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Abstract

Emotion recognition based on physiological signals plays a vital role in psycho-
logical health and human–computer interaction, particularly with the substantial
advances in multimodal emotion recognition techniques. However, two key chal-
lenges remain unresolved: 1) how to effectively model the intra-modal long-range
dependencies and inter-modal correlations in multimodal physiological emotion
signals, and 2) how to address the performance limitations resulting from missing
multimodal data. In this paper, we propose a multimodal bidirectional Mamba (Bi-
Mamba) network with test-time adaptation (TTA) for emotion recognition named
BiM-TTA. Specifically, BiM-TTA consists of a multimodal BiMamba network and
a multimodal TTA. The former includes intra-modal and inter-modal BiMamba
modules, which model long-range dependencies along the time dimension and cap-
ture cross-modal correlations along the channel dimension, respectively. The latter
(TTA) mitigates the amplified distribution shifts caused by missing multimodal
data through two-level entropy-based sample filtering and mutual information
sharing across modalities. By addressing these challenges, BiM-TTA achieves
state-of-the-art results on two multimodal emotion datasets.

1 Introduction

The mining and analysis of emotional data contribute to the diagnosis of mental disorders and
psychological health assessment. In recent years, data sources for emotion recognition research
have mainly focused on two aspects: non-physiological signals and physiological signals[1]. Non-
physiological signals, such as audio and video, are affected by subjective bias and intentional
concealment[2]. This makes it difficult for non-physiological signals to represent the emotional
state of the body reliably. In contrast, physiological signals, such as electroencephalography (EEG)
and electrooculography (EOG), reflect the true emotional state of the human body objectively[3–
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6]. Therefore, emotion recognition based on physiological signals demonstrates great application
potential in fields related to mental health[7, 8].

Moreover, compared to unimodal physiological signals, emotion recognition based on multimodal
physiological signals combines information from multiple sources to provide a more comprehensive
emotional assessment. Although multimodal physiological methods for emotion recognition have
achieved significant progress[9–11], there are still two challenges:

1) How to effectively model both the intra-modal long-range dependencies and inter-modal corre-
lations of multimodal emotion-related physiological signals. For the former, as a typical form of
time-series data, emotion-related physiological signals exhibit long-range dependencies reflecting
the gradual accumulation of emotional changes. Emotions, such as anxiety, develop progressively
and require a duration for their physiological manifestations to accumulate. Such accumulation
underscores that emotional changes are not just a state that occurs instantaneously but a process
that evolves. For the latter, the inter-modal correlations are evident in the way different modalities
respond. For instance, increases in EEG activity during emotional arousal are often accompanied
by galvanic skin response (GSR) conductance peaks and decreases in electrocardiogram (ECG)
heart-rate variability[12].

Traditional backbone networks have limitations in modeling intra-modal long-range dependencies
and inter-modal correlations. For intra-modal modeling, CNN-based networks[13, 14] excel at
extracting local features but struggle to capture essential long-range temporal information. Although
stacking more convolutional layers together with pooling operations to expand the receptive field
can theoretically increase context[15–17], it often degrades fine-grained local details[18]. What’s
more, Transformer-based networks are able to capture global emotional patterns, but their attention
mechanism lacks explicit temporal filtering capability and tends to distribute weight uniformly across
all time steps. This makes it difficult for these methods to construct practical long-range dependencies
based on key nodes of emotion fluctuations. For inter-modal modeling, the token-level attention
in Transformer-based networks only computes pairwise relationships[19] between channels and
maintains only instantaneous interaction states. However, the complex dependencies inherent in
physiological signals cannot be fully captured through pairwise channel-wise interactions, making it
difficult to model high-order correlations. This limitation essentially stems from the lack of explicit
global state variables in the attention mechanism[20], which hinders the effective integration of cross-
modal information. Therefore, how to effectively model the intra-modal long-range dependencies
and inter-modal correlations of multimodal physiological signals remains a significant challenge.

2) How to mitigate the impact of missing multimodal emotion-related physiological data on model
performance. When acquiring emotion-related physiological signals, subjects must remain seated for
extended periods while exposed to high-intensity stimuli to generate emotional responses. However,
uncontrollable factors such as perspiration, changes in posture, or the drying of the conductive gel
may cause sensors to slip or experience poor contact, resulting in incomplete multimodal signal
acquisition to varying degrees[21, 22]. Such incompleteness amplifies the distribution shifts in
emotion-related physiological data, ultimately leading to degraded model performance. First, emotion-
related physiological data inherently exhibit distribution shifts between the training and test sets[23].
These shifts arise from within-subject variations in emotional state, cognitive load, and environmental
conditions across sessions. Furthermore, the unavoidable presence of missing data disrupts the
original data patterns, skews feature distributions, and introduces bias, which collectively amplify the
existing distribution shifts in physiological data. This amplification makes it increasingly challenging
for pre-trained models to capture emotional patterns accurately.

Existing methods focus on training phase measures to deal with the missing data problem. For
example, Salazar et al. [24] propose feature- and decision-level fusion methods to address the data
missingness issue in multimodal emotion recognition. However, these methods typically require
retraining to adapt to new missing data patterns, limiting their application flexibility. Furthermore,
a promising approach is to mitigate the effects of missing data by fine-tuning the model during the
testing phase. For instance, Yang et al. [25], Lei and Pernkopf [26] address unimodal corruption in
multimodal data by adjusting self-attention modules to assign lower weights to the corrupted modality.
However, these methods cannot handle cases of multimodal corruption where multiple physiological
signals are simultaneously missing. Therefore, mitigating the negative impact of missing multimodal
data on emotion recognition models remains a significant challenge in practical applications.
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In light of these challenges, Mamba’s selective input mechanism efficiently models long-range
dependencies, and its explicit global state variables as part of its state space model (SSM) capture
inter-modal correlations simultaneously, thereby effectively addressing the first challenge. Addition-
ally, test-time adaptation (TTA) requires only minimal parameter fine-tuning to mitigate distribution
shifts, thus resolving the second challenge. Therefore, we propose a multimodal bidirectional Mamba
(BiMamba) network with TTA for emotion recognition named BiM-TTA. BiM-TTA consists of a
multimodal BiMamba network and a multimodal TTA. The multimodal BiMamba network includes
an intra-modal BiMamba module and an inter-modal BiMamba module, and the multimodal TTA
includes two-level entropy-based sample filtering and mutual information sharing across modalities.

Overall, the key contributions of this study can be summarised as follows:

• We design a multimodal BiMamba network, where the intra-modal BiMamba module
models long-range dependencies within modalities, and the inter-modal BiMamba module
captures inter-modal correlations.

• We propose a multimodal TTA method that alleviates the negative impact of amplified
distribution shifts caused by missing multimodal data on model performance.

• The evaluation of BiM-TTA on two multimodal emotion datasets confirms its state-of-the-art
performance and effectiveness.

2 Related Work

In recent years, physiological signals have become a key focus in emotion recognition due to their
ability to accurately and objectively reflect the genuine emotions of subjects. For instance, Liu et al.
[27] used maximum relevance and minimum redundancy to extract emotional information for feature
selection. Similarly, Bazgir et al. [28] enhanced the accuracy by applying a cross-validated SVM
with a radial basis function kernel for classification. However, traditional machine learning methods,
which often rely heavily on expert knowledge, are limited by feature design and selection [29, 30].

To overcome these limitations, researchers have applied deep learning methods to emotion recognition
tasks. For example, in unimodal emotion recognition, Jia et al. [31] proposed SST-EmotionNet, an
attention-based 3D dense network that simultaneously integrates spatial-spectral-temporal features
within a unified framework. Ding et al. [14] designed TSception, a multi-scale convolutional neural
network that extract temporal dynamics and spatial asymmetry features from EEG signals. These
deep learning methods achieve remarkable results in the unimodal domain.

Moreover, studies have shown that multimodal methods can better capture the diversity and com-
plexity of emotions, resulting in superior performance in emotion recognition. For instance, Ma et al.
[32] developed a multimodal residual LSTM network, sharing weights across modalities. Hssayeni
and Ghoraani [33] explored the use of deep convolutional neural networks for two multimodal data
fusion to evaluate positive and negative emotions.Koorathota et al. [34] proposed the Multimodal
Neurophysiological Transformer, which employs cross-modal attention to capture inter-modal cor-
relations. Chen et al. [35] designed an attention-based recurrent graph convolutional network that
integrates multimodal physiological features with a convolutional block attention module. Huang et al.
[36] introduced GJFusion to address modality heterogeneity through channel-level inter-modality
correlations based on graph joints.

Despite achieving promising performance, existing methods in multimodal emotion recognition
primarily rely on traditional backbone networks, posing limitations in modeling long-range dependen-
cies and inter-modal correlations of multimodal physiological signals related to emotion. In addition,
these methods rarely address the issue of missing multimodal data. To address these challenges, we
propose BiM-TTA, which consists of the multimodal BiMamba backbone network and TTA. Further
discussion of related works on Mamba and TTA is presented in Appendix A.1.

3 Methodology

As shown in Figure 1, we propose BiM-TTA, comprising the multimodal BiMamba network and the
multimodal TTA. The multimodal BiMamba network consists of intra- and inter-modal BiMamba
modules, which extract modality-specific features and perform feature fusion across modalities.
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The multimodal TTA includes two steps: two-level entropy-based sample filtering and mutual
information sharing across modalities. These steps effectively mitigate the impact of distribution
shifts amplification caused by missing multimodal data on model performance.

InitEncoder1 BiMamba1
ℎ1

u1

…

Concat T

Intra-modal  BiMamba

Inter-modal  BiMamba

Classifier1 ℒ1

ℒ2

ℒM

ℒtask

ℒ𝑡𝑟𝑎𝑖𝑛……

𝑥1

Source 
Domain

…

𝑥2

𝑥𝑀

InitEncoder2 BiMamba2
ℎ2

u2

InitEncoderM BiMambaM
ℎ𝑀

u𝑀

BiMamba

p( ො𝑦1|𝑥1)

p( ො𝑦2|𝑥2)

p( ො𝑦𝑀|𝑥𝑀)

p′( ො𝑦1|𝑥1)

p′( ො𝑦2|𝑥2)

p′ ො𝑦𝑀 𝑥𝑀

ℒtest

ℒmis

Sample 

Filtering

Next iteration

Samples

Information 

Sharing

Target 
Domain

Multimodal BiMamba Network

…

Modality 
Encoder

Fusion 
Layer

Ent(𝑥)

Ent(𝑥1)

Ent(𝑥2)

Ent(𝑥M)

…

𝑥1

𝑥2

𝑥𝑀 p( ො𝑦|𝑥)

Multimodal TTA

…

Classifier2

ClassifierM

Weak shift 
samples

Strong shift 
samples

𝑚

Classifier

Multimodal BiMamba Network

…

Ent(𝑥)

…

Lineari

Conv1D

Reverse

ℎ

SSM

𝜎𝜎𝜎

ℎ→ ℎ← Reverse

ℎ′
BiMamba

Conv1D

SSM

Linearg

Linearo

𝑔

Classifier

Figure 1: The overall structure of BiM-TTA. It contains the multimodal BiMamba network and the
multimodal TTA. For the former, the intra- and inter-modal BiMamba modules capture and fuse the
features of the different modalities, respectively. For the latter, samples with weak distribution shifts
and rich multimodal information are selected for adaptation, while the remaining samples are retained
until the next iteration. Then, mutual information sharing across modalities is performed to match
the information between different modalities effectively. “Concat” represents the concatenation of
multiple feature vectors u1, u2, . . . , uM . “T” denotes matrix transposition.

3.1 Preliminary

In this paper, we define emotion recognition based on physiological signals as a multi-class classifica-
tion task for time-series data. The input data consists of physiological signals x = {x1, x2, . . . , xM},
where xi ∈ RCi×L,i ∈ {1, 2, . . . ,M} represents the i-th-modality data, Ci is the number of acqui-
sition channels for the i-th modality, and L represents the number of time steps of the input signal.
The ground truth label y is a discrete value corresponding to a category, which is then converted into
a one-hot encoding p(y | x) ∈ RN , where N is the number of categories. The model outputs the
predicted category probability p(ŷ | x) ∈ RN .

3.2 Multimodal BiMamba Network

As shown in the upper part of Figure 1, the multimodal BiMamba network consists of two modules:
the intra-modal BiMamba module and the inter-modal BiMamba module. The former is designed to
model each modality independently, and the latter effectively fuses multimodal features.

3.2.1 Intra-modal BiMamba Module

Mamba is designed for natural language processing tasks, where its output at each time step depends
only on the current input and hidden state, without involving information from future time steps. This
unidirectional modeling approach is well suited for generative autoregressive tasks, as these tasks
rely primarily on previous information for inference[37]. However, in emotion classification tasks
based on physiological signals, it is necessary to capture contextual information from physiological
time series simultaneously, and a unidirectional approach cannot fully capture the complex temporal
patterns. To address this limitation, we design the intra-modal BiMamba module. This module com-
prehensively integrates the temporal features of each modality through a selective input mechanism
and bidirectional modeling.
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Initially, we design the initial encoder InitEncoderi(·) to extract shallow features from a specific
modality:

hi = InitEncoderi (xi) , i ∈ {1, 2, . . . ,M} (1)
where xi ∈ RCi×L is the input of the i-th modality, in which Ci denotes the number of input channels
for the i-th modality and L denotes the number of time steps. hi ∈ RL′×C′

i represents the initial
feature representation output of the i-th modality, C ′i represents the number of output channels of
the i-th modality, and L′ represents the feature length of the output signal. M represents the total
number of modalities.

Next, we introduce the BiMamba to model the temporal dimension further, and its structure is shown
in Figure 1. Its core consists of the following three steps:

1) First, BiMamba employs a gating mechanism that adaptively weights features to highlight emotion-
relevant information while suppressing noise and redundancy:

gi = σ (W g
i hi + bgi ) (2)

where gi represents the output of the gating mechanism. σ(·) represents the SiLU activation function.
W g

i represents the weight matrix and bgi represents the bias.

2) Second, BiMamba models temporal dependencies from both forward and backward perspectives
using state-space modeling, thereby capturing richer contextual dynamics:

h→i = gi ⊗ SSM→
(
σ
(
Conv1D→

(
Wh

i hi + bhi
)))

(3)

h←i = gi ⊗ SSM←
(
σ
(
Conv1D←

(
Revt

(
Wh

i hi + bhi
))))

(4)

where h→i ∈ RL′×C′
i and h←i ∈ RL′×C′

i are the feature representations of the i-th modality in
forward and backward modeling. Revt(·) denotes the flipping on the time dimension L′. SSM
represents Selective State Space Model. Wh

i represents the weight matrix and bhi represents the bias.

3) Finally, BiMamba applies linear projection and residual connection to integrate bidirectional
features and stabilize training:

ui = hi +

(
W o

i

(
h→i + Revt (h

←
i )

2

)
+ boi

)
(5)

where ui ∈ RL′×C′
i is the output of the intra-modal BiMamba module of the i-th modality. W o

i is
the weight matrix, and boi is the bias.

3.2.2 Inter-modal BiMamba Module

In the intra-modal BiMamba module, we focus on state modeling at the unimodal time scale.
However, relying solely on intra-modal modeling neglects inter-modal correlations that are crucial for
comprehensive multimodal understanding. Hence, we propose the inter-modal BiMamba module for
modeling correlations across modalities. Specifically, we concatenate the features of each modality
along the channel dimension C ′i, i ∈ {1, 2, . . . ,M}, and swap the time and channel dimensions. This
process is defined as:

m = Transpose (u1||u2|| . . . . . . ||uM ) (6)

where m ∈ R
∑M

i=1 C′
i×L

′
represents the concatenated multimodal feature matrix. || represents

concatenation along the channel dimension. Transpose(·) represents the swapping of the time and
channel dimensions. This operation integrates the features of each modality into the unified feature
matrix m. In m, each set of continuous channels represents the features of a modality.

Subsequently, we input the multimodal feature matrix m into the BiMamba structure to perform
bidirectional state modeling of the features from different modalities along the channel dimension∑M

i=1 C
′
i. This process is defined as:

H = BiMamba(m) (7)

where H ∈ R
∑M

i=1 C′
i×L

′
represents the inter-modal feature fusion representation. BiMamba(·)

is defined in 3.2.1. Through the inter-modal BiMamba module, the features of different modali-
ties can interact with each other. In the forward process, the hidden states built from modalities
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{1, 2, . . . , i− 1} assist in constructing the feature representation of the i-th modality. In the backward
process, the hidden states derived from modalities {M,M − 1, . . . , i+ 1} facilitate the construction
of supplementary feature representations for the i-th modality. The bidirectional state modeling
mechanism can capture inter-modal correlations from multiple perspectives, thereby enhancing the
representational ability of multimodal features.

3.2.3 Auxiliary task

To effectively learn the optimal states of each modality encoder during training, while balancing
the training progress across modalities and preventing overfitting in any single modality, we further
design an auxiliary task. After independently modeling the unique feature representations of each
modality through the intra-modal BiMamba module, an additional classifier is introduced to output
unimodal prediction probabilities:

p (ŷi | xi) = p (ŷi | ui) = softmax (Wiui + bi) (8)

where p(ŷi | xi) ∈ RN represents the prediction probability of the i-th modality. N is the number
of classes. ui represents the feature matrix output by the intra-modal BiMamba module of the i-th
modality. Wi is the weight matrix and bi is the bias.

To optimize the auxiliary classifier for each modality, the cross-entropy loss Li is computed as:

Li = − 1

n

n∑
j=1

p(y | x)(j) log p(ŷi | xi)
(j) (9)

where p(y | x)(j) represents the one-hot encoding of the label for the j-th sample classification task.
p(ŷi | xi)

(j) represents the prediction probability of the i-th modality for the j-th sample. n denotes
the number of samples in a batch.

To jointly optimize the model across modalities, the overall training objective Ltrain is defined as the
sum of the main classification loss Ltask and the auxiliary losses from all modalities:

Ltrain = Ltask +

M∑
i=1

αiLi (10)

where Ltask denotes the cross-entropy loss for the final classification output. αi represents the
auxiliary task weight of the i-th modality.

3.3 Multimodal TTA

As shown in the bottom half of Figure 1, the multimodal TTA method consists of two key steps:
two-level entropy-based sample filtering and mutual information sharing across modalities.

3.3.1 Two-level Entropy-based Sample Filtering

Missing multimodal data affects samples differently, with a small subset suffering severe degradation
of multimodal information due to the loss of key emotional cues. Directly using such samples for
fine-tuning often harms model performance. To address this, we propose a two-level entropy-based
sample filtering method:

(a) Multimodal entropy reflects the model’s certainty about its prediction [38]. A lower value
suggests that the prediction is more reliable, which often corresponds to a distribution in the
target domain closer to that in the source domain. Using such samples for fine-tuning leads
to a more stable and reliable model adaptation. Conversely, a higher value indicates greater
uncertainty, which often corresponds to strong distribution shifts from the source domain, making
these samples unsuitable for fine-tuning.

(b) Unimodal entropy measures the extent to which a sample relies on multimodal information [26,
39]. A lower value indicates that the prediction can be made primarily based on a single dominant
modality, suggesting that the sample contains limited multimodal information. In contrast, a
higher value implies that the prediction is more likely to integrate multiple modalities, indicating
that the sample possesses richer multimodal information and is more suitable for fine-tuning.

6



Therefore, we design a method that selectively retains samples with low multimodal entropy and high
unimodal entropy. These samples are more conducive to stable model adaptation and contain richer
multimodal information. First, we compute the multimodal entropy Ent(x) and unimodal entropy
Ent (xi) of each sample:

Ent (x) = −
N∑
c=1

p (ŷ = c | x) log p (ŷ = c | x) (11)

Ent (xi) = −
N∑
c=1

p (ŷi = c | xi) log p (ŷi = c | xi) (12)

where p(ŷ | x) is the multimodal prediction probability, p(ŷi | xi) is the prediction probability of the
i-th modality, and N is the number of categories. Next, we employ an iterative entropy-based sample
selection strategy to progressively expand the range of target-domain samples. During this process,
the model first adapts to samples with weak distribution shifts and rich multimodal information. As
the iterations progress, it gradually incorporates samples with strong distribution shifts to achieve
smooth adaptation from the source domain to the target domain. Specifically, a gradually increasing
threshold is used to ensure a smooth adaptation. The thresholds γm and γu defined as:

γm =
1

n

n∑
j=1

Ent(x)(j) + γ′m ∗ βt (13)

γu =
1

n

n∑
j=1

M∑
i=1

µiEnt(xi)
(j) − γ′u ∗ βt (14)

where γ′m and γ′u are related to the variances of multimodal and unimodal entropy, respectively. βt

represents the smoothing factor. βt = β + t
iter (1− β), t is the current iteration number, iter is the

total number of iterations, β is a hyperparameter. M is the total number of modalities. n represents
the number of samples in a batch. Samples used in previous iterations are excluded from further ones.
Details about the rationale for threshold selection are provided in Appendix A.2. Finally, the filtering
employs the following identification criteria:

S(x) =

{
x

∣∣∣∣∣Ent(x) ≤ γm and
M∑
i=1

µiEnt(xi) ≥ γu

}
(15)

where µi is the hyperparameter for the unimodal entropy weight of the i-th modality.

3.3.2 Mutual Information Sharing Across Modalities

Mutual information sharing across modalities uses the more informative modalities to guide the
learning of modalities with significant missing information. This alleviates the impact of amplified
distribution shifts between modalities, thereby mitigating the negative effects of amplified overall
distribution shifts in the target domain. Specifically, we define the complementary probability of the
prediction probability p(ŷi | xi) of the i-th modality as p′(ŷi | xi):

p′(ŷi | xi) =

M∑
j=1

p(ŷj | xj)− p(ŷi | xi)

M − 1
(16)

where M represents the total number of modalities.

To improve the consistency of predictions across different modalities, we can minimize the KL
divergence between the probability p(ŷj |xj) and its complementary probability p′(ŷi |xi). However,
if a modality is severely corrupted, minimizing the KL divergence may negatively impact the
informative modalities. Therefore, we also include the multimodal probability p(ŷ | x) to improve
stability and reliability. The mutual information sharing loss across modalities Lmis(x) is defined as:

Lmis(x) =

M∑
i=1

DKL

(
p (ŷi | xi) ∥

1

2
(p′ (ŷi | xi) + p (ŷ | x))

)

=

M∑
i=1

N∑
j=1

p (ŷi | xi)
(j)

log
2p (ŷi | xi)

(j)

p′ (ŷi | xi)
(j)

+ p (ŷ | x)(j)

(17)
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where the factor 1
2 represents the average weight. N represents the number of prediction categories.

Through mutual information sharing across modalities, the model can effectively align information
between different modalities. When some modalities perform poorly, other modalities can provide
valuable information, enhancing the overall prediction performance.

3.3.3 TTA optimization

Regarding the TTA optimization, we focus on two aspects: loss computation and fine-tuning details.

Loss Computation We use weighted terms to emphasize the contribution of samples during the
adaptation process. The weight term α (x) is defined as:

α (x) =
1

exp (Ent (x)− Ent0)
(18)

where Ent0 represents the predefined normalization factor[40]. Ent(x) is the multimodal entropy of
the sample. Based on the weighted term, the final loss Ltest is formulated as:

Ltest (x) = α (x) I{x∈S(x)} (Ent (x) + λLmis (x)) (19)
where I{·}(·) represents the indicator function. S(x) is the retained sample set obtained through
two-level entropy-based sample filtering. λ represents the hyperparameter.

Fine-Tuning Details Inspired by surgical fine-tuning[41], only the parameters of the first convolu-
tional layer in the initial encoder, the first fully connected layer of the inter-modal BiMamba module,
and all batch normalization layers are fine-tuned. This selective fine-tuning strategy effectively
reduces computational overhead while maintaining the stability of the model’s essential component.
Finally, the objective function for multimodal TTA is defined as:

min
Θ̂

Ltest (x) (20)

where Θ̂ ∈ Θ represents the tunable parameters. Θ represents all the parameters of the model.
This means that only the tunable parameters are updated during test based on Ltest, while the other
parameters remain fixed. The details of the multimodal TTA algorithm are presented in Appendix A.3.

4 Experiments

4.1 Datasets

BiM-TTA is evaluated on two publicly available multimodal datasets: DEAP[42] and MAHNOB-
HCI[43]. The detailed description of DEAP and MAHNOB-HCI is presented in Appendix A.4.

4.2 Experiment Settings and Implementation

We employ trial-wise 10-fold cross-validation experimental setups under two conditions: 1) without
missing multimodal data, and 2) with missing multimodal data. We split each trial into 4s non-
overlapping segments, also known as cropped experiments. In each round of the 10-fold cross-
validation, 9 folds are used for training and the remaining fold is used for testing. Within the 9
training folds, 80% of the data are used for model training and the remaining 20% for validation. To
ensure the representativeness of the evaluation, we make sure that the same trial does not appear in
both the training and test sets, thereby avoiding potential data leakage risks [14]. In the experimental
evaluation of missing multimodal data, we emulate varying degrees of data absence by applying
random masking with predefined ratios. Specifically, masking ratios of 0.2, 0.4, 0.6, and 0.8 are used
to represent increasing levels of data incompleteness, from mild to severe.

For modality selection, EEG, EOG, and electromyography (EMG) are used for DEAP, whereas EEG,
ECG, and GSR are used for MAHNOB-HCI. The proposed BiM-TTA model is implemented on
the PyTorch framework and optimized using Adam with a learning rate of 0.001. The batch size is
configured to 64 for DEAP and 32 for MAHNOB-HCI. For a fair comparison, we modify all baseline
methods to their multimodal versions. Detailed values of the hyperparameters mentioned in the paper
are provided in Appendix A.5.

Our baseline includes two categories: the emotion recognition baseline models and the TTA baseline
methods. Detailed descriptions of the baselines are in Appendix A.6.
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4.3 Experiment Analysis

The proposed method is first evaluated against representative emotion recognition models on two
datasets without missing data, and subsequently compared with state-of-the-art TTA methods with
missing data. It achieves superior performance in both comparisons.

Table 1: Comparison of emotion recognition baselines on DEAP and MAHNOB-HCI in terms of
valence and arousal accuracy.

DEAP MAHNOB-HCI
Valence Arousal Valence Arousal

SVM 0.552 0.584 0.564 0.573
EEGNet 0.566 0.593 0.609 0.612
ACRNN 0.609 0.638 0.610 0.613
HetEmotionNet 0.625 0.633 0.607 0.601
TSception 0.613 0.635 0.633 0.599
LGGNet 0.618 0.636 0.632 0.609
EEG-Deformer 0.609 0.630 0.587 0.595
MambaFormer 0.621 0.587 0.588 0.619
SST 0.613 0.623 0.606 0.616
VSGT 0.631 0.628 0.613 0.599
BiM-TTA(ours) 0.673 0.641 0.650 0.635

For experiments without missing data, as shown in Table 1, deep learning methods generally outper-
form SVM. EEGNet and TSception primarily use CNNs to extract intra-modal temporal features.
ACRNN combines CNNs and unidirectional LSTM to model temporal features, and HetEmotionNet
uses unidirectional GRU to model the time dimension. However, these CNN-based and unidirectional
RNN-based models have limitations in capturing long-range dependencies within the modality. Fur-
thermore, EEG-Deformer combines CNNs and Transformers to extract complex temporal features.
MambaFormer embeds Mamba modules into Transformer feed-forward layers to unify long- and
short-range modeling, and SST couples a Mamba-based global expert with a windowed Transformer
local expert and fuses their outputs. Although these hybrid models strengthen temporal dependency
modeling, they still overlook inter-channel interactions, as they rely on simplified fusion strategies
such as single-layer convolutions or linear projections, which constrain their capacity to capture
complex inter-modal relationships. VSGT and LGGNet model the inter-channel relationships using
GNNs, yet their temporal modeling relies solely on CNNs and fully connected layers, which hampers
the capture of complex long-range dependencies. In contrast, BiM-TTA models long-range dependen-
cies within modalities and correlations between modalities through the intra-modal BiMamba module
and inter-modal BiMamba module. It achieves the best performance on both datasets, demonstrating
the superiority of the multimodal BiMamba backbone network.

Table 2: Comparative analysis of accuracy for different TTA methods on DEAP with missing data,
relative to the baseline method “No Adapt”. The No Adapt baseline corresponds to a model pretrained
on the source domain and directly evaluated on the target domain without any adaptation. Results
report the improvement rate of each TTA method over “No Adapt” at mask ratios of 0.2, 0.4, 0.6, and
0.8, along with the average improvement.

Valence(%) Arousal(%)
Mask ratio 0.2 0.4 0.6 0.8 Avg 0.2 0.4 0.6 0.8 Avg

Tent -0.162 0.000 -0.314 -0.162 -0.162 0.471 -0.469 0.167 0.232 0.101
EATA -0.315 0.157 -0.154 0.076 -0.061 0.701 -0.705 0.305 0.234 0.134
READ 1.562 0.625 0.234 0.703 0.781 0.312 -0.070 0.391 0.859 0.372
2LTTA 0.937 0.937 0.546 1.010 0.858 0.390 0.156 0.937 0.234 0.429
BiM-TTA(ours) 1.406 1.250 0.859 1.172 1.172 1.016 1.719 1.094 1.406 1.309
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Table 3: Comparative analysis of accuracy of different TTA methods on MAHNOB-HCI with missing
data, relative to the baseline method No Adapt. Results show the improvement rate of each TTA
method over “No Adapt” at the four mask ratios and the average improvement.

Valence(%) Arousal(%)
Mask ratio 0.2 0.4 0.6 0.8 Avg 0.2 0.4 0.6 0.8 Avg

Tent -0.185 0.120 -0.291 0.183 -0.043 0.529 0.046 -0.370 0.139 0.086
EATA 0.556 -0.185 0.046 0.265 0.171 0.635 0.185 -0.139 0.185 0.217
READ 0.523 0.370 0.079 -0.741 0.058 0.529 -0.741 -0.556 0.079 -0.146
2LTTA 0.450 -0.218 0.079 0.185 0.124 0.575 -0.324 -0.185 0.000 0.017
BiM-TTA(ours) 2.413 0.787 0.787 0.370 1.089 0.866 0.417 0.556 0.185 0.506

For experiments with missing data, Table 2 and Table 3 present the performance improvements
of BiM-TTA and other TTA methods relative to the “No Adapt” method. “No Adapt” denotes a
model trained on the source domain and subsequently evaluated on the target domain containing
missing data, without any adaptation. Tent improves model performance on the target domain by
minimizing predictive entropy. READ fine-tunes the self-attention fusion layer to adjust inter-modal
weights, alleviating the impact of information disparity across different modalities. 2LTTA employs a
two-level objective function that includes entropy-based sample reweighting and diversity-promoting
loss. However, they indiscriminately adapt the model to all samples with missing data at once, which
may result in significant parameter adjustments to fit the target domain, thereby reducing overall
performance. Moreover, EATA selectively adapts to reliable samples. However, it does not account
for the varying levels of degradation across different modalities and thus does not fully integrate
the useful complementary information between modalities. In contrast, our method uses two-level
entropy-based sample filtering to avoid the model directly adapting to samples with strong distribution
shifts and limited multimodal information. Furthermore, we utilize inter-modal information sharing
to align the information between different modalities, facilitating the full adaptation of the model.

In summary, compared to all baselines, BiM-TTA achieves the best results in both cases for two
datasets. To further support these results, we provide additional analyzes in the appendices: Ap-
pendix A.7 reports ablation and component analyzes, Appendix A.8 presents visualization experi-
ments that illustrate the key challenges addressed by our method, Appendix A.9 presents hyperpa-
rameter studies, and Appendix A.10 evaluates computational efficiency.

5 Conclusion

In this paper, we propose a multimodal BiMamba network with TTA for emotion recognition. In the
training phase, the multimodal BiMamba network effectively captures intra-modal dependencies and
inter-modal correlations of multimodal physiological signals. The two-level entropy-based sample
filtering and mutual information sharing across modalities achieve smooth adaptation to the target
domain and reduce distribution shifts across modalities, thereby alleviating the negative impact of
amplified distribution shifts caused by missing multimodal data. Experiment results demonstrate
that our model achieves state-of-the-art performance. Moreover, the ablation studies further confirm
the contribution of each component within BiM-TTA. We also discuss the limitations of BiM-TTA
in the Appendix A.11. In summary, we design a general multimodal backbone that incorporates a
multimodal TTA mechanism. We will further extend BiM-TTA to broader physiological analysis
tasks, including sleep stage classification and motor imagery.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions of our model, and
these claims align with our empirical results presented in Section 3 and 4 of the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in Section A.11. We propose an emotion recognition
method and present its methodological description and experimental validation in this
paper. Our approach holds under specific assumptions explicitly stated in the main text. A
limitation of this method is that its performance remains uncertain when these assumptions
are violated—a common challenge shared by all methodological frameworks. Furthermore,
while the method’s applicability needs to be verified across diverse real-world datasets, such
validation falls beyond the scope of this study. As these limitations are standard in research
practice, we have omitted them from the main manuscript. Should the reviewers deem it
necessary to include these clarifications in the main text, we would be pleased to incorporate
them accordingly.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our paper is purely experimental and does not introduce new theoretical results
or formal theorems. Therefore, there are no assumptions or proofs to state, making this
question not applicable.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully describe the model architecture, hyperparameter settings, and experi-
mental procedures in Sections 3, 4 and Appendices A.3, A.5 so that others can reproduce our
results. We release the source code and pretrained models to enable researchers to replicate
our experiments.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and instructions for our model are available via an anonymous
link: https://anonymous.4open.science/r/BiM-TTA-B604

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Justification: The datasets used in this study are all open-source, and the experimental
settings are clearly described. In Section 4 and Appendix A.5, we provide comprehensive
details on dataset splits, feature preprocessing, hyperparameter configurations, and training
epochs to ensure that the experimental design is clear, understandable, and reproducible.
Moreover, both the baseline models and the models proposed in this paper employ identical
experimental setups, thereby ensuring a fair comparison.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We reported the best results within the adjustable parameter range for each
method.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix A.10 notes that experiments were run on a NVIDIA A4000 (16G)
GPU and reports approximate training time.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and confirm that our research
adheres to its guidelines. In particular, our work avoids deceptive practices and respects user
privacy and data rights.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We construct a model for emotion recognition. As discussed in Section 1,
Emotion recognition plays a crucial role in the medical field, with important applications
in mental health disorders, physiological health assessment, and clinical medicine. All our
experiments produced no other negative social impacts.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We use open-source datasets and adhere to general data privacy and security
guidelines. Our work does not involve releasing high-risk models or datasets, so no specific
usage restrictions or safeguards are needed beyond standard best practices.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external code, open-source datasets, and models used in our work are
properly cited and their licenses are respected. We cite the original sources for each dataset
and library. See Appendix A.4.
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13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We open up the code and model weights of our method for reproducible results
at https://anonymous.4open.science/r/BiM-TTA-B604.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human-subject studies were conducted in this research.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve any human-subject research.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use any large language models in developing our core methodology.
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Appendix

A.1 Further Discussion of Related Work

A.1.1 Mamba

Structured state space sequence models (SSMs)[44] have emerged as a promising class of architectures
for sequence modeling. For example, Gu et al. [45] developed the Structured State Space Sequence
Model (S4), which significantly improves computational efficiency by combining the HIPPO matrix
with efficient computation methods. Building upon S4, Gu and Dao [46] proposed Mamba, which
designs a dynamic selection mechanism to filter out irrelevant information and extract global features
more effectively. Mamba also introduces a hardware-aware algorithm for efficient computation,
showing great potential in long-sequence modeling. Mamba has demonstrated excellent performance
across various tasks. Following Mamba, Xu et al. [47] proposed SST, a model that integrates the
strengths of Transformer and Mamba to capture both global and local sequence dependencies for
general time-series prediction tasks. In the emotion recognition task using physiological signals, Gui
et al. [37] proposed EEG-Mamba, which utilizes BiMamba to better encode EEG physiological
signals. It also introduces a task-aware model equipped with general experts to learn task-specific
representations from EEG data.

A.1.2 Test-Time Adaptation

Test-time adaptation (TTA) focuses on adapting source models to target domains without access to
source domain data or target domain labels. Traditional domain adaptation requires training with both
source and target domain data. In contrast, test-time training[48] enhances test-time adaptability by
training source models with supervised and self-supervised objectives in the training stage. However,
these methods rely on proxy tasks and assume the training process is accessible, which limits their
application scope. TTA addresses this by adjusting models only during testing without intervening in
the training stage. For instance, Wang et al. [49] proposed Tent, which updates model normalization
layers by minimizing entropy during test. Niu et al. [40] introduced EATA, employing a sample
selection criterion based on entropy minimization. Recently, Yang et al. [25] developed READ,
which addresses reliability bias by modulating the attention-based fusion layers in a self-adaptive
manner and designing a novel objective function for robust multimodal adaptation. Lei and Pernkopf
[26] proposed 2LTTA, using Shannon entropy as the objective for the Transformer encoder of the
corrupted modality and a diversity-promoting loss as objective for the modality fusion block.

A.2 Selection of Entropy Threshold

Entropy Threshold Design We adopt a soft-thresholding mechanism in which the entropy threshold
is adaptively adjusted for each batch. The threshold is defined as the batch entropy expectation plus or
minus n times its variance. By Chebyshev’s inequality, this formulation provides a probabilistic bound
on sample retention while mitigating the effect of outliers. Empirical results show that setting n = 2
achieves optimal performance, with at least 80% of samples retained across both datasets, ensuring
effective utilization of test data. To further improve flexibility, we introduce a smoothing factor that
gradually relaxes the threshold during inference until it reaches the precomputed batch-adaptive value,
allowing the model to incorporate more representative test samples.

Impact of Threshold Strictness Both overly strict and overly loose thresholds degrade perfor-
mance, and thus an appropriate threshold needs to be determined empirically. When the threshold is
too strict, only a small number of samples are retained, which restricts the model’s ability to learn the
target-domain distribution. In contrast, when the threshold is too loose, many low-quality samples
are included, increasing the risk of adapting to low-quality data and compromising model stability.
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A.3 Algorithm for Multimodal TTA

Algorithm 1 Multimodal TTA
Input: Target samples X.

1: Initialize Xremain = X and S(x) = ∅.
2: while t = 1 to iter and Xremain ̸= ∅ do
3: Calculate entropy of multimodal outputs and unimodal outputs for Xremain using Eq.11, and

Eq.12.
4: Calculate multimodal and unimodal entropy bounds using Eq.13, and Eq.14.
5: Select S(x) from Xremain based on entropy criteria using Eq.15.
6: Calculate mutual information sharing loss Lmis(x) for S(x) using Eq.17.
7: Calculate total loss Ltest for S(x) using Eq.19.
8: Update tunable parameters of the model using Ltest.
9: Update samples: Xremain=Xremain- S(x).

10: end while
11: return Adapted prediction probabilities and loss values.

A.4 Description of Datasets

1) The DEAP dataset: It involves 32 participants, each completing 40 one-minute trials based on
music videos. In the experiment, EEG is recorded with a BioSemi 32-channel cap following the
international 10–20 system, while 8 additional channels capture peripheral physiological signals
including respiration rate, EOG, and EMG. After each video, participants provide self-assessments of
arousal, valence, liking, dominance, and familiarity. During preprocessing, all signals are resampled
to 128 Hz. The EEG is bandpass filtered between 4 and 45 Hz, and ocular artifacts are removed.
Arousal and valence are rated on a scale from 1 to 9. A threshold of 5 is used to distinguish low and
high emotional classes.

2) The MAHNOB-HCI dataset: It includes 30 subjects, each completing 20 video-based trials with
self-reported ratings from 1 to 9. In the experiment, EEG signals are recorded using the BioSemi
Active II system equipped with 32 Ag/AgCl electrodes, while six peripheral physiological signals are
simultaneously recorded. These peripheral physiological signals include ECG, GSR, respiration, and
body temperature. To maintain consistency across modalities, all recordings are kept at their original
sampling rate of 256 Hz. A fixed threshold of 5 is applied to discretize the continuous arousal and
valence ratings into binary categories. As the recordings of subjects 12, 15, and 26 are unavailable,
the final analysis is conducted on 27 subjects, consistent with previous studies such as TSception and
HetEmotionNet[14, 9].

A.5 The Other Hyperparameters Settings

Table 4: The values of the hyperparameters described in the paper

Parameter DEAP MAHNOB-HCI

The auxiliary task training weights αi [0.8, 0.3, 0.2] [0.5, 0.05, 0.03]
The TTA parameter λ 1 0.3
The unimodal entropy weights µi [1, 0.3, 0.2]
The total number of iterations iter 7
The TTA parameter β 0.2
The learning rate of TTA 0.0007

A.6 Detailed Introduction to the Baseline Methods

We compare our model approach with ten state-of-the-art emotion recognition models in the same
domain, including:
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• SVM[50]: A traditional machine learning method that utilizes statistical features, wavelet-
based energy-entropy, RMS, and other techniques to construct feature vectors for emotion
recognition.

• EEGNet[13]: A lightweight convolutional neural network designed for EEG-based
brain–computer interface applications.

• ACRNN[51]: A model that combines a channel-wise attention mechanism, a convolutional
neural network (CNN), a recurrent neural network (RNN), and an extended self-attention
mechanism.

• HetEmotionNet[9]: A model that fuses multimodal physiological signals for emotion
recognition using a two-stream heterogeneous graph recurrent neural network, capturing
spatial-spectral-temporal features, heterogeneity, correlation, and dependencies.

• TSception[14]: A multi-scale convolutional neural network combining dynamic temporal
layer, asymmetric spatial layer, and high-level fusion layer.

• LGGNet[52]: A model that models local-global-graph representations of EEG through
multiscale temporal convolutions and local- and global-graph-filtering layers.

• EEG-Deformer[53]: A model that incorporates a Hierarchical Coarse-to-Fine Transformer
(HCT) block and a Dense Information Purification (DIP) module into a CNN-Transformer.

• MambaFormer[47]: A hybrid sequence model that embeds Mamba modules into Trans-
former feed-forward layers, combining state-space efficiency with attention expressiveness
for modeling both long- and short-range temporal dependencies.

• SST[47]: A hybrid model that couples a Mamba-based global expert with a windowed
Transformer local expert, fusing their outputs through a routing mechanism to strengthen
long-range temporal modeling.

• VSGT[6]: A graph-based model for EEG emotion recognition that leverages a variational
spatial encoder and a Gaussian temporal encoder to incorporate prior knowledge and model
spatial and cross-temporal dependencies across brain regions.

We then compare our TTA method against the following baseline methods:

• No Adapt: A baseline that evaluates a model pretrained on source domain data directly on
target domain data without performing adaptation.

• Tent[49]: A method that adapts models at test time by minimizing prediction entropy through
updating batch normalization parameters.

• EATA[40]: A method that filters reliable samples based on prediction entropy and assigns
adaptive weights to both samples and important parameters.

• READ[25]: A multimodal TTA method that mitigates reliability bias by employing a
new paradigm that modulates the attention between modalities in a self-adaptive way and
adopting a novel objective function for robust multimodal adaptation.

• 2LTTA[26]: A multimodal TTA method that addresses intra-modal distribution shifts and
cross-modal reliability bias in multimodal learning by modulating normalization layers and
self-attention modules and employing a two-level objective function with entropy-based
sample reweighting and diversity-promoting loss.

A.7 Ablation Studies and Component Analysis

To examine the overall contribution of major components, we first conduct ablation experiments on
the multimodal BiMamba network and multimodal TTA. As shown in Figure 2, the results indicate
that the removal of both the multimodal BiMamba network and multimodal TTA leads to a decrease
in model performance, with the absence of multimodal TTA causing a more significant performance
drop. This demonstrates that multimodal TTA is more effective on datasets with missing multimodal
data. Overall, both the multimodal BiMamba network and multimodal TTA are effective for emotion
recognition in the proposed model.

Beyond this coarse-level analysis, we further design fine-grained experiments to evaluate the effec-
tiveness of subcomponents: (1) comparative experiments for the two BiMamba modules without
missing multimodal data, and (2) ablation studies of Multimodal TTA with missing multimodal data.
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Figure 2: Ablation study on DEAP with missing data. “w/o Mamba” indicates the absence of the
BiMamba in our network, and “w/o TTA” indicates the absence of the multimodal TTA. The results
report the average performance across the four mask ratios.

Figure 3: Comparison of intra-modal BiMamba and inter-modal BiMamba with other methods

For the intra-modal BiMamba module, we compare its performance against Mamba, Transformer, and
LSTM architectures to evaluate its intra-modal sequence modeling capabilities. For the inter-modal
BiMamba module, we compare it with attention-based fusion and MLP fusion methods to assess
its ability to integrate multimodal features. The corresponding experimental results are shown in
Figure 3, which demonstrate that both intra- and inter-modal BiMamba consistently outperform the
alternatives, highlighting the superior modeling capacity of our BiMamba modules.

Figure 4: Ablation study on TTA and Two-level Entropy-based Sample Filtering

For the multimodal TTA, we perform ablation studies from two perspectives: the impact of removing
individual components and the effectiveness of single-level entropy-based filtering. The results are
summarized in Figure 4, demonstrating that each component has a beneficial impact on the overall
performance.

A.8 Visualization Experiments

To better illustrate how BiM-TTA addresses the two key challenges of multimodal emotion recogni-
tion, we provide two types of visualization experiments.
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delay

Figure 5: Grad-CAM visualization of BiM-TTA

First, Figure 5 shows Grad-CAM visualizations of BiM-TTA, which illustrate how the model
captures intra-modal long-range dependencies as well as inter-modal correlations. The EMG signal
demonstrates that the model effectively captures long-range intra-modal features. Moreover, the
following inter-modal correlations emerge: 1) when the EOG shows pronounced activation between
time steps 80 and 120, the resulting high-frequency motion artifacts (ocular artifacts) contaminate the
EEG signal[54], and the model mitigates this interference by reducing the attention weights assigned
to those EEG segments. 2) activation in the EEG between time steps 260 and 300 provokes a delayed
eye-movement response in the EOG, which appears between time steps 290 and 350[55]. These
dynamics align closely with the physiological patterns documented in emotion-recognition research.

Figure 6: t-SNE visualization of TTA
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Second, Figure 6 presents a t-SNE visualization of feature distributions, clearly demonstrating that
BiM-TTA can mitigate the distribution shifts induced by missing multimodal data. The green points
represent the feature distribution extracted by the model from the original test set before applying
TTA, while the blue points correspond to the training distribution. After applying TTA, the test
distribution progressively aligns with the training distribution, eventually appearing as the red points.
This progressive alignment demonstrates that TTA is effective in mitigating the distribution gap
between the test and training sets, thereby enabling the model to perform emotion recognition more
effectively under testing conditions.

A.9 Hyperparameter Studies

To further analyze the effect of hyperparameter settings, we examine five key hyperparameters: the
loss weight of unimodal auxiliary tasks αi, the loss-balance coefficient λ, the weight of unimodal
entropy µi, the total number of iterations iter, and the initial value of the smoothing factor β.

Table 5: Studies on the Auxiliary task weights of multimodal BiMamba on DEAP with missing data.
The weights correspond to the parameters for EEG, EOG, and EMG. The results report the average
performance across the four mask ratios.

Valence Arousal

EEG
0.7 0.608 0.627
0.8 0.610 0.631
0.9 0.609 0.624

EOG
0.2 0.609 0.626
0.3 0.610 0.631
0.4 0.607 0.625

EMG
0.1 0.604 0.623
0.2 0.610 0.631
0.3 0.605 0.620

The results for the auxiliary-task weight αi are reported in Table 5. Based on experimental observa-
tions, the EEG branch plays a more critical role than EOG and EMG in classification performance.
Therefore, its auxiliary task is assigned a larger weight.

The effects of the remaining four hyperparameters (λ, µi, iter, and β) are illustrated in Figure 7.
For λ and µi, the model remains stable across a wide range of values, indicating that performance
is not sensitive to fine-tuning these coefficients. For iter, performance peaks within a moderate
range, where the model adapts effectively without overfitting. Too few iterations lead to insufficient
adaptation, while too many cause mild over-adaptation and slightly degrade performance. For β,
relatively small values achieve the best balance between reliability and adaptability. A smaller
β enforces a stricter initial threshold, retaining only samples with rich multimodal information
and high prediction confidence. In contrast, a larger β relaxes the threshold too early, potentially
admitting low-quality samples and disrupting learned representations, which degrades performance.
Overall, although different hyperparameter choices lead to slight variations in performance, the model
consistently outperforms the No Adapt setting, indicating that the proposed method remains robust
across a broad range of hyperparameter configurations.

To gain deeper insight into the adaptation dynamics, we further analyze the performance trend of
TTA during the iterative process, as shown in Figure 8. With the iteration parameter iter set to 7, the
model performance progressively improves over iterations and reaches its optimal average level at
the final step.

A.10 Computational Efficiency Analysis

We compare the computational cost required to perform a complete inference for a single subject on
the DEAP dataset. To ensure fairness and accuracy, we use the official open-source implementations
of the latest best-performing baseline models for comparison. As shown in Table 6, our model is
lightweight, maintains real-time performance, and achieves an optimal trade-off between performance
and efficiency. All experiments are conducted on an NVIDIA RTX A4000 (16G). A single training
run (30 epochs) takes approximately 60 minutes on a single GPU.
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Figure 7: Hyperparameter studies of BiM-TTA on DEAP with missing data. The parameters include
λ, µ2, µ3, iter, and β, with µ1 set to 1 by default. The results report the average improvement across
the four mask ratios.

Figure 8: Model Performance across TTA Iterations

Table 6: Comparison of computational overhead parameters with two recent state-of-the-art models

Model Parameter Count Inference Time (s) FLOPs (M) GPU Memory (MB)

LGGNet 721,319 0.73 10.75 95.40
EEG-Deformer 915,394 0.43 5.39 8.21
BiM-TTA(ours) 22,431 0.47 1.18 2.29

A.11 Limitations

We would like to discuss some of the limitations identified during this study. Firstly, although
BiM-TTA demonstrates outstanding performance in this study, its latency and resource consumption
in real-time online systems (e.g., wearable devices) have not yet been evaluated. In future work, we
plan to apply pruning and quantization, perform distillation, or design lightweight variants to meet
the demands of real-time embedded scenarios. Secondly, although we have proposed a general model
architecture, its applicability in multi-task settings remains insufficiently validated. Going forward,
we will assess the effectiveness of BiM-TTA on tasks such as sleep stage classification and motor
imagery.
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