
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACCURATE SPLIT LEARNING ON NOISY SIGNALS

Anonymous authors
Paper under double-blind review

ABSTRACT

Noise injection is applied in Split Learning to address privacy concerns about data
leakage. Previous works protect Split Learning by adding noise to the intermediate
results during the forward pass. Unfortunately, noisy signals significantly degrade
the accuracy of Split Learning training. This paper focuses on improving the
training accuracy of Split Learning over noisy signals while protecting training
data from reconstruction attacks. We propose two denoising techniques, namely
scaling and random masking. Our theoretical results show that both of our denoising
techniques accurately estimate the intermediate variables during the forward pass of
Split Learning. Moreover, our experiments with deep neural networks demonstrate
that the proposed denoising approaches allow Split Learning to tolerate high
noise levels while achieving almost the same accuracy as the noise-free baseline.
Interestingly, we show that after applying our denoising techniques, the resultant
network is more resilient against a state-of-the-art attack compared to the simple
noise injection approach.

1 INTRODUCTION

Privacy concerns in many application domains, such as finance, healthcare, and online commerce,
constrain the sharing of raw data that are necessary to train accurate deep neural networks (DNNs).
Split Learning Gupta & Raskar (2018); Vepakomma et al. (2018a) has recently emerged as a solution
that allows different parties to learn a model collaboratively, without explicitly sharing raw input data.
Typically, in two-party Split Learning, the Split Neural Network (SplitNN) is divided between the
data owner, a.k.a. the client, and the label owner, a.k.a. the server, as shown in Figure 1 (a). During
training, in the forward pass, the client forwards the intermediate results (IRs) (i.e., the neurons of the
cut layer, the last layer in the client’s part of the DNN) to the server. The server completes the forward
pass and during the backpropagation, it returns the gradients of the IRs to the client. Consequently,
the client can train the joint model without revealing the private training data to the server.

Unfortunately, sharing only the IRs does not protect the raw data. The shared IRs contain considerable
latent information about the data and can be used to stage powerful attacks, such as model inversion
attack He et al. (2019a); Zhang et al. (2020); Erdogan et al. (2021), label inference attack Erdogan
et al. (2021); Kariyappa & Qureshi (2021); Li et al. (2021) and hijacking attack Pasquini et al. (2021).
Several works Titcombe et al. (2021); Abuadbba et al. (2020); Mireshghallah et al. (2020); Wang
et al. (2018) attempt to mitigate that risk through adding a certain amount of noise to the IRs before
sharing with the other party. However, one of the fundamental issues of adding noise is the trade-off
between the trained model quality and its susceptibility toward an external attacker. While high levels
of noise are favorable in making the training data private, the noise inevitably impacts the quality
of the trained the model Abuadbba et al. (2020); Wang et al. (2020a; 2021), that is the accuracy;
see Figures 1 (b) and (c) for an example. Thus, a fundamental question is: Can we improve the
training accuracy of Split Learning under noise injection, without affecting the making of the model
vulnerable to data leakage?

We answer the above question affirmatively by applying a post-processing denoising layer on top of
noise-injected IRs in the Split Learning process. Our intuition is that the injected noise introduces
an error during the forward pass, which is dominated by variance when the noise level is high. As
long as we can reduce the variance by denoising techniques, the training quality should be improved.
Such a post-processing layer will not impose any additional private information leakage as long as it
does not interact with the original private data.

We list our contributions as follows:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(c)

𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑑𝑎𝑡𝑎

𝜎 = 0.1

𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝐷𝑎𝑡𝑎

𝜎 = 0.5

𝜎 = 1.0

𝜎 = 2.0

𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑑𝑎𝑡𝑎

Client Server

Labels
forward pass

backward pass

Attacker

(b)(a)

Injected
noise

𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝐷𝑎𝑡𝑎

Figure 1: The trade-off between the security and training accuracy in noise-injected private Split
Learning. (a) General schematic representation of two-party split learning where the neural network
is split between the client (owns the data) and server (owns the labels). Noise is injected at the client’s
side output to prevent private data leakage from the attacker. (b) Noise variance (σ) vs. Test accuracy
in training a split CNN model on MNIST dataset. As the variance of the injected noise level (σ)
increases the test accuracy drops. (c) Training data reconstruction by hijacking attack at different
injected noise level. The reconstruction capacity decreases as the injected noise level is increased.

Contributions. (i) We propose two denoising techniques (i.e. scaling and masking) to improve the
training accuracy and stability of noise-injected SplitNN; see §3. (ii) Our theoretical investigation on
a classification task in §3.2 shows that denoising can reduce the error caused by noise injection during
the forward pass. (iii) In addition to improving the train model quality, we show that our modification
to Split Learning with noise injection, followed by postprocessing, preserves the security guarantee
in the entire training protocol; see §3.3. Quantifying the privacy aspect in our work is not the primary
focus; it is an additional benefit. (iv) We validate our claims through extensive numerical experiments
on synthetic and real data (i.e., 5 DNN models on 5 different datasets) in §4. Moreover, (v) we find
that our masking technique, in addition to denoising, also enhances the resilience of Split Learning
against the state-of-the-art hijacking attack Pasquini et al. (2021); refer to §4.3.

2 RELATED WORK

Federated Learning (FL) with noise injection. Applying noise injection in vertical FL shares some
similarities with noise-injected SplitNN since in both cases, the noise is injected on intermediate
results during the forward pass. Existing works Wang et al. (2020b); Chen et al. (2020) propose to add
Gaussian/Laplacian noise on participants’ IRs to protect private training data or labels. Unfortunately,
Chen et al. (2020) only demonstrates the impact on training accuracy when some applications have a
relatively low noise scale. The other framework Wang et al. (2020b) proposes a similar noise injection
technique only for linear model collaborative learning, which is not directly applicable to general
DNNs.

Split Learning with noise injection. Due to the vulnerability of SplitNN against model inversion
attacks, Titcombe et al. (2021) proposed to apply differentially private noise injection on IRs during
the inference time to prevent data reconstruction by the attacker. Shredder, proposed by Mireshghallah
et al. (2020), adaptively generates a noise mask to minimize mutual information between input and
intermediate data. However, these two methods only introduce noise injection during the inference
time; thus, the privacy of training data is not preserved. Abuadbba et al. (2020) successfully applies
noise to the IRs during the training to defend against model inversion attacks on one-dimensional
ECG data; also, see Wu et al. (2023) for SpiltNN with differential privacy for integrated terrestrial and
non-terrestrial Networks. It turns out that the noise has dramatically impacted the model’s accuracy.
Unlike previous works that only focus on the attack defense efficacy, we target to improve the training
accuracy with a significant noise level.

In this paper, we provide an answer to split learning denoising by proposing two post-processing
techniques (i.e., scaling and masking) to improve the accuracy and stability of the splitNN training
when Gaussian noise is injected into the IRs. To the best of our knowledge, we are the first to propose
denoising techniques on the Gaussian noise-injected IRs to improve the training accuracy of SplitNN
and theoretically show the privacy guarantee in this setup. In the following, for completeness, we

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

mention some differential privacy (DP) techniques used in federated learning (FL) and related settings
for completeness.

Gaussian noise injections (GNIs) are a family of regularization methods for DNN training through
adding Gaussian noise on the activations or weights during the forward pass. It is similar to the noise
injection in SplitNN except for the following two aspects: (i) There is no requirement of bounded
sensitivity in injection objects. (ii) The noise scale is usually set small to avoid negative impacts on
training accuracy. The explicit regularization effects of GNIs are well investigated in Camuto et al.
(2020); Li & Liu (2020); Lim et al. (2021), demonstrating better generalization for trained models
over unseen data. In addition, GNIs can improve the robustness of DNNs against adversarial attacks
or data perturbations Lim et al. (2021); He et al. (2019b). However, Camuto et al. (2021) also found
that GNIs can also introduce some implicit bias on gradient updates, which inevitably degrades the
training accuracy.

Denoising. Adding the Gaussian noise and the denoising mechanisms in our work shares many simi-
larities with the differential privacy (DP) and their post-processing that maintains the DP guarantee
and often improves accuracy Zhu et al. (2022; 2021). Denoising for DP has been well adopted in the
statistical estimation Hay et al. (2009; 2010); Nikolov et al. (2013); Bernstein et al. (2017), where
they exploit some prior knowledge to design data release mechanism with better DP utility. Recently,
Balle & Wang (2018) proposed an optimal denoising technique for Gaussian mechanism, where given
y ∼ N

(
f(x), σ2I

)
and their target is to find a postprocessing function g such that g(y) is closer to

f(x) than y. This is substantially different from SplitNN as there are subsequent layers on top of
the Gaussian mechanism in the training process. Nasr & Shokri (2020) has also investigated using
scaling as a denoising technique to improve the DP utility for DP-SGD Abadi et al. (2016). However,
the authors scale up/down the noisy gradients based on the "usefulness" of gradients while we utilize
scaling to minimize the estimation error of the noisy neural network outputs. Wang et al. (2020a)
showed that adding Laplacian smoothing on Gaussian noise-injected gradients can improve the utility
of DP-SGD. While Ligett et al. (2017) proposed a general noise reduction framework, Lecuyer et al.
(2019) proposed PiXel-DP, an adversarial defense mechanism, scalable to diverse large networks and
datasets.

3 THEORETICAL GUARANTEE

Notations. By [n] we denote the set of n natural numbers {1, 2, · · · , n}. By xi, we denote the ith

component of vector x, while Aij denote the (i, j)th component of a matrix, A. We use ∥x∥2 and
∥A∥F to denote the ℓ2 and the Frobenius norms of a vector x and a matrix A, respectively.

Problem setup. Let D be the training dataset with N elements, {(Xi, y
⋆
i)}Ni=1, drawn i.i.d. from

some distribution, P (X ,Y), where Xi ∈ Rd is the input feature vector, and y⋆i is the corresponding
ground-truth label. We consider a SplitNN with an output vector in Rm. The network is divided
between the client and the server, where the server network consists of several DNN layers and the
output loss function. In our experiments, we show different split configurations; however, in our
theoretical analysis, we have one fully connected (FC) layer after the cut layer as the final layer.

Let X ∈ Rn be the vector from the client-side cut layer, and M ∈ Rm×n be the weight matrix of the
FC layer on the server side. At each iteration during training, the original split network processes a
minibatch of training samples to calculate the loss and, during backpropagation, updates the gradients.
We follow this formalization in our theoretical analysis.

We consider the GNIs to protect the vector X . For Laplacian noise, see §B.1. Let the perturbed
vector, X̃ ∈ Rn follow the model: X̃ = X + Z, where Zi ∼ N (0, σ2), chosen from a zero mean
Gaussian distribution with standard deviation σ ∈ R+. Then, we apply a post-processing function
hD(·) : Rn → Rn on X̃ before forwarding it to the server side. To bound the magnitude of X , we
use tanh as the activation function.

If we set the cut layer at an arbitrary i-th layer in an L layers DNN, along with the final
loss function used for DNN training, the theoretical analysis would get less tractable. There-
fore, in our setup, we set i = L − 1 to illustrate the main ideas. We formalize two pos-
sible cases in the forward pass to the output layer: (i) a linear layer, Φ = Im, an identity
map, and we quantify E

[
∥MX −MhD(X̃)∥22

]
against E

[
∥MX −MX̃∥22

]
; see §3.1, and (ii)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

a linear layer with a nonlinear activation function (Softmax), Φ = s, nonlinear loss function
(negative log), LLL, and we quantify E

[
|LLL(y

⋆, s(MX))− LLL(y
⋆, s(MhD(X̃)))|

]
against

E
[
|LLL(y

⋆, s(MX))− LLL(y
⋆, s(MX̃))|

]
, where y⋆ is the true label vector; see §3.2. In both

cases, hD is a post-processing mechanism that is used to improve the training quality resulting in
some “denoising" effect; the signal-to-noise ratio is not the measure of “denoising" in our context.

Our primary focus is nonlinear classification tasks, although for a better understanding, denoising
the linear layer is important, which can be viewed as a regression task. Our theorems are proxies
to measure whether the postprocessing would allow better server accuracy. We do not include an
iteration counter on M,X , or X̃; we are looking at the single forward pass. We use a random masking
operator, Rp, and a scaling operator, Sα as hD; see §A.1 for their definitions.

3.1 A LINEAR LAYER

With the above setup, to easily explain our ideas, we start with a neural network performing simple
regression. Although this is not our primary focus, we believe this section provides a better under-
standing in a simple setting. Because for the ℓ2-regression task, no nonlinear activation function is
required, the problem is much simpler. That is, y := MX is the prediction of the output layer, and it
does not involve any non-linearity. Theorem 3.1 describes results for a fully-connected DNN with
an ℓ2-regression task. Additionally, it explains how the scaling and masking parameters, α and p,
respectively, are related to the noise scale σ, while denoising the output of a linear layer of a DNN
for a given M and X . We calculate the expected test error, E

[
∥MX −MhD(X̃)∥22

]
, where hD is

Rp or Sα, and compare it against E
[
∥MX −MX̃∥22

]
.

Theorem 3.1. With the notations above, we have (i) E
[
∥MX −MRp(X̃)∥22

]
≤

E
[
∥MX −MX̃∥22

]
if and only if p∥M ⊙ X̄∥2F + (1− p)∥MX∥22 ≤ σ2∥M∥2F , where X̄ ∈ Rm×n

is a matrix obtained by stacking X⊤ ∈ R1×n in each row, and ⊙ denotes the elementwise product. (ii)
Let α > 1. E

[
∥MX −MSα(X̃)∥22

]
≤ E

[
∥MX −MX̃∥22

]
if and only if ∥MX∥2

2

∥M∥2
F

≤
(

α+1
α−1

)
σ2.

Remark 3.2. Theorem 3.1 considers the most commonly used mean square error (MSE),
E
[
∥MX −MRp(X̃)∥22

]
and E

[
∥MX −MSα(X̃)∥22

]
, respectively, to compare against

E
[
∥MX −MX̃∥22

]
. We use the MSE because it has nice mathematical properties; one can use

other loss functions. This MSE is agnostic of the nature of the loss function used in DNN training.
Remark 3.3. Since, the expected MSE can be decomposed into bias and variance, by showing the
relation between the expected MSEs as in Theorem 3.1, the bias-variance trade-off between different
processes can be explained.

3.2 NONLINEAR LOSS FUNCTION FOR CLASSIFICATION TASK

For a vector, z ∈ Rm, denote s : Rm → (0, 1)m as the softmax function, and LLL(y
⋆, s(z)) as the

negative log loss function, where y⋆ is the true label vector; see definition in §A.1. In what follows,
we show that for both masking and scaling operators, under certain conditions on the noise level, σ, it
is possible to find parameters p and α, respectively, such that, by using any of these operations, we
incur a lower deviation in the loss value than using the noise injection alone when compared to the
loss of the original SplitNN.

Masking operation. Quantifying LLL(y
⋆, s(MRp(X̃)) and LLL(y

⋆, s(MX̃)) are critical as they in-
volve randomness from the masking operator and the Gaussian noise. We require several intermediate
results to prove the main result in Theorem 3.4. We state and prove them in the Appendix A.3.1.

We want to show that by using a random mask over a noise-injected layer, we incur
a lower deviation in the loss value than using the noise injection alone when compared
to the loss, LLL(y

⋆, s(MX)), of the original SplitNN under certain conditions. That

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

is, we want to compare the quantities E
[
|LLL(y

⋆, s(MX))− LLL(y
⋆, s(MRp(X̃)))|

]
and

E
[
|LLL(y

⋆, s(MX))− LLL(y
⋆, s(MX̃))|

]
. The following result formalizes this.

Theorem 3.4. With the notations above, for classification problems, assume that n ≥ (MX)i for
i = 1, 2, ...,m. Then, if σ is large enough, there is some δ ∈ (0, 1) such that for p ∈ (δ, 1],

E
[
|LLL(y

⋆, s(MX))− LLL(y
⋆, s(MRp(X̃)))|

]
≤ E

[
|LLL(y

⋆, s(MX))− LLL(y
⋆, s(MX̃))|

]
.

The assumption, n ≥ (MX)i is technical and can be easily satisfied in practice, which requires the
input dimension from the SplitNN to be wide enough. We will pause here and provide a sketch of
proof of Theorem 3.4. Because the original SplitNN always produces the least loss, the expressions in
absolute values in the inequality above are non-positive, and so we need only to verify that for all X ,
E
[
LLL(y

⋆, s(MX))− LLL(y
⋆, s(MX̃))

]
≤ E

[
LLL(y

⋆, s(MX))− LLL(y
⋆, s(MRp(X̃)))

]
.

By the definitions of softmax and negative log loss, we have

LLL(y
⋆, s(MRp(X̃))) = −(MRp(X̃))i⋆ + log

(
m∑
i=1

e(MRp(X̃))i

)
, (1)

where i⋆ is the location of true label in y⋆. For fixed M and X̃ , (1) is a function of p for p ∈ (0, 1].

Denote F(p) := E
[
LLL(y

⋆, s(MRp(X̃)))
]
, and consequently, F(1) = E

[
LLL(y

⋆, s(MX̃))
]
; see

Remark A.3. By using Lemma A.4 on (1), we can approximate F(p) by

F(p) ≈ −p(MX)i + log

(
E

[
m∑
i=1

e(MRp(X̃))i

])
−

Var
(∑m

i=1 e
(MRp(X̃))i

)
2
(
E
[(∑m

i=1 e
(MRp(X̃))i

)])2 . (2)

We want to show that F(p) ≤ F(1) when p ∈ (δ, 1), for some δ ≥ 0. By using Lemma
A.2 in (2) and differentiating with respect to p, we can show, F ′(1) ≥ 0. This would
imply that F(p) is an increasing function of p ∈ (δ, 1], for some δ ∈ (0, 1). This gives us
E
[
LLL(y

⋆, s(MRp(X̃)))
]
≤ E

[
LLL(y

⋆, s(MX̃))
]
, and concludes the proof of Theorem 3.4; see

§A.3.1.

Scaling operation. Similarly, by using scaling over X̃ , under certain conditions on the noise level, σ,
we obtain a lower deviation in the loss than using the noise injection alone when compared to the loss
of the original SplitNN. Let L̃Sα

:= LLL(y
⋆, s(MSα(X̃)). We state the result in Theorem 3.5; see

§A.3.2 for a sketch of the proof.
Theorem 3.5. With the notations above, for classification problems, if σ2 ≥
maxi,i⋆

∑n
k=1(mi⋆k−mik)xk∑n

k=1 m2
ik

, for i = 1, 2, ...,m, then there exists a δ′ ∈ (0, 1) such that

E
[
|LLL(y

⋆, s(MX))− L̃Sα
|
]
≤ E

[
|LLL(y

⋆, s(MX))− LLL(y
⋆, s(MX̃))|

]
, for α ∈ (1, 1

δ′].

For concentration of the errors in Theorem 3.1 and Theorem 3.4; see §A.3.3.

3.3 DIFFERENTIAL PRIVACY (DP) PRESERVATION

Recent works show that Split Learning with Laplacian or Gaussian noise injection at the cut layer is
resilient to attacks Abuadbba et al. (2020); Wu et al. (2023). In particular, DP (see Definition in §A.4)
could be used to describe the privacy guarantee. In this sub-section, we explain how our modification
(scaling or masking) to Split Learning with noise injection (such as GNI) preserves DP. The key
to our argument is to view our modification as a post-processing of a DP mechanism. Then by the
immunity of DP to post-processing, we can conclude that DP will be preserved.

Next, in light of our results in §3.1 and §3.2, we recall some terminologies needed for our discussion.
For more details, see Dwork et al. (2014); Xiang et al. (2019); Abadi et al. (2016).

Let D be a collection of databases. D ⊂ D and D′ ⊂ D be two neighboring training datasets, that
is, D′ = D ± {X}. In this case, we write d(D′, D) = 1. For a function V : D → Rm, define a

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

randomized mechanism, K : D → O such that, for D ∈ D,

K(D) := V (D) + Z, (3)

where Z ∈ Rm is a random variable/vector with probability density function, p(z).

To ensure K is (ϵ, δ)- DP, one must require some condition on the density function p(z) of Z. For
example, if p(z) is Laplacian or Gaussian density functions with their variances satisfying some
lower bounds, then K is DP. But, before we recall the result, we need one more important concept.

Define the sensitivity of V as

∆ := sup
D,D′,d(D,D′)=1

∥V (D)− V (D′)∥2. (4)

The following Theorem by Dwork et al. (2014) says, in the case when m = 1, if z ∼ N (0, σ2), then
the random mechanism K, as defined in (3) is DP as long as σ is large enough.

Theorem 3.6. (Dwork et al., 2014, Theorem 3.22) Let ϵ ∈ (0, 1) be arbitrary. For c2 > 2 ln(1.25/δ),
the mechanism in (3) with parameter σ ≥ c∆/ϵ is (ϵ, δ)-differentially private.

In Theorem 3.6, we note that the noise level σ is directly proportional to the sensitivity ∆ and
inversely proportional to privacy bound ϵ.

This result will give us the DP of GNI for Split Learning (Lecuyer et al., 2019, Section III.B) which
suggested putting the cut layer early in the network where bounding the sensitivity is easier. Then the
following result allows us to see that both scaling and masking proposed in this work will preserve
DP.

Theorem 3.7. (Dwork et al., 2014, Proposition 2.1) Let K be a randomized mechanism which is
(ϵ, δ)-DP. If g : Rm → Rd is a deterministic or randomized mapping, then g ◦ K is also (ϵ, δ)-DP.

Impact on backpropagation. Now, we discuss the induced change during the backpropagation. In
DNN training, the backpropagation is used to evaluate the gradients, which will be used to update
the estimation of parameters. As the popular DP procedure applied to DNN is DP-SGD Abadi et al.
(2016), we indicate how our scaling and masking would “alter” the gradients that could be viewed
as an approximate DP-SGD. Let gt be the gradient and gtC denote the clipped version of gt during
the t-th iteration. DP-SGD would add Gaussian noise Z ∼ N (0, σI) to gtC . What happened to
our case is that starting from the beginning of the backpropagation, we will evaluate gradients at
the “perturbed” values (due to the GNI and our modification using scaling or masking from the cut
layer) and these values will be used to propagate backward at each layer to obtained g̃tC , a perturbed
version of gt and hence gtC . Thus, we can put this into the framework of (3) with K(D) = g̃tC(D),
V (D) = gtC(D), and write

g̃tC(D) = gtC(D) + Z,

where Z is a random variable/vector due to the randomness of GNI and masking (using Bernoulli
distribution). Although Z itself may not be Gaussian, it can be shown that Z = g(W) where g is
a sum of products of compositions of affine transformations and activation functions and W is a
random vector of independent Gaussian and Bernoulli variables. Let p(z) denote the “density” of Z.
Denote the sensitivity of gtC(·) by ∆g . Define

S = {w : p(w) > eϵp(w +∆g)}.
We can establish the following theorem whose proof is given in the Appendix A.10.

Theorem 3.8. Let δ > 0 and recall that Z is a random variable with probability density p(z). Then,
there exists an α > 0 such that, for ∆g ≤ α,

Pr(Z ∈ S) < δ,

where P [·] refers to the probability associated with the random variable. Furthermore, when ∆g ≤ α,
g̃tC is (ϵ, δ)-DP.

Note that ∆g is small for large dataset (that is, when |D| is large). So, we can make the sensitivity
small by requiring large training datasets.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

(e) (f)

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

Figure 2: Simulation of how scaling factor (λ = 1
α) and masking ratio (p) influence the estimation

error (MSE) under different noise levels (σ) for linear (f1) and nonlinear functions (f2, f ′
2).

The above explains, DP in one iteration of the training data. If we consider a total of T training
iterations, we can use the advanced composition theorem, Theorem A.7 to guarantee, the mechanism
is (ϵ

√
2T ln(1/δ′) + Tϵ(eϵ − 1), T δ + δ′)-DP for all δ′ > 0.

We can give a similar guarantee when the noise mechanism is Laplace. Also, note that, if in each
training iteration, gtC,B represents the clipped gradient calculated over a minibatch of size B taken
from large enough databases, then for sensitivity, ∆g,B small enough, the DP guarantee for gtC,B
holds following the same argument as above; also, see Xiang et al. (2019), and our discussion in
§A.4.

In our experiments, we use the regular backpropagation formula for our noisy split network training;
see Proposition A.8. Noise injection and postprocessing in the forward pass perturb the gradients
during the backward pass, but without adding any explicit noise to them in each iteration. However,
this is not the same as GNIs to the gradient as in DP-SGD Abadi et al. (2016)—The noise, in our
case, (i) is a more general, data-adapted random variable than Gaussian, and that (ii) it is generated
over the DNN architecture, not a user-specified Gaussian noise.

4 EXPERIMENTAL EVALUATION

In §4.1, we validate our theoretical claims through simulation on synthetic data, §4.2 shows results
on DNNs performing machine learning tasks, Section §4.3 shows improved data privacy results.

4.1 SIMULATION

Setup. The following numerical simulations verify the results of Theorem 3.1 and 3.4. Since
X ∈ [−1, 1] is the output of tanh function, and M is usually randomly initialized around 0 in
the actual training, we sample the entries of X and M from a uniform distribution on [−1, 1] in
our simulation. The MSE of masking corresponds to E

[
∥f(X)− f(Rp(X̃))∥22

]
for all different

functions (f1, f2, f ′
2 in Figure 2), where Rp can be replaced by Sα for scaling. Moreover, when p = 1

and λ = 1
α = 1, masking and scaling are ineffective thus the respective MSEs are considered baseline

MSEs. In Figure 2, for each plot, we draw a line parallel to the X-axis from these baseline MSEs.
The expectations are calculated by taking the average on k simulation results, where k = 1000.

Scaling simulation. In Figure 2 (a), each curve corresponds to a different noise scale, σ. By
decreasing the scaling factor, λ for each σ, the MSE first decreases from the baseline to a minimum
then increases, indicating an optimal λ for each σ. The NASC condition in Theorem 3.1 (ii) also
infers that. For fixed M,X , this condition implies it is possible to find a smaller λ when σ is large.
We make similar observations for the nonlinear case; see Figure 2 (c).

Masking simulation. Figure 2 (b) shows that by decreasing the masking ratio, p, the MSE does not
necessarily become smaller unless σ is large enough. This verifies the claim of Theorem 3.1(i). More
importantly, there is an almost linear relationship between MSE and the masking ratio as p → 1.
This coincides with the expression of MSE with masking given in equation 9; see Appendix. We
hypothesize that while both X,M are drawn from Uniform distribution, the coefficient of p2 might

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500 3000 3500
Step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

. NI + scaling (=0.1)
NI + masking (p=0.2)
NI (=0.7)
Baseline

(a) CNN - MNIST

0 100 200 300 400 500 600 700 800
Step

0.5

0.6

0.7

0.8

Te
st

 a
cc

. NI + scaling (=0.2)
NI + masking (p=0.2)
NI (=0.7)
Baseline

(b) MLP - IMDB

0 20 40 60 80 100 120 140 160
Epoch

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 a
cc

.

NI+scaling (=0.1)
NI+masking (p=0.2)
NI (=0.7)
Baseline

(c) ResNet - CIFAR10

0 20 40 60 80 100 120 140
Epoch

0.4

0.5

0.6

0.7

0.8

Te
st

 a
cc

. NI+scaling (=0.1)
NI+masking (p=0.2)
NI (=0.7)
Baseline

(d) RNN - Names

Figure 3: Test accuracy of SplitNN training with noise injection (NI) only and noise injection (NI)
plus denoising (i.e. masking or scaling) in different training tasks. All models are split with one FC
layer on the server side. (σ: noise level, p: masking ratio, λ: scaling factor 1

α)

become negligible. Hence, the coefficient of the linear term, p, which can be positive or negative
depending on the noise scale σ, dominates the MSE. Results from Figure 2(d), with the nonlinear
loss, reflect Theorem 3.4: σ2 must be large for the improvement to be possible. If σ is too small
(MSE curve for σ = 0.3), the masking does not work; the larger the σ, the more improvements one
can expect by using masking. Moreover, when σ is large enough, there exists an p ∈ (δ, 1), for some
δ ≥ 0 such that masking incurs a lower MSE than the baseline. This indicates that optimal denoising
is possible by using masking for large noise. Nevertheless, for the same noise level, the MSE of the
optimal denoising of masking is always larger than that of scaling. We provide the backward pass
simulations in Figure 6 in §B. Figure 7 shows the simulation results for the Laplace mechanism.

Takeaway message. Figures 2 (a), (c), and 6 (a) indicate that regardless of the noise scale, σ, it is
possible to find a scaling factor such that using scaling over a noise-injected SplitNN incurs a lower
MSE than the baseline. However, this is not always the case for the masking operator—σ must be
significant for rendering the improvement. In practice, we witness masking performs better than
scaling in terms of improved accuracy, parameter-tuning, and attack defense; see §4.2 and 4.3.

4.2 DNN EXPERIMENTS

Datasets and models. We adopt the benchmarks from the popular Pytorch library Opacus
Yousefpour et al. (2021) with Split Learning paradigm. It contains 2 vision tasks (image classification
on MNIST LeCun et al. (1998), CIFAR-10, Krizhevsky et al. (2009), and CIFAR-100 Krizhevsky
et al. (2009)), a recommendation task (movie review prediction on IMDB Maas et al. (2011)) and a
language modeling task (name classification Robertson (2023)). All training hyper-parameters are
configured as default to maintain a fair comparison; see Table 2 in §B.

Setup and implementation. In our experiments, models are split before fully connected (FC) layers,
with variety in the number of FC layers allocated at the server side; see Table 1. The size of the
split layer varies from 16 to 12544. We use tanh activation function to bound the client’s output
in [−1, 1]. Then Gaussian noise is injected on the tanh layer, with noise scale, σ, the standard
deviation of Gaussian distribution. We implement both denoising techniques as a post-processing
layer on top of the noise injection process. The ratio p ∈ (0, 1) describes the percentage of the
elements kept through masking. The scaling factor λ = 1

α ∈ (0, 1) is used to scale down the tensor
values.

Denoising performance. We demonstrate the effectiveness of the denoising techniques in various
SplitNN training tasks. In Figure 3 and 4, we compare baseline SplitNN, noise-injected SplitNN, and
noise-injected SplitNN with the scaling or masking denoising in 2 different split settings. The noise
level, σ is calibrated to a relatively high such that the training accuracy of SplitNN suffers from the
noise injection. Both scaling and masking are optimized by parameter tuning on the scaling factor, λ,
and masking ratio, p; see Table 8 in §B. When models are split at the last FC layer, e.g., in Figure 3
(a)(b)(d), once we inject a large noise (σ = 0.7), the overall training convergence is severely impacted
so that the test accuracy is barely increased during the training. In Figure 4, the training is more
robust under high noise injection because the size of the splitting layer is much larger than the one in
previous settings. Usually, high-dimensional data can better tolerate noise perturbation since it carries
more information. After applying the scaling or masking, and fine-tuning some hyperparameters, the
training convergence vastly improves. In most cases, e.g., Figure 3(a)(b)(d), the improved accuracy
due to masking is comparable with the baseline. However, in Figure 4, with scaling and masking,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500 3000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

.

NI + scaling (=0.1)
NI + masking (p=0.1)
NI (=0.7)
Baseline

0 100 200 300 400 500 600 700 800
Step

0.5

0.6

0.7

0.8

Te
st

 a
cc

.

NI + scaling (=0.2)
NI + masking (p=0.2)
NI (=0.7)
Baseline

Figure 4: Test accuracy of SplitNN training with noise injection (NI) only and noise injection (NI)
plus denoising (i.e. masking or scaling); left CNN on MNIST, right MLP on IMDB. Models are split
with 2 FC layers on the server side.

the test accuracy can not achieve the baseline level. This is possible because, by allocating more
layers on the server side, the client’s noisy IRs will also impact more layers during the forward
computation. We also notice that in Figure 3 (c) the noise injected training on CIFAR-10 performs
much better than other tasks even the split layer size is relatively small. This is due to its unique
default parameter setup such as weight decay and learning rate, which we will explain next.

Denoising vs. Hyperparameter tuning. To better understand the difference between denoising and
traditional hyper-parameter tuning, we evaluate the MNIST image classification task by fine-tuning
the learning rate (lr), weight decay, dropout, masking ratio, and scaling factor under high-level noise
injection. We present the accuracy results in §B in Table 4. Full training curves are available in
§B in Figure 8. We change the lr from 0.1 to 0.001 and find that a smaller lr indeed improves the
training stability under a large noise injection. Weight decay, as a popular regularization method in
DNN training, can be used to avoid over-fitting on noisy signals. We find that only a heavy weight
decay (γ = 0.2, 0.4) can help stabilize the training convergence till the end. However, a heavy weight
decay sacrifices the convergence speed and fails to reach the baseline accuracy. Scaling can only
improve the convergence at the beginning of the training and none of them manage to maintain
the convergence till the end. This implies an inherent training stability issue with noise injection,
which cannot be alleviated by pure denoising. Therefore, we combine scaling with weight decay and
find that a small weight decay (γ = 0.01) is sufficient to stabilize the training. On the contrary, the
optimization of masking does not need weight decay. It can almost achieve the baseline convergence
rate once the ratio p is properly tuned. Although there is a similarity between random masking and
the dropout technique Srivastava et al. (2014), simply using dropout does not provide enough stability
for the training, regardless of the dropout ratio. Both denoising techniques achieve significantly better
training quality than standalone hyper-parameter tuning. In §B.2, Table 5, we provide initial results
of ResNet-18 on the CIFAR-100; our denoising techniques achieve higher accuracy than simple
learning rate tuning. In Table 6 in §B.3, we demonstrate that the scaling postprocessing performs well
even when Adam’s updating rule eliminates gradient scale impact. See limitations of the proposed
approach in Appendix C.

4.3 ATTACK DEFENSE

Setup. We demonstrate how the random masking technique can improve data privacy in defense
against the recent feature-space hijacking attack (FSHA) Pasquini et al. (2021) in Split Learning.
FSHA hijacks the client’s learning process from the server side during the training and performs the
data reconstruction once the client’s output feature is learned; see details of threat model in §B.5. We
evaluate the attack performance with 2 models and 4 publicly available datasets—CNN for MNIST
and Fashion-MNIST, ResNet for CIFAR-10 and ImageNet. See the model configuration in Table
1. We compare the attack performance by visualizing the reconstructed private data between FSHA
attacks on plain-text SplitNN, noise-injected SplitNN, and noise-injected SplitNN with masking or
scaling. We focus on the case where only one FC layer is on the server because it is more resilient
against data reconstruction attacks, see discussion in Figure 9 in §B.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Private training data reconstruction by FSHA attack in Split Learning on MNIST and
ImageNet. In all cases, Xpriv: the original training data, i.e. ground truth; Xrec: FSHA on plain-
text SplitNN; Xrec(N): FSHA on SplitNN with noise injection (NI) (σ = 0.7); Xrec(S): FSHA on
SplitNN with NI and scaling (σ = 0.7, λ = 0.2); Xrec(M): FSHA on SplitNN with NI and masking
(σ = 0.7, p = 0.2). Models are split with one FC layer on the server side.

Results. Figure 5 shows that the original FSHA can reconstruct the private data with very high
accuracy for MNIST but only keep the original images’ appearance for ImageNet. This is consistent
with the attack performance in Pasquini et al. (2021)—attack on low-entropy images usually requires
less effort and can produce a high-quality reconstruction. Next, we apply noise injection to the
intermediate results and conduct data reconstruction on the perturbed data by FSHA. We observe
that for MNIST, the digits on the reconstructed image are recognizable. For more complex and
color image datasets (i.e. ImageNet), although noise can hide the details in the images, we can still
relate the constructed image with the original one by looking at the outline or the background color.
Lastly, when we combine noise injection with masking, the reconstructed images are fully damaged,
and thus, the data security is greatly enhanced. While the scaling technique has almost no effect
during the reconstruction attack, no matter how we set the scaling factor. See Figures 10-12 in §B for
results with different σ, p, λ and other datasets. Improving the privacy accounting for split learning
is not the primary focus of this work, instead, we want to show how denoising can improve noisy
SplitNN accuracy. Nevertheless, we provide the privacy bounds for one single forward pass during
the SplitNN training in Table 9.

5 CONCLUSION

We propose scaling and masking as denoising techniques to achieve accurate Split Learning on
noisy signals. We show theoretically and empirically that denoising helps achieve more accurate
intermediate outputs in DNN training under noise injection that significantly improves the stability
and accuracy of Split Learning. Additionally, we show that the masking technique can provide better
security enhancement than scaling against powerful attacks. Although in theory, scaling has better
denoising efficacy, masking is likely to show better accuracy improvement due to its easier parameter
tuning. Finally, we demonstrate the possibility of co-optimization of denoising and attack defense.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Sharif Abuadbba, Kyuyeon Kim, Minki Kim, Chandra Thapa, Seyit A. Camtepe, Yansong Gao,
Hyoungshick Kim, and Surya Nepal. Can we use split learning on 1d CNN models for pri-
vacy preserving training? In Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security, pp. 305–318, 2020.

Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy:
Analytical calibration and optimal denoising. In International Conference on Machine Learning,
pp. 394–403. PMLR, 2018.

Garrett Bernstein, Ryan McKenna, Tao Sun, Daniel Sheldon, Michael Hay, and Gerome Miklau.
Differentially private learning of undirected graphical models using collective graphical models.
In International Conference on Machine Learning, pp. 478–487. PMLR, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Alexander Camuto, Matthew Willetts, Umut Simsekli, Stephen J. Roberts, and Chris C. Holmes.
Explicit regularisation in Gaussian noise injections. Advances in Neural Information Processing
Systems, 33:16603–16614, 2020.

Alexander Camuto, Xiaoyu Wang, Lingjiong Zhu, Chris Holmes, Mert Gurbuzbalaban, and Umut
Simsekli. Asymmetric heavy tails and implicit bias in gaussian noise injections. In International
Conference on Machine Learning, pp. 1249–1260. PMLR, 2021.

Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. Vafl: A method of vertical asynchronous
federated learning. arXiv preprint arXiv:2007.06081, 2020.

Cynthia Dwork, Guy N. Rothblum, and Salil Vadhan. Boosting and differential privacy. In 2010
IEEE 51st Annual Symposium on Foundations of Computer Science, pp. 51–60, 2010.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3-4):211–407, 2014.

Ege Erdogan, Alptekin Kupcu, and A Ercument Cicek. Unsplit: Data-oblivious model inversion,
model stealing, and label inference attacks against split learning. arXiv preprint arXiv:2108.09033,
2021.

Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple agents.
Journal of Network and Computer Applications, 116:1–8, 2018.

Michael Hay, Chao Li, Gerome Miklau, and David Jensen. Accurate estimation of the degree
distribution of private networks. In 2009 Ninth IEEE International Conference on Data Mining,
pp. 169–178. IEEE, 2009.

Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy of differentially
private histograms through consistency. Proceedings of the VLDB Endowment, 3(1), 2010.

Zecheng He, Tianwei Zhang, and Ruby B Lee. Model inversion attacks against collaborative inference.
In Proceedings of the 35th Annual Computer Security Applications Conference, pp. 148–162,
2019a.

Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. Parametric noise injection: Trainable randomness
to improve deep neural network robustness against adversarial attack. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 588–597, 2019b.

Sanjay Kariyappa and Moinuddin K Qureshi. Gradient inversion attack: Leaking private labels in
two-party split learning. arXiv preprint arXiv:2112.01299, 2021.

André I Khuri. Advanced calculus with applications in statistics. John Wiley & Sons, 2003.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified
robustness to adversarial examples with differential privacy. In 2019 IEEE symposium on security
and privacy (SP), pp. 656–672, 2019.

Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan Xie, Virginia Smith,
and Chong Wang. Label leakage and protection in two-party split learning. arXiv preprint
arXiv:2102.08504, 2021.

Yinan Li and Fang Liu. Adaptive Gaussian Noise Injection Regularization for Neural Networks. In
International Symposium on Neural Networks, pp. 176–189. Springer, 2020.

Katrina Ligett, Seth Neel, Aaron Roth, Bo Waggoner, and Zhiwei Steven Wu. Accuracy first: Select-
ing a differential privacy level for accuracy-constrained ERM. Advances in Neural Information
Processing Systems, 2017:2567–2577, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Soon Hoe Lim, N. Benjamin Erichson, Liam Hodgkinson, and Michael W. Mahoney. Noisy recurrent
neural networks. Advances in Neural Information Processing Systems, 34, 2021.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142–150, 2011.

Fatemehsadat Mireshghallah, Mohammadkazem Taram, Prakash Ramrakhyani, Ali Jalali, Dean
Tullsen, and Hadi Esmaeilzadeh. Shredder: Learning noise distributions to protect inference
privacy. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 3–18, 2020.

Milad Nasr and Reza Shokri. Improving deep learning with differential privacy using gradient
encoding and denoising. arXiv preprint arXiv:2007.11524, 2020.

Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy: the sparse
and approximate cases. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pp. 351–360, 2013.

Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi. Unleashing the tiger: Inference
attacks on split learning. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2113–2129, 2021.

Sean Robertson. NLP From Scratch: Classifying Names with a Character-Level RNN — PyTorch Tu-
torials, 2023. URL https://pytorch.org/tutorials/intermediate/char_rnn_
classification_tutorial.html.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Yee Teh, David Newman, and Max Welling. A collapsed variational bayesian inference algorithm for
latent dirichlet allocation. Advances in neural information processing systems, 19, 2006.

Tom Titcombe, Adam J. Hall, Pavlos Papadopoulos, and Daniele Romanini. Practical defences
against model inversion attacks for split neural networks. arXiv preprint arXiv:2104.05743, 2021.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564,
2018a.

Praneeth Vepakomma, Tristan Swedish, Ramesh Raskar, Otkrist Gupta, and Abhimanyu Dubey. No
peek: A survey of private distributed deep learning. arXiv preprint arXiv:1812.03288, 2018b.

Praneeth Vepakomma, Otkrist Gupta, Abhimanyu Dubey, and Ramesh Raskar. Reducing leakage in
distributed deep learning for sensitive health data. arXiv preprint arXiv:1812.00564, 2019.

Bao Wang, Quanquan Gu, March Boedihardjo, Lingxiao Wang, Farzin Barekat, and Stanley J. Osher.
DP-LSSGD: A stochastic optimization method to lift the utility in privacy-preserving ERM. In
Mathematical and Scientific Machine Learning, pp. 328–351. PMLR, 2020a.

Chang Wang, Jian Liang, Mingkai Huang, Bing Bai, Kun Bai, and Hao Li. Hybrid differentially
private federated learning on vertically partitioned data. arXiv preprint arXiv:2009.02763, 2020b.

Ji Wang, Jianguo Zhang, Weidong Bao, Xiaomin Zhu, Bokai Cao, and Philip S. Yu. Not just privacy:
Improving performance of private deep learning in mobile cloud. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2407–2416, 2018.

Wenxiao Wang, Tianhao Wang, Lun Wang, Nanqing Luo, Pan Zhou, Dawn Song, and Ruoxi Jia. Dplis:
Boosting utility of differentially private deep learning via randomized smoothing. Proceedings on
Privacy Enhancing Technologies, 4:163–183, 2021.

Maoqiang Wu, Guoliang Cheng, Peichun Li, Rong Yu, Yuan Wu, Miao Pan, and Rongxing Lu. Split
learning with differential privacy for integrated terrestrial and non-terrestrial networks. IEEE
Wireless Communications, pp. 1–8, 2023. doi: 10.1109/MWC.015.2200462.

12

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Liyao Xiang, Jingbo Yang, and Baochun Li. Differentially-private deep learning from an optimization
perspective. In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pp.
559–567, 2019.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani
Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, et al. Opacus: User-friendly
differential privacy library in pytorch. arXiv preprint arXiv:2109.12298, 2021.

Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn Song. The secret revealer:
Generative model-inversion attacks against deep neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 253–261, 2020.

Keyu Zhu, Pascal Van Hentenryck, and Ferdinando Fioretto. Bias and variance of post-processing in
differential privacy. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 11177–11184, 2021.

Keyu Zhu, Ferdinando Fioretto, and Pascal Van Hentenryck. Post-processing of differentially private
data: A fairness perspective. In International Joint Conference on Artificial Intelligence (IJCAI),
2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A THEORETICAL GUARANTEE

First, we will start with the definition of softmax and negative log loss functions used for nonlinear
classification.

A.1 DEFINITIONS

Random masking operator. Let Rp be a random matrix of 1 and 0 with identical and independently
distributed entries, (Rp)ij ∼ Bernoulli(p). Denote the support set, Ωp ⊂ [m] × [n] of Rp as
Ωp := {(i, j)|(Rp)ij = 1}. Based on this, for a matrix, A ∈ Rm×n,

(Rp[A])ij =

{
Aij : i ∈ Ωp,
0 : otherwise.

From the definition, Rp is linear and is a projection operator, that is, R2
p = Rp.

Scaling operator. For a matrix A ∈ Rm×n and α > 1, denote the element-wise scaling operator,
Sα(·) : Rm×n → Rm×n, as Sα(A) = 1

αA. Unlike the random masking, the scaling operator, Sα has
no randomness.

Softmax and negative log loss. Let m be the number of classes. For a vector, z ∈ Rm, the softmax
function, s : Rm → (0, 1)m, is defined as

s(z)i =
ezi∑m
i=1 e

zi
.

Let y be a binary indicator (0 or 1) of the class label, and c is the correct classification of the
observation, o. Denote po,c as predicted probability of observation o that belongs to class c. Then the
negative log-loss function is defined as

LLL(y, p) = −
m∑
c=1

yo,c log(po,c).

What loss functions and tasks do we cover? In general, for classification problems such as
image classification by CNN, movie review prediction by RNN, and many more, the output layer is
configured with a softmax function for prediction, and the negative log function is used as the loss
function to train the DNN model. For binary classification, this loss is known as binary cross-entropy;
for multi-class classification, it is called categorical cross-entropy. MSE is a consequence of Theorem
3.1 with some modifications. Therefore, our analyses cover almost all the existing loss functions used
for DNN training. We refrain from using some rarely used loss functions, e.g., sparse categorical
cross-entropy.

A.2 ℓ2 REGRESSION TASK

Next, we will prove Theorem 3.1, for ℓ2-regression task. For Theorem 3.1, the prediction of the
DNN model does not involve any nonlinearity. Throughout Sections A.2 and A.3, Ep

[
·|X̃
]

denotes

expectation conditioned on the randomness in Rp given X̃ , and EZ [·] denotes expectation taken on
the randomness in X̃ .

Proof of Theorem 3.1.

Proof. (i) We are required to show, E
[
∥MX −MX̃∥22

]
− E

[
∥MX −MRp(X̃)∥22

]
≥ 0. There

are two types of randomness involved—one is due to randomness in Rp, and the second is due to the
randomness in X̃. First, we start by writing

∥MX −MX̃∥22

= ∥MX∥22 − 2⟨MX,MX̃⟩+
m∑
i=1

n∑
j=1

m2
ij x̃

2
j + 2

m∑
i=1

n∑
1≤j<k≤n

mijmikx̃j x̃k, (5)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

which after taking expectation becomes

E[∥MX −MX̃∥22]

= −∥MX∥22 +
m∑
i=1

n∑
j=1

m2
ij(x

2
j + σ2) + 2

m∑
i=1

n∑
1≤j<k≤n

mijmikxjxk. (6)

Next, we have as in (5)

∥MX −MRp(X̃)∥22

= ∥MX∥22 − 2⟨MX,MRp(X̃)⟩+
m∑
i=1

n∑
j=1

m2
ij(Rp(x̃j))

2 + 2

m∑
i=1

n∑
1≤j<k≤n

mijmikRp(x̃j)Rp(x̃k),

(7)

which after taking expectation conditioned on the randomness in Rp given X̃ becomes

Ep[∥MX −MRp(X̃)∥22|X̃]

= ∥MX∥22 − 2p⟨MX,MX̃⟩+ p

m∑
i=1

n∑
j=1

m2
ij x̃

2
j + 2p2

m∑
i=1

n∑
1≤j<k≤n

mijmikx̃j x̃k. (8)

Finally, taking expectation on the randomness in X̃ we obtain

EZ

[
Ep[∥MX −MRp(X̃)∥22|X̃]]

]
= (1− 2p)∥MX∥22 + p

m∑
i=1

n∑
j=1

m2
ij(x

2
j + σ2) + 2p2

m∑
i=1

n∑
1≤j<k≤n

mijmikxjxk. (9)

In view of equation 6 and equation 9, we have

E[∥MX −MX̃∥22]− E[∥MX −MRp(X̃)∥22]

= (2p− 2)∥MX∥2 + (1− p)

m∑
i=1

n∑
j=1

m2
ij(x

2
j + σ2) + 2(1− p2)

m∑
i=1

n∑
1≤j<k≤n

mijmikxjxk

= (2p− 2)

 m∑
i=1

n∑
j=1

m2
ijx

2
j + 2

m∑
i=1

n∑
1≤j<k≤n

mijmikxjxk

+ (1− p)

m∑
i=1

n∑
j=1

m2
ij(x

2
j + σ2)

+2(1− p2)

m∑
i=1

n∑
1≤j<k≤n

mijmikxjxk

= (1− p)

m∑
i=1

n∑
j=1

m2
ij(σ

2 − x2
j)− 2(1− p)2

m∑
i=1

n∑
1≤j<k≤n

mijmikxjxk. (10)

Therefore,

E
[
∥MX −MX̃∥22

]
− E

[
∥MX −MRp(X̃)∥22

]
≥ 0

if and only if the expression in equation 10 is non-negative, that is,

m∑
i=1

n∑
j=1

m2
ijσ

2 ≥
m∑
i=1

n∑
j=1

m2
ijx

2
j + 2(1− p)

m∑
i=1

n∑
1≤j<k≤n

mijmikxjxk.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The left hand side of the above expression is σ2∥M∥2F (which is lower bounded by nσ2σ2
min(M),

where σmin(M) is the smallest singular value of M). For the right hand side, we have
m∑
i=1

n∑
j=1

m2
ijx

2
j + 2(1− p)

m∑
i=1

n∑
1≤j<k≤n

mijmikxjxk

= p

m∑
i=1

n∑
j=1

m2
ijx

2
j + (1− p)

m∑
i=1

n∑
j=1

m2
ijx

2
j + 2(1− p)

m∑
i=1

n∑
1≤j<k≤n

mijmikxjxk

= p

m∑
i=1

n∑
j=1

m2
ijx

2
j + (1− p)∥MX∥22

= p∥M ⊙ X̄∥2F + (1− p)∥MX∥22, (11)

where X̄ =

x1 x2 x3 · · · xn

x1 x2 x3 · · · xn

· · · · · · · · · · · · · · ·
x1 x2 x3 · · · xn

 ∈ Rm×n. Therefore,

E
[
∥MX −MX̃∥22

]
− E

[
∥MX −MRp(X̃)∥22

]
≥ 0

if and only if
σ2∥M∥2F ≥ p∥M ⊙ X̄∥2F + (1− p)∥MX∥22.

Hence the result.

(ii) We are required to show, E
[
∥MX −MX̃∥22

]
− E

[
∥MX −MSα(X̃)∥22

]
≥ 0. Note that, the

only randomness involved in this case is due to the randomness in X̃. First, we start by expanding

∥MX −MSα(X̃)∥22

= ∥MX∥22 −
2

α
⟨MX,MX̃⟩+

m∑
i=1

n∑
j=1

m2
ij

x̃2
j

α2
+ 2

m∑
i=1

n∑
1≤j<k≤n

mijmik
x̃j x̃k

α2
, (12)

which after taking expectation gives

E[∥MX −MSα(X̃)∥22]

= (1− 2

α
)∥MX∥22 +

m∑
i=1

n∑
j=1

m2
ij

(x2
j + σ2)

α2
+ 2

m∑
i=1

n∑
1≤j<k≤n

mijmik
xjxk

α2

= (1− 1

α
)2∥MX∥22 +

σ2

α2
∥M∥2F . (13)

In view of equation 6 and equation 13, we have

E[∥MX −MX̃∥22]− E[∥MX −MSα(X̃)∥22]

= (1− 1

α2
)σ2∥M∥2F − (1− 1

α
)2∥MX∥22.

Therefore,
E
[
∥MX −MX̃∥22

]
− E

[
∥MX −MSα(X̃)∥22

]
≥ 0

if and only if (1 + 1
α)σ

2∥M∥2F − (1− 1
α)∥MX∥22 ≥ 0. This completes our proof.

A.3 NONLINEAR LOSS FUNCTION FOR CLASSIFICATION TASK

Now, we will prove the results for nonlinear loss function as given in Section 3.2. First, we quote the
following Lemma about the moment generating function of a random variable, without proof. The
readers can find the proof of Lemma A.1 in any standard graduate statistics text book.
Lemma A.1. Let Z be a random variable, Z ∼ N(µ, σ2). Then the moment generating function,

ΦZ(·) is given by ΦZ(t) = E
[
etZ
]
= eµt+

σ2t2

2 .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Calculating E
[
LLL(y

⋆, s(MRp(X̃))
]

requires some auxiliary results on the E
[∑m

i=1 e
(MRp(X̃))i

]
and E

[(∑m
i=1 e

(MRp(X̃))i
)2]

. The following Lemma A.2 gives the details, which are necessary for

calculating the expectation and the variance of
∑m

i=1 e
(MRp(X̃))i .

Lemma A.2. We have, (i) E
[∑m

i=1 e
(MRp(X̃))i

]
=
∑m

i=1

∏n
k=1

(
pemikxk+

m2
ikσ2

2 + (1− p)

)
;

and (ii) E
[(∑m

i=1 e
(MRp(X̃))i

)2]
=
∑

i,j

[∏n
k=1

(
pe(mik+mjk)xk+

(mik+mjk)2σ2

2 + (1− p)

)]
.

Proof. (i) We have
m∑
i=1

e(MRp(X̃))i =

m∑
i=1

e
∑n

k=1 mikRp(x̃k), (14)

where x̃k be the kth element of the vector X̃. Note that, each mikRp(x̃k) is independent (based on
the definition of the random masking operator) and after taking expectation on the above expression
with respect to the randomness in Rp we have

Ep

[
m∑
i=1

e(MRp(X̃))i

]
=

m∑
i=1

n∏
k=1

Ep

[
emikRp(x̃k)

]
. (15)

For p ∈ (0, 1], equation 15 becomes

Ep

[
m∑
i=1

e(MRp(X̃))i

]
=

m∑
i=1

n∏
k=1

Ep

[
emikRp(x̃k)

]
=

m∑
i=1

n∏
k=1

(
pemikx̃k + (1− p)emik·0) , (16)

which further taking expectation on the randomenss in X̃ reduces to

EZ

[
Ep

[
m∑
i=1

e(MRp(X̃))i

]]
=

m∑
i=1

n∏
k=1

(
EZ

[
pemikx̃k + (1− p)

])
Lemma A.1

=

m∑
i=1

n∏
k=1

(
pemikxk+

m2
ikσ2

2 + (1− p)

)
. (17)

After taking total expectation on equation 17 and by using the tower property of expectation, we
obtain the result.

(ii) We have (
m∑
i=1

e(MRp(X̃))i

)2

=
∑
i,j

e
∑n

k=1(mik+mjk)Rp(x̃k). (18)

Proceeding similarly as above, first, taking expectation on the above expression with respect to the
randomness in Rp and then taking expectation with respect to the randomness in X̃ we have

EZ

Ep

(m∑
i=1

e(MRp(X̃))i

)2
 = EZ

Ep

∑
i,j

(
e
∑n

k=1(mik+mjk)Rp(x̃k)
)

= EZ

∑
i,j

n∏
k=1

Ep

[
e(mik+mjk)Rp(x̃k)

]
= EZ

 m∑
i,j

n∏
k=1

(
pe(mik+mjk)x̃k + (1− p)

)
Lemma A.1

=

m∑
i,j

n∏
k=1

(
pe(mik+mjk)xk+

(mik+mjk)2σ2

2 + (1− p)

)
.

(19)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

After taking total expectation on equation 19 and by using the tower property of expectation, we
obtain the result.

Remark A.3. Setting p = 1, in the loss function, we find the expected loss value,
E
[
LLL(y

⋆, s(MX̃))
]

due to noise injection (without random masking). Additionally, for p = 1, in

Lemma A.2, we recover E
[∑m

i=1 e
(MX̃)i

]
=
∑m

i=1

∏n
k=1(e

mikxk+
m2

ikσ2

2).

The following Lemma1, is the next intermediate result and instrumental in proving our main result
as it approximates the expected logarithmic term in the log loss. In Lemma A.4, we approximate
E[log(x)] by using Taylor’s Theorem.

Lemma A.4. (Khuri, 2003, p. 117) Let x be a positive random variable. Then E[log(x)] =

log[E(x)]− Var(x)
2(E(x))2 + higher order terms, where Var(x) = E(x2)− (E(x))2.

Remark A.5. We assume that x have small higher order moments, mp = E [|x− E(x)|p], for
p = 2, 3, · · ·.

Note that, setting x =
∑m

i=1 e
(MRp(X̃))i in Lemma A.4 is the first step to quantify the expected loss

value of SplitNN with random masking, E
[
LLL(y

⋆, s(MRp(X̃))
]
.

A.3.1 PROOF OF THEOREM 3.4

To prove Theorem 3.4, recall that F(p) := E
[
LLL(y

⋆, s(MRp(X̃)))
]
, and consequently, F(1) =

E
[
LLL(y

⋆, s(MX̃))
]
. By using Lemma A.4 and assuming the higher order terms are negligible, we

write

F(p) = −p(MX)i∗︸ ︷︷ ︸
:=B(p)

+ log

(
E

[
m∑
i=1

e(MRp(X̃))i

])
︸ ︷︷ ︸

:=C(p)

−
Var

(∑m
i=1 e

(MRp(X̃))i
)

2
(
E
[∑m

i=1 e
(MRp(X̃))i

])2
︸ ︷︷ ︸

:=D(p)

. (20)

Differentiating equation 20 with respect to p gives us:

F ′(p) = B′(p) + C′(p)−D′(p).

Note that,

B′(p) = −(MX)i∗ , C′(p) =

d
dp

(
E
[∑m

i=1 e
(MRp(X̃))i

])
E
[∑m

i=1 e
(MRp(X̃))i

] ,

but the derivative of D(p) becomes very messy. So, we take the following indirect route: we first
show that (i) B′(1) + C′(1) ≥ 0 and hence B(p) + C(p) are increasing in a neighborhood to the left
of p = 1; then we verify that (ii) −D(p) ≤ −D(1). We see that once we accomplish (i) and (ii), we
will have F(p) ≤ F(1) which completes the proof of Theorem 3.4.

Proof of (i).

By Lemme A.2 and a straightforward computation, we have

d

dp

(
E

[
m∑
i=1

e(MRp(X̃))i

])∣∣∣∣∣
p=1

=

m∑
i=1

n∑
r=1

(emirxr+
m2

irσ2

2 − 1)

n∏
k ̸=r,k=1

emikxk+
m2

ikσ2

2

 .

1See similar expression in Teh et al. (2006) with a restrictive assumption; assumption in Lemma A.4 is more
general.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

So,

B′(1) + C′(1) = −(MX)i +

∑m
i=1

∑n
r=1

[
(emirxr+

m2
irσ2

2 − 1)
∏n

k ̸=r,k=1(e
mikxk+

m2
ikσ2

2)

]
∑m

i=1

(∏n
k=1(e

mikxk+
m2

ik
σ2

2)

) ,

which is bigger than or equal to 0 if and only if∑m
i=1

∑n
r=1

[
(emirxr+

m2
irσ2

2 − 1)
∏n

k ̸=r,k=1(e
mikxk+

m2
ikσ2

2)

]
∑m

i=1

(∏n
k=1(e

mikxk+
m2

ik
σ2

2)

) ≥ (MX)i∗ , (21)

or equivalently,

m∑
i=1

n∑
r=1

(emirxr+
m2

irσ2

2 − 1)

n∏
k ̸=r,k=1

(emikxk+
m2

ikσ2

2)

 ≥ (MX)i∗
m∑
i=1

(
n∏

k=1

(emikxk+
m2

ikσ2

2)

)
.

Let f(σ2) denote the difference of the two sides, we have f(σ2) :=

m∑
i=1

 n∑
r=1

(emirxr+
m2

irσ2

2 − 1)

n∏
k ̸=r,k=1

(emikxk+
m2

ikσ2

2)

− (MX)i∗
m∑
i=1

n∏
k=1

(emikxk+
m2

ikσ2

2)

=

m∑
i=1

(
n∏

k=1

emikxk+
m2

ikσ2

2

)[
−(MX)i∗ +

n∑
r=1

(1− e−mirxr−
m2

irσ2

2)

]

=

m∑
i=1

(
n∏

k=1

emikxk+
m2

ikσ2

2

)[
n∑

r=1

(1−mi∗rxr − e−mirxr−
m2

irσ2

2)

]
.

Now, note that
∑n

r=1(1−mi∗rxr−e−mirxr−
m2

irσ2

2) is an increasing function of σ2 and as σ2 → +∞,
it approaches

∑n
r=1(1 − mi∗rxr) = n −∑n

r=1 mi∗rxr, which is positive by assumption. Thus,
when σ2 is large enough, f(σ2) > 0. This verifies (21) and hence (i).

Proof of (ii).

We need to verify that D(p) ≥ D(1), that is, by the definition of D(p),

Var
(∑m

i=1 e
(MRp(X̃))i

)
2
(
E
[∑m

i=1 e
(MRp(X̃))i

])2 ≥
Var

(∑m
i=1 e

(MRp(X̃))i
)

2
(
E
[∑m

i=1 e
(MRp(X̃))i

])2
∣∣∣∣∣∣∣
p=1

.

By the formula Var(x) = E
[
x2
]
− (E [x])2, it suffices to verify

E
[(∑m

i=1 e
(MRp(X̃))i

)2]
−
(
E
[∑m

i=1 e
(MRp(X̃))i

])2
2
(
E
[(∑m

i=1 e
(MRp(X̃))i

)])2

≥
E
[(∑m

i=1 e
(MRp(X̃))i

)2]
−
(
E
[∑m

i=1 e
(MRp(X̃))i

])2
2
(
E
[(∑m

i=1 e
(MRp(X̃))i

)])2
∣∣∣∣∣∣∣∣
p=1

.

which can be simplified to

E
[(∑m

i=1 e
(MRp(X̃))i

)2]
(
E
[(∑m

i=1 e
(MRp(X̃))i

)])2 ≥
E
[(∑m

i=1 e
(MRp(X̃))i

)2]
(
E
[(∑m

i=1 e
(MRp(X̃))i

)])2
∣∣∣∣∣∣∣∣
p=1

.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Using Lemma A.2, the above is the same as

∑m
i,j

∏n
k=1

[
pe(mik+mjk)xk+

(mik+mjk)2σ2

2 + (1− p)

]
[∑m

i=1

∏n
k=1

(
pemikxk+

m2
ik

σ2

2 + (1− p)

)]2 ≥
∑m

i,j

∏n
k=1 e

(mik+mjk)xk+
(mik+mjk)2σ2

2(∑m
i=1

∏n
k=1 e

mikxk+
m2

ik
σ2

2

)2 . (22)

We now verify (22) for σ2 large enough. Note that (22) is true if and only if the following function
g(p) ≥ 0 where

g(p) :=

m∑
i,j

n∏
k=1

[
pe(mik+mjk)xk+

(mik+mjk)2σ2

2 + (1− p)

](m∑
i=1

n∏
k=1

emikxk+
m2

ikσ2

2

)2

−
m∑
i,j

n∏
k=1

(
(e(mik+mjk)xk+

(mik+mjk)2σ2

2

)[m∑
i=1

n∏
k=1

(
pemikxk+

m2
ikσ2

2 + (1− p)

)]2
.

Note that g(1) = 0. So, it suffices to show that g(p) is non-increasing on a small neighborhood to the
left hand side of 1. Differentiate g to get

g′(1) =

m∑
i,j

n∏
k=1

(
e(mik+mjk)xk+

(mik+mjk)2σ2

2

) n∑
r=1

(
1− e−(mir+mjr)xr−

(mir+mjr)2σ2

2

)
× I2

−J × 2I ×
m∑
i=1

n∏
k=1

(
emikxk+

m2
ikσ2

2

) n∑
r=1

(
1− e−mirxr−

m2
irσ2

2

)
.

where I :=
∑m

i=1

∏n
k=1 e

mikxk+
m2

ikσ2

2 and J :=
∑m

i,j

∏n
k=1 e

(mik+mjk)xk+
(mik+mjk)2σ2

2 . We have

g′(1) = I


m∑
i,j

n∏
k=1

(
e(mik+mjk)xk+

(mik+mjk)2σ2

2

) n∑
r=1

(
1− e−(mir+mjr)xr−

(mir+mjr)2σ2

2

)
× I

−J × 2×
m∑
i=1

n∏
k=1

emikxk+
m2

ikσ2

2

n∑
r=1

(
1− e−mirxr−

m2
irσ2

2

)}

= I


m∑
i,j

n∏
k=1

e(mik+mjk)xk+
(mik+mjk)2σ2

2 (n−
n∑

r=1

e−(mir+mjr)xr−
(mir+mjr)2σ2

2)× I

−J × 2×
m∑
i=1

n∏
k=1

emikxk+
m2

ikσ2

2 (n−
n∑

r=1

e−mirxr−
m2

irσ2

2)

}

= I

n× I × J −
m∑

i,j,s

n∏
k=1

e(mik+mjk+msk)xk+
((mik+mjk)2+m2

sk)σ2

2

n∑
r=1

e−(mir+mjr)xr−
(mir+mjr)2σ2

2

−2n× J × I + 2

m∑
i,j,s=1

n∏
k=1

e(mik+mjk+msk)xk+
((mik+mjk)2+m2

sk)σ2

2

n∑
r=1

e−msrxr−m2
srσ2

2


20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

= I

−n× I × J −
m∑

i,j,s

n∏
k=1

e(mik+mjk+msk)xk+
((mik+mjk)2+m2

sk)σ2

2

n∑
r=1

e−(mir+mjr)xr−
(mir+mjr)2σ2

2

+2

m∑
i,j,s=1

n∏
k=1

e(mik+mjk+msk)xk+
((mik+mjk)2+m2

sk)σ2

2

n∑
r=1

e−msrxr−m2
srσ2

2)


= I


m∑

i,j,s

n∏
k=1

e(mik+mjk+msk)xk+
((mik+mjk)2+m2

sk)σ2

2

×
n∑

r=1

(
−1− e−(mir+mjr)xr−

(mir+mjr)2σ2

2 + 2e−msrxr−m2
srσ2

2

)}

The last sum above clearly goes to −n as σ2 → +∞. Thus, for σ2 large enough, we have g′(1) < 0
which implies g(p) ≥ g(1) = 0 for p close to 1 from the left hand side. This completes the proof.

A.3.2 SKETCH OF PROOF OF THEOREM 3.5

The proof follows a similar line of arguments in the proof of Theorem 2 and thus, we point out only
the main differences. We need to verify E

[
LLL(y

⋆, s(MSα(X̃)))
]
≤ E

[
LLL(y

⋆, s(MX̃))
]

for α
close to and larger than 1. With λ = 1/α, one can show (as in Lemma 2) that

E

[
m∑
i=1

eMSα(X̃)

]
=

m∑
i=1

eλ
∑n

k=1 mikxk+λ2σ2 ∑n
k=1 m2

ik/2

and

E

(m∑
i=1

eMSα(X̃)

)2
 =

m∑
i=1

m∑
j=1

eλ
∑n

k=1(mik+mjk)xk+λ2σ2 ∑n
k=1(mik+mjk)

2/2.

Next, one can establish similar steps of (20), (21), and (22) for the current case and eventually
complete the proof.

A.3.3 CONCENTRATION OF THE ERRORS

Linear layer. Both conditions in Theorem 1 are necessary and sufficient conditions and indicate
implicit relations between the input, X , the denoising parameters, p, α, the weight of the split layer,
W , and the added noise magnitude α. For the masking case, the coefficient of the linear term, p,
which can be positive or negative depending on the noise scale σ, dominates MSE; see Figure 2 (b).
However, for Theorem 1 (ii), from (11), we observe the MSE, depends quadratically on the scaling
factor 1

α , where α > 1. Therefore, one can observe a quadratic relation between the scaling factor 1
α ,

and MSE in Figures 2(a).

Nonlinear layer. For nonlinear loss functions, this relation is more complicated to observe. For
Theorem 2, the loss is LLL(y

⋆, s(MRp(X̃))) which is given in equation (2) in the main pa-
per (also, see equation (18) in Appendix). In this scope, we show how the bound on the error,
E[LLL(y

⋆, s(MX̃))−LLL(y
⋆, s(MRp(X̃)))], depends on σ2 and (1− p). Based on equation (18),

the first term will be −(1− p)(MX)i⋆ , which is linear in (1− p). The next term we need to consider
is log

(
E[
∑m

i=1 e
(MRp(X̃))i]

)
− log

(
E[
∑m

i=1 e
(MX)i]

)
. By directly manipulating the expression in

(15) for p and p = 1 we find this quantity approximately is

m∑
i=1

e
∑n

k=1 mikxk{(pn − 1) + σ2pn
∑n

k=1 m
2
ik

2
+ Higher order terms}+O(1− p).

When the noise is not too large, say, σ2
∑n

k=1 m2
ik

2 < 1, we can observe the bound is approximately
linear in the variance of noise, σ2. One can obtain a similar observation for Theorem 3 as well.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.4 DIFFERENTIAL PRIVACY (DP)

We start by defining differential privacy.
Definition A.6. Dwork et al. (2014) A random mechanism, K : D → Rm is (ϵ, δ)-differentially
private if for all adjacent inputs, D,D′ ∈ D, with Hamming distance, d(D,D′) = 1, and all possible
output, O ∈ Rm ∈ B(Rm) such that

P [K(D) ∈ O] ≤ eϵP [K(D′) ∈ O] + δ,

where P [·] refers to the probability associated with the random mechanism K and B(Rm) is Borel
sets in Rm.

We also need the general theorem that says, any differentially private mechanism, K : D → O is
further differentially private if it is transformed by an arbitrary postprocessing function, deterministic
or random; see Theorem 3.7 in the main paper.

Finally, if perform multiple computations of the random mechanism, K on the same dataset, D,
that is, we make T such passes on D, then the privacy guarantee degrades. We quote the advanced
composition theorem from Dwork et al. (2010) for such mechanisms.
Theorem A.7. Dwork et al. (2010) Let K : D → O×O · · ·O︸ ︷︷ ︸

T−times

be an T -fold adaptive composition

of (ϵ, δ)-DP mechanisms. Then K is (ϵ′, T δ + δ′)-DP for ϵ′ = ϵ
√
2T ln(δ′−1) + Tϵ(eϵ − 1), for all

δ′ > 0.

A.4.1 DP OF THE GRADIENT DURING BACKPROPAGATION

Setup. Let {(Xi, y
⋆
i)}Ni=1 be training data points. Let the kth layer of a L layer DNN be Xk

i , let Φ
be a differentiable activation function, and let M t

k be the weight matrix for the kth layer at iteration,
t. By this convention, Xi = X0

i . At t = 0, we have

Xj
i = Φj(M

0
j X

j−1
i), yji = M0

j X
j−1
i , j = 1, · · ·L. (23)

For the noisy split neural network with post-processing, let the split happen at the (l − 1)th layer (so,
the cut layer is the (l − 1)th layer). With the notations above, we have:

Xj
i = Φj(M

0
j X

j−1
i), yji = M0

j X
j−1
i , j = 1, · · · l − 1,

X̃ l−1
i = X l−1

i +∆, X̃ l
i = Φl(M

0
l hD(X̃ l

i)), ỹ
l
i = M0

l hD(X̃ l
i),

and X̃k
i = Φk(M

0
k X̃

k−1
i), ỹki = M0

k X̃
k
i , k = l + 1, · · ·L.

(24)

In our experiments, we use the regular backpropagation formula in our noisy split network training,
which we formalize in the next Proposition.
Proposition A.8. With the notations above, for a noisy split network with post-processing, during
training, one can use the regular backpropagation algorithm by substituting: (i) yki = ỹki , X

k
i = X̃k

i
for all subsequent k = L − l + 1, · · · , L and (ii) yri = yri , X

r
i = Xr

i for all r = 1, 2, · · · , l − 1,
before the split, and yki = ỹki , for k = L− l + 1, · · · , L after the split.

Define the sets, S ⊆ Rm and Sc as follows:{
S := {z : p(z) > eϵp(z + V (D)− V (D′))},
Sc := {z : p(z) ≤ eϵp(z + V (D)− V (D′))}, (25)

Proposition A.9. Let ϵ, δ > 0, and let a random mechanism K : D → Rm be defined as in (3). Then
for any two adjacent datasets, D and D′, large enough, we have that the random variable Z will
satisfy P [ω : p(Z(ω)) > eϵp(Z(ω) + V (D)− V (D′))] < δ.

The above Proposition can be verified as follows. Because, for two large enough datasets, D and D′,
we can make ∆ := ∥V (D)− V (D′)∥ small. Using Taylor expansion, we have

p(z)− eϵp(z + V (D)− V (D′))

= p(z)− eϵ(p(z) +∇p(z)⊤(V (D)− V (D′)) + o(∆2)

≈ (1− eϵ)p(z) +O(∆) ≤ 0.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Theorem A.10. Let a random mechanism, K : D → Rm as defined in equation 3 obey Proposition
A.9. Then for some (ϵ, δ), K is (ϵ, δ)-DP.

Proof. Note that, P [K(D) ∈ O] = P [V (D)+z ∈ O] = P [z ∈ O−V (D)]
O′:=O−V (D)

= P [z ∈ O′],
where O′ is a shifted output set. We split the set O′ into two disjoint sets, O′ ∩ S and O′ ∩ Sc.
Therefore,

P [K(D) ∈ O] = P [z ∈ O′] = P [z ∈ ((O′ ∩ S) ∪ (O′ ∩ Sc))]

= P [z ∈ (O′ ∩ S)] + P [z ∈ (O′ ∩ Sc)]

O′∩S⊆S

≤ P [z ∈ S] + P [z ∈ (O′ ∩ Sc)]
Proposition A.9

< δ + P [z ∈ (O′ ∩ Sc)]. (26)

We also have

P [z ∈ (O′ ∩ Sc)] =

∫
z∈O′∩Sc

p(z)dz
By equation 25

≤ eϵ
∫
z∈O′∩Sc

p(z + V (D)− V (D′))dz

O′∩Sc⊆O′

≤ eϵ
∫
z∈O′

p(z + V (D)− V (D′)︸ ︷︷ ︸
=u

)dz

= eϵ
∫
u∈O−V (D′)

p(u)du

= eϵ
∫
z+V (D′)∈O

p(z)dz

= eϵP [V (D′) + z ∈ O]

= eϵP [K(D′) ∈ O]. (27)

Combining equation 26 and equation 27, we get the result.

Let gtB(D) and g̃tB(D) be two gradient vectors computed on the training dataset D over a minibatch
B at iteration t without and with noise injected. Based on Proposition A.8 we have:{

gtB(D) = g(yLB(D), yL−1
B (D), yL−2

B (D), · · · , y1B(D)).

g̃tB(D) = g(ỹLB(D), · · · , ỹlB(D), yl−1
B (D), · · · , y1B(D)).

Define Z := g̃tB(D)− gtB(D) be a random vector. Hence,

KBP (D) := g̃tB(D) = gtB(D) + Z, (28)

where Z = G(ξ, β) is a random variable with probability density function p(z̃ ∈ O) = p((ξ, β) ∈
G−1(O)). In our case, we use masking and scaling as postprocessing function, hD(·) after the Gaus-
sian noise injection. The random variable, ξ ∼ N (0, σI) is continuous. The mask, Rp is a random
matrix of 1 and 0 with identical and independently distributed entries, (Rp)ij ∼ Bernoulli(p), a
discrete distribution. For scaling, Sα is an elementwise scaling operator. Therefore, for masking,
ỹli = M0

l Rp(X̃
l
i), and the entries of Rp(X̃

l
i) = X l−1

i (D)+∆ or 0, based on (Rp)ij ∼ Bernoulli(p).
On the other hand, for scaling, ỹli = M0

l Sα(X̃
l
i) and the entries of Sα(X̃

l
i) =

1
α (X

l−1
i (D) + ∆).

Therefore, based on Theorem A.10, this mechanism is also differentially private.

B ADDENDUM TO THE NUMERICAL RESULTS

Due to limited space, we were unable to discuss many experimental details as well as many results in
Section 4 of the main paper. We discuss them here in detail.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Model & Dataset Split Config. (denoted by ∥) Layer Size
CNN MNIST 2×Conv2d - FC ∥ FC - Loss 256

2×Conv2d ∥ FC - FC - Loss 12544

MLP IMDB Embedding - FC ∥ FC - Loss 16
Embedding ∥ FC - FC - Loss 4096

ResNet-20 CIFAR10 Conv2d - 3×ResBlock ∥ FC - Loss 256

ResNet-18 CIFAR100 Conv2d - 4×ResBlock ∥ FC - Loss 512

RNN Names Embedding - RNN ∥ FC - Loss 256

Table 1: Model split configurations and split layer sizes.

Table 2: SplitNN setup and training hyper-parameters

Model Dataset Optimizer Batch size Epoch lr Weight decay
CNN MNIST SGD 64 4 0.1 0

ResNet-20 CIFAR-10 SGD-M 128 160 0.1 1e-4
ResNet-18 CIFAR-100 SGD-M 128 200 0.1 5e-4

MLP IMDB Adam 64 2 0.01 0
LSTM Names SGD 800 150 2 0

B.1 LAPLACE MECHANISM

The Laplace Distribution (centered at 0) with scale b is the distribution with probability density
function:

Lap(x | b) = 1

2b
exp

(
−|x|

b

)
Here, we consider the Laplace mechanism to protect the input vector X . Simulation results (Figure 7)
show that our denoising methods can also decrease the estimation error caused by Laplace mechanism
during forward and backward pass. However, in the real split learning task (see Table 3), our denoising
methods are less effective for large Laplacian noise b = 0.7, compared with σ = 0.7 in Gaussian
mechanism. More detailed investigation is left for future work.

B.2 SPLIT LEARNING RESULT ON CIFAR-100

We provide results on the CIFAR-100 dataset with ResNet-18 in Table 5. As shown in the table, both
our denoising techniques achieve higher accuracy than simple learning rate tuning.

B.3 UNDERSTANDING THE SCALING OPERATION WHEN GRADIENT SCALE IMPACT IS
ELIMINATED

To further understand the scaling operations, we run the same MNIST experiment with two Adam
optimizers separately for the client and server. The results in Table 6 demonstrate that the efficacy of
scaling operation still exists even when gradient scale impact is eliminated by Adam’s updating rule.

Table 3: Denoising performance by using Laplacian noise in split learning for MNIST classification
task (same experiment setting as Figure 3a). We fine-tune hyper-parameters λ and p for different
Laplacian noise scale b = 0.3, 0.5, 0.7. Compared with Gaussian mechanism, split learning is
suffering more from Laplacian noise injection.

b Best acc. (%) λ=0.1 λ=0.2 λ=0.4 λ=0.6 p=0.1 p=0.2 p=0.4 p=0.6
0 98.96 (±0.13) - - - - - - - -

0.3 92.64 (±0.11) 95.66 (±0.25) 94.49 (±0.31) 92.16 (±0.38) 90.93 (±0.49) 98.19 (±0.67) 98.55 (±0.62) 98.32 (±0.17) 95.54 (±0.21)
0.5 38.30 (±0.27) 94.58 (±0.18) 93.44 (±0.27) 89.11 (±0.53) 85.10 (±0.35) 96.98 (±0.39) 97.48 (±0.84) 95.17 (±0.31) 89.01 (±0.37)
0.7 16.62 (±0.10) 21.44 (±0.13) 23.49 (±0.58) 20.52 (±0.34) 14.71 (±0.52) 12.85 (±0.27) 23.62 (±0.45) 18.42 (±0.49) 15.58 (±0.19)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

(e) (f)

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

(a) (b) (c) (d)

(e) (f)

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

(a) (b)

Figure 6: Backward simulation. Simulation of how scaling factor (λ = 1
α

) and masking ratio (p) influence
the estimation error (MSE) under different noise levels (σ) for linear (f1) and nonlinear functions (f2, f ′

2). The
backpropagation errors are essential during the training as we use them together with forward IRs to directly
compute the gradients. By taking the derivative of the loss function w.r.t the IRs, we obtain the simulation of the
MSEs for the backpropagation errors. Similar to the forward pass, scaling and masking, can lower the estimation
error during the backward pass, especially when the noise level is relatively high.

b = 0.7 b = 0.5 b = 0.3

(a) (b) (c) (d)

(e) (f)

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

5. In section 4.2, the authors introduce the performance of 2 denoising techniques. In section289

4.3, the authors test the attack defense ability of the DP-protected SplitNNs with denoising.290

Both of these denoising techniques give good performance. However, does each of these291

denoising techniques have its applicable scenarios? What’s the usability difference between292

these two techniques?293

Answer: This is an important question; thank you. Theoretical investigation and numerical294

simulation show that scaling can achieve better denoising in terms of estimation error, the295

MSE. It does not change the information density in the original data. While in DNN training,296

when the scaling technique is used with weight decay, it needs more effort in parameter297

tuning than the masking technique. In addition, the masking technique can improve the298

privacy guarantee, and thus it is more robust against data recovery attacks.299

6. In section 4.1, Figure 2 shows that the denoising techniques may even affect the utility with300

a low noise level. How can we decide whether the denoising techniques can improve or301

affect the model utility with a certain noise level?302

Answer: From a theoretical point of view, one can refer to Theorem 1 to decide whether a303

certain value of hyper-parameter (� or p) can have the denoising effect with a certain noise304

level. In practice, one should always tune the hyper-parameter to get the desired denoising305

performance for different noise levels.306

f1(X) = MX for linear case and307

f2(X) = LLL(y?, s(MX)) for nonlinear case,308

f 0
2(X) = @LLL(y?,s(MX))

@(s(MX)) for backward gradient,309

7

Figure 7: Simulation of how scaling factor (λ = 1
α

) and masking ratio (p) influence the estimation error
(MSE) under different Laplacian noise levels (b) for linear and nonlinear cases. Plots (a)–(d) are the linear layer
and nonlinear layer during the forward pass, while (e)-(f) are the derivative of the nonlinear layer during the
backward pass.

If we compare our scaling method against learning rate tuning, the accuracy gain should be from
92.80% to 98.14%.

B.4 COMPUTATIONAL OVERHEAD OF THE POSTPROCESSING FUNCTIONS

We measured the computational overhead introduced by the denoising techniques on both CPU and
GPU. The results are shown in Table 7. The computational overhead of scaling and masking is
negligible compared to the training computation.

B.5 FEATURE-SPACE HIJACKING ATTACK (FSHA) AND OUR POST-PROCESSING TECHNIQUES

Threat model. We assume that the attacker has no information on the architecture of the client’s
model and its weights. However, the attacker knows a public dataset that captures the same domain of
the clients’ training sets. For example, if the model is trained on face images, then the public dataset

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Learning rate 0.001 0.005 0.01 0.05 0.1
Top-1 Acc. (%) 87.68 92.67 81.21 diverge diverge

Weight decay 0.01 0.05 0.1 0.2 0.4
Top-1 Acc. (%) diverge diverge diverge 87.15 77.78

Dropout 0.1 0.2 0.4 0.6 0.8
Top-1 Acc. (%) diverge diverge diverge diverge diverge

Masking 0.1 0.2 0.4 0.6 0.8
Top-1 Acc. (%) 98.31 98.62 diverge diverge diverge

Scaling* 0.1 0.2 0.4 0.6 0.8
Top-1 Acc. (%) 98.10 96.06 90.25 diverge diverge

Table 4: Comparison of tuning various hyper-parameters in noise injected SplitNN training at a fixed noise
level (σ = 0.7) for MNIST classification. * means co-optimization with weight decay.

0 500 1000 1500 2000 2500 3000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

. =0.7 lr=5e-3
=0.7 lr=5e-2
=0.7 lr=1e-3
=0.7 lr=1e-2
=0.7 lr=1e-1

Baseline

(a) Learning rate

0 500 1000 1500 2000 2500 3000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

. =0.7 =0.4
=0.7 =0.2
=0.7 =0.1
=0.7 =0.05
=0.7 =0.01

Baseline

(b) Weight decay

0 500 1000 1500 2000 2500 3000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

. =0.7 ratio=0.8
=0.7 ratio=0.6
=0.7 ratio=0.4
=0.7 ratio=0.2
=0.7 ratio=0.1

Baseline

(c) Dropout

0 500 1000 1500 2000 2500 3000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

. =0.7 p=0.8
=0.7 p=0.6
=0.7 p=0.4
=0.7 p=0.2
=0.7 p=0.1

Baseline

(d) Masking

0 500 1000 1500 2000 2500 3000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

. =0.7 =0.8
=0.7 =0.6
=0.7 =0.4
=0.7 =0.2
=0.7 =0.1

Baseline

(e) Scaling

0 500 1000 1500 2000 2500 3000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

. =0.7 =0.8 =0.1
=0.7 =0.6 =0.1
=0.7 =0.4 =0.1
=0.7 =0.2 =0.05
=0.7 =0.1 =0.01

Baseline

(f) Scaling + Weight decay

Figure 8: Comparison of tuning various hyper-parameters in noise-injected split learning at a fixed noise level
(σ = 0.7) for MNIST classification task.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 5: Top-1 Accuracy (%) of split learning using ResNet-18 on CIFAR-100 dataset with noise
injection level (σ = 0.7). The baseline achieves 75.60% Top-1 accuracy using SGD-Momentum
(m=0.9) with an initial learning rate of 0.1, and weight decay 5e−4.

Learning rate 0.001 0.005 0.01 0.05 0.1
Top-1 Acc. (%) 53.11 68.93 61.54 diverge diverge
Masking (lr=0.1) 0.1 0.2 0.4 0.6 0.8
Top-1 Acc. (%) 60.49 72.38 63.31 52.97 diverge
Scaling (lr=0.1) 0.1 0.2 0.4 0.6 0.8
Top-1 Acc. (%) 72.21 71.68 68.14 57.54 diverge

(a) 2 FC layers on server side, split layer size = 12544 (b) 1 FC layer on server side, split layer size = 256

𝑋!"#$

𝑋"%&

𝜎 = 0

𝜎 = 0.5

𝜎 = 1.0

𝜎 = 2.0

Figure 9: Private data recovery by FSHA in split learning on MNIST. Xpriv: the original private data, Xrec:
obtained by FSHA attack. We compare two different split learning settings: (a) split 2 FC layers on the server
side (b) split 1 FC layer on the server side. The dimension of the split layer are also different. We can see that by
splitting more layers on the server side, it is more likely to reconstruct private training even when the noise level
is relatively high (σ = 1.0, 2.0).

is composed of face images as well. This assumption is more realistic and less restrictive than the
ones adopted in other works Vepakomma et al. (2019)Vepakomma et al. (2018b), where the attacker
is assumed to have direct access to leaked pairs of intermediate results and private training data.

In the FSHA Pasquini et al. (2021) attack, the attacker (e.g. the server) can hijack the client’s learning
process and learn an inverse version of the client’s model. During the inference, the attacker can
recover the client’s raw data by using the output of the client. In this work, we showed that the
masking operator simultaneously improves the SplitNN training and in the meantime, decreases
the efficacy of the FSHA attack. Our intuition is that the denoising effect depends on the specific
application, which is a function applied to the noisy input, X +∆. If the function’s goal is to identify
each value of X , such as reconstructing an image in an FSHA attack, then denoising cannot help
too much. However, if the goal is to get a more accurate estimation on some statistical metrics of X ,
such as the mean, norm of X , then it is possible to have an evident denoising improvement.

Table 6: Top-1 Accuracy(%) of split learning on MNIST dataset with noise injection level (σ = 0.7).
Use two Adam optimizers separately for the client and server. The Adam baseline (lr=1e-3) achieves
98.95% top-1 accuracy.

Learning rate 1e-6 1e-5 1e-4 1e-3 0.1
Top-1 Acc. (%) 83.96 92.80 90.13 diverge diverge
Scaling ratio (lr=1e-4) 0.1 0.2 0.4 0.6 0.8
Top-1 Acc. (%) 97.19 97.94 98.14 96.03 91.75

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 7: Run time profiling for one mini-batch training of CNN on MNIST dataset. GPU: NVIDIA
A100-80GB GPU. CPU: Intel Xeon Platinum 8260 CPU @ 2.40GHz.

Hardware Baseline Noise injection only Noise injection w. masking Noise injection w. scaling
GPU 1.54 ms 1.88 ms 1.91 ms 1.92 ms
CPU 22.16 ms 22.27 ms 23.40 ms 23.19 ms

Table 8: Hyper-parameter tuning for scaling (λ) and masking (p) at different noise level (σ). Results
are obtained by running the experiment for 3 times with different random seeds. We record the best
test accuracy during the training instead of the final accuracy.

Task σ Best acc. (%) λ=0.1 λ=0.2 λ=0.4 λ=0.6 p=0.1 p=0.2 p=0.4 p=0.6
CNN-MNIST 0 98.96 (±0.13) - - - - - - - -

0.3 98.46 (±0.07) 97.63 (±0.27) 97.13 (±0.23) 96.07 (±0.10) 95.42 (±0.17) 98.93 (±0.14) 98.88 (±0.19) 98.86 (±0.11) 98.77 (±0.09)
0.5 90.99 (±0.38) 97.59 (±0.20) 97.07 (±0.63) 95.87 (±0.09) 94.62 (±0.94) 98.78 (±0.15) 98.84 (±0.16) 98.74 (±0.30) 94.36 (±1.13)
0.7 81.85 (±0.77) 97.11 (±0.15) 96.30 (±0.36) 90.95 (±0.22) 88.88 (±0.28) 98.31 (±0.38) 98.62 (±0.23) 96.67 (±0.14) 90.51 (±1.09)

ResNet20-CIFAR10 0 91.76 (±0.28) - - - - - - - -
0.3 90.98 (±0.23) 89.15 (±0.51) 90.13 (±0.95) 90.67 (±0.49) 90.84 (±0.43) 88.69 (±0.80) 89.54 (±0.57) 90.30 (±0.26) 90.15 (±0.31)
0.5 89.72 (±0.49) 89.93 (±0.52) 90.50 (±0.74) 90.33 (±0.72) 89.97 (±0.62) 88.21 (±0.50) 89.55 (±0.73) 89.98 (±0.98) 89.65 (±1.10)
0.7 82.03 (±0.76) 88.88 (±0.74) 87.95 (±0.13) 87.21 (±0.79) 85.80 (±0.88) 88.45 (±0.90) 89.15 (±1.16) 88.52 (±1.29) 87.60 (±1.41)

MLP-IMDB 0 85.53 (±0.18) - - - - - - - -
0.3 85.42 (±0.30) 85.85 (±0.63) 85.49 (±0.17) 84.72 (±0.58) 85.47 (±0.03) 85.49 (±0.33) 85.54 (±0.55) 85.64 (±0.51) 85.21 (±0.74)
0.5 84.85 (±0.63) 85.44 (±0.68) 85.35 (±0.84) 84.06 (±0.58) 84.55 (±0.72) 85.55 (±0.69) 86.00 (±0.36) 85.18 (±0.62) 85.92 (±1.22)
0.7 64.91 (±1.71) 84.00 (±0.38) 84.24 (±0.94) 82.83 (±0.36) 80.90 (±0.71) 85.11 (±0.40) 85.08 (±0.30) 83.27 (±1.38) 84.88 (±1.03)

LSTM-Names 0 81.24 (±0.25) - - - - - - - -
0.3 82.31 (±0.81) 83.76 (±0.58) 82.35 (±0.27) 81.17 (±0.31) 80.51 (±0.59) 80.52 (±0.36) 82.05 (±0.40) 81.63 (±0.08) 82.23 (±0.83)
0.5 56.91 (±1.42) 82.17 (±0.64) 81.70 (±0.78) 81.56 (±0.45) 81.43 (±0.95) 80.13 (±0.52) 82.54 (±1.03) 82.04 (±1.21) 82.57 (±0.06)
0.7 47.65 (±1.97) 81.56 (±0.34) 80.87 (±0.58) 81.07 (±0.81) 66.68 (±0.57) 79.35 (±0.35) 81.15 (±0.75) 80.40 (±0.75) 46.59 (±1.33)

B.6 DP BUDGET

We provide the privacy bounds for one single forward pass during the SplitNN training in Table
9. By using the general composition Theorem, Theorem A.7 in the Appendix, we can calculate
the total privacy budget for the entire training process. Although Theorem A.7 gives a theoretical
formalization, in practice, if we use Theorem A.7 directly, it will result in a large privacy bound,
which may not be practical. As argued in the paper DP-SGD, Abadi et al. found that even for
local SGD training using Theorem A.7 would result in a large privacy bound and proposed a new
accounting for local noisy SGD training. However, noisy SplitNN is a more complicated architecture
and DP-SGD analysis cannot be adopted here. Currently, privacy accounting for noisy SplitNN
training remains an open problem. Improving the privacy accounting for split learning is not the
primary focus of this work, instead, we want to show how denoising can improve noisy SplitNN
accuracy.

C LIMITATIONS

Our denoising techniques work empirically on diverse datasets (MNIST, FMNIST, CIFAR-10, CIFAR-
100, IMDB, Names) and across different network architectures (CNN, RNN, and MLP). However,
testing them on larger datasets (ImageNet) and more complex DNN architectures is ongoing. One
of the potential drawbacks or limitations of the denoising techniques empirically is finding a good
scaling or masking ratio. Another potential limitation could be that our proposed denoising techniques
may not work for other loss functions. However, theoretically, we covered almost all the existing
loss functions used for common DNN training; please see our discussion in Appendix (Lines 497-

Table 9: We provide the privacy bounds for one single forward pass during the SplitNN training, for
various noise levels used in our work, without denoising. We compare it with two state-of-the-art
results for private split learning.

Method Model & Dataset DP mechanism Inference Training Noise scale DP bounds
Titcombe et al. 2021 2D CNN on MNIST Laplace ✓ 0.1, 0.5, 1.0 N/A
Abuadbba et al. 2020 1D CNN on medical data Laplace ✓ N/A ϵ = 1,3,5,7,10
Our work (w/o sampling amplification) 2D CNN on MNIST Gaussian ✓ 0.3, 0.5, 0.7 ϵ = (260, 150, 110)*2, δ = 1e−5

ResNet on CIFAR10 Gaussian ✓ 0.3, 0.5, 0.7 ϵ = (264, 152, 112)*2, δ = 1e−5
MLP on IMDB Gaussian ✓ 0.3, 0.5, 0.7 ϵ = (168, 96, 72)*2, δ = 1e−5
LSTM on Names Gaussian ✓ 0.3, 0.5, 0.7 ϵ = (9.2, 5.3, 3.9)*2, δ = 1e−5

Our work (w/o sampling amplification) 2D CNN on MNIST Laplace ✓ 0.3, 0.5, 0.7 ϵ = (53.3, 32, 22.8)*2
ResNet on CIFAR10 Laplace ✓ 0.3, 0.5, 0.7 ϵ = (53.3, 32, 22.8)*2
MLP on IMDB Laplace ✓ 0.3, 0.5, 0.7 ϵ = (13.3, 8, 5.7)*2
LSTM on Names Laplace ✓ 0.3, 0.5, 0.7 ϵ = (53.3, 32, 22.8)*2

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

!!"#$

!"%& " = 0.2

" = 0.4

" = 0.6

" = 0.8

" = 0.1

+ = 0.7

!"%&

+ = 0

+ = 0.3

+ = 0.5

+ = 0.7

!"%& / = 0.2

/ = 0.4

/ = 0.6

/ = 0.8

/ = 0.1

+ = 0.7

(a)

(b)

(c)

Figure 10: Private data recovery by FSHA in split learning on MNIST. Xpriv: the original private data, Xrec:
obtained by FSHA attack in various settings: (a) noise injection only (b) noise injection + masking (c) noise
injection + scaling.

504). Generalizing our theoretical claims to a broader class of nonlinear loss functions, such as
sparse categorical cross-entropy, which is also rarely used in practice, requires further non-trivial
investigation and is scope for future research. Our present theoretical analyses are in Section 3.1.
and 3.2 consider the split layer at the pre-final layer of an L layer DNN; analysis of the split at an
arbitrary i-th layer, along with the final loss function used for DNN training, requires much more
mathematical rigor (Lines 114-128).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a)

(b)

(c)

!!"#$

!"%& " = 0.2

" = 0.4

" = 0.6

" = 0.8

" = 0.1

+ = 0.7

!"%&

+ = 0

+ = 0.3

+ = 0.5

+ = 0.7

!"%& / = 0.2

/ = 0.4

/ = 0.6

/ = 0.8

/ = 0.1

+ = 0.7

Figure 11: Private data recovery by FSHA in split learning on Fashion-MNIST. Xpriv: the original private
data, Xrec: obtained by FSHA attack in various settings: (a) noise injection only (b) noise injection + masking
(c) noise injection + scaling.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

(a)

(b)

(c)

!!"#$

!"%& " = 0.2

" = 0.4

" = 0.6

" = 0.8

" = 0.1

+ = 0.7

!"%&

+ = 0

+ = 0.3

+ = 0.5

+ = 0.7

!"%& / = 0.2

/ = 0.4

/ = 0.6

/ = 0.8

/ = 0.1

+ = 0.7

Figure 12: Private data recovery by FSHA in split learning on CIFAR-10. Xpriv: the original private data,
Xrec: obtained by FSHA attack in various settings: (a) noise injection only (b) noise injection + masking (c)
noise injection + scaling.

31

	Introduction
	Related Work
	Theoretical Guarantee
	A linear layer
	Nonlinear loss function for classification task
	Differential privacy (DP) preservation

	Experimental Evaluation
	Simulation
	DNN Experiments
	Attack defense

	Conclusion
	Theoretical guarantee
	Definitions
	2 Regression task
	Nonlinear loss function for classification task
	Proof of Theorem 3.4
	Sketch of Proof of Theorem 3.5
	Concentration of the errors

	Differential Privacy (DP)
	DP of the gradient during backpropagation

	Addendum to the Numerical Results
	Laplace mechanism
	Split learning result on CIFAR-100
	Understanding the scaling operation when gradient scale impact is eliminated
	Computational overhead of the postprocessing functions
	Feature-space hijacking attack (FSHA) and our post-processing techniques
	DP budget

	Limitations

