead of fine tuning.

Effective learning rate vs. high training loss. Existing works [21] have explored the relationship
between LR and WD, introducing the concept of effective LR. These works primarily emphasize that
training with WD results in a higher effective LR, without clarifying how this high LR contributes to
improved generalization. We address this gap by proposing that a higher LR leads to an increase in
ση,λ, consequently enhancing generalization. We claim that examining the high training loss, which
approximates the scale of ση,λ, offers a more insightful explanation for the enhanced generalization
ability. Analyzing the training curve in Figure 5, the training loss remains consistently high during
training with weight decay, entering a phase termed "loss stabilization," [1]. We assert that WD
contributes to achieving this loss stabilization phase in classification tasks, leveraging the implicit
regularization induced by stochastic dynamics.

Conclusion. We illustrated how WD, constraining the norm of the parameters in a small interval,
keeps the noise of SGD at a certain scale given a sufficiently large LR. Moreover, this induces an
implicit regularization effect whose strength depends on both the LR η and the WD parameter λ.
Crucially, different strengths of this regularization lead to different generalization of the model.

2Note that on the sphere, we need to compute the mean on a manifold which is a harder problem
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Appendix

A Training details

CIFAR-10/100 experiments. We train a VGG network without BatchNorm and preactivation
ResNet-18 on CIFAR-10 and ResNet-34 on CIFAR-100 without data augmentations. We use standard
SGD without momentum for all experiments. We note that ℓ2 regularization and weight decay are
exactly the same in this case. We use the standard He initialization [5] for all parameters. To
make ResNets scale-invariant, we follow the approach of Li et al. [11] consisting of fixing the last
layer, removing the learnable parameters of the normalization layers and adding a normalization
layer in the skip connection. For the experiments in Fig.1, VGG is trained with LR = 0.1 and
LR = 0.01 and weight decay parameter is fixed to be either λWD = 0.0 or λWD = 0.008. The
ResNet-18 is trained with LR = 0.08 and LR = 0.001 and λWD = 0.0 or λWD = 0.0125. The
ResNet-34 is trained with LR = 0.15 and LR = 0.001 and weight decay parameter λWD = 0.0 or
λWD = 0.01. The total number of epochs is 1000 in all experiments in Fig.1 and all the LR are
decayed at epoch 500 to 0.0001. For the experiments in Fig. 2 we use scale-invariant ResNet-18
and project the SGD iterates on the unitary sphere. We test the following LRs in the large-LR
phase (0.0001, 0.0005, 0.00075, 0.001, 0.002, 0.003, 0.004, 0.005) to show different generalization
performance. After 100 epochs all the learning rates are decayed to the same value 0.0001. In
Fig. 2c and Fig. 2d we finetune every 2 epochs for 100 additional epochs with LR=0.0001. For the
experiments in Fig. 3 we test three different LRs (0.1, 0.15, 0, 2) and decay all of them to 0.001 after
the first 100 epochs. To obtain Fig. 3c and Fig. 3d we finetune every 2 epochs for 100 additional
epochs with LR=0.001. All the experiments are conducted for 5 different random seeds.

B Weight decay for overparametrized deep networks: additional details and
figures

B.1 A graphical illustration of the fine-tuning phase

Here, we plot an illustrative graphic in Figure 4 to give an idea of what happens during the fine-tuning
phase.

Figure 4: A graphical illustration of the fine-tuning phase.

B.2 Supporting material

Here we prove that the scale of noise is well approximated by training loss in the case of binary
classification instead of classification in the case of multiple classes. The proof follows the lines
of Wojtowytsch [20].
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Proposition 3. Assume
∥∥w∥∥ ∈ [a, b], for any x ∈ D,

∥∥∇h (w, x)
∥∥ ∈ [m,M ] holds. For n

sufficiently large, there exists constants c1, c2 such that

c1L(w) ≤ E
[∥∥g(w)

∥∥2] ≤ c2L(w)

Proof. The noise in the case when the gradient is computed at (xi, yi) is

g(w) = ℓ
′
(yi, h(w, xi))∇h(w, xi)−

1

n

∑
i

∇ℓ
′
(yi, h(w, xi))∇h(w, xi),

Taking the expectation over uniform sampling over i, we have,

E
∥∥g∥∥2 =

1

n

n∑
i=1

(
ℓ
′
(yi, h(w, xi)

)2 ∥∥∇h(w, xi)
∥∥2 − 1

n2

∥∥∑
i

∇ℓ
′
(yi, h(w, xi))∇h(w, xi)

∥∥2 (5)

Upper bound: Using the self-bounding property of the binary cross entropy, i.e.,
(
ℓ′2

)
≤ l and∥∥∇h (w, x)

∥∥2 ≤ M2.

E
∥∥g∥∥2 ≤ M2 1

n

n∑
i=1

ℓ(yi, h(w, xi)) = M2L(w).

Lower bound: Again since the iterates are bound, we can assume there exists a constant c such that(
ℓ′2

)
≥ cl. as the second term in 5 is decreasing with O(n−2), we can assume that the first term is

dominating and relevant and can lower bound the first term as,

E
∥∥g∥∥2 ≥ cm2 1

n

n∑
i=1

ℓ(yi, h(w, xi)) = cm2L(w).

This proves the proposition.

B.3 Comparison with the related works

Our focus is on an empirical illustration of the implicit regularization phenomenon, hence we refrain
from attempting to prove this general conjecture, which we believe is a challenging task. The existing
theoretical works [2, 12, 3] present two major weaknesses; they are essentially limiting analysis
and as such fail at capturing the entire trajectory and they primarily target regression tasks. The
powerful mathematical framework for scale-invariant networks developed by Li and Arora [10], Li
et al. [11] allows them to study in detail the benefits of normalization and its interplay with weight
decay. By means of this framework, they state a fast equilibrium conjecture, which gives qualitative
guarantees for the speed of convergence of the stochastic process to the stationary distribution in
function space. They disentangle the evolution of the norm and the direction of the parameters and
show how the evolution of the direction only depends on the intrinsic LR λi = ηλ. However, a
qualitative description of the stationary distribution, its dependence on this intrinsic LR and the
relationship with generalization is missing [11, Figure 3(d)]. We attempt to fill this gap by providing
a qualitative depiction of the stationary distribution and its dependence on the intrinsic LR shading
some light towards understanding the relationship with generalization. The work of Kodryan et al.
[8] reports a similar observation, where the best test loss is achieved at a LR where the loss neither
converges nor diverges but does not provide any explanation.

On the benefit of normalization. Our conjecture characterizes the mixing distribution but does not
delve into the speed of the mixing process. In our experiments, we observe that normalization plays
a pivotal role in the speed of mixing. Li et al. [11] observes a similar phenomenon in the case of
scale-invariant networks, specifically the fast equilibrium conjecture, which is addressed by Li et al.
[13]. We note that this phenomenon persists even when the models are not scale-invariant.

Mixing in the function space. A simpler conjecture could have been that the iterates (wt)t≥0 mix
towards a solution of the regularized objective w∗

η. However, Li et al. [11] argues against mixing
in the parameter space, emphasizing the necessity of considering the function space. Hence, our
conjecture is formulated to capture stationarity in function space.
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B.4 Additional figures

In this section, we report additional experimental results related to Section 2 in the main text.

Training curves for VGG and ResNets. In Fig. 5 we report the train cross entropy for VGG and
ResNet18 on CIFAR10 and ResNet34 trained on CIFAR100. We can observe how when weight
decay is used in combination with large LR, the train cross entropy stabilizes at some approximately
constant level. In Fig. 6 we report the train cross entropy for scale-invariant ResNet on the sphere
in Fig. 6b and for standard ResNet trained with weight decay and different large LRs in Fig. 6a. In
both cases we can observe different levels of stabilization for the cross entropy depending on the LR
deployed in the large-LR phase.
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Figure 5: Training with and w/o weight decay. We report the train cross entropy for VGG (5a) and ResNet (5b,
5c) trained on CIFAR10/100 with and without weight decay and with small and large learning rates. After the
first 500 epochs the learning rate is decayed to η = 10−4 for all the curves.
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Figure 6: Cross-entropy of standard and scale-invariant ResNets we train on CIFAR10 with three different
large LR for the first 100 epochs and decay it to η = 10−3 for the standard ResNets with λWD = 0.015 Figure
6a and to η = 10−3 for the scale-invariant ones 6b.

Connection between SGD covariance and Hessian. Much of the literature related to implicit bias
relies on the assumption that the covariance of the noise of SGD is strictly related to the hessian of
the loss function as discussed in Sec 2. Denoting the Hessian H(w) := ∇2L(w) we can write it as
the so-called Gauss-Newton decomposition [16, 14] H(w) = G(w) + E(w). To measure the cosine
similarity (CS) between w(w) and the covariance Σt we compute

CS = E [cos (H(w)v,Σtv)]

where v is sampled from the Gaussian distribution in Rp and cos(u, v) = ⟨u,v⟩/
∥∥u∥∥∥∥v∥∥. The results

are reported in Fig. 7
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Figure 7: Cosine similarity between hessian and Noise covariance: we compute the cosine similarity between
the hessian and the covariance of the SGD noise for a scale-invariant ResNet after one epoch with large lr
η = 0.005. The results show how the two matrices are correlated and in particular how the SGD noise covariance
is highly correlated with G(w).
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