
IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 5, MAY 2022 3069

Evolving Connections in Group of Neurons
for Robust Learning

Jia Liu , Member, IEEE, Maoguo Gong , Senior Member, IEEE, Liang Xiao , Member, IEEE,
Wenhua Zhang , and Fang Liu , Member, IEEE

Abstract—Artificial neural networks inspired from the learning
mechanism of the brain have achieved great successes in machine
learning, especially those with deep layers. The commonly used
neural networks follow the hierarchical multilayer architecture
with no connections between nodes in the same layer. In this
article, we propose a new group architectures for neural-network
learning. In the new architecture, the neurons are assigned irreg-
ularly in a group and a neuron may connect to any neurons in the
group. The connections are assigned automatically by optimizing
a novel connecting structure learning probabilistic model which
is established based on the principle that more relevant input and
output nodes deserve a denser connection between them. In order
to efficiently evolve the connections, we propose to directly model
the architecture without involving weights and biases which sig-
nificantly reduce the computational complexity of the objective
function. The model is optimized via an improved particle swarm
optimization algorithm. After the architecture is optimized, the
connecting weights and biases are then determined and we find
the architecture is robust to corruptions. From experiments, the
proposed architecture significantly outperforms existing popular
architectures on noise-corrupted images when trained only by
pure images.

Index Terms—Machine learning, neural-network architecture,
particle swarm optimization, probabilistic model.

I. INTRODUCTION

ARTIFICIAL neural networks (ANNs) that mimic the
information processing mechanism of nature neural

systems are one type of the popular methods dealing with
machine-learning problems [1]. There are various types of
ANN models dealing with different data and tasks. For
instance, the Hopfield neural network [2] is a type of network

Manuscript received February 7, 2020; revised June 12, 2020; accepted
August 25, 2020. Date of publication October 7, 2020; date of current version
May 19, 2022. This work was supported in part by the National Nature Science
Foundations of China under Grant 61906093, Grant 61802190, and Grant
61871226; in part by the Nature Science Foundation of Jiangsu Province,
China, under Grant BK20190451; in part by the Jiangsu Provincial Social
Developing Project under Grant BE2018727; and in part by the Fundamental
Research Funds for the Central Universities under Grant 30919011279 and
Grant 30919011281. This article was recommended by Associate Editor
Y. S. Ong. (Corresponding author: Jia Liu.)

Jia Liu, Liang Xiao, and Fang Liu are with the School of Computer Science
and Engineering, Nanjing University of Science and Technology, Nanjing
210094, China (e-mail: omegaliuj@gmail.com).

Maoguo Gong is with the School of Electronic Engineering, Xidian
University, Xi’an 710071, China.

Wenhua Zhang is with the School of Artificial Intelligence, Xidian
University, Xi’an 710071, China.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCYB.2020.3022673.

Digital Object Identifier 10.1109/TCYB.2020.3022673

with feedback connections that is usually used for associative
memory [3] and function optimization [4]. Multilayer hierar-
chical neural networks own an end-to-end architecture with
input, output, and multiple hidden layers which are usually
used for classification [5] and regression [6]. With the demand
for dealing with big data, deep neural networks [7] with more
complex architectures have achieved many breakthroughs in
numerous applications and for different types of data, different
architectures are designed. For example, convolutional neural
networks (CNNs) [8] are featured with local receptive field and
weight sharing which is suitable to deal with image data [9],
[10]. Recurrent neural networks (RNNs) [11] equipped with
recurrent layers can well adapt to time-series data [12]–[14].

The architecture of neural networks plays an important role
in neural learning. Therefore, architecture design has been
a research interest for decades [15], [16]. The architecture
indicating the arrange of neurons and assign of connections
between pairs of them can be manually designed, such as
AlexNet and GoogleNet [17], based on CNN or automat-
ically evolved [18]. The architectures are usually designed
for specific purposes. The popular one is to improve the
performance in practice. The optimal depth, width in each
layer, kernel size (CNN), and even connections evolve with the
objective of test accuracy [18]–[20]. Sparsification of network
connections could not only increase generalization but also
compress the network. Therefore, connecting structure learn-
ing is also a popular topic. In [21], redundant connections are
removed based on CNN for face recognition. We proposed a
multiobjective model for connecting structure learning in [22]
with the purpose of well capturing the input distribution by
the sparsified structure.

Most of the popular neural networks are based on the
hierarchical architecture with multiple layers, including the
above-evolved architectures. The layers are defined as a set
of neurons with no connections between them. Such architec-
ture perfectly models the nonlinear relationship between input
and output neurons and a deeper architecture could learn more
complex models [23]. However, since there are no connections
between units in the same layer or nonadjacent layers, the neu-
rons are not compactly arranged and the information flow may
be blocked. As a consequence, some architectures with skip
connections are developed [24]–[26] among which the most
successful one is the residual network (ResNet) [24]. ResNet
adds shortcut connections between input and output layers of a
section of the multilayer network to learn a residual function,
that is, H(x) − x with x and H(x), respectively, representing

2168-2267 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on May 14,2023 at 12:04:17 UTC from IEEE Xplore. Restrictions apply.

3070 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 5, MAY 2022

(a) (b) (c) (d)

Fig. 1. Different architectures. (a) Hierarchical multilayer architecture.
(b) Hierarchical architecture with skip connections. (c) Architecture based
on cells. (d) Proposed group architecture.

the input and output of the section of network. A very deep
network can be constructed and more complicated models can
be learned with these shortcut connections. Recently, there
are increasing interests in the architectures based on the block
cells [27]–[29]. A cell is a directed acyclic graph consisting of
an ordered sequence of nodes [30]. The connections between
the cells are evolved based on the practical performance. The
evolved architecture further relaxes the layer limitation with
more free connections and more compact architecture can be
obtained. Inspired from the nucleus in brain, in this article,
we attempt a group architecture as shown in Fig. 1 which also
exhibits the above-mentioned architectures. It is known that
the structure of brain is hierarchical but each layer is much
more complex than that in ANN and shows a group archi-
tecture. The proposed architecture is composed of the input
layer, the output layer, and a group of neurons. In the group,
a neuron is possible to connect to any neurons. But since we
focus on the classification problem in this article, there are
no feedback connections. The new architecture gets rid of the
layer limitation and the neurons connect with each other freely
which means there are less idle neurons.

However, if all the neurons in the group connect with each
other, the number of connections as well as the computational
complexity will increase exponentially with more neurons.
The group architecture can be taken as multilayer networks
with intralayer connections, such as Boltzmann machine [31],
RNNs [11], and those with recurrent connections [32]. It
is a great challenge to train such architecture and there-
fore intralayer connections are usually manually assigned, for
example, RNN is assigned self-connections and is trained by
time sequence. In this article, we try to evolve an appropriate
architecture by determining connections between each pair of
neurons. But with the large-scale free binary parameters, it is
difficult to search the optimal connecting assignation. As men-
tioned above, it is popular to evolve the network architecture
with the practical performance as the objective, for instance,
test error for classification problems. However, computing the
objective function not only requires high-performance com-
putational devices but also time demanding. For example, by
using reinforcement learning, a good architecture is obtained
after 1800 GPU days in [27] and 3150 GPU days for evolu-
tionary algorithm in [29]. Some attempts have been proposed
to reduce the time demanding, including weight sharing [33],
Bayesian optimization [34], and differentiable network archi-
tecture search [30]. But they mainly focus on the optimization

methods while the complexity of the objective function is still
a problem.

In this article, we propose to directly model the connect-
ing structure without the involvement of weights and biases.
This will avoid the training of weights and biases which
greatly reduces the computational complexity of the objec-
tive function. In order to well represent the input and output
relationship, we model the architecture based on the principle
that more relevant input and output unit pair deserves higher
connecting density and establish a probabilistic model to well
capture the distribution of observed data. Then, an efficient
objective function is derived and an improved binary particle
swarm optimizer (BPSO) algorithm [35] is utilized to optimize
the objective function. After the optimization of architecture, it
is also important to optimize the connecting weights and biases
to achieve the final learning purpose. Since the new architec-
ture is different from the multilayer architecture, we propose
a probabilistic model to well represent the input distribution
and a contrastive divergence algorithm is used to optimize
the model. Due to that the new architecture fully frees the
architecture limitation and the connections are self-organized
according to the input and output relationship, each neuron
could play a full role in the information flow. Therefore, more
compact architecture can be learned and from the experi-
ments, the proposed architecture could achieve comparable
performance with much less neurons and connections com-
pared with multilayer architecture. More important, we find the
new architecture is robust to corruptions in the test sets due to
its data-driven architecture. The proposed method significantly
outperforms existing popular architectures on noise corrupted
images. In conclusion, the contributions of this article can be
summarized as follows.

1) We attempt a group neural network (GNN) architecture
and make it possible to image classification.

2) To optimize the architecture efficiently, we propose to
construct the objective function through information
flow without the involvement of weights and biases.

3) Learning tricks are proposed to increase the learning
efficiency of architecture and parameters.

4) We find a special potential of the new architecture which
is robust to corruptions. The potential is significant
because the corruptions destroy the identical distribution
of independent training and test data.

The remainder of this article is organized as follows.
Section II introduces some techniques used in the modeling
and optimization process. The detailed modeling and learning
methods are described in Section III. In Section IV, we dis-
cuss the experimental study and in Section V, conclusion and
future work are provided.

II. PRELIMINARIES

In this section, we mainly introduce the related background
about the proposed network. The aim of architecture learning
for the group architecture is equivalent to removing the redun-
dant connections which is similar to parameter pruning [36]
in network compression. So we first review some related work
about network pruning. We model the architecture following

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on May 14,2023 at 12:04:17 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EVOLVING CONNECTIONS IN GROUP OF NEURONS FOR ROBUST LEARNING 3071

probabilistic models and optimize it via BPSO. Then, we
introduce neural-network-based probabilistic models and the
commonly used particle swarm optimizer (PSO) algorithm.

A. Network Pruning

Network pruning removes redundant connections from a
densely connected network to achieve better generalization
and meanwhile lower computational and spatial complexity.
In some methods, the redundant connections are removed via
pruning criteria. The intuitive way is based on the amplitude of
the weights [37]. In [21], CNN was sparsified via the correla-
tion between two neurons inspired from Hebbian learning. But
those methods determine the connections after training, and the
architecture should be tuned iteratively which leads to multiple
training of network parameters. Evolutionary algorithms are
popular to evolve spare connections [22], [38], [39]. But for
deep networks, those methods suffer from the large computa-
tional burden as introduced above. Moreover, existing network
pruning methods are based on the multilayer network. In this
article, we design a novel architecture learning method for the
group architecture.

B. Probabilistic Models

The probabilistic model plays an important role in the devel-
opment of deep learning [40]. The breakthrough from shallow
networks to deep networks is the deep belief net (DBN) [41]
proposed by Hinton in 2006 which was later successfully
applied to dimension reduction [42]. In DBN, the restricted
Boltzmann machine (RBM) [43], which is a type of proba-
bilistic model, is used to pretrain the deep network layer by
layer. This mitigates the gradient vanishing in the backpropa-
gation (BP) algorithm. RBM learns to represent the input data
by capturing the distribution of them. Then by layer-wise train-
ing, the abstract features can be extracted. This novel training
paradigm has led to the research interests in unsupervised rep-
resentation learning [40], and various feature learning models
have been proposed based on RBM [44]–[46].

In this article, we model the architecture based on the Gibbs
distribution

P(x; θ) = exp[−E(x, θ)]
∑

x̃ exp
[−E(x̃, θ)

] (1)

where x is the observed data in the dataset and θ is the
parameter set, including connecting weights and biases in neu-
ral models but in this article, θ is replaced by connecting
assignment. The denominator is the partition function where
x̃ denotes the data in the entire data space that x belongs to. It
is defined to guarantee that the probability sum over the entire
space is 1. For the model that fits the distribution of input
data well, it should give high probability to the observed data
and waste as little probability as possible on the remaining
data in the entire data space. Then, the model can well cap-
ture the distribution of the observed data. We also establish
such a model to optimize the connecting weights and biases
after the optimization of architecture in order to mitigate the
uneven influence of the output layer to input layers due to the
irregular architecture.

The probabilistic model can be solved by maximizing the
log likelihood via the gradient descent

− ∂ log p(x; θ)

∂θ
= ∂E(x, θ)

∂θ

−
∑

x̃

p(x̃; θ)
∂E(x̃, θ)

∂θ
(2)

where the second term is the expectation of the gradient
for data in the entire data space and can be estimated
by alternant Gibbs sampling. Hinton proposed an efficient
optimization method which is called the contrastive divergence
algorithm [47]. With the contrastive divergence, RBM can be
efficiently trained which reveals the learning capability of deep
neural networks.

Probabilistic models capture the distribution of observed
data by modeling them with trainable parameters. Therefore, in
this article, we take the architecture as the trainable parameter
and propose a probabilistic model to evolve the data adaptive
architecture. On the one hand, the architecture can be evolved
based on the model without the involvement of weights and
biases which greatly reduces the computational complexity.
On the other hand, the learned compact architecture can well
capture the data distribution and follow the information flow
between input and output neurons. With the model, we utilize
the PSO algorithm to evolve the optimal architecture.

C. PSO Algorithm

PSO is a population-based heuristic optimization method
inspired from the foraging behavior of flying birds [48]–[51].
Population-based methods are popular to optimize discrete
problems, such as structure learning [22], community detec-
tion [52], and sparse representation [53]. In PSO, given a
population with n individuals (solutions), each individual is
taken as a particle and it adjusts its flying according to its
own and companies’ experiences

vG+1
i = ωvG

i + c1rand[0, 1] ·
(

pbest
i − xG

i

)

+ c2rand[0, 1] ·
(

gbest − xG
i

)
(3)

where rand[0, 1] is a randomly generated value between 0
and 1. c1 and c2 are user-defined parameters that controls
the importance of the three terms. xG

i denotes the ith par-
ticle in the population at the Gth generation. vi denotes
the flying direction and velocity of xi and the position of
the ith particle in the G + 1th generation is obtained as
xG+1

i = xG
i + vG+1

i . pbest
i indicates the personal best solution

found by the ith particle evaluated by a fitness function f (xi),
that is, pbest

i = xg
i with xg

i = arg max{f (x1
i), f (x2

i), . . . , f (xG
i)}.

gbest is the global best solution found by all the parti-
cles in the population, that is, gbest = pbest

i with pbest
i =

arg max{f (pbest
1), f (pbest

2), . . . , f (pbest
n)}. The entire process of

PSO is summarized in Algorithm 1.
In this article, the optimized variable is the architecture

which is a binary matrix indicating the connecting assignment
between each pair of neurons. Therefore, we use a BPSO [35]
algorithm to optimize the connecting assignment. In BPSO, v

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on May 14,2023 at 12:04:17 UTC from IEEE Xplore. Restrictions apply.

3072 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 5, MAY 2022

Algorithm 1 Process of PSO
Initialization:
Initialize the population {x0

1, x0
2, . . . , x0

n} randomly and gener-
ate {pbest

1 , pbest
2 , ..., pbest

n } and gbest.
G=0.
Repeat:

Compute vG+1
i for each individual according to Eq. (3).

Update each individual xG+1
i = xG

i + vG+1
i .

Update pbest
i for each individual and gbest.

G = G + 1.

Stop Criterion: Stop the iteration process when the number
of iterations exceeds maximum value.

is generated according to (3) and the position of the ith particle
is obtained by a probability matrix

SG
i = 1

1 + exp
(−vG

i

) (4)

with each component in the matrix denoting the probability
being connected. Then, xG

i is obtained via sampling.
To further improve the efficiency of BPSO, in this arti-

cle, we propose a novel multiscale BPSO with an increasing
optimization scale. BPSO is first used to search in a low scale
space and the space is enlarged and the population is initial-
ized according to the optimized population in the lower scale
space. This decreases the computational complexity of BPSO
in early stages and improves the learning efficiency.

III. METHODOLOGY

To achieve the classification task, the compact group archi-
tecture should be trained by instances twice, one for learning
the connecting architecture and one for connecting weights and
biases. This process is different from most traditional archi-
tecture learning methods where parameter learning is executed
numerous times to compute the objective function for evolv-
ing suitable architecture. Therefore, the proposed process is
computational efficiency. Meanwhile, the architecture learned
could well represent the input and output relationship.

A. Architecture Learning

The group architecture is shown in Fig. 1(d) where all the
connections should be assigned by the learning method given
a set of neurons. In this article, we propose to directly model
the architecture based on the input and output relationship with
the principle that more relevance between input and output
units deserves higher connecting density. Here, the connecting
density plays a crucial role which determines the connecting
keynote. We first define the connecting density.

1) Connecting Density: The connecting architecture of
network indicates the information flow from input to output.
If an input neuron is more relevant to an output neuron, more
information should be transferred. This means that wider and
shallower information path should be constructed. Therefore,
the connecting density should be defined according to both
number of connections and depth. Here, the connecting den-
sity ρij(ϕ) between a neuron i and an input neuron j is defined

Fig. 2. Connecting density and its computing process. Values in the units are
connecting density between this neuron and the input neuron j. For example,
there are five connections connect with the neuron i among which one con-
nection directly connects to the neuron j. Therefore, the full information of
neuron j can be transformed to i, that is, the connecting density 1 is directly
transmitted. One connection indirectly connects to neuron j and the connecting
density 0.5 is transmitted to neuron i. Then, the connecting density between
neurons i and j is obtained by (5): (1 + 0.5)/5 = 0.3.

as follows:

ρij(ϕ) =
∑

k∈�i
ρkj(ϕ)

M(�i)
(5)

where ϕ is the connecting matrix with each component indi-
cates the connecting status between each pair of neurons (1 for
connected and 0 for unconnected). �i denotes the set of lower
neurons that directly connect to neuron i and M(�i) denotes
the number of such neurons. The connecting density can be
propagated from the input neurons with that between an input
neuron and itself being 1. Fig. 2 explains the above relation-
ships where the number in the neuron is the connecting density
between the neuron and input neuron j.

The connecting density can represent the information decay
through the path. If a neuron directly connects to the input
neuron, the information could be fully transferred to it. But
since there are information from other neurons, the origi-
nal information is mixed. Therefore, high density means a
shallower path with less information from other neurons. For
multilayer networks, the connecting density between differ-
ent input and output neurons are equal. Since the relevance
between different input and output neurons is not equal, in this
article, the connecting density determined by the architecture
is expected to well represent the input and output relationship
which is evaluated by the mutual information between them.

2) Mutual Information: In order to well represent each
input data, we use the pointwise mutual information to eval-
uate the relationship between input and output neurons for
each data. Given a pair of values (xj, yi) imposed on the
jth input neuron and ith output neuron, the pointwise mutual
information is computed by

I
(
xj; yi

) = log
P
(
xj, yi

)

P(xi)P
(
yj

) (6)

where I(·) is the pointwise mutual information and P(·)
denotes the probability which is estimated by all data in the
dataset. For image data, the gray level is discrete and the
probability can be directly counted. Continuous data can be
discretized by even thresholds and then the probability can
be counted. Pointwise mutual information is a measure of
how much the actual probability of a particular co-occurrence

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on May 14,2023 at 12:04:17 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EVOLVING CONNECTIONS IN GROUP OF NEURONS FOR ROBUST LEARNING 3073

of events p(x; y) differs from what we would expect it to
be on the basis of the probabilities of the individual events
and the assumption of independence p(x)p(y) [54]. Since the
mutual information is the expectation of the pointwise mutual
information, we use the pointwise one for each data instead
of only the expectation to capture the distribution.

Since the value of connecting density defined above is
between 0 and 1, we further normalize the pointwise mutual
information by [54]

N
(
xj; yi

) = I
(
xj; yi

)

H
(
xj, yi

) = I
(
xj; yi

)

− log P
(
xj, yi

) (7)

where H(xj, yi) is the joint amount of information. However,
the normalized mutual information is in the range of [−1, 1].
But the probability of negative values is small and can be
omitted [55]. Therefore, we restrain the negative values to be
0, R(xj; yi) = max [N(xj; yi), 0]. Then, the evaluation of the
relationship between input and output components for each
data is obtained. With the connecting density between each
pair of input and output units and the corresponding relevance
of each data, the probabilistic model is established.

3) Probabilistic Model: As introduced above, the proba-
bilistic model is established based on the principle that larger
relevance deserves higher density. Then, an energy describing
such a principle is first defined as the cosine distance

E(x, y;ϕ) = cos
[
ρ(ϕ),R(x, y)

]
(8)

where ρ(ϕ) and R(x, y), respectively, denote the vectors con-
taining connecting densities and mutual information between
all pairs of input and output neurons. If the architecture that
can well follow the input and output relationship, the energy of
it will be low. However, only minimizing the energy will lead
to low energy for all the possible data. For example, when all
the input neurons have equivalent relevance to output neurons,
the connecting densities are equal which leads to uncertainty
of depth. Therefore, a probabilistic model is established based
on the energy to learn the distribution of observed data

p(x, y;ϕ) = exp
[−E(x, y;ϕ)

]

∑
(x̃,ỹ) exp

[−E(x̃, ỹ; ϕ)
] . (9)

Similar to RBM and other probabilistic models, here (x̃, ỹ)
denotes one of all the possible input and output data in the
entire data space. For learning the data-driven architecture,
the model should assign more probability to observed data,
that is, training data and as less probability as possible to all
the other data, that is, fantasy data. However, different from
PoE, the trainable parameter in this model is the architec-
ture ϕ which is a binary matrix. It is scarcely possible to use
the gradient method to derive the optimal architecture. For
discrete variance, it is popular to evolve the optimal value
by population-based methods [52], [56]. As a consequence, a
BPSO algorithm is utilized in this article. It is necessary to
derive a computable objective function.

4) Objective Function: Due to the unreachable fantasy
data in (9), it is difficult to estimate the probability directly.
Optimizing the model is to increase the numerator and
decrease the denominator. It is easy to compute the numera-
tor given the architecture and observed data. Fortunately, even

though the denominator is difficult to be directly estimated,
the value of it is only determined by the architecture since it
is the sum over all the possible data. Therefore, we can design
an alternative computable function to replace the denomina-
tor. Here, the new function is defined as the overall squared
connecting density for all input and output pairs

D(ϕ) =
∑

i,j

∥
∥ρij(ϕ)

∥
∥2

. (10)

This function denotes the overall representation of the archi-
tecture for all the data and larger value of it leads to larger
energy over all the possible data. But this function may not
follow the linear relationship with the denominator in (9). As
a consequence, we add the function to the denominator as a
new term and the objective function is obtained

max J(ϕ) =
∑

(x,y)∈�

exp
[−E(x, y;ϕ)

] − λD(ϕ) (11)

where � is the dataset that contains all the observed data. λ is a
user-defined parameter that controls the importance of the two
terms. Optimizing this objective will increase the numerator
and decrease the denominator of the probabilistic model in (9).
Therefore, it is expected to achieve the architecture that follows
the principle. Then with the computable objective function,
an improved BPSO algorithm is designed. To compute the
objective, only one forward of the connecting density is needed
compared with numerous forward and backward process to train
the parameters in traditional objectives. Thus, the computational
complexity of this objective is much lower.

It deserves to be noted that the objective is not the
performance in classification which is different from most
architecture learning methods. The proposed objective func-
tion evaluates the information flow through the architecture.
In general, an architecture that cannot guarantee information
flow between input and output neurons would not perform well
in practice. Therefore, optimizing the proposed objective func-
tion will increase the classification performance as well. It is
a substitute but it makes it possible to optimize the complex
architecture due to its low computational complexity. Some
existing compressing methods also use this way, such as the
parameter pruning methods as introduced above.

5) Improved BPSO Algorithm for Optimization: The PSO
algorithm is an efficient global optimization method and
is widely used in many problems as introduced above. In
this article, a BPSO is utilized to optimize the architecture.
However, the high-dimensional searching space is still a great
challenge for BPSO in this problem. For example, if there are
200 neurons in the group, the dimension of the variable is over
40 000. Therefore, we propose a multiscale BPSO (MS-BPSO)
to improve the learning efficiency.

In the nature evolution theory, the genetic information in
lower creatures is less than that in higher creatures. The genetic
information increases with the process of evolution. Inspired
from this process, in this problem, the high-dimensional vari-
able can be evolved from the results of a lower dimensional
variable. One stage of the multiscale process is exhibited in
Fig. 3 which includes two steps, that is, split and evolving. In
MS-BPSO, 2k neurons are binded as one cell at the first stage.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on May 14,2023 at 12:04:17 UTC from IEEE Xplore. Restrictions apply.

3074 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 5, MAY 2022

Fig. 3. Exhibition of one stage of MS-BPSO. In each stage, one neuron
splits into two neurons and they share the same connecting configuration.
Then, BPSO is utilized with the result in the last stage as the initialized
architecture.

Then, BPSO is utilized to search in the low-scale searching
space. After convergence, each cell spilts into two cells con-
taining 2k−1 neurons. The two cells share the same connecting
configuration. With such architectures as initialized popula-
tion, BPSO is utilized again. After k stages, each cell contains
only one neuron. Then, the best architecture searched by BPSO
is the final result.

Given an N-dimensional binary variable, at the first stage,
the searched variable has N/2k dimensions which greatly
reduces the searching space and also the complexity of the
objective function. Even though the final searching space is
not reduced, the initialized population has been evolved into
a good position. Therefore, with the same number of gener-
ations, MS-BPSO is more efficient. After the architecture is
optimized, it is important to optimize the connecting weights
and biases in order to achieve the learning task.

B. Network Parameter Learning

The widely used parameter learning method for hierarchical
neural networks is the BP algorithm [8]. In the BP algorithm,
the gradients of parameters in each layer are computed from
the output errors backpropagated from the output layer. In this
architecture, the BP algorithm can also be used since there is
no feedback connections. The errors of each neuron in the
group can be backpropagated from the output layer. But since
there are no regular layers in the group, some connections may
not be fully trained by the BP algorithm. Fig. 4 illustrates the
difference between hierarchical and proposed group architec-
ture in terms of the BP algorithm. In hierarchical architecture,
since there are no connections in the same layer, the errors can
be evenly backpropagated to the input layer as shown in Fig. 4.
However, in the proposed architecture, there are many paths
with different depths for backpropagating errors. As shown in
Fig. 4, the errors could be fully backpropagated through the
red connection. Then, the weights on the red connection can
be adequately trained. But since BP only focuses on the output
loss, with the less influence of weights of deep connections on
output units, the training of lower blue and green connections
is restrained by the red connection. Therefore, we propose a
probability model to give consideration to input distribution.

The network parameters should not only reduce the output
loss on the training data but also well represent the input data.
Therefore, a probabilistic model is established with the output
loss as the energy

p(x|y; θ) = exp
[−E(x, y; θ)

]

∑
x̃ exp

[−E(x̃, y; θ)
] (12)

Fig. 4. Illustration of the difference between the multilayer architecture and
the proposed architecture in terms of the BP algorithm.

where θ is the network parameter set, including the connecting
weights and biases. E(x, y; θ) denotes the energy and here
the output loss is used as the energy, that is, E(x, y; θ) =
‖y − fθ (x)‖2

2 where fθ (x) denotes the output of the network
given input of x. Following the routine of probabilistic models,
x̃ denotes one of all the possible data in the data space. For
a model that well represents the input data, it should achieve
less training loss than other fantasy data. Since the network
parameters are continuous, it can be optimized by maximizing
the log likelihood via gradient ascent

θ = ∂ log p(x|y; θ)

∂θ

= −∂E(x|y; θ)

∂θ
+

∑

x̃

p(x̃|y; θ)
∂E(x̃|y; θ)

∂θ
. (13)

The first term is the gradient of θ in terms of training loss
which can be easily computed by the BP algorithm. The sec-
ond term is the gradient expectation of all the possible data
which is difficult to estimate. In RBM and PoE, the expec-
tation is estimated by Gibbs sampling as introduced above.
In Gibbs sampling, the status probability of the input data
is derived according to the model, and then the value of the
input data is sampled from the probability. Since RBM and
PoE are based on the single-layer network, it is convenient to
derive the probability. In the proposed architecture, it is quite
difficult to directly derive the probability with the complex
connections. As a consequence, in this article, we propose a
reversed sampling method.

It is intuitive that the sampled data are more likely to locate
at the high density region of the model. Therefore, the sampled
data can be obtained by increasing the probability density with
the sampled data as the variable

max
x̂

log p
(
x̂|y; θ

)
(14)

where x̂ is the sampled data. Then, we derive the gradient of
the log likelihood

x̂ = ∂ log p
(
x̂|y; θ

)

∂ x̂

= ∂ − E
(
x̂|y; θ

)

∂ x̂
− ∂ log

∑
x̃ exp

[−E(x̃|y; θ)
]

∂ x̂
. (15)

Fortunately, the denominator in (12) is not the function of x̂.
Therefore, the second term in (15) is 0. Then, the first term
can be obtained by the errors backpropagated from the output
layer. With the sampled x̂, the second term in (13) can be
computed and the parameters can be updated with the gradient.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on May 14,2023 at 12:04:17 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EVOLVING CONNECTIONS IN GROUP OF NEURONS FOR ROBUST LEARNING 3075

However, to estimate the gradient expectation, numerous
iterations are necessary to obtain the optimal value of the
sampled data. Moreover, several sampled data should be gener-
ated to estimate the expectation more accurately. One iteration
needs a forward and a backward. Then, to compute the gradi-
ent of network parameters, numerous forward and backward
processes are necessary which is significantly time consuming.
Therefore, we consider a contrastive divergence algorithm [47]
to optimize the model. Maximizing the probability in (12)
is equivalent to minimizing the Kullback–Leibler (KL) diver-
gence Q||Q̂∞ between sampled distribution Q̂∞ (via numerous
iterations) and observed distribution Q which means that the
model can well capture the distribution of observed data.
Instead of optimizing the KL divergence, the contrastive diver-
gence algorithm minimizes the difference between two KL
divergences min(Q||Q̂∞ −Q̂1||Q̂∞) where Q̂1 denotes the dis-
tribution that is one step closer to Q̂∞ than Q. Minimizing
the contrastive divergence indicates that Q = Q̂1 which indi-
rectly indicates that Q = Q̂∞. Then, the KL divergence will
be minimized. The updating gradient of network parameters
is computed by

θ =
∂
(

Q
∥
∥
∥Q̂∞ − Q̂1

∥
∥
∥Q̂∞

)

∂θ

= −
〈
∂E(x, y; θ)

∂θ

〉

Q
+

〈
∂E

(
x̂, y; θ

)

∂θ

〉

Q̂1

+ ∂Q̂1

∂θ

∂
(

Q̂1
∥
∥Q̂∞

)

∂Q̂1
(16)

where 〈·〉Q denotes the expectation of the gradient following
the distribution of Q. The last term is problematic to compute,
but extensive simulations show that it can safely be ignored
because it is small and seldom opposes the resultant of the
other two terms [47]. Then, the first term is the gradient of
the observed data and the second term is that of the data that
is one step closer to sampled distribution. x̂ can be obtained by
one iteration of gradient descent which can result in a higher
probability than that of x. As a consequence, to compute the
updating gradient of network parameters, three times forward
and backward processes are necessary in each iteration (one
for sampling). This significantly reduces the computational
complexity. The overall process is exhibited in Algorithm 2.

The new parameter learning method may mitigate the
problem we analyze above. When the probability model is
optimized, the sampled distribution should follow the distri-
bution of the observed data. Therefore, if the lower blue and
green connections cannot be well trained, the input status can-
not be accurately sampled due to the direct influence of lower
connections. During the learning process, the reconstructed
data x̂ is also obtained by using the BP algorithm and the
gradient of each weight is the subtraction between gradients
computed by observed data and reconstructed data. Then, if
the weight in a connection is not well trained, the recon-
structed status of its input unit is distinct with the observed
input status. Then the amplitude of the gradient will be large to
modify the weight. Otherwise, the amplitude will be close to
0. Moreover, the reconstructed data is generated by adding the

Algorithm 2 Parameter Learning Process of the Proposed
Architecture
Initialization: initialize the connecting weights and biases ran-
domly.
Repeat:
FOR each data x in the dataset:

Sampling: Generate x̂ = x +
x̂ according to the gradient
in Eq. (15).
Computing gradients: Compute the gradient ∂E(x)/∂θ

with the observed data x and the gradient ∂E(x̂)/∂θ with
the sampled reconstructed data x̂.
Updating: Update the network parameter with the gradient
in Eq. (16).

Stop Criterion: stop the iteration process when the training
error is lower than a threshold or the number of iterations
exceeds maximum value.

Algorithm 3 Learning Process of the Entire System
Set Hyperparameters: k, c1, c2, number of neurons, λ, num-
ber of maximum iterations.
Architecture Learning:

Initialize the population of binded connecting matrix ϕ

randomly.
Repeat:

Optimization with PSO in Algorithm 1.
k − 1.

Stop when k = 1 and output optimized ϕ.

Parameter Learning:
Construct information flow on ϕ.
Optimize the connecting weights and biases according to
Algorithm 2.

gradient backpropagated from the output layer. This gradient
can be taken as a disturbance that modifies the observed data
to achieve lower loss. The parameter learning aims to restrain
the reconstructed data which can be taken as an adversarial
training [57].

It deserves to be noted that compared with the basic BP
algorithm which is composed of one forward and one back-
ward processes in each iteration, the proposed method needs
two forward and two backward processes in each iteration.
One for reconstruction and the gradient ∂E(x)/∂θ , and another
for the gradient ∂E(x̂)/∂θ . Therefore, the computational time
is approximately twice that of the BP algorithm with the same
number of iterations. In conclusion, the learning process of the
entire system is summarized in Algorithm 3.

C. Toy Example

To better describe the entire story of architecture learning
and parameter learning. We construct a simple dataset to illus-
trate the trained architecture and sampled data. First, a simple
simulated dataset for classification is constructed. There are
two classes and three attributes in each data as shown in Fig. 5.
Among the three attributes, the first two attributes follow the
Gaussian distribution with different parameters for different

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on May 14,2023 at 12:04:17 UTC from IEEE Xplore. Restrictions apply.

3076 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 5, MAY 2022

Fig. 5. Simple simulated dataset with three attributes. Blue point denotes
each data and the distribution of them is illustrated by different view angles.
The third attribute indicated by the vertical axis has no contribution to the
classification.

(a) (b)

Fig. 6. (a) Connecting architecture learned by the simulated dataset. Red
circles denote the neurons in the input and output layers. Connections con-
necting to input neurons are marked by the red lines. (b) Gradient amplitude
of the two connections A and B during training with BP and the proposed
EDPM, respectively.

classes. The third attribute follows the Gaussian distribution
with the same parameter for all data which means that the third
attribute has no contribution to the classification. First, the
architecture learning is executed and the learned architecture
is illustrated in Fig. 6(a).

We set five neurons in the group and the architecture is
evolved according to the input and output relationship. It
is obvious that the first two neurons in the input layer are
assigned more connections and they also directly connect to
the output neurons. The third attribute has no contribution to
the output layer, therefore, only one connection is assigned
for it. This demonstrates that the learned architecture follows
the principle that higher correlation leads to larger connecting
density. The learned architecture is expected to learn the input
and output relationship. After architecture learning, parameter
learning is implemented to learn the classification function.
To exhibit the effect of the proposed error-driven probabilistic
model (EDPM), we select two connections marked as A and
B in Fig. 6(a) and plot their gradient amplitude during training
as shown in Fig. 6(b). The connection B directly connects to
the output unit, therefore, the gradient amplitude is large at the
early stage of training which can modify the weight rapidly. As
a consequence, there is a peak along the curve of connection
B either trained by BP or EDPM. However, for BP, the matu-
rity of connection B will restrain the training of connection A
due to the same destination of them but a longer way for A.
As a consequence, the gradient amplitude of A is restrained
to be much smaller and the weight is approximately random
when trained by BP. But this phenomenon can be mitigated
by EDPM since the update gradient is the difference between
two differential coefficients. As explained above, the gradi-
ent is difficult to be restrained by mature connections. As a

Fig. 7. Training data and sampled data. The sampled data indicated by red
points are sampled based on the proposed sampling method with the network
parameters. The sampled data during different stages of the learning process
are exhibited.

consequence, the gradient amplitude is also large as the red
line shows.

The sampled data during the learning process are exhibited
in Fig. 7. The initialized network has no capability to repre-
sent the input data, therefore, the sampled data are randomly
distributed as shown in Fig. 7. During the training process, the
distribution of the sampled data begin to converge to that of
the training data. This means that network tends to capture the
input distribution. However, after training, data generated from
the first two attributes well follow that of distribution in the
training data. Since the third attribute has no contribution to the
classification, the sampled data from this attribute cannot con-
verge to the training distribution. This interesting phenomenon
demonstrates that the network could highlight the components
that are relevant to the classification while omitting irrelevant
components. This means that the new network is robust to
background variance and corruptions. A detailed evaluation of
the proposed network is implemented in the next section.

IV. EXPERIMENTAL STUDY

In this section, we focus on the classification problem
and evaluate the proposed GNN and corresponding learn-
ing method with more complex datasets, that is, MNIST,
MNIST with random background, and CIFAR-10 datasets.
Moreover, CIFAR-10 images corrupted by salt–pepper noise
and Gaussian noise are used to test the robust learning
of GNN. First, the improved MS-BPSO algorithm is veri-
fied by comparison with the baseline. Then, the traditional
architectures, including DBN and CNN, are compared with
GNN on the three datasets. After that, state-of-the-art image
classification methods are compared to highlight the special
superiority of GNN and its problems. Finally, the robust-
ness to hyperparameters is tested. Above all, the datasets are
introduced.

A. Datasets

The MNIST dataset is a collection of images of handwrit-
ten digits from 0 to 9. The size of each image is 28 × 28.
In the MNIST dataset, there are 60 000 training images and
10 000 test images. These digits are collected with the pure
background, but in practice, there are digits under differ-
ent backgrounds, therefore, we use a MNIST derived dataset
(MNIST bg-rand) where digits are on background with ran-
dom noise [58]. The training and test digits in this dataset are
12 000 and 50 000, respectively. CIFAR-10 is an image dataset
containing 60 000 color images of 32 × 32 pixels from ten

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on May 14,2023 at 12:04:17 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EVOLVING CONNECTIONS IN GROUP OF NEURONS FOR ROBUST LEARNING 3077

Fig. 8. Illustration of images in three datasets. (a) MNIST dataset. (b) MNIST bg-rand dataset. (c) CIFAR-10 dataset. (d) CIFAR-10 images corrupted by
salt–pepper noise. (e) CIFAR-10 images corrupted by Gaussian noise.

(a) (b) (c) (d)

Fig. 9. Convergence curves and computational time of different BPSO on the three datasets. (a) Curves on the MNIST dataset. (b) Curves on the MNIST
bg-rand dataset. (c) Curves on the CIFAR-10 dataset. (d) Computational time (s).

classes. The ten classes include airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck, which are completely
mutually exclusive. The images in this dataset are divided into
50 000 for training and 10 000 for test. Some images in the
three datasets are illustrated in Fig. 8. It can be found that in
MNIST bg-rand and CIFAR-10 datasets, the backgrounds are
more complex than that in the MNIST dataset. Moreover, it
is even difficult for human to recognize the objects when they
are corrupted by noise severely.

B. Evaluation of Learning Process

In order to increase the converging speed of BPSO, we pro-
pose to evolve the population from low-scale data space. In this
section, we verify the efficiency of MS-BPSO by comparing it
with the BPSO. Meanwhile, a different number of stages, that
is, the values of k are set to be k = {5, 4, 3, 2}, respectively.
The overall number of generations for BPSO and MS-BPSO
is 10 000 and we set the same number of generations for dif-
ferent stages, for example, 2000 generations for each stage
when k = 5. For MNIST and MNIST bg-rand datasets, we set
256 neurons in the group and for the CIFAR-10 dataset, there
are 512 neurons. The convergence curves which exhibit the
objective values in each generation are illustrated in Fig. 9.
For more clearly illustration, we zoom part of the curves in
as surrounded by the red dashed boxes.

It can be found that at the end of evolving, BPSO and MS-
BPSO achieve almost the same performance. In MS-BPSO,
there is a leap between each two stages due to the extend of
the architecture. However, the objective value increases signif-
icantly after the leap. This demonstrates that the performance
degression caused by neuron split can be rapidly recovered.
On the other hand, the curves demonstrate that the architec-
ture evolved by bundled neurons provides a better initialization
than the randomly initialized architectures in BPSO. From the
amplified curves, MS-BPSO outperforms BPSO on MNIST
and CIFAR-10 datasets with appropriate number of stages.

(a) (b)

Fig. 10. Reconstruction loss, energy of observed data, energy of reconstructed
data, and training accuracy during the learning process. (a) MNIST dataset.
(b) CIFAR-10 dataset.

But most MS-BPSO cannot outperform BPSO while the
performance gap is not large. From the above analysis, MS-
BPSO is superior in terms of efficiency. Therefore, we plot
the running time bars for BPSO and MS-BPSO on the three
datasets as shown in Fig. 9(d).

Since MS-BPSO evolves from low-scale populations, the
running time at early stages can be greatly reduced. Therefore,
the computational time of MS-BPSO is significantly less than
that of BPSO and more stages leads to less running time. When
k = 5, the computational time is even approximately half
of that of BPSO. Therefore, MS-BPSO achieves the almost
equivalent performance with much less running time compared
with BPSO. In the following experiments, we set k = 5.

Then, we show some variables during the parameter learn-
ing process in Fig. 10, including the reconstruction loss, that is,
‖x− x̂‖2, the energy of observed data, that is, E(x), the energy
of reconstructed data, that is, E(x̂), and training error. During
the learning process, the energy of reconstructed data is always
lower than that of observed data because reconstructed data is
more close to the low region of the energy field. With the iter-
ations, the energies of two types of data become closer and the
distance between x and x̂ becomes smaller. After 5000 itera-
tions, the learning begins to converge and the training accuracy
stops to increase.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on May 14,2023 at 12:04:17 UTC from IEEE Xplore. Restrictions apply.

3078 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 5, MAY 2022

C. Comparison With Traditional Architectures

For MNIST and MNIST bg-rand datasets, we compare the
proposed GNN with DBN and CNN. We set the architecture
of DBN as “784-500-300-10” [41] and CNN as LeNet [8]
which has two convolutional layers (with 6 and 16 feature
maps obtained by 5×5 convolution kernels, respectively) and
three full connecting layers (120-84-10). We set 256 neurons
in the group and λ = 1.

1) Experiments on GNN Trained by the MNIST Dataset:
We first train DBN, CNN, and the proposed GNN by the train-
ing set in the MNIST dataset. Moreover, since the objective
of architecture learning is not based on test accuracy, we also
compare the randomly initialized GNN and dense GNN (all
neurons are connected with each other) to demonstrate the
effectiveness of the architecture learning model. All the learn-
ing rates, including BP and sampling process, are set to be
0.01. The three architectures are trained by both BP algorithm
and the proposed EDPM. After training, we first implement
the trained models to test set in the MNIST dataset. The
classification accuracy is listed in Table I.

From the classification for MNIST digits, CNN with the BP
algorithm achieves the best performance due to the specially
designed architecture for images. EDPM cannot outperform
BP on architectures of DBN and CNN. Because EDPM is
a probabilistic model which means that the model gives
high response to observed data while restraining unseen data.
Therefore, some images in the test set will be excluded by the
model. However, for GNN, EDPM mitigates the problem when
BP is applied to this architecture. As a consequence, EDPM
greatly improves the performance of GNN. Even though GNN
cannot outperform CNN, it outperforms DBN with less neu-
rons and connections. In GNN, there are 256 neurons in the
group and 186 465 connections after training. While in DBN,
there are 800 hidden units and 545 000 connections and even
more in CNN. This means that GNN could learn a more com-
pact architecture due to that a neuron can process information
from all possible neurons instead of neurons from the last
layer. Consequently, with less neurons and connections, GNN
outperforms DBN on this problem. In the MNIST dataset,
the digits are on pure background, but there are many dig-
its on various backgrounds in practice. Therefore, with the
trained model by training set in the MNIST dataset, digits with
the background of random noise are tested. The classification
accuracy is also listed in Table I.

It is obvious that DBN and CNN trained by digits with
the pure background cannot well deal with digits with other
backgrounds. Because the background pixels in MNIST dig-
its are 0 and then the backpropagated error cannot influence
the connections that connect to background pixels. Therefore,
after training, the weights on the connections that connect
the background pixels is approximately random. Then with
a nonzero background pixel, it will propagate to the output
layer and influence the output. Moreover, CNN achieves the
worst performance because the kernels are shared for both
foreground and background pixels. The change of background
will influence the output a lot. Since the architecture of GNN
is evolved based on the input and output relevance, it is more
robust to background changes and it significantly outperforms

DBN and CNN on this test set. This is significant in machine
learning because this learning paradigm contradicts the basic
hypothesis in machine learning that training and test data fol-
low the identical distribution. Here, training and test data not
only follow different distribution but also are independent.
This means that GNN can infer new instances from limited
examples. Then, we train the three architectures by the training
set in the MNIST bg-rand dataset.

2) Experiments on GNN Trained by the MNIST bg-rand
Dataset: After trained by the digits with the background of
random noise, the test accuracy on the test set in the MNIST
bg-rand dataset is listed in Table I. Similarly, CNN achieves
the best performance in this problem. However, this time
EDPM outperforms BP for both DBN and CNN. Because the
background is random noise, which has no regular pattern for
EDPM to model. Then, the sampled background pixels are
random. Thus, the model focuses more on the foreground.
While for BP, the uncertainty of background pixels leads to
randomized connecting weights. Therefore, the EDPM could
reduce the influence of background pixels. GNN cannot out-
perform CNN but outperforms DBN with less processing units
and parameters which demonstrates the processing efficiency
of each neuron in the group.

Similarly, we also apply the trained architectures to digits
with pure background and the test accuracy is listed in Table I.
We find that models trained by digits with random background
could well classify the digits with pure background. However,
due to the data-driven architecture of GNN, it achieves the best
performance. The above experiments demonstrate that GNN
is a compact architecture that can fully use the processing
capability of each neuron in the group. Moreover, GNN is
robust to background changes and significantly outperforms
traditional architectures when the backgrounds of training and
test sets are different.

Among the architectures, the randomly initialized GNN
achieves the worst result. Because the connections are
randomly assigned, the architecture cannot guarantee the
information flow between input and output neurons. Therefore,
it cannot perform well in classification and the use of EDPM
degrades the performance.

3) Experiments on the CIFAR-10 Dataset: For the CIFAR-
10 dataset, we set 512 neurons in the group and λ = 1. We
set the architecture of DBN as “3072-1024-512-10” and CNN
with two convolutional layers (both 64 feature maps obtained
by 5 × 5 convolution kernel) and three full connecting layers
(384-192-10). The classification accuracy is listed in Table II.
Similarly, CNN achieves the best performance with BP due
to its specially designed architecture for the image. However,
compared with DBN, GNN greatly improves the performance
because of the learned architecture based on input and output
relationship.

As shown in Fig. 8(c), the CIFAR-10 dataset contains
objects with various appearance on different backgrounds.
The pooling layer in CNN could remove these redundant
information and the learned architecture in GNN could reduce
the impact of background. But GNN achieves the equiva-
lent performance to CNN with 512 neurons and 1 217 843
connections which are much less than 1536 hidden neurons

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on May 14,2023 at 12:04:17 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EVOLVING CONNECTIONS IN GROUP OF NEURONS FOR ROBUST LEARNING 3079

TABLE I
CLASSIFICATION ACCURACY (%) OF DIFFERENT ARCHITECTURES TRAINED BY TRAINING SETS IN MNIST AND MNIST BG-RAND DATASETS ON TEST

SETS IN THE TWO DATASETS

TABLE II
TEST ACCURACY (%) ON THE CIFAR-10 DATASET

and 3 675 136 connections in DBN. As a consequence, GNN
is a compact architecture that takes full use of the process-
ing capability of each neuron. The superiority of GNN is
its robustness. Therefore, we continue to apply the trained
architectures to test sets corrupted by noise and the classi-
fication accuracy is listed in Table II. Note that the accuracy
of corrupted test sets is obtained by models trained by orig-
inal images where the distribution is not disturbed by noise.
Then GNN can significantly outperform CNN because some
corrupted pixels can be avoided by GNN which may influ-
ence CNN severely. The above experiments demonstrate the
superiority of the proposed architecture over traditional hier-
archical neural-network architectures. We find that GNN not
only learns a compact architecture but also can learn from
compact datasets. GNN is more robust to corruptions than tra-
ditional architectures which means less training data can learn
a robust model. Next, we compare GNN with state-of-the-art
methods.

D. Comparison With State-of-the-Art Methods

Here, we compare GNN with ResNet-20 [24] and
DARTS [30]. ResNet is an architecture with skip connec-
tions which is different from traditional architectures but has
achieved excellent performance in image classification and
other learning problems. Here, we use ResNet-20 with 20 lay-
ers for image classification. DARTS is an evolved architecture
with block cells as introduced above. Then we train those
methods with MNIST digits and CIFAR-10 images and test the
trained model with MNIST bg-rand digits and noise corrupted
CIFAR-10 images. Note that the noise changes the distribu-
tion of training data in test data which violates the hypothesis
of independent and identical distribution in machine learning.
This is a great challenge for learning models. The classifica-
tion accuracy is listed in Tables III and IV, respectively. The
results are in mean±std over ten independent runs.

For traditional classification problems, ResNet and DARTS
achieve excellent performance due to their large modeling
capability for complex distributions and finely tuned

TABLE III
TEST ACCURACY (MEAN±STD) OF DIFFERENT METHODS ON THE

MNIST DATASET

TABLE IV
TEST ACCURACY (MEAN±STD) OF DIFFERENT METHODS ON

THE CIFAR DATASET

hyperparameters. The performance of GNN is poor compared
with them but outperforms DBN which is also not specially
designed for images in architecture. Because it is difficult to
accelerate the learning process of GNN via existing parallel
computation platforms, the scale of GNN is small and the
construction of GNN is more like traditional multilayer per-
ceptions. There are no complex network components, such as
convolution, pooling, and other learning tricks as ResNet and
DARTS. However, when it goes to noise corrupted images,
ResNet and DARTS fail to classify them accurately. Because
ResNet and DARTS follow the hypothesis that the distribu-
tions of training and test data are independent and identical.
It is intuitive that a model with more modeling parameters
can better model the entire complex distribution with enough
training data and well-designed architecture, objective, and
optimization method. But when the distribution of training data
is corrupted by noise, they cannot infer the unknown corrupted
distribution. GNN is able to infer unknown distributions as in
Fig. 7. Therefore, with corrupted test data, it outperforms the
ResNet and DARTS. The training times of the three meth-
ods are also listed in the tables. For GNN, the training times
include those of architecture and parameter. Note that ResNet
and DARTS are accelerated by GPU parallel computation and
GNN is implemented serially on CPU due to its irregular archi-
tecture. DARTS takes days to obtain an excellent architecture.
But since the objective of architecture search is training error.
The architecture cannot adapt to noise corrupted test data.

E. Experiments on Hyperparameters

There are some user-defined hyperparameters in GNN
which influence the performance of GNN. In this section, we

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on May 14,2023 at 12:04:17 UTC from IEEE Xplore. Restrictions apply.

3080 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 5, MAY 2022

(a) (b)

Fig. 11. Test accuracy of GNN with different hyperparameter values on test
sets of MNIST and MNIST bg-rand. (a) Number of neurons. (b) λ.

test the robustness of GNN on the number of neurons and
value of λ. First, we set number of neurons in the group to
be {64, 128, 256, 512} and train the architecture and parameter
with the MNIST dataset. We set λ = 1 and the test accuracy
on test sets of MNIST and MNIST bg-rand is illustrated in
Fig. 11(a) where the horizontal axis denotes the number of
neurons and vertical axis denotes the test accuracy.

It is obvious that better performance is obtained with more
processing units. But for test data in the MNIST dataset, the
accuracy distinction is within 0.2%. This means that even with
64 neurons, the performance is not degraded a lot compared to
GNN with 512 neurons on the MNIST test set. For traditional
classification problems, GNN is robust to the number of neu-
rons. However, when GNN is applied to classifying digits with
random background, more neurons could achieve significant
improvement. Because for traditional classification problems,
training set and test set follow identical distribution. Then the
background pixels which are with the value of 0 in the test
set will not disturb the accuracy of the trained model. Since
there are pixels that are not always background, for a digit
with background of random noise (nonzero values), more neu-
rons are necessary to learn the complex relationship between
input and output neurons. A more complex distribution is con-
structed by more neurons. However, with more neurons, the
searching space will increase exponentially. Since it is difficult
to accelerate GNN via existing GPU computation platforms,
such as Tensorflow1 which are developed for deep architec-
tures based on regular multilayer prototype, more neurons pose
a giant computational burden. It is time demanding to train
such a large-scale network. Even though, the 512 neurons are
still less than the 800 hidden neurons in DBN.

Then, we set the number of neurons to be 256 and set
λ = {0.1, 0.2, 0.5, 1, 2, 5, 10} to train GNN. The test error
on the test sets of MNIST and MNIST bg-rand datasets are
illustrated in Fig. 11(b) where the dashed bar denotes that the
test accuracy is much less than the minimal accuracy exhib-
ited. Similarly, the performance on the MNIST dataset is not
sensitive to values of λ. Except λ = 10, the performance dif-
ference is within 0.1% while with the difference of λ being
4.9. Because λ controls the importance of improving the rep-
resentation capability for visible data while decreasing that
of all the other data. Therefore, larger λ means to evolve the
architecture with less entire connecting density which may also

1https://tensorflow.google.cn/

reduce the representation capability for observed data. Since
digits in the MNIST dataset is not complex, the GNN is robust
to λ. However, when the trained GNN is applied to digits with
the background of noise, the λ should be carefully selected.
GNN achieves much better performance when λ = 1. Because
smaller λ leads to most input and output neuron pairs with
large connecting density. Then the background cannot be well
restrained. While with larger λ, the architecture is the inca-
pability to well represent the digits. Therefore, when λ = 10
both digits with pure and noise backgrounds cannot be well
recognized.

V. CONCLUSION

In this article, we propose a novel compact group archi-
tecture for neural network (GNN) and its corresponding
connecting and parameter learning methods. This new archi-
tecture is different from the multilayer networks which are
composed of regular layers. The new architecture is composed
of input, output layers, and a group of neurons. There are
no connections between neurons in the input or output layers
but all the other neurons are connected freely. Therefore, it
is crucial to determine the connections between the neurons
since it is unpractical to connect all the neurons. However,
the objective of traditional architecture learning methods is
time demanding due to the involvement of connecting weights
and biases. With such a large-scale searching space, it is even
impossible to obtain a reasonable architecture for the group
network. As a consequence, we propose a novel architecture
learning model based on the principle that higher relevance
between input and output neurons desires larger connecting
density. A probabilistic model is established to make the archi-
tecture well capture the distribution of data. Moreover, an
efficient objective function is derived from the model and an
improved binary particle swarm optimization algorithm is used
to optimize the objective. After assigning the connections, it
is also important to train the connecting weights and biases.
However, due to the special irregular architecture, the parame-
ters cannot be well trained by directly using the BP algorithm.
Consequently, we establish a probabilistic model and corre-
sponding optimization method. After training, we find the
proposed architecture is robust to background variance and
corruptions. Experiments on optimization, classification, and
hyperparameters demonstrate the superiority of the proposed
architecture.

However, the defects are also obvious. Even though GNN
outperforms large-scale architectures on the reconstructed
dataset, due to the irregular architecture, the training process is
not accelerated via GPU parallel computation which leads to
the large computational burden when it is applied to large-scale
datasets. The experiments show the potential of large-scale
GNN. Considering the prospect of GNN, in future work, we
will accelerate the learning process via GPU parallel computa-
tion (directly code based on CUDA2 and CUDNN3 instead of
existing platforms) and use more efficient evolving strategies,
such as knowledge transfer [59].

2https://developer.nvidia.com/cuda-downloads
3https://developer.nvidia.com/cudnn

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on May 14,2023 at 12:04:17 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EVOLVING CONNECTIONS IN GROUP OF NEURONS FOR ROBUST LEARNING 3081

REFERENCES

[1] D. Livingstone, Artificial Neural Networks: Methods and Applications.
Totowa, NJ, USA: Humana Press, 2008.

[2] Y. Pu, Z. Yi, and J. Zhou, “Fractional Hopfield neural networks:
Fractional dynamic associative recurrent neural networks,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2319–2333, Oct. 2017.

[3] J. Liu, M. Gong, and H. He, “Deep associative neural network for asso-
ciative memory based on unsupervised representation learning,” Neural
Netw., vol. 113, pp. 41–53, May 2019.

[4] C. Li, X. Yu, T. Huang, G. Chen, and X. He, “A generalized Hopfield
network for nonsmooth constrained convex optimization: Lie deriva-
tive approach,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 2,
pp. 308–321, Feb. 2016.

[5] A. Esteva et al., “Dermatologist-level classification of skin cancer with
deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017.

[6] R. Hu, S. Wen, Z. Zeng, and T. Huang, “A short-term power load
forecasting model based on the generalized regression neural network
with decreasing step fruit fly optimization algorithm,” Neurocomputing,
vol. 221, pp. 24–31, Jan. 2017.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[10] Y. Wei et al., “Cross-modal retrieval with CNN visual features: A new
baseline,” IEEE Trans. Cybern., vol. 47, no. 2, pp. 449–460, Feb. 2017.

[11] Y. Du, W. Wang, and L. Wang, “Hierarchical recurrent neural network
for skeleton based action recognition,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Boston, MA, USA, 2015, pp. 1110–1118.

[12] J.-T. Chien and Y.-C. Ku, “Bayesian recurrent neural network for lan-
guage modeling,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 2,
pp. 361–374, Feb. 2016.

[13] X. Chen et al., “Efficient training and evaluation of recurrent neu-
ral network language models for automatic speech recognition,”
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 24, no. 11,
pp. 2146–2157, Nov. 2016.

[14] T. Zhang, W. Zheng, Z. Cui, Y. Zong, and Y. Li, “Spatial–temporal
recurrent neural network for emotion recognition,” IEEE Trans. Cybern.,
vol. 49, no. 3, pp. 839–847, Mar. 2019.

[15] G. F. Miller, P. M. Todd, and S. U. Hegde, “Designing neural networks
using genetic algorithms,” in Proc. Int. Conf. Genet. Algorithms, 1989,
pp. 379–384.

[16] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, no. 2, pp. 99–127, 2002.

[17] P. Ballester and R. M. Araujo, “On the performance of GoogLeNet and
alexnet applied to sketches,” in Proc. AAAI Conf. Artif. Intell., 2016,
pp. 1124–1128.

[18] E. Real et al., “Large-scale evolution of image classifiers,” in Proc. Int.
Conf. Mach. Learn., 2017, pp. 2902–2911.

[19] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res., vol. 13, no. 1, pp. 281–305, 2012.

[20] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical explo-
ration of recurrent network architectures,” in Proc. 32nd Int. Conf. Mach.
Learn., 2015, pp. 2342–2350.

[21] Y. Sun, X. Wang, and X. Tang, “Sparsifying neural network connec-
tions for face recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Las Vegas, NV, USA, 2016, pp. 4856–4864.

[22] L. Jia, M. Gong, Q. Miao, X. Wang, and L. Hao, “Structure learn-
ing for deep neural networks based on multiobjective optimization,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2450–2463,
Jun. 2018.

[23] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep
networks,” in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 2377–2385.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Las
Vegas, NV, USA, 2016, pp. 770–778.

[25] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Cision Pattern Recognit., Boston, MA, USA, 2015,
pp. 1–9.

[26] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised
nets,” in Proc. 18th Int. Conf. Artif. Intell. Stat., 2015, pp. 562–570.

[27] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning trans-
ferable architectures for scalable image recognition,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Salt Lake City, UT, USA, 2018,
pp. 8697–8710.

[28] C. Liu et al., “Progressive neural architecture search,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 19–34.

[29] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolu-
tion for image classifier architecture search,” in Proc. AAAI Conf. Artif.
Intell., 2019, pp. 4780–4789.

[30] H. Liu, K. Simonyan, and Y. Yang, “DARTS:
Differentiable architecture search,” in Proc. Int. Conf.
Learn. Represent., 2019, p. 13. [Online]. Available:
https://openreview.net/group?id=ICLR.cc/2019/Conference#accepted-
oral-papers

[31] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algo-
rithm for Boltzmann machines,” Cogn. Sci., vol. 9, no. 1, pp. 147–169,
1985.

[32] M. Liang, X. Hu, and B. Zhang, “Convolutional neural networks with
intra-layer recurrent connections for scene labeling,” in Proc. Adv.
Neural Inf. Process. Syst., 2015, pp. 937–945.

[33] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, “Efficient architecture
search by network transformation,” in Proc. AAAI Conf. Artif. Intell.,
2018, pp. 2787–2794.

[34] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. P. Xing,
“Neural architecture search with Bayesian optimisation and optimal
transport,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 2016–2025.

[35] A. A. Esmin, R. A. Coelho, and S. Matwin, “A review on particle swarm
optimization algorithm and its variants to clustering high-dimensional
data,” Artif. Intell. Rev., vol. 44, no. 1, pp. 23–45, 2015.

[36] Y. L. Cun, J. S. Denker, and S. A. Solla, Optimal Brain
Damage. San Francisco, CA, USA: Morgan Kaufmann, 1990,
pp. 598–605.

[37] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2015, pp. 1135–1143.

[38] X. Yao, “Evolving artificial neural networks,” Proc. IEEE, vol. 87, no. 9,
pp. 1423–1447, Sep. 1999.

[39] F. H. F. Leung, H. K. Lam, S. H. Ling, and P. K. S. Tam, “Tuning
of the structure and parameters of a neural network using an improved
genetic algorithm,” IEEE Trans. Neural Netw., vol. 14, no. 1, pp. 79–88,
Jan. 2003.

[40] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[41] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554,
2006.

[42] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[43] A. Fischer and C. Igel, “An introduction to restricted Boltzmann
machines,” in Proc. Iberoamerican Congr. Pattern Recognit., 2012,
pp. 14–36.

[44] G. B. Huang, H. Lee, and E. Learned-Miller, “Learning hierar-
chical representations for face verification with convolutional deep
belief networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Providence, RI, USA, 2012, pp. 2518–2525.

[45] N.-N. Ji, J.-S. Zhang, and C.-X. Zhang, “A sparse-response deep belief
network based on rate distortion theory,” Pattern Recognit., vol. 47,
no. 9, pp. 3179–3191, 2014.

[46] M. Gong, J. Liu, H. Li, Q. Cai, and L. Su, “A multiobjective sparse
feature learning model for deep neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 26, no. 12, pp. 3263–3277, Dec. 2015.

[47] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Comput., vol. 14, no. 8, pp. 1771–1800, 2002.

[48] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proc. IEEE Int. Conf. Neural Netw., Perth, WA, Australia, 1995,
pp. 1942–1948.

[49] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc.
IEEE Int. Conf. Evol. Comput. World Congr. Comput. Intell., Anchorage,
AK, USA, 1998, pp. 69–73.

[50] M.-P. Song and G.-C. Gu, “Research on particle swarm optimization:
A review,” in Proc. IEEE Int. Conf. Mach. Learn. Cybern., vol. 4.
Shanghai, China, 2004, pp. 2236–2241.

[51] K. Mistry, L. Zhang, S. C. Neoh, C. P. Lim, and B. Fielding, “A
micro-GA embedded PSO feature selection approach to intelligent

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on May 14,2023 at 12:04:17 UTC from IEEE Xplore. Restrictions apply.

3082 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 5, MAY 2022

facial emotion recognition,” IEEE Trans. Cybern., vol. 47, no. 6,
pp. 1496–1509, Jun. 2017.

[52] M. Gong, Q. Cai, X. Chen, and L. Ma, “Complex network cluster-
ing by multiobjective discrete particle swarm optimization based on
decomposition,” IEEE Trans. Evol. Comput., vol. 18, no. 1, pp. 82–97,
Feb. 2014.

[53] L. Li, X. Yao, R. Stolkin, M. Gong, and S. He, “An evolutionary
multiobjective approach to sparse reconstruction,” IEEE Trans. Evol.
Comput., vol. 18, no. 6, pp. 827–845, Dec. 2014.

[54] G. Bouma, “Normalized (pointwise) mutual information in colloca-
tion extraction,” in Proc. Int. Conf. German Soc. Comput. Linguistics
(GSCL), 2009, pp. 31–40.

[55] K. W. Church and P. Hanks, “Word association norms, mutual
information, and lexicography,” Comput. Linguistics, vol. 16, no. 1,
pp. 22–29, 1990.

[56] X. Yu et al., “Set-based discrete particle swarm optimization based
on decomposition for permutation-based multiobjective combinato-
rial optimization problems,” IEEE Trans. Cybern., vol. 48, no. 7,
pp. 2139–2153, Jul. 2018.

[57] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Pattern Recognit., vol. 84, pp. 317–331,
Dec. 2018.

[58] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, no. 12, pp. 3371–3408, 2010.

[59] K. K. Bali, Y. Ong, A. Gupta, and P. S. Tan, “Multifactorial evolutionary
algorithm with online transfer parameter estimation: MFEA-II,” IEEE
Trans. Evol. Comput., vol. 24, no. 1, pp. 69–83, Feb. 2020.

Jia Liu (Member, IEEE) received the B.S. and
Ph.D. degrees in electronic engineering from Xidian
University, Xi’an, China, in 2013 and 2018,
respectively.

He is currently an Associate Professor with
the School of Computer Science and Engineering,
Nanjing University of Science and Technology,
Nanjing, China. His current research interests
include computational intelligence and image under-
standing.

Maoguo Gong (Senior Member, IEEE) received
the B.S. degree (First Class Hons.) in electronic
engineering and the Ph.D. degree in electronic sci-
ence and technology from Xidian University, Xi’an,
China, in 2003 and 2009, respectively.

Since 2006, he has been a Teacher with Xidian
University. From 2008 to 2010, he was promoted
as an Associate Professor and as a Full Professor,
respectively, both with exceptional admission. His
research interests are in the areas of computational
intelligence with applications to optimization, learn-

ing, data mining, and image understanding.
Dr. Gong received the Prestigious National Program for the support of

Top-Notch Young Professionals from the Central Organization Department of
China, the Excellent Young Scientist Foundation from the National Natural
Science Foundation of China, and the New Century Excellent Talent in
University from the Ministry of Education of China. He is an Associate Editor
of the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION and the
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS.

Liang Xiao (Member, IEEE) received the B.S.
degree in applied mathematics and the Ph.D. degree
in computer science from the Nanjing University of
Science and Technology (NJUST), Nanjing, China,
in 1999 and 2004, respectively.

From 2006 to 2008, he was a Postdoctoral
Research Fellow with the Pattern Recognition
Laboratory, NJUST. From 2009 to 2010, he was
a Postdoctoral Fellow with Rensselaer Polytechnic
Institute, Troy, NY, USA. Since 2013, he has been
the Deputy Director of the Jiangsu Key Laboratory

of Spectral Imaging Intelligent Perception, NJUST. Since 2014, he has
been the Vice-Director of the Key Laboratory of Intelligent Perception and
Systems for High-Dimensional Information of Ministry of Education, NJUST,
where he is currently a Professor with the School of Computer Science and
Engineering. His fields of interests include remote sensing image processing,
image modeling, computer vision, machine learning, and pattern recognition.

Wenhua Zhang received the B.S. degree in com-
munication engineering from the North University
of China, Taiyuan, China, in 2015. She is currently
pursuing the Ph.D. degree in artificial intelligence
from Xidian University, Xi’an, China.

Her research interests include machine learning
and image processing.

Fang Liu (Member, IEEE) received the B.S. degree
in information and computing science from Henan
University, Kaifeng, China, in 2012, and the Ph.D.
degree in intelligent information processing from
Xidian University, Xi’an, China, in 2018.

She is a Lecturer with the Nanjing University
of Science and Technology, Nanjing, China. Her
research interests include deep learning, object
detection, polarimetric SAR image classification,
and change detection.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on May 14,2023 at 12:04:17 UTC from IEEE Xplore. Restrictions apply.

