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Abstract

Knowing the learning dynamics of policy is significant to unveiling the mysteries of
Reinforcement Learning (RL). It is especially crucial yet challenging to Deep RL,
from which the remedies to notorious issues like sample inefficiency and learning
instability could be obtained. In this paper, we study how the policy networks of
typical DRL agents evolve during the learning process by empirically investigating
several kinds of temporal change for each policy parameter. In popular MuJoCo
and DeepMind Control Suite (DMC) environments, we find common phenomena
for TD3 and RAD agents: (1) the activity of policy network parameters is highly
asymmetric and policy networks advance monotonically along a very limited
number of major parameter directions; (2) severe detours occur in parameter update
and harmonic-like changes are observed for all minor parameter directions. By
performing a novel temporal SVD along the policy learning path, the major and
minor parameter directions are identified as the columns of the right unitary matrix
associated with dominant and insignificant singular values respectively. Driven by
the discoveries above, we propose a simple and effective method, called Policy
Path Trimming and Boosting (PPTB), as a general plug-in improvement to DRL
algorithms. The key idea of PPTB is to trim the policy learning path by canceling
the policy updates in minor parameter directions, and boost the learning path by
encouraging the advance in major directions. In experiments, we demonstrate that
our method improves the learning performance of TD3, RAD, and DoubleDQN
regarding scores and efficiency in MuJoCo, DMC, and MinAtar tasks respectively.

1 Introduction

Deep Reinforcement Learning (DRL) is far from well understood, although its great potential has
been demonstrated with a lot of achievements in different practical problems [Badia et al., 2020,
Shah et al., 2022, Fawzi et al., 2022, Degrave et al., 2022, OpenAI, 2022]. Consistent efforts are
made to gain a better understanding of the learning dynamics of RL agents. Different from the
studies with tabular [Sutton and Barto, 1988] and linear approximation [Ghosh and Bellemare, 2020],
understanding the learning dynamics of DRL agents is challenging. The difficulty comes from the
complex interplay between Deep Learning models and RL algorithms, and further escalates when
only limited online interactions or offline logged data are considered.

Recently, there have been a few works that study the learning dynamics of DRL agents from different
perspectives. A major stream of works among them studies the co-learning dynamics between
representation and DRL functions (usually the value network) [Dabney et al., 2021, Kumar et al.,
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2021, Lyle et al., 2022, Nikishin et al., 2022, Tang et al., 2022b]. The focus of this stream is that
the DRL agent over-shapes its representation toward early experiences and objectives, and becomes
less capable of learning for the later learning process. This degradation finally leads to myopic
convergence or even divergence. A related work [Sokar et al., 2023] presents a phenomenon called
Dormant Neuron in DRL. It reveals that the neurons of typical value networks gradually become
inactive during the learning process, leading to the loss of network expressivity. From another angle,
a phenomenon called Policy Churn is discovered by [Schaul et al., 2022]. It shows that the greedy
policy of a typical value network changes on about 10% of the states after only a single update. These
discoveries provide useful insights for understanding the learning behavior of the DRL agent, based
on which new methods can be proposed to improve the learning performance of DRL.

In this paper, we aim to unveil the learning dynamics of the policy network during the training
process of typical DRL agents. Specifically, we focus on how the parameters of the policy network
evolve along the policy learning path, i.e., the sequence of historical policy networks. Taking
MuJoCo [Brockman et al., 2016] and DeepMind Control Suite (DMC) [Tassa et al., 2018] as typical
DRL environments, we conduct a series of empirical investigations on the policy learning path of
TD3 [Fujimoto et al., 2018] and RAD [Laskin et al., 2020] agents respectively. From the perspective of
accumulated absolute parameter change and a novel temporal SVD view, we present four commonly
observed phenomena on the policy learning path. The main message from the phenomena is that the
policy networks of DRL agents advance nearly monotonically along only very few major parameter
directions and show harmonic-like oscillations on almost all other minor ones.

This drives us to ask the question: can we make the DRL agent focus on the policy learning along
major directions and suppress the oscillation in minor directions? To this end, we propose a new
method called Policy Path Trimming and Boosting (PPTB). The key idea of PPTB is to trim the
policy learning path by canceling the policy parameter updates in minor dimensions, and boost the
learning path by encouraging the advance in major directions. The method is a simple and general
plug-in improvement for DRL agents, which can be implemented with only a few lines of code
modification to most DRL methods. Finally, we evaluate the effectiveness of PPTB based on TD3,
RAD, and DoubleDQN [van Hasselt et al., 2016] in MuJoCo, DMC, and MinAtar [Young and Tian,
2019] environments.

Key contributions of this work are summarized below: (1) We propose a temporal analysis view to
study the policy learning path of typical DRL agents. (2) We present four common phenomena from
our empirical investigations, which reveal the policy evolving path in a low-dimensional space. (3)
We propose an easy-to-implement and general improvement for general DRL algorithms, which is
demonstrated to improve the learning performance of TD3, RAD, and DoubleDQN regarding scores
and efficiency in MuJoCo, DMC, and MinAtar environments.

2 Preliminaries

Markov Decision Process (MDP) Consider a Markov Decision Process (MDP)
⟨S,A,P,R, γ, ρ0, T ⟩, defined with a state set S, an action set A, the transition function
P : S × A × S → R, the reward function R : S × A → R, the discounted factor γ ∈ [0, 1),
the initial state distribution ρ0 and the horizon T . The agent interacts with the MDP by
performing its policy π : S → P (A) that defines the distribution over all actions for each
state. The objective of an RL agent is to optimize its policy to maximize the expected
discounted cumulative reward J(π) = Eπ[

∑T
t=0 γ

trt], where s0 ∼ ρ0 (s0), at ∼ π (st),
st+1 ∼ P (st+1 | st, at) and rt = R (st, at). The state-action value function Qπ is defined as
Qπ(s, a) = Eπ

[∑T
t=0 γ

trt | s0 = s, a0 = a
]

for all s, a ∈ S ×A.

Deep Reinforcement Learning (DRL) With function approximation based on deep neural net-
works, an RL agent is able to deal with large and continuous state-action space. Conventionally,
Qπ can be approximated by Qϕ with parameters ϕ typically through minimizing Temporal Dif-
ference loss [Sutton and Barto, 1988], i.e., L(ϕ) = 1

2

[
Qϕ(s, a)− Ea′∼π(s′)

(
r + γQϕ̄(s

′, a′)
)]2

.
A parameterized policy πθ, with parameters θ, can be updated by taking the gradient of the ob-
jective, i.e., θ′ ← θ + η∇θJ(πθ) with a learning rate η. Therefore, starting from a initial pol-
icy πθ1 , the DRL agent proceeds along the learning process and obtains a sequence of policies
{πθ1 , πθ2 , . . . }. For two representative DRL algorithms, Deterministic Policy Gradient (DPG) theo-
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rem [Silver et al., 2014] is often used to update a deterministic policy with the gradient: ∇θJ(πθ) =
Es∼ρπθ

[
∇θπθ(s)∇aQϕ(s, a)|a=πθ(s)

]
, where ρπθ is the discounted state distribution under policy

πθ; Soft Actor-Critic (SAC) [Haarnoja et al., 2018] updates a stochastic policy with the gradient:
∇θĴ(πθ) = Es∼ρπθ

[
∇θ log πθ(a|s)+(∇a log πθ(a|s))−∇aQϕ(s, a))∇θfθ(ϵ; s))|a=fθ(ϵ;s)

]
(with

noise ϵ and implicit function fθ for re-parameterization), based on the maximum-entropy objective
J̃(πθ) = Eπ[

∑T
t=0 γ

trt + ξH(πθ(·|s)] where ξ is the temperature of entropy term.

3 Phenomena on DRL Policy Learning Path

In this section, we conduct empirical investigations on the typical DRL policy learning process.
In specific, we use official codes of TD3 [Fujimoto et al., 2018] and RAD [Laskin et al., 2020]
for OpenAI MuJoCo [Brockman et al., 2016] continuous control environments and visual-input
DeepMind Control (DMC) Suite [Tassa et al., 2018] environments respectively. Both of them use
a policy architecture of two-layer MLP (where the output layer is viewed as Layer 3). Note that
we exclude the convolution layers for image representation in RAD here and focus on the policy
part [Chung et al., 2019]. All the experimental details can be found in Appendix D.

First of all, we call the sequence of policies {π1, π2, . . . , πn} or policy parameters {θ1, θ2, . . . , θn}
obtained during the learning process of a typical DRL algorithm as policy learning path or policy
parameter path throughout this paper. The policy parameters θi is an m-dimensional vector θi =
[θi,1, θi,2, . . . , θi,m] ∈ Rm. In the following, we investigate how policy network parameters evolve
along the policy learning path from different angles.

3.1 Policy Parameter Change and Detour

We start by tracking the absolute change amount of each parameter in policy network. Given any
j ∈ {1, 2, · · · ,m}, we first introduce three quantities for our following investigations.

• Accumulated Parameter Change: ∆apc
j ({θi}ni=1) ≜

∑n−1
i=1 |θi+1,j − θi,j |.

• Final Parameter Change: ∆fpc
j ({θi}ni=1) ≜ |θn,j − θ1,j |.

• Parameter Update Detour Ratio: rpud
j ({θi}ni=1) ≜

∑n−1
i=1 |θi+1,j−θi,j |
|θn,j−θ1,j | .

We use ∆apc
j ,∆fpc

j , rpud
j as abbreviations when the context is clear and write (∆apc

j ), (∆fpc
j ), (rpud

j ) as
the vectors consisting of the quantities from all parameters. It can be derived that the larger rpud

j
is, the more detours there are in the evolving path of parameter j. For each environment, we run
TD3 or RAD for three trials and collect the policies along the learning process at intervals. We then
calculate vectors (∆apc

j ), (rpud
j ) and plot their CDF histograms in a layer-wise manner (i.e., Layer

1,2,3). The results are shown in Fig. 1. The results are similar in almost all other MuJoCo and DMC
environments, and the complete figures can be found in Appendix D.1.

We begin by assessing the magnitude of accumulated changes in the policy parameters. CDF
histograms of vector (∆apc

j ) (as shown in left panels of Fig. 1 (a), (b)) indicate that a certain portion
of parameters (ranging from 10% to 40% across environments) in the second and output layers
experience minor accumulated changes. In contrast, the cumulative changes for nearly all parameters
in the first layer are significantly higher, with thresholds around 0.7 for Hopper and 0.6 for walker-
walk. This observation marks our initial key finding.

Phenomenon 1.1 (Parameter Change Asymmetry): There is a significant discrepancy in
the change amount among policy parameters. The second and the output layers have similar
patterns which differ from that of the first layer.

Further discussion about Phenomenon 1.1 can be found in Appendix D.1.

Moving forward, we examine how much each policy parameter detours from its initial value to its
final value. The CDF histograms of (rpud

j ) (as shown in the right panels of Fig. 1 (a) and (b)) indicate
that a significant proportion of parameters exhibit substantial detour ratio, which we identify as the
second phenomenon.
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(a) MuJoCo/Hopper
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(b) DMC/walker-walk

Figure 1: Policy Parameter Change and Detour on policy paths obtained by TD3 on MuJoCo/Hop-
per and RAD on DMC/walker-walk. We use the colors ( ) to denote Layer 1,2,3 respectively.
Each subfigure contains: (left) the CDF histogram of the elements in the vectors (∆apc

j∈Layer k), and
(right) the CDF histograms of the elements in the vectors (rrup

j∈Layer k) for k ∈ {1, 2, 3}. Only upper
80% values according to (∆apc

j ) are taken to plot the histogram for (rrup
j ) for meaningful analysis;

extreme elements in (rrup
j ) are neglected for clarity. See Phenomenon 1.1 and 2.1 for conclusions.
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walker-walk: SVD information of policy learning path
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walker-walk: SVD information of policy learning path
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(a) Singular Value Information Curves
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(b) SVD Left Unitary Matrix (U ) Investigations

Figure 2: Temporal SVD Analysis of policy paths obtained by RAD on DMC/walker-walk. (a)
Curves of D(β) against various threshold β for the three layers and three periods (i.e., early, middle,
later) of the learning process for a temporal view. X-axis represents D(β) and y-axis represents
different β. (b) The second and third panels depict the curves of u∗,k, with each curve illustrating the
evolving path of the k-th coordinate. The fourth and fifth panels display the curves of detour ratio
(rpud

i ) and final change (∆fpc
i ). The X-axis represents the index i of the singular values.

Phenomenon 2.1 (Parameter Update Detour): There are severe detours in policy parame-
ter update. All the three layers show similar patterns.

It can be easy to consider that such detours or oscillations in policy parameter updates can be mainly
attributed to noisy policy gradients. This also reveals the correlation between policy parameters
where most of them can not be updated independently.

3.2 Temporal SVD Analysis of Policy Learning Path

The two phenomena observed above naturally raise further questions: 1) The asymmetry of parameter
change shown by Phenomenon 1.1 indicates the imbalanced importance of parameters. Can we rule
the important parameters or parameter directions off from the less important ones? 2) For the detour
shown by Phenomenon 2.1, can we identify the difference among parameters or parameter directions
in their detour behaviors? And do important parameters or parameter directions detour less?

In this section, we make use of a temporal viewpoint on policy path. We introduce Temporal Singular
Value Decomposition (SVD) as our main tool for the following investigations. Given a policy path
{θ1, θ2, . . . , θn} with θi = [θi,1, θi,2, . . . , θi,m], where m (≥ 105 usually) is the dimenionality of
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policy parameters. We then stack the parameter vectors along the policy path and form a temporal
policy parameter matrix, for which standard SVD can be performed:

θ1
θ2
...
θn

 =


θ1,1 . . . θ1,m
θ2,1 . . . θ2,m

...
. . .

...
θn,1 . . . θn,m

 =

u1,1 . . . u1,d

...
. . .

...
un,1 . . . un,d


︸ ︷︷ ︸

U

σ1 . . . 0
...

. . .
...

0 . . . σd


︸ ︷︷ ︸

Σ

v1,1 . . . v1,m
...

. . .
...

vd,1 . . . vd,m


︸ ︷︷ ︸

V ⊤

where U, V are left and right unitary matrices, the singular values are indexed in decreasing order
with d = min(n,m). For the convenience of expression, we use ui,∗ for the i-th row vector of U
and use u∗,j for the j-th column vector (and the same way for V ⊤). The temporal SVD offers us an
angle to view how policy evolves in a lower-dimensional space: we can now take the row vectors
of U as new d-dimensional coordinates for policies along the policy path (i.e., ui,∗ for the i-th policy)
regarding the scaling vector Diag(Σ) and the parameter subspace spanned by the row vectors of V ⊤,
i.e., Span({v⊤1,∗, v⊤2,∗, . . . , v⊤d,∗}) ⫅ Rd. In the following, we also call {vi,∗} as SVD directions. For
any index j < d, it is obvious that u∗,j is the evolving path of the j-th new coordinate.

To answer the questions listed at the beginning of this subsection, we introduce two more quantities:

• Singular Value Information Amount for a dimensionality number k ∈ {1, . . . , d}: ak =∑k
i=1 σi∑d
i=1 σi

.

• SVD Major Dimensionality regarding an information threshold β ∈ (0, 1]: D(β) =
min{k ∈ {1, . . . , d} : αk ≥ β}.

Note that d = D(1) and D(0.99) recovers approximate rank used in a few recent works [Yang et al.,
2020, Kumar et al., 2021, Lyle et al., 2022]. Additionally, a smaller D(β) implies fewer dominant
SVD directions when β is held constant.

We also use the policy path data obtained by TD3 on MuJoCo and RAD on DMC as in Sec. 3.1. First,
we plot D(β) against various threshold candidates β ∈ {0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 0.99}. In
addition to a layer-wised manner, we consider three periods (i.e., early, middle, and later) of learning
process for a temporal view. The results for DMC/walker-walk are shown in Fig. 2(a). The results are
similar in almost all other MuJoCo and DMC environments and the complete figures can be found in
Appendix D.2.

The following observations can be made: (i) Within the range of β from 0.5 to 0.8, we observe that
D(β) for all three layers in both environments consistently remain near 0. This observation suggests
that the policy learning path primarily proceeds within a low-dimensional subspace of the entire
parameter space, particularly within the dimensions spanned by the most dominant SVD directions.
This provides additional insights into Phenomenon 1.1, elucidating which parameters undergo more
significant changes. (ii) The curves of the second layer show a more pronounced steepness near
β = 0, indicating that the parameters in this layer evolve within a subspace characterized by fewer
dominant SVD directions compared to those in other layers. This observation also matches the results
in Fig. 1, as the second layer is often more over-parameterized than the other layers. (iii) As training
advances from period 1 to period 3, the curve’s steepness around β = 0 correspondingly increases,
revealing a growing concentration on a diminishing number of dominant singular values. The higher
concentration of later periods is easy to understand since policy improvement gradually becomes
slower. We can summarize these observations as our third phenomenon.

Phenomenon 1.2 (Singular Value Information Concentration): The singular value infor-
mation is highly concentrated on the first several singular values. The concentration is more
evident for the second layer and later periods.

Further, regarding the second question raised in the beginning, we expect to find some correlation
between the policy parameter path in the low-dimensional subspace obtained by SVD and the
improvement of policy performance. To this end, in Figure 2(b), we examine the evolving path of the
k-th coordinate by plotting coordinate vectors u∗,k (panels 2, 3). We further present the curves of
detour ratio (rpud

i ) (panel 4) and final change (∆fpc
i ) (panel 5) with respect to the singular value index
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Figure 3: A conceptual illustration of Policy Path Trimming and Boosting (PPTB). The 2D view
of an exemplary policy learning path in policy parameter space (left) and the corresponding policy
learning path improved by PPTB (right).

i. These results are against the policy performance curve (panel 1), and we focus on only the period
with significant policy improvement, i.e., the left of the blue dashed vertical line.

According to the results in Fig. 2(b), we observe the final phenomenon.

Phenomenon 2.2 (Policy Path in Major and Minor SVD Directions): The extent of the
detour becomes increasingly pronounced as the coordinate index k increases (from the major
SVD directions to the minor ones). Specially, u∗,1 is almost monotonic while u∗,k shows
harmonic-wave-like changes with overall increasingly higher frequencies for k ≥ 2.

It is surprising to observe Phenomenon 2.2. Intuitively, it indicates that the policy parameter path
proceeds monotonically along one major direction and oscillates in other directions with frequencies
inversely proportional to singular values. This empirically supports our hypothesis that important (i.e.,
major) parameter directions detour less while insignificant directions detour severely. Since typical
policy gradients are derived regarding approximate value estimates, we suggest that the dynamics
of policy parameters may be closely related to recent studies on the learning dynamics of value
function [Lyle et al., 2021, 2022]. We leave it as a major direction of future work.

For a brief summary, till now we have observed that the policy parameter path evolves mainly in a
low-dimensional parameter subspace (spanned by {vi,∗}). This is commonly seen in our empirical
investigations for typical DRL algorithms in popular environments with proprioceptive or visual
observations. A natural idea is: why not let the agent focus on the policy update in the parameter
subspace, by following the major SVD directions and neglecting the insignificant SVD directions?
Moreover, somewhat excitingly, it seems that u∗,1, u∗,2 has a strong correlation to policy performance.
We are curious about whether it is possible to leverage the correlation to boost the learning process.
In the next section, we study on these points along with the proposal of Policy Path Trimming and
Boosting.

4 Policy Path Trimming and Boosting

Driven by the phenomena we discovered in the previous section, we propose a simple and effective
method, called Policy Path Trimming and Boosting (PPTB), as a general plug-in improvement
to DRL algorithms. In the following, we introduce the details of the two components of PPTB,
i.e., Policy Path Trimming (Sec. 4.1) and Policy Path Boosting (Sec. 4.2), and then the general
implementation of DRL with PPTB (Sec. 4.3).

4.1 Policy Path Trimming

As summarized in Phenomenon 1.2, we have observed that the policy path mainly evolves in a low-
dimensional parameter subspace with a large proportion of singular value information concentrated
in the first several singular values. Our first idea is to truncate the parameter change in minor SVD
directions and only keep the change in major ones based on the Temporal SVD of the policy path.
We call this method as Policy Path Trimming (PPT).
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Given a policy path {θ1, θ2, . . . , θn} and the number of major directions to remain rt (usually
≪ d = min(n,m)). For a policy with original parameters θi, PPT reconstructs policy parameters by
only taking into consideration the first rt SVD directions:

θ̃i = [ui,1 . . . ui,rt ]︸ ︷︷ ︸
ui,1:rt

σ1 . . . 0
...

. . .
...

0 . . . σrt


︸ ︷︷ ︸

Σ[1:rt]

 v1,∗
...

vrt,∗


︸ ︷︷ ︸
V ⊤[1:rt]

(1)

Note that we use ·, · in subscripts and [·, ·] to denote the slices of vector and matrix respectively.

A conceptual illustration of PPT is shown in Fig. 3. As shown by the red arrows and cross, PPT trims
the policy parameter update in minor SVD directions and enforces the policy path proceeds in major
directions, i.e., in the subspace Span({v⊤1,∗, v⊤2,∗, . . . , v⊤rt,∗}). Intuitively, this suppresses the detours
and oscillations of parameter update (recall the results in Fig. 2(b)). Therefore, we expect PPT to
improve the efficiency of policy learning process in this sense.

One may worry about whether the trimmed policy parameters θ′i still ensure an effective policy.
For sanity check, we compare policy performance between θi and θ′i regarding different choices
of rt. We refer the readers to Table 4 to 9 in Appendix D.3. We found that a small rt (≤ 128) is
sufficient to ensure a valid recovery of policy performance, while increasing rt shows no significant
difference. Somewhat surprisingly, we found rt (≤ 64) often achieves improved performance after
reconstruction, which supports the effectiveness of PPT to some extent. In addition, PPT can be
viewed as a particular way to do network resetting to alleviate the primacy bias [Nikishin et al., 2022].
More discussion on this can be found in Appendix B.

4.2 Policy Path Boosting

In addition to suppressing the parameter change in minor directions, we are interested in accelerating
policy learning by leveraging the dynamics pattern of major SVD directions as noted in Phenomenon
2.2. In particular, we propose to boost the change of u∗,1, u∗,2 since they show near monotonic
changes corresponding to the improvement of policy performance in Fig. 2(b). We call this method
as Policy Path Boosting (PPB).

For a policy with original parameters θi among the policy path {θ1, θ2, . . . , θn}, PPB modifies θn by
increasing un,1, un,2 along the temporal direction as follows with a boosting coefficient pb:

ûn,∗ = un,∗ + pb(un,∗ − u1,∗)

θ̂n = [ûn,1 ûn,2 un,3 . . . un,d]︸ ︷︷ ︸
concat(ûn,1:2 , un,3:d)

ΣV ⊤ (2)

PPB only modifies un,1, un,2 while keeps other parts unchanged. As illustrated by the green arrows
in Fig. 3, Intuitively, PPB boosts the policy parameter update in the first two major directions to
accelerate the improvement of policy performance.

4.3 DRL with PPTB

Now, we are ready to propose PPTB as a combination of PPT and PPB. Formally,

θ′i = concat(ûi,1:2 , ui,3:rt)Σ[1 : rt]V
⊤[1 : rt]. (3)

Although we can perform PPTB for any policy on an arbitrary policy path, in practice we consider
the policy path that consists of the historical policies within a recent window and the current policy,
and we perform PPTB for the current policy.

Apparently, PPTB is algorithmic-agnostic. For almost all off-the-shelf policy-based DRL algorithms,
PPTB can be implemented and incorporated by adding the following three steps to the conventional
policy update scheme: (1) Initialize a policy buffer and store the parameters of the current policy
at intervals along the policy learning process; (2) On certain occasions, retrieve the recent policy
parameter path and perform Temporal SVD; then do policy path trimming and boosting for the current
policy. (3) Load the consequent policy parameters processed by PPTB back to the current policy.
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In our practical implementation used by our experiments, we only make the modifications of about
10-line core codes in the official implementations of TD3 [Fujimoto et al., 2018] and RAD [Laskin
et al., 2020]. We refer the readers to Algorithm 1 in the appendix for a pytorch-like pseudocode.

5 Experiments

5.1 Performance Evaluation of PPTB

Setups To evaluate the performance of our proposed method PPTB, we consider the continuous
control environments in OpenAI MuJoCo [Brockman et al., 2016] and DeepMind Control Suite
(DMC) [Tassa et al., 2018], which cover both proprioceptive and visual observation. We use
TD3 [Fujimoto et al., 2018] and RAD [Laskin et al., 2020] as the base algorithms for MuJoCo and
DMC respectively, due to their simplicity and effectiveness. We use the official codes of TD3 and
RAD and modify them according to Algorithm 1 to implement PPTB with no other change to the
original implementation. Our code is available in https://github.com/bluecontra/PPTB.

Moreover, we also evaluate the performance of PPTB for value-based RL, although the greedy policy
is implicitly derived from the value networks. Specifically, we use three tasks from MinAtar [Young
and Tian, 2019] and use DoubleDQN [van Hasselt et al., 2016] as the value-based RL baseline. More
implementation details are provided in Appendix C.

Results for AC Methods We train the agent for 1 million timesteps and evaluate the agent every
5k timesteps for each agent-environment configuration. We run each configuration with six random
seeds. We consider two evaluation metrics: (1) Score: the best average evaluation returns (across
multiple runs) over the course of learning, which is used by TD3 [Fujimoto et al., 2018]; (2) AUC:
the mean of average evaluation returns over the course of learning, which is also used in [Kumar
et al., 2022]. The former cares about effectiveness while the latter measures efficiency and stability,
which is also significant to the practical use of DRL algorithms.

For MuJoCo environments, we report Score and AUC for 1M time step training; for DMC, we report
for 100k, 500k as usually done in prior works [Laskin et al., 2020]. For the convenience of comparing
across different return scales, we report the comparative improvement (↗) and the aggregate results
by normalizing with a random-agent baseline as 0 and the DRL base algorithm (i.e., TD3 or RAD) as
1. The score of the random-agent baseline is omitted. We report the means and standard deviation
errors across six independent trials.

The results for MuJoCo and DMC are reported in Table 1 and 2, respectively. The results show the
overall improvements brought by PPTB for both TD3 and RAD, indicating its compatibility and
effectiveness. The improvement is more obvious in AUC, which means PPTB improves the learning
efficiency and stability of the base algorithms. Somewhat surprisingly, we can observe that PPTB
outperforms the base algorithms by a large margin in several environments, e.g., Walker2d and Ant
in MuJoCo, and Walker-walk in DMC. To some extent, this reveals the potential of studying and
modifying the policy learning path to achieve general improvements to DRL agents.

Table 1: Performance evaluation of Policy Path Trimming and Boosting (PPTB) for TD3 [Fujimoto
et al., 2018] in four MuJoCo environments. The learning curves are in Figure 10.

ENVIRONMENTS METRICS TD3 TD3-PPTB

HALFCHEETAH
SCORE 10548 ± 357 11103 ± 60 (5.12%↗)

AUC 7981 ± 304 8689 ± 76 (8.55%↗)

HOPPER
SCORE 3394 ± 59 3420 ± 54 (0.77%↗)

AUC 2005 ± 99 2249 ± 114 (12.28%↗)

WALKER2D
SCORE 3406 ± 436 4385 ± 164 (28.76%↗)

AUC 1977 ± 353 2805 ± 85 (41.92%↗)

ANT
SCORE 4177 ± 451 5147 ± 449 (22.81%↗)

AUC 2624 ± 293 3542 ± 392 (34.02%↗)

AGGREGATE
SCORE 1.0 1.1436

AUC 1.0 1.2419
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Table 2: Performance evaluation of Policy Path Trimming and Boosting (PPTB) for RAD [Laskin
et al., 2020] in four DeepMind Control (DMC) environments. The learning curves are in Figure 11.

ENVIRONMENTS METRICS RAD (100K) RAD-PPTB (100K) RAD (500K) RAD-PPTB (500K)

FINGER-SPIN
SCORE 553 ± 71 592 ± 55 (7.09%↗) 898 ± 55 970 ± 5 (8.04%↗)

AUC 201 ± 33 254 ± 40 (26.76%↗) 695 ± 41 767 ± 20 (10.40%↗)

WALKER-WALK
SCORE 210 ± 48 349 ± 35 (86.87%↗) 923 ± 9 940 ± 6 (1.94%↗)

AUC 104 ± 22 148 ± 15 (81.48%↗) 583 ± 30 672 ± 11 (16.69%↗)

CARTPOLE-SWINGUP
SCORE 235 ± 15 268 ± 18 (30.84%↗) 836 ± 12 860 ± 9 (3.38%↗)

AUC 158 ± 6 189 ± 2 (103.33%↗) 530 ± 18 572 ± 20 (10.44%↗)

CHEETAH-RUN
SCORE 360 ± 8 394 ± 10 (10.11%↗) 574 ± 13 605 ± 10 (5.63%↗)

AUC 194 ± 5 207 ± 13 (7.64%↗) 428 ± 10 452 ± 6 (5.94%↗)

AGGREGATE
SCORE 1.0 1.3372 1.0 1.0474

AUC 1.0 1.5480 1.0 1.1086

Results for Value-based Methods We run 3M time steps for SpaceInvader and Breakout, and 5M
time steps for Seaquest. We reported the means and standard errors of the final episode returns across
six seeds in Table 3. Table 3: Performance evaluation regarding Score

of Policy Path Trimming and Boosting (PPTB) for
DoubleDQN [van Hasselt et al., 2016] in three
MinAtar environments.

ENVIRONMENTS DOUBLEDQN DOUBLEDQN-PPTB

SPACEINVADER 77.63 ± 6.85 99.08 ± 6.76

SEAQUEST 11.00 ± 1.70 25.43 ± 4.38

BREAKOUT 28.85 ± 4.01 32.33 ± 2.92

The results show that PPTB also improves the
learning performance of DoubleDQN somewhat
significantly in MinAtar tasks with discrete ac-
tions. Note that for DoubleDQN, value net-
works are learned to derive the greedy actions.
Intuitively, the learning dynamics of the value
learning path and the policy learning path in
AC methods are different as typical TD learning
adopts bootstrapping and semi-gradient [Sutton
and Barto, 1988]. We view our experimental results here as preliminary evidence of the effectiveness
of PPTB for value-based methods, which also inspired us to further investigate this point in the future.

5.2 Investigation on Policy Learning Path of Behavior Clone

The policy learning path is influenced by multiple factors, including, policy learning algorithm,
distribution of training data, network architecture, optimizer, etc. To expand our study on typical
online RL a bit, we investigate the policy learning path of Behavior Cloning (BC) with Adam and
vanilla SGD on halfcheetah-medium-replay, an offline dataset in D4RL [Fu et al., 2020]. This
additional setting provides two comparison angles, i.e., RL v.s. BC, Adam v.s. SGD (where using BC
and the same offline dataset fixes the influence of data distribution). Similar to our investigation in
Sec. 3, we perform parameter analysis and Temporal SVD analysis to the logged policy paths through
learning under different configurations. The results are presented in Figure 4 and 12.

For the parameter analysis, we can observe that BC and RL show different distributions of network
parameter update amount. Compared with the RL cases reported in Figure 5(a), the parameter
update amount is more Gaussian distribution like for BC (Adam) in Figure 4(a). In addition, by
comparing the parameter analysis of BC (Adam) and BC (SGD), somewhat surprisingly, we can
observe that the asymmetry of parameter update amount turns out to be more severe in BC (SGD).
The momentum mechanism used in Adam leads to a relatively more evenly distributed network
parameter update amount, while SGD has a large number of minor updates (also reflected by the flat
curve in Figure 4(d), the first column) and a long tail in distribution.

For the Temporal SVD analysis, we can observe that BC (Adam), BC (SGD) and the RL cases show
different patterns in terms of temporal SVD evolvement. BC policies show wavelet-like oscillations
(Figure 4(b)), where the amplitude of the oscillations seems to decrease throughout training; while
the oscillations of RL are more harmonic-wave-like (Figure 8(a)).

These observations reveal that low-dimensional policy paths can exist in many policy learning
problems with different features influenced by multiple factors. We expect further studies in this
direction in the future.
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(a) Parameter Analysis of BC (Adam) (b) Temporal SVD Analysis of BC (Adam)

(c) Parameter SVD Analysis of BC (SGD) (d) Temporal SVD Analysis of BC (SGD)

Figure 4: The parameter and Temporal SVD analysis for Behavior Cloning with Adam and SGD
optimizers in D4RL halfcheetah-medium-replay.

6 Related Works

In the topic of general Deep Learning, there have been a large number of efforts devoted consistently
during the past decade for the purpose of understanding the learning dynamics and behaviors of deep
neural networks, e.g., Neural Tangent Kernel (NTK) [Jacot et al., 2018] and Lazy Training [Chizat
et al., 2018]. Recently, there have been a few works that study the learning dynamics of DRL agents
from different perspectives. Among them, a major stream of works study the co-learning dynamics
between representation and RL functions (i.e., value network or policy network) [Kumar et al., 2021,
Lyle et al., 2022, Nikishin et al., 2022]. The focus of this stream is that the DRL agent over-shapes
its representation towards early experiences and objectives (e.g., TD targets of early policies) and
becomes less capable for the later learning process. Such a degradation becomes more severe and
detrimental gradually due to the non-stationary learning nature, finally leading to myopic convergence
or even divergence. In this work, we study the learning dynamics of typical DRL policy networks,
mainly from the angle of policy network parameters. To the best of our knowledge, we are almost the
first to study how the parameters of practical DRL policy networks evolve.

To our knowledge, there are some works that conduct their study from the angle of the path of learning.
Dabney et al. [2021] takes inspiration from the study in [Bellemare et al., 2019] and proposes the
concept of the value improvement path. With this concept, a new method for representation learning is
proposed by approximating the value functions along the path. From another angle, Tang et al. [2022a]
studies the generalization along the policy learning path. Through learning a low-dimensional policy
embedding, an improved generalized policy iteration [Sutton and Barto, 1988] that leverages policy
generalization is proposed. Closely related to our work, a very recent work [Schneider et al., 2024]
demonstrates the existence of gradient subspaces in deep policy gradient algorithms with experimental
investigations. In this paper, we investigate the dynamics of policy network parameters from the
perspective of Temporal SVD. Moreover, we propose a new method that leverages the parameter
evolving path in the low-dimensional space, which demonstrates the potential for improving learning.
In essence, the policy learning path is a special scenario of stochastic gradient descent (SGD) in DRL,
thus this work is related to studies on the dynamics of SGD or optimization [Gur-Ari et al., 2018,
Gressmann et al., 2020, Li et al., 2023] in more general speaking.

7 Conclusion

In this paper, we aim to unveil the learning dynamics of policy network over the training course of
typical DRL agents, mainly from an empirical perspective. Focusing on the concept of policy learning
path, we conduct a series of empirical investigations and summarize four common phenomena,
revealing that the policy learning path of typical DRL agents evolves mainly in a low-dimensional
space with monotonic and waggling changes in major and minor parameter directions respectively.
Driven by our discovery, we propose a simple method, called Policy Path Trimming and Boosting
(PPTB), as a plug-in improvement to general DRL algorithms. We demonstrate the effectiveness of
PPTB based on TD3 and RAD in a few MuJoCo and DMC environments.
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A Limitations

In this paper, we only provide empirical investigations on the phenomena we present in Sec. 3.
Although we observe relatively consistent results for TD3 and RAD across a variety of MuJoCo
and DMC environments, which demonstrates the generality to some degree, we have no theoretical
support for the observed phenomena at present. A rudimentary thought on this point is to study the
learning dynamics of ∇θJ(πθ), especially of ∇aQϕ(s, a). This is because the policy path is the
accumulation of policy gradient while policy gradients are significantly determined by the landscape
of Q-network, which learns concurrently along the process. We believe that recent studies on the
learning dynamics of the value function and representation [Lyle et al., 2021, 2022] can be inspiring
references.

Still from the empirical perspective, our work is not complete in the sense that we only consider
TD3 and RAD (i.e., SAC inside). On-policy policy-based DRL algorithms like PPO [Schulman
et al., 2017] may have a very different policy path. Besides, the empirical investigation for more
value-based DRL algorithms beyond DQN [Mnih et al., 2015] is missing in this paper. For typical
value-based DRL algorithms, we can also treat the value network as a special form of policy and
perform PPTB in the same way. Although we provided some preliminary results of applying PPTB to
DoubleDQN in our experiments, this is kind of reckless since the natures of policy and value function
are different, nor are their learning dynamics. A recent phenomenon called Policy Churn discovered
in [Schaul et al., 2022, Tang and Berseth, 2024] reveals that the greedy policy induced by a typical
value network changes its actions on about 10% states after one update. We leave in-depth studies on
the value function path in the future.

For methodology, we propose very simple methods and we believe that there is great potential for
more sophisticated methods to be proposed. First, we use standard SVD as the main tool in both our
empirical investigation and our methods. We use no acceleration for SVD or other more advanced
alternatives to obtain the major and minor directions of the policy path. Moreover, we use fixed
dimensionalities and intervals for policy path trimming and boosting. This paper contains no attempts
to design adaptive approaches or propose principled algorithms (which may rely on the advances in
theoretical results). In addition, smarter hyperparameter selection methods are expected. One another
limitation is that our proposed method is not evaluated in sparse-reward environments.

B More Discussion

Policy Path Trimming in the View of Primacy Bias The policy path trimming (PPT) method
proposed in this work can be viewed as a special way to do network resetting to alleviate the primacy
bias [Nikishin et al., 2022]. The resetting effect of PPT in the minor update directions is achieved
by (1) obtaining the transformed parameter space via performing temporal SVD with the historical
policies collected in a sliding window, (2) and then (re-)setting (or dropping) the left singular vector
value (i.e., u) to zero. More concretely, this differs from the resetting method in [Nikishin et al.,
2022] at two points:

• Resetting to random initialization v.s., Resetting to Zero in the transformed parameter
space: The resetting method in [Nikishin et al., 2022] resets the network parameters to a set
of randomly (re-)initialized parameters. In contrast, our method resets the left singular vector
value (i.e., u) to zero for the minor temporal SVD directions, i.e., resetting the parameters
to zero in the transformed parameter space. One thing to note is that resetting the left
singular vector value (i.e., u) to zero does not mean that the network parameters (in the
original parameter space) are necessarily zero, because the basis of space is different. A
more in-depth analysis of the correlation between them is worth further study in the future.

• Global resetting v.s., Local resetting: The resetting method in [Nikishin et al., 2022] is
global, as the network parameters are reset to a set of randomly (re-)initialized parameters.
Differently, we do resetting according to the temporal SVD parameter space based on a
sliding window that includes recent historical policies (thus being local). In this sense, this is
similar to Shrink-and-Perturb [Ash and Adams, 2020], which can be viewed as a soft version
of the resetting method, that shrinks the network parameters and adds random parameters
with a coefficient.
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Moreover, from the perspective of plasticity, our method periodically rolls back the plasticity of
the network in the directions that are orthogonal to the ones that represent the effective knowledge
learned so far.

The Connection between PPTB and Momentum-based Optimization The idea of momentum
adopted in modern optimizers is essentially to make use of the information of historical gradients. In
this sense, we can establish a connection between momentum and PPTB proposed in our work as
the key idea of PPTB is to make use of the latent structure of the historical policies along the policy
update path.

Momentum-based optimizers use different kinds of aggregation quantities of the historical gradients
(e.g., mt+1 = βmt + ∇t). In our context, PPTB differs at two points: (1) not all the temporal
SVD directions are used, and directions with large oscillations are trimmed (note that both SVD and
eigendecomposition are techniques that capture the features of curvature); (2) policy path boosting
can be viewed as a type of momentum conducted in the major temporal SVD directions. Another
difference to notice is that, both our analysis and experimental evaluation are done with Adam which
already leverages momentum (except for the analysis for SGD). Thus, our findings are based on the
practical optimization of a momentum-based optimizer.

We believe that a further study on this connection with formal description is worthwhile in the future.

C Experiment Details

Hyperparameter Setting For the maintenance of the policy path, we use a FIFO buffer with the
size of 2k and 1k for MuJoCo and DMC respectively, and save the policy parameters every 25 mini-
batch gradient updates of the policy network. For the hyperparameter of PPTB, the number of major
directions to keep (i.e., rt in Sec. 4.1) is searched in the set {8, 16, 32, 64} for each environment. For
PPB, we simply always boost the first two SVD directions (i.e., u∗,1, u∗,2 as described in Sec. 4.2)
and choose the boosting coefficient pb from the set {0.1, 0.5, 1.0}.
For the experiments in MinAtar, we implemented DoubleDQN-PPTB based on the official code of
MinAtar2 by adding several lines of code to collect the historical network parameters of DoublDQN
and perform PPTB at intervals through learning. We made no change to the default hyperparameters
of DoubleDQN. For DoubleDQN-PPTB, we use rt = 64 and pb = 0.1.

Compute Resource We use Nvidia 3080ti GPU and V100 GPU for our experiments. For instance,
each training trial of MuJoCo experiment requires less than 4G memory and about 8G GPU memory.

Note that the main computation cost added by PPTB is the calculation of SVD. In practice, we
perform PPBT at sparse intervals (e.g., tp ≥ 1000) for the policy parameter matrix with a size
[2000,≈ 1e5], and each SVD computation takes less than 1 second with torch.linalg.svd. The
practical computation cost in wall-clock time is less than 5% of the total training time, which is worth
it compared to the benefits SVD brings. Moreover, the temporal SVD operations remain scalable as
matrix size increases, thanks to the use of efficient linear algebra libraries.

PyTorch Code Implementation of PPTB We provide a pytorch-like pseudocode of PPTB imple-
mentation in Algorithm 1, where the slices of vector and matrix are also in a pytorch-like style. In our
practical implementation used by our experiments, we only make the modifications of about 10-line
core codes in the official implementations of TD3 [Fujimoto et al., 2018] and RAD [Laskin et al.,
2020].

Code implementation of Baseline Algorithms We build our experiment codes based on the official
implementation on GitHub for both TD3 [Fujimoto et al., 2018]3 and RAD [Laskin et al., 2020]4.
We do not change the default algorithm implementation or the recommended hyperparameters.

2https://github.com/kenjyoung/MinAtar
3https://github.com/sfujim/TD3
4https://github.com/MishaLaskin/rad
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Algorithm 1: DRL with PPTB (Psedudocode in a PyTorch-like style)
# env: environment
# agent: policy-based DRL agent
# d_p: policy parameter buffer with size k
# rt, rb, pb: dimensionality hyperparams of PPTB where rt ≥ rb (see Eq. 1 and 2)
# ts, tp: intervals of storing policy and performing PPTB where tp % ts == 0

d_p = [agent.policy.params] # Initialize
for t in range(max_interaction_steps):

# Typical agent-env interaction (omitted)
...
agent.learn()

# 1) Store policy parameters at intervals
If t % ts == 0

d_p.append(agent.policy.params)
d_p = d_p[−k:]

# 2) Perform Temporal SVD and PPTB
If t % tp == 0

u, sgl, vh = SVD(d_p)
u_b = (u[−1] - u[0]) * pb + u[−1]
u_tb = concat(u_b[:rb], u[−1,rb:rt])
param_tb = (u_tb * sgl[:rt]).dot(vh[:rt])

# 3) Apply modified params to agent
agent.policy.load(params_tb)

D Additional Experimental Results

D.1 Empirical Investigation on Policy Parameter Change Amount

Further discussion about Phenomenon 1.1. One thing to note is that the results reported in Fig. 1
are based on the policy paths of entire learning process, thus being a global view. For a more local
view (i.e., a window of recent learning process), the phenomenon of parameter change asymmetry
becomes more obvious and more parameters have minor and even no change (i.e., dead parameters).
We hypothesize that this could be some practical evidence of lazy training of neural network [Chizat
et al., 2018]. Concretely, the phenomenon indicates that a lot of parameters have insignificant
gradients∇aQ(s, a)∇θπθ(s)|a=π(s) during learning process.
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(a) HalfCheetah-v4
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(b) Hopper-v4
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(c) Walker2d-v4
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(d) Ant-v4
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(e) Humanoid-v4
Figure 5: Complete results of empirical investigation on policy parameter change amount in MuJoCo
environments.

17



0.0 0.1 0.2 0.3 0.4
Amount of accu. parameter change (1e-3)

0

100000

200000

300000

400000

500000

Am
ou

nt
 o

f e
le

m
en

ts
 in

 e
ac

h 
bi

n

cartpole-swingup: Policy parameter change amount
Layer 1
Layer 2
Layer 3

0.0 0.1 0.2 0.3 0.4
Amount of accu. parameter change (1e-3)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f e
le

m
en

ts
 in

 e
ac

h 
bi

n

cartpole-swingup: Policy parameter change amount

0 100 200 300 400 500
Ratio of accu. and final parameter change amount

0

200000

400000

600000

800000

Am
ou

nt
 o

f e
le

m
en

ts
 in

 e
ac

h 
bi

n

cartpole-swingup: Ratio of accu. and final parameter change amount

0 100 200 300 400 500
Ratio of accu. and final parameter change amount

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f e
le

m
en

ts
 in

 e
ac

h 
bi

n

cartpole-swingup: Ratio of accu. and final parameter change amount

(a) cartpole-swingup
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(b) finger-spin
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(c) walker-walk
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(d) hopper-stand
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(e) cheetah-run
Figure 6: Complete results of empirical investigation on policy parameter change amount in DMC
environments.
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D.2 Empirical Investigation on Policy Learning Path by Temporal SVD
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(a) cartpole-swingup
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(b) finger-spin
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hopper-stand: SVD information of policy learning path
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hopper-stand: SVD information of policy learning path
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cheetah-run: SVD information of policy learning path
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cheetah-run: SVD information of policy learning path
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Figure 7: Complete results of the empirical investigation on SVD Information of policy learning path
in DMC environments.
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HalfCheetah-v4-svd-raw-all-layer: SVD Singular Analysis
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(a) HalfCheetah-v4
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Hopper-v4-svd-raw-all-layer: SVD Singular Analysis
k:50, det:61.12
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k:200, det:302.60
k:500, det:6191.30
k:900, det:5484.34
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(b) Hopper-v4
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Walker2d-v4-svd-raw-all-layer: SVD Singular Analysis
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(c) Walker2d-v4
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Ant-v4-svd-raw-all-layer: SVD Singular Analysis
k:50, det:31.29
k:100, det:87.96
k:200, det:310.83
k:500, det:1998.12
k:900, det:8157.07
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(d) Ant-v4
Figure 8: Complete results of the empirical investigation on SVD left unitary matrix of policy learning
path in MuJoCo environments.
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cartpole-swingup-svd-raw: SVD Singular Analysis
k:50, det:98.28
k:100, det:246.05
k:200, det:828.31
k:500, det:8732.38
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(a) cartpole-swingup
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walker-walk-svd-raw: SVD Singular Analysis
k:50, det:74.35
k:100, det:1588.96
k:200, det:291.43
k:500, det:860.40
k:900, det:6780.46
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(b) walker-walk
Figure 9: Complete results of the empirical investigation on SVD left unitary matrix of policy learning
path in DMC environments.
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D.3 Empirical Investigation on Temporal SVD Reconstruction of DRL Policies

Table 4: Statistics for Temporal SVD reconstruction of RAD policies in cartpole-wingup (the first
period) with varying number of major dimensions kept.

NO. OF MAJOR DIM. AVG({∆R(θi)}i) AVG({|∆R(θi)|}i) MAX({∆R(θi)}i) MIN({∆R(θi)}i)
1 24.24 ± 65.10 43.83 ± 53.90 313.15 -85.48

2 26.68 ± 61.70 37.45 ± 55.83 278.79 -71.03

4 14.47 ± 50.29 34.78 ± 39.10 168.46 -106.50

8 13.86 ± 45.97 32.91 ± 34.96 157.25 -94.24

16 15.06 ± 38.30 27.69 ± 30.45 125.26 -52.95

32 8.98 ± 41.06 29.47 ± 29.97 129.39 -72.51

64 2.15 ± 41.69 28.19 ± 30.78 125.08 -132.06

128 -2.04 ± 45.76 27.95 ± 36.30 120.36 -202.92

Table 5: Statistics for Temporal SVD reconstruction of RAD policies in cartpole-wingup (the second
period) with varying number of major dimensions kept.

NO. OF MAJOR DIM. AVG({∆R(θi)}i) AVG({|∆R(θi)|}i) MAX({∆R(θi)}i) MIN({∆R(θi)}i)
1 18.10 ± 41.86 21.01 ± 40.47 265.96 -12.61

2 8.37 ± 24.39 9.70 ± 23.89 167.57 -13.24

4 4.71 ± 21.28 10.07 ± 19.33 129.82 -54.63

8 5.03 ± 24.63 8.28 ± 23.74 164.32 -53.45

16 4.42 ± 18.25 6.96 ± 17.44 123.94 -27.75

32 5.48 ± 35.52 10.54 ± 34.36 238.01 -77.67

64 3.41 ± 18.15 7.35 ± 16.94 116.21 -32.73

128 3.02 ± 11.10 5.51 ± 10.09 65.10 -31.63

Table 6: Statistics for Temporal SVD reconstruction of RAD policies in finger-spin (the first period)
with varying number of major dimensions kept.

NO. OF MAJOR DIM. AVG({∆R(θi)}i) AVG({|∆R(θi)|}i) MAX({∆R(θi)}i) MIN({∆R(θi)}i)
1 -61.70 ± 94.46 62.70 ± 93.80 10.00 -393.67

2 2.28 ± 13.87 7.48 ± 11.91 70.00 -15.67

4 0.77 ± 18.79 8.96 ± 16.54 51.33 -106.33

8 0.09 ± 12.15 6.49 ± 10.27 28.33 -62.67

16 -5.06 ± 25.28 9.07 ± 24.13 24.33 -158.00

32 -0.83 ± 7.45 5.77 ± 4.80 20.00 -20.67

64 -0.24 ± 9.50 5.15 ± 7.99 18.67 -52.00

128 1.55 ± 10.02 5.91 ± 8.24 52.33 -22.33
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Table 7: Statistics for Temporal SVD reconstruction of RAD policies in finger-spin (the second
period) with varying number of major dimensions kept.

NO. OF MAJOR DIM. AVG({∆R(θi)}i) AVG({|∆R(θi)|}i) MAX({∆R(θi)}i) MIN({∆R(θi)}i)
1 -10.68 ± 26.53 19.89 ± 20.54 45.33 -90.00

2 -5.94 ± 30.71 11.67 ± 29.02 26.67 -202.00

4 -0.95 ± 10.37 6.05 ± 8.48 23.00 -51.00

8 0.03 ± 10.39 6.04 ± 8.46 26.00 -54.33

16 -0.81 ± 10.20 5.81 ± 8.42 27.33 -47.00

32 -0.47 ± 10.63 5.99 ± 8.80 28.33 -53.67

64 -4.90 ± 29.45 9.85 ± 28.19 24.67 -197.00

128 -16.57 ± 69.42 22.17 ± 67.84 23.00 -407.67

Table 8: Statistics for Temporal SVD reconstruction of RAD policies in walker-walk (the first
period) with varying number of major dimensions kept.

NO. OF MAJOR DIM. AVG({∆R(θi)}i) AVG({|∆R(θi)|}i) MAX({∆R(θi)}i) MIN({∆R(θi)}i)
1 7.20 ± 116.51 84.63 ± 80.40 285.06 -298.17

2 61.12 ± 82.60 72.36 ± 72.96 347.76 -58.92

4 41.79 ± 86.74 67.88 ± 68.29 283.30 -211.50

8 32.80 ± 77.18 55.46 ± 62.91 261.98 -144.36

16 25.53 ± 82.42 62.40 ± 59.59 233.16 -177.25

32 24.22 ± 86.47 61.09 ± 65.81 255.32 -262.19

64 20.31 ± 77.88 51.96 ± 61.47 298.37 -225.65

128 12.57 ± 74.66 56.62 ± 50.27 240.83 -156.34

Table 9: Statistics for Temporal SVD reconstruction of RAD policies in walker-walk (the second
period) with varying number of major dimensions kept.

NO. OF MAJOR DIM. AVG({∆R(θi)}i) AVG({|∆R(θi)|}i) MAX({∆R(θi)}i) MIN({∆R(θi)}i)
1 15.03 ± 52.61 38.35 ± 39.02 155.56 -149.09

2 21.23 ± 37.68 30.37 ± 30.80 145.45 -37.95

4 21.81 ± 34.98 28.14 ± 30.12 113.82 -25.32

8 14.12 ± 44.51 31.12 ± 34.81 134.84 -163.47

16 6.16 ± 46.68 32.26 ± 34.30 100.79 -169.74

32 1.55 ± 62.75 35.26 ± 51.93 101.41 -266.15

64 11.91 ± 38.39 28.99 ± 27.85 125.69 -75.02

128 14.11 ± 39.72 28.39 ± 31.15 124.47 -116.62
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(a) Ant-v4 (b) Walker2d-v4 (c) Hopper-v4 (d) HalfCheetah-v4

Figure 10: The learning curves for TD3 (Gray) and TD3-PPTB (Red) in four MuJoCo tasks, with
means and standard errors across 6 seeds.

Figure 11: The learning curves for RAD (Gray) and RAD-PPTB (Red) in four DMC tasks, with
means and standard errors across 6 seeds.

(a) Parameter Analysis of BC (Adam)

(b) Temporal SVD Analysis of BC (Adam)

(c) Parameter SVD Analysis of BC (SGD)

(d) Temporal SVD Analysis of BC (SGD)

Figure 12: The parameter and Temporal SVD analysis for Behavior Cloning with Adam and SGD
optimizers in D4RL halfcheetah-medium-replay. Compared with the RL cases reported in our paper,
the asymmetry of parameter update amount is less observed in BC (Adam) but more severe in
BC (SGD); the pattern of temporal SVD evolvement is different for BC (Adam) and BC (SGD).
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction summarize our contributions
and are supported by our experiment results in Section 3 and Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section A.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
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will be specifically instructed to not penalize honesty concerning limitations.
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Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide sufficient experiment and implementation details in Section 5 and
Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• The instructions should contain the exact command and environment needed to run to
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details of compute resources in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper study policy network evolvement in a low-dimensional space,
which can have a positive impact in general for better understanding the learning dynamics
of DRL algorithms. No specific real-world application is concerned and we do not see a
specific societal impact of this paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the environments, data and codes of baseline methods used in this paper
are publicly available on Github. We cited the original papers and provided the URLs to the
assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the necessary details for implementing our proposed method in
this paper. We will provide a README document alongside the code to release after the
review process.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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