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ABSTRACT

Federated Learning (FL) aims to train machine learning models for multiple clients
without sharing their own private data. Due to the heterogeneity of clients’ local
data distribution, recent studies explore the personalized FL that learns and de-
ploys distinct local models with the help of auxiliary global models. However,
the clients can be heterogeneous in terms of not only local data distribution, but
also their computation and communication resources. The capacity and efficiency
of personalized models are restricted by the lowest-resource clients, leading to
sub-optimal performance and limited practicality of personalized FL. To overcome
these challenges, we propose a communication and computation efficient approach
named pFedGate by adaptively and efficiently learning sparse local models. With
a lightweight trainable gating layer, pFedGate enables clients to reach their full
potential in model capacity by generating different sparse models accounting for
both the heterogeneous data distributions and resource constraints. Meanwhile,
the computation and communication efficiency are both improved thanks to the
adaptability between the model sparsity and clients’ resources. Further, we theoret-
ically show that the proposed pFedGate has superior complexity with guaranteed
convergence and generalization error. Extensive experiments show that pFedGate
achieves superior global accuracy, individual accuracy and efficiency simultane-
ously over state-of-the-art methods. We also demonstrate that pFedGate performs
better than competitors in the novel clients participation and partial clients partici-
pation scenarios, and can learn meaningful sparse local models adapted to different
data distributions.

1 INTRODUCTION

Federated Learning (FL) gains increasing popularity in machine learning scenarios where the data
are distributed in different places and can not be transmitted due to privacy concerns (Muhammad
et al., 2020; Meng et al., 2021; Yu et al., 2021; Hong et al., 2021; Yang et al., 2021). Typical FL
trains a unique global model from multiple data owners (clients) by transmitting and aggregating
intermediate information with the help of a centralized server (McMahan et al., 2017; Kairouz et al.,
2021). Although using a shared global model for all clients shows promising average performance,
the inherent statistical heterogeneity among clients challenges the existence and convergence of
the global model (Sattler et al., 2020; Li et al., 2020). Recently, there are emerging efforts that
introduce personalization into FL by learning and deploying distinct local models (Yang et al., 2019;
Karimireddy et al., 2020; Tan et al., 2021). The distinct models are designed particularly to fit the
heterogeneous local data distribution via techniques taking care of relationships between the global
model and personalized local models, such as multi-task learning (Collins et al., 2021), meta-learning
(Dinh et al., 2020a), model mixture (Li et al., 2021c), knowledge distillation (Zhu et al., 2021) and
clustering (Ghosh et al., 2020).

However, the heterogeneity among clients exists not only in local data distribution, but also in their
computation and communication resources (Chai et al., 2019; 2020). The lowest-resource clients
restrict the capacity and efficiency of the personalized models due to the following reasons: (1)
The adopted model architecture of all clients is usually assumed to be the same for aggregation
compatibility and (2) The communication bandwidth and participation frequency of clients usually
determine how much can they contribute to the model training of other clients and how fast can they
agree to meet a converged “central point” w.r.t their local models. This resource heterogeneity is
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under-explored in most existing personalized FL (pFL) works, and instead, they gain the accuracy
improvement with a large amount of additional computation or communication costs. Without special
design taking the efficiency and resource heterogeneity into account, we can only gain sub-optimal
performance and limited practicality of pFL.

To overcome these challenges, in this paper, we propose a novel method named pFedGate for efficient
pFL, which learns to generate personalized sparse models based on adaptive gated weights and
different clients’ resource constraints. Specifically, we introduce a lightweight trainable gating layer
for each client, which predicts sparse, continues and block-wise gated weights and transforms the
global model shared across all clients into a personalized sparse one. The gated weights prediction
is conditioned on specific samples for better estimation of the heterogeneous data distributions.
Thanks to the adaptability between the model sparsity and clients’ resource, the personalized models
and FL training process gain better computation and communication efficiency. As a result, the
model-adaption via sparse gated weights delivers the double benefit of personalization and efficiency:
(1) The sparse model-adaption enables each client to reach its full potential in model capacity with
no need for compatibility across other low-resource clients, and to deal with a small and focused
hypothesis space that is restricted by the personalized sparsity and the local data distribution. (2)
Different resource restrictions can be easily imposed on the predicted weights as we consider the
block-wise masking under a flexible combinatorial optimization setting. We further provide space-
time complexity analysis to show pFedGate’ superiority over state-of-the-art (SOTA) methods, and
provide theoretical guarantees for pFedGate in terms of its generalization and convergence.

We evaluate the proposed pFedGate on four FL benchmarks compared to several SOTA methods. We
show that pFedGate achieves superior global accuracy, individual accuracy and efficiency simulta-
neously (up to 4.53% average accuracy improvement with 12x smaller sparsity than the compared
strongest pFL method). We demonstrate the effectiveness and robustness of pFedGate in the par-
tial clients participation and novel clients participation scenarios. We also find that pFedGate can
learn meaningful sparse local models adapted to different data distributions, and conduct various
experiments to verify the necessity and effectiveness of pFedGate’ components.
Our main contributions can be summarized as follows:

• We exploit the potential of co-design of model compression and personalization in FL,
and propose a novel computation and communication efficient pFL approach that learns to
generate sparse local models with a fine-grind sample-level adaptation.

• We provide a new formulation for the efficient pFL considering the clients’ heterogeneity in
both local data distribution and hardware resources, and provide theoretical results about the
generalization, convergence and complexity of the proposed method.

• We achieve SOTA results on several FL benchmarks and illustrate the feasibility of gaining
better efficiency and accuracy for pFL simultaneously. To facilitate further studies, we
release our code at https://github.com/AnonyMLResearcher/pFedGate.

2 RELATED WORKS

Personalized FL. Personalized FL draws increasing attention as it is a natural way to improve
FL performance for heterogeneous clients. Many efforts have been devoted via multi-task learning
(Smith et al., 2017; Corinzia & Buhmann, 2019; Huang et al., 2021; Marfoq et al., 2021), model
mixture (Zhang et al., 2020; Li et al., 2021c), clustering (Briggs et al., 2020; Sattler et al., 2020;
Chai et al., 2020), knowledge distillation (Lin et al., 2020; Zhu et al., 2021; Ozkara et al., 2021),
meta-learning (Khodak et al., 2019; Jiang et al., 2019; Khodak et al., 2019; Fallah et al., 2020;
Singhal et al., 2021), and transfer learning (Yang et al., 2020; He et al., 2020; Zhang et al., 2021a).
Although effective in accuracy improvements, most works pay the cost of additional computation or
communication compared to non-personalized methods. For example, Sattler et al. (2020) consider
group-wise client relationships, requiring client-wise distance calculation that is computationally
intensive in cross-device scenarios. Fallah et al. (2020) leverage model agnostic meta learning to
enable fast local personalized training that requires computationally expensive second-order gradients.
Zhang et al. (2021a) learn pair-wise client relationships and need to store and compute similarity
matrix with square complexity w.r.t. the number of clients. Marfoq et al. (2021) learn a mixture
of multiple global models which multiplies the storing and communicating costs. Our work differs
from these works by considering a practical setting that clients are heterogeneous in both the data
distribution and hardware resources. Under this setting, we achieve personalization from a novel
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perspective, personalized sparse model-adaptation, and show the feasibility of gaining better accuracy,
and computation and communication efficiency at the same time.

Efficient FL. Fruitful FL literatures have explored the improvement of communication efficiency
such as methods based on gradient compression (Rothchild et al., 2020; Alistarh et al., 2017;
Reisizadeh et al., 2020; Haddadpour et al., 2021; Zhang et al., 2021b), model ensemble (Hamer et al.,
2020), model sub-parameter sharing (Liang et al., 2020) sub-model selection Tianchun et al. (2022);
Minh & Carl (2021), and Bayesian neural network (Yurochkin et al., 2019b;a). Few works improve
computation and communication efficiency with personalized local models via quantization (Ozkara
et al., 2021; Li et al., 2021a; Hong et al., 2022) and model parameter decoupling (Diao et al., 2021;
Collins et al., 2021; Huang et al., 2022). The most important difference is that our method differs
from these works by adaptively generating the sparse model weights at a fine-grained sample level,
which achieves a good estimation for the conditional probability of heterogeneous local data and high
accuracy as shown in our experiments. Due to the space limit, we present more detailed description
and comparison with some of these works in Appendix E

3 PROBLEM FORMULATION

The goal of traditional federated learning (FL) is to fit a single global model by collaboratively
training models from a set C of clients without sharing their local data. In this paper, we focus on
the personalized federated learning problem in terms of not only client-distinct models, but also
client-distinct resource limitations. Specifically, consider each client i ∈ C has its own private dataset
Si that is drawn from a local distribution Di over X × Y . In general, the local data distributions
{Di}i∈C are heterogeneous and thus it is promising to learn personalized model hθi ∈ H : X 7→ Y
parameterized by θi for each local distribution Di, where H is the set of hypotheses with d dimensions.
Besides, clients may have heterogeneous computation and communication resources especially on
cross-device FL scenarios. To better account for the data heterogeneity and system heterogeneity, we
aim to optimize the following objective:

min
{hθi

}i∈C

∑
i∈C

pi · E(x,y)∼Di
[f(θi;x, y)],

s.t. size(θi) ≤ di, ∀i ∈ C,
(1)

where f(θi;x, y) ≜ ℓ(hθi(x), y) and ℓ : Y × Y 7→ R+ is the loss function, pi is non-negative
aggregation weight for client i and

∑
i∈C pi = 1. In typical FL setting (McMahan et al., 2017;

Kairouz et al., 2021), pi indicates the participation degree of client i and is set to be proportional to
the size of local dataset |Si|. The size(θi) indicates the number of parameters of θi, and di indicates
the model size limitation for client i. Without special designs to handle the system heterogeneity (here
the size restriction), most pFL methods simply adopt another hypothesis space H̃ with min({di}i∈C)
dimensions that are constraints by the lowest-resource clients, and the problem is degraded to the
typical one that minimizes the objective without constraints. We consider the resource constraints in
terms of model size limitation in this paper as it fairly reflect the computation and communication
cost. Later we will see that our approach can be extended to other configurations such as FLOPs
(Floating-point operations per second), latency and communication bandwidth.

4 LEARNING TO GENERATE SPARSE MODEL

In practice, one can solve the problem in Equation (1) with a two-step manner: 1⃝ find optimal local
models via existing personalized federated learning methods without sparsity constraints, and then
2⃝ compress the trained models into required local model size via compression techniques such as

pruning, quantization and knowledge distillation (Deng et al., 2020). However, the final local models
from step 2⃝ usually gain worse performance to models found in step 1⃝ (Jiang et al., 2022). Besides,
the post-compression process still requires computational and communication costs corresponding
to the un-compressed models during the FL process. To alleviate the performance degradation and
further improve the efficiency of FL process, we propose to jointly learn and compress the federated
models. Specifically, we can directly learn sparse local models whose number of non-zero parameters
satisfy the size requirements:

min
{hθ′

i
}i∈C

∑
i∈C

pi · E(x,y)∼Di
[ℓ(hθ′i

(x), y)], (2)

where hθ′
i
∈ Hdi

and Hdi
indicates the subset of H with hypotheses whose number of non-zero

parameters is not larger than di. However, the sparse models hθ′
i

can be arbitrarily different across
clients due to the various dimension requirements di and local data distributions Di. Directly
optimizing hθ′

i
and aggregating them may lead to sub-optimal performance and make the federated
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learning process un-convergent. As Marfoq et al. (2021) discussed, clients can not benefit from each
other without any additional assumption to the local distributions. Here we consider the case of
bounded diversity as following assumption shows:
Assumption 1. (Bounded Diversity) Let Dg be a global data distribution that is a mixture of all
local data distribution Di, i ∈ C. Denote hθ∗

g
and hθ∗

i
as the optimal estimator for the conditional

probability of Dg and Di respectively. There exist a Dg such that the variance between local and
global gradients is bounded

||∇θf(θ
∗
i )−∇θf(θ

∗
g)||2 ≤ σ2

i , ∀i ∈ C, (3)

where f(θ) is a compact notation as f(θ) ≜ f(θ;x, y) for all data points (x, y) ∈ X × Y .
Proposition 1. Denote (θ′i)

∗ be the parameter of any sparse optimal estimator for Di, i ∈ C. If
f is µ-strongly convex, under Assumption 1, there exist continuous weights M∗

i ∈ Rd such that
(θ′i)

∗ = θ∗g ⊙ M∗
i where ⊙ indicates element-wise production over model parameters of θ, and

{M∗
i }i∈C can be bounded as

||(M∗
i − 1)|| ≤ σ2

i

µ2||θ∗g ||2
·
RθiRθg

rθirθg
∀i ∈ C, (4)

where rθi and rθg are the infimum of θi and θg respectively, Rθi and Rθg are the supremum of θi and
θg respectively.

The proofs of all propositions and theorems of our work are in Appendix. Proposition 1 suggests that
we can deal with Problem (2) via indirectly generating personalized sparse models hθ′

i
parameterized

by θ′i = θg ⊙Mi with personalized weights Mi and a shared global model θg , which helps to transfer
information cross clients and leads to a controllable optimization. Specifically, denote si be the model
sparsity constraint of client i, Problem (2) can be transformed into following form:

min
θg,{Mi}i∈C ,

∑
i∈C

pi · E(x,y)∼Di
[f(θg ⊙Mi;x, y)],

s.t. count(Mi ̸= 0)/d ≤ si, ∀i ∈ C.
(5)

With this re-formulation, Mi can be regarded as sparsity-enforced gated weights that absorb the
diversity of different local data distribution into the global model, via scaling and blocking the
information flow through the shared model θg .

5 PERSONALIZED FL WITH CONDITIONAL GATED WEIGHTS

5.1 OVERALL FRAMEWORK

Note that for discriminative models (e.g., neural networks), the personalized models are estimators
for conditional distribution PDi

(y|x) associated to clients’ local data Di. To achieve efficient pFL
and optimize the objective described in Equation (5), instead of learning client-level element-wise
weights Mi ∈ Rd, we propose to learn to predict sample-level block-wise weights M ′

i,j = gϕi
(xi,j),

where ϕi indicates the parameters of a trainable personalized gating layer, and gϕi
is the predictive

function conditioned on specific data sample xi,j and sparsity limitation si. The gating layer ϕi

brings up benefits in both efficiency and effectiveness: (1) predicting block-wise weights M ′
i,j ∈ RL

enables us to use a lightweight ϕi for L ∈ N+ sub-blocks of θ with L ≪ d, and thus gain much
smaller computational costs than the element-wise manner; (2) predicting sample-wise weights can
estimate the conditional probability better than the client-level manner since each client may have
complex local data distribution mixed by different classes, e.g., using different sparse models to
classify dog and bird can achieve better performance than using the same one. We empirically verify
the effectiveness of these choices in Section 7.4.
Based on the introduced gating layer, we establish an efficient pFL framework in server-client setting
as shown in Figure 1. To enable benefits from each other, all clients share the same global model θg
that downloaded from server. Each client i ∈ C has a private, lightweight and learnable gating layer
ϕi, which is trained from local data with a differentiable manner, and learns to achieve fine-grained
personalized model-adaptation θ

′

i,j = θg⊛M ′
i,j = θg⊛gϕi

(xi,j) given different data samples, where
⊛ indicates block-wise production of θ. To handle diverse resource-limited scenarios, ϕi ensures that
the personalized adapted model θ

′

i,j has required sparsity not larger than si. Moreover, the sparsity
speeds up the training and inference of local models, as well as the communication via uploading the
sparse model updates (we give detailed discussion on Sec.6.3 and Appx. E).
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Figure 1: The pFedGate framework that learns to generate sparse personalized models conditioned on
clients’ different data samples and resource limitations. The serial numbers indicate the FL processes
at each communication round.

5.2 ADAPTIVE GATING LAYER

5.2.1 LAYER ARCHITECTURE
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Figure 2: The sparse model-adaptation via gating layer.

We adopt a simple two-path sandwich ar-
chitecture for the gating layer as shown in
the left part of Figure 2. One path predicts
the block-wise gated weights M that may
violate the hard sparsity constrains, and the
other path predicts the block-wise impor-
tance scores that are used to adjust M into
a sparse one M ′ such that the final sparse
model satisfies the hard limitation (we intro-
duce the adjustment later). Let the number
of sub-blocks of θg be L and the dimension
of flatten input feature be dX , i.e., x ∈ RdX .
The middle two fully connected layers have
the same size and each of them has (dX ·L)
parameters. Here the switchable normal-
ization (Luo et al., 2019) is used to handle
batched data samples and different input
types via learning mixture of batch norm, instance norm and layer norm with negligible additional
number of trainable parameters. Furthermore, the personalized normalization parameters within
client-distinct gating layers enable our model-adaptation to absorb different feature distributions
(similar empirical evidence is shown by Li et al. (2021d)). The final batch normalization and sigmoid
activation are used to stabilize the optimization of θg and {ϕi} by bounding M ′ and thus the scaling
degrees on θg’s parameters (recall that the upper bound in Proposition 1 is dependent on the infimum
and supremum of parameters after scaling). In total, the gating layer learns and predicts the sparse
gated weights M ′ = gϕ(x) = g(ϕ;x) given specific data sample x where g : RdX 7→ RL, with a
lightweight parameter size dϕ = 2dXL that is usually much smaller than the size of model θg. We
show the effectiveness and necessity of these adopted components of gating layer in Section 7.4.

5.2.2 OPERATOR-TYPE-FREE BLOCK SPLITTING

There are many alternatives to split a model into certain sub-blocks, e.g., a convolutional operator can
be split in channel-wise or filter-wise and an attention operator can be split in head-wise. Our gating
layer is decoupled with specific block splitting manners and thus can easily support users’ various
splitting preferences. Besides, we propose a general operator-type-free splitting manner by default
to enhance the usability of our approach as illustrated in the right part of Figure 2. Denote B ∈ N+

as a given block split factor, and denote dl as the dimension of a flatten vector that parameterizes
the given learnable operator. We group the vector’s first ⌊dl · smin⌋ elements as the first sub-block,
and equally split the remaining elements into (B − 1) sub-blocks (the last sub-block may has fewer
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size than ⌊(dl · (1− smin)/(B − 1)⌋). Here B provides flexible splitting granularity, smin ∈ (0, si]
indicates a pre-defined minimal sparsity factor and the predicted gated weights for the first sub-block
is enforced to be non-zero to avoid cutting information flow through this operator. The proposed
splitting is simple to implement but effective for pFL as shown in our empirical evaluations.
5.2.3 SPARSE GATED WEIGHTS

To ensure an equal or smaller sparsity of adapted model than the limitation si, we propose to leverage
the predicted block importance G to adjust the predicted gated weights M into a sparse one M ′.
Specifically, denote W ∈ ZL be the parameter size look-up table of L sub-blocks, we transform
M ′ = M · I∗ where I∗ ∈ {0, 1}L is binary index and a solution of the following knapsack problem
that maximizes total block importance values while satisfy the sparsity constraint:

max
I

I ·G, s.t. |I ·W |/d ≤ si. (6)

In practical, to enable gradient-based optimization of gating layer, we leverage the straight-through
trick (Hubara et al., 2016) via differentiable G in backward pass. In Appendix A, we summarize the
overall algorithm and give detailed descriptions about the gradients flows through the gating layer.

6 ALGORITHM ANALYSIS

6.1 GENERALIZATION

Following the parameter-sharing analysis from Baxter (2000) and the generalization analysis from
Shamsian et al. (2021), here we give the generalization guarantee of our sparse model.

Based on the notations used in previous sections, let L̂(θg, ϕi) denote the empirical loss of the sparse

model in client i, and L̂(θg, ϕi) ≜ 1
n

∑n
i=1

∑
(x,y)∈Si

f
((

θg ⊛ gϕi
(x)

)
;x, y

)
. The expected loss is

denoted as L(θg, ϕi) ≜ 1
n

∑n
i=1 E(x,y)∼Di

f
((

θg ⊛ gϕi
(x)

)
;x, y

)
.

Assumption 2. The parameters of global model and the gating layer can be bounded in a ball
with radius R. The following Lipschitz conditions hold: |f(θ;x, y) − f(θ′;x, y)| ≤ Lf ||θg − θ

′ ||,
||h(θi;x)− h(θ

′

i;x)|| ≤ Lh||θi − θ
′

i|| and ||g(ϕi;x)− g(ϕ
′

i;x)|| ≤ Lg||ϕi − ϕ
′

i||, where h(θi; ·) is
the sparse model parameterized by θi and g(ϕi; ·) indicates the gating layer parameterized by ϕi.

Let the parameter spaces of the sparse model and gating layer be of size d and dϕ, separately. With
the above assumption, we have the following theorem regarding the generalization error bound.

Theorem 1. Under Assumption 2, there exist Ñ =

O
(

d

|C|ϵ2
log

RLfLh(RLg + 1)

ϵ
+

dϕ
ϵ2

log
RLfLh(RLg + 1)

ϵ
− log δ

|C|ϵ2

)
such that for all θg , ϕi, with probability at least 1− δ, |L(θg, ϕi)− L̂(θg, ϕi)| ≤ ϵ when the number
of client i’s local data samples is greater than Ñ .

Theorem 1 indicates the generalization depends on the size of the global model (i.e., d) reduced by
the number of clients |C| (the first term), as the global model is shared by all clients. It also depends
on the size of the gating layers (the second term), and it is not reduced by |C| since each client has its
own personalized parameters. Besides, the generalization is also affected by the Lipschitz constants
of the global model, sparse model, and the gating layer, as they together constrain the parameter
space that our method can search.

6.2 CONVERGENCE

Under the following a few mild assumptions that are commonly used in convergence analysis of
many FL works (Kairouz et al., 2021; Li et al., 2020) (more discussion about these assumptions are
in Appendix D), we can see that the learnable parameters of pFedGate (θg and {ϕi}i∈C) converge to
stationary points, meanwhile the global model updates {∆θtg,i}i∈Cs

become arbitrarily small.
Assumption 3. (Smoothness) For all clients i ∈ C, (x, y) ∈ Di and all possible θg, the function
f(θg;x, y) ≜ ℓ(hθg (x), y) is twice continuously differentiable and L-smooth: ||∇f(θ

′

g;x, y) −
∇f(θg;x, y)||2 ≤ L||θ′

g − θg||.
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Assumption 4. (Bounded Output) The function f is bounded below by f∗ ∈ R.

Assumption 5. (Bounded variance) For client i ∈ C and all possibile θg, given data sample (x, y)
drawn from local data Si, the local gradient estimator ∇θℓ(hθg (x), y) is unbiased and has bounded
variance σ2.
Theorem 2. Under Assumptions 1–5, if clients use SGD as local optimizer with learning rate η,
there exist a large enough number of communication rounds T

′
, such that pFedGate converges with

η = η0√
T ′

:
1

T ′

T
′∑

t=1

E
∥∥∥∇θf

((
θtg ⊛ gϕt

i
(x)

)
;x, y

)∥∥∥2

≤ O
(

1√
T ′

)
, ∀i ∈ C, (7)

where the expectation is over the random samples and O(·) hides polylogarithmic factors.

6.3 SPACE-TIME COMPLEXITY

We briefly summarize the efficiency of the proposed pFedGate method in terms of space-time costs.
The training and inference cost of pFedGate is O

(
d(si+sϕi)

)
for client i at each round, where the

model sparsity si and relative sparsity of gating layer sϕi
= cound(ϕi ̸= 0)/d are usually small and

lead to (si+sϕi
) < 1. By contrast, the computation cost of FedAvg and several SOTA pFL methods

is at least O(d). The introduced sparsity provides great potential for boosting computation efficiency.
As for the communication, the upload parameter number of pFedGate is O(qid) that can be also
smaller than the one of baselines, O(d). Here the qi = count(∆θi ̸= 0)/d indicates the ratio of
non-zero model updates, which depends on si and local samples trained in the round. In Appendix E,
we provide detailed discussions to show superiority of pFedGate over several SOTA competitors.

7 EXPERIMENTS

7.1 EXPERIMENTAL SETTINGS

We adopt four widely used FL datasets in our experiments: EMNIST (Cohen et al., 2017), FEMNIST
(Caldas et al., 2018), CIFAR10 and CIFAR100 (Krizhevsky, 2009). They are partitioned into several
sub-datasets to simulate the local dataset for a client, and each of them is randomly split into
train/val/test datasets with ratio 6:2:2. In the experiments, the data partition follows the heterogeneous
settings adopted by Marfoq et al. (2021); Dinh et al. (2020b). We evaluate pFedGate in terms of both
personalization and FL efficiency. For personalization, we use standard FedAvg (McMahan et al.,
2017) and FedAvg with fine-tuning (FedAvg-FT) as the baselines, and also choose several SOTA pFL
methods, including pFedMe (Dinh et al., 2020b), LG-FedAvg (Liang et al., 2020), Ditto (Li et al.,
2021c) and FedEM (Marfoq et al., 2021). As for efficiency, we compare several SOTA pFL methods
that improve efficiency via shared model representations (FedRep (Collins et al., 2021)), binary
quantization (FedMask Li et al. (2021a)), and sparse sub-models (HeteroFL (Diao et al., 2021)). Due
to limited space, please refer to Appendix G for more details about the datasets, models and baselines.

7.2 OVERALL PERFORMANCE

Clients’ Average Performance. We first examine the overall performance by evaluating the accuracy
on local test set of each client, and averaging the results of all clients with weights proportional to
their local dataset sizes. The detailed overall performance is shown in Table 1, where s̄′ indicates the
average of finally achieved sparsity across all clients (our block-wise operation may lead to s̄′ ≤ s).
We can see that pFedGate achieves better accuracy (averaged 3.1% to 4.53% accuracy improvements)
and smaller sparsity even with s=0.3 at the same time. Compared with FedEM, the baseline with
best accuracy, pFedGate doesn’t have the heavy storage burden, since FedEM needs to store multiple
(3) global models in the client. These observation demonstrate the effectiveness and efficiency of
the proposed method. Note that compared to the SOTA efficient method HeteroFL, our method
achieves better accuracy while with smaller sparsity (0.25 v.s. 0.55). When s=1, we achieve the best
performance without sparsity constraints, verifying that the sample-level block-wise adaptation has a
strong ability to achieve personalization. When s<1, we still gain comparable performance with s=1,
providing evidence that there exist well-performed sparse models and they can be effectively learned
by our approach.
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Table 1: Accuracy comparison on widely-adopted FL datasets. Acc (%) and

(

Acc (%) indicates the
average accuracy of all clients and accuracy of the bottom decile clients respectively. s̄′ indicates the
average of finally achieved sparsity across all clients. Bold and underlined numbers indicate the best
and second-best results respectively.

EMNIST FEMNIST CIFAR10 CIFAR100 Average
Acc

(

Acc Acc

(

Acc Acc

(

Acc Acc

(

Acc Acc

(

Acc

Local 71.91 64.28 71.12 57.93 61.91 53.71 26.95 21.13 57.97 49.26
FedAvg 82.54 75.07 76.51 60.82 68.33 60.22 35.21 29.82 65.65 56.48
FedAvg-FT 83.19 76.83 78.43 64.22 69.91 61.55 37.15 30.91 67.17 58.38
pFedMe 83.29 76.48 75.29 57.63 70.29 62.13 36.14 30.13 66.25 56.59
LG-FedAvg 83.25 76.14 75.13 57.62 69.54 61.86 36.72 30.51 66.16 56.53
Ditto 82.75 78.12 79.29 63.24 73.14 62.59 37.32 30.11 68.13 58.52
FedEM 83.41 76.59 80.12 64.81 72.43 62.88 38.28 31.04 68.56 58.83

FedRep 82.42 77.71 79.17 62.89 72.77 63.44 36.68 30.51 67.76 58.64
FedMask, s̄′=0.5 81.95 77.26 78.69 62.18 72.43 62.88 36.21 30.13 67.32 58.11
HeteroFL, s̄′=0.55 85.64 77.76 77.22 59.13 70.97 63.64 37.01 31.27 67.71 57.95

pFedGate, s=1 87.11 81.43 87.32 77.14 75.18 66.67 42.01 35.03 72.91 65.07
s=0.5, s̄′=0.43 87.28 81.15 86.31 75.68 74.07 64.21 40.07 32.38 71.93 63.36
s=0.3, s̄′=0.25 87.09 82.52 86.75 76.47 73.65 64.39 39.53 31.63 71.76 63.75

Figure 3: The client-wise accu-
racy difference between pFedGate
and FedEM on CIFAR10 dataset.

个性化-层级聚类
• CIFAR10, 10 clients

• by client mask vector

Client 3 Client 5       Client 1      Client 4     Client 0       Client 7     Client 9     Client 2      Client 6 Client 8
Y: [7, 8 ,9]      Y: [7, 8]        Y: [1, 2]     Y: [0, 1, 9]     Y: [0, 2]      Y: [3, 4, 5]       Y: [3, 4]      Y: [5, 6]       Y: [5, 6, 9]         Y: [2, 3, 6, 7]

Y: [7, 8 ,9]

Y: [0, 1, 2, 9]

Y: [3, 4, 5]

Y: [5, 6, 9]

Y: [2, 3, 5, 6, 7, 9]
Y: [0, 1, 2, 9]

Figure 4: The hierarchical clustering result for parameters of
clients’ gating layers on CIFAR-10 with 10-clients partition.

Individual Client Performance. We then examine whether pFedGate improved the average perfor-
mance by sacrificing the performance of some clients. In Table 1, we mark the accuracy of bottom
decile local models

(

Acc as the ⌊|C|/10⌋)-th worst accuracy (following Marfoq et al. (2021), we
neglect the particularly noisy results from clients with worse accuracy due to their very small local
data sizes). We find that pFedGate also gains significant

(

Acc improvement (averaged 4.92% to 6.24%
than FedEM). We plot the client-wise accuracy difference between our method with s = 0.5 and
the strongest baseline, FedEM in Figure 3, in which pFedGate significantly improves most clients
compared to the strongest baseline. The results in Table 1 and Figure 3 show that pFedGate not
only improves the average accuracy and efficiency, but also fairly improves the individual client
performance by learning to generate personalized models with adaptive gating layers.

7.3 PERSONALIZATION STUDY

We propose to learn personalized gating layers [ϕi] that estimate the heterogeneous data distribution
with sparse model-adaption. To investigate the level of personalization achieved by pFedGate, we
conduct experiments on another CIFAR10 non-i.i.d. partition with 10 clients and pathological splitting
(McMahan et al., 2017) that sorts the data by labels and assigns to clients with equal-sized shards.

We do hierarchical clustering for the parameters of learned gating layers [ϕi] with Ward’s method
(Ward Jr, 1963) and euclidean distance. We illustrate the results in Figure 4 when the models of
clients converge with s=0.3 and achieve good performance (Acc=89.21%), where we mark the local
label categories of clients and common label categories after merging in red numbers. Interestingly,
we can see that clients learn gating layers with smaller parameter distances along with they share
more similarities in label categories. This indicates that pFedGate not only can achieve good client-
distinct personalization, but also implicitly learn the group-wise personalization with a strong sparsity
constraint, which could be beneficial to applications where there are inherent partitions among clients.
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Table 2: Average accuracy and round to achieve 0.8·Acc
accuracy (T0.8) normalized by standard pFedGate.

EMNIST CIFAR100
Acc T0.8 Acc T0.8

pFedGate, s=0.5 87.28 1 39.72 1

w/o pre-norm 86.25 1.13 38.32 1.24
w/o post-norm 87.14 1.10 39.67 1.43
w/o sigmoid 83.55 1.85 31.29 1.93
client-wise adaptation 84.83 0.74 33.52 0.86

s
Figure 5: The accuracy on EMNIST
when varying s.

7.4 ABLATION STUDY

Choices of Gating Layer. To gain further insight into our method, we ablate the gating layer w.r.t. its
switchable norm layer (pre-norm) and batch norm layer (post-norm) within the sandwich structure
and the sigmoid activation that bounds the gated weights. We also change the sample-wise adaption
into client-wise manner by feeding the input feature mean-pooled over all local training data samples
of each client. We show the results in Table 2 with s=0.5.

We find that the two normalization layers improve the convergence speed. Beside, pre-norm has
a larger impact on performance than post-norm since it helps to handle the heterogeneous feature
distribution. The sigmoid significantly impacts both the convergence and accuracy, showing effec-
tiveness of gated weights bounding operation, which restricts the dissimilarity level between the
personalized model and global model, and in turn helps to learn a global model suitable for different
clients. Compared to sample-level manner, although client-wise adaption achieves a faster training, it
pays cost of significant accuracy drop due to the coarser-grained modeling of conditional distribution
of local data and smaller parameter space could be explored under sparsity constraints. In a nutshell,
the ablation results verify effectiveness and necessity of our choices in gating layer.

Effect of s. We further study the effect of the sparsity factor s by varying s from 1 to 0.1 on EMNIST
dataset and illustrate the results in Figure 5, in which “[0.5, 0.1]” indicates that we randomly divide
all clients into two equal-sized parts and set s to be 0.5 and 0.1 for these two parts respectively. We
can see that our method is robust to keep a good performance when adopting not very small sparsity
degrees. Another observation is that the performance variance increases as s decreases. Besides, our
method still performs well in a sparsity-mixed setting, verifying the robustness of our method again.

7.5 OVERVIEW OF MORE EXPERIMENTS IN APPENDIX

Due to the space limitation, we provide further experiments and analysis in Appendix in terms of

• Generalization: In Appx.H.1, we present additional results of pFedGate for the un-seen clients that
haven’t participated in the FL training stage (Diao et al., 2021; Marfoq et al., 2021; Yuan et al.,
2022), in which case pFedGate achieves better performance than baselines since it only needs to
train the personalized lightweight gating layers with a small number of parameters.

• Robustness: In Appx.H.2, we conduct experiments in partial clients participation case with sampling
technique to further verify the effectiveness and robustness of pFedGate in practical FL scenarios.

• Convergence and model compression manner: In Appx.H.3, we show that pFedGate can achieve
effective optimization, which supports the Theorem 2. In Appx.H.4, we vary the block splitting
factor B of pFedGate and make more detailed comparison to FedMask (Li et al., 2021a).

8 CONCLUSION

Existing personalized Federated Learning (pFL) methods usually focus on the heterogeneity of local
data distribution only and pay additional computation and communication costs. In this paper, we
explore the organic combination of model compression and pFL by adaptively generating different
sparse local models at a fine-grained sample level, which gains double benefit of personalization
performance and efficiency. Theoretical analysis are provided w.r.t. generalization, convergence and
space-time complexity. Extensive experiments are conducted to verify the effectiveness, efficiency
and robustness of the proposed method in various benchmarks and scenarios. We demonstrate the
feasibility of obtaining superior accuracy and efficiency simultaneously for pFL, and believe this
work can enlighten more studies on efficient and practical pFL.
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REPRODUCIBILITY STATEMENT

For the proposed proposition and theorems, we give the complete proof in Appendix B (for propo-
sition 1), Appendix C (for theorem 1) and Appendix D (for theorem 2). More introduction and
implementation details of experimental setups are also presented in Appendix G, including configura-
tions for the datasets, models and baselines and our method. To facilitate the reproducibitlity, we
summarize the algorithm of the proposed method in Appendix A and provide the source codes in the
anonymous link, https://github.com/AnonyMLResearcher/pFedGate.
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Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In ICLR, 2021.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
Fedpaq: A communication-efficient federated learning method with periodic averaging and quanti-
zation. In AISTATS, pp. 2021–2031. PMLR, 2020.

Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,
Joseph Gonzalez, and Raman Arora. Fetchsgd: Communication-efficient federated learning with
sketching. In ICML, pp. 8253–8265. PMLR, 2020.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. TNNLS, 2020.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning using
hypernetworks. In Marina Meila and Tong Zhang (eds.), ICML, volume 139, pp. 9489–9502, 7
2021.

Karan Singhal, Hakim Sidahmed, Zachary Garrett, Shanshan Wu, John Rush, and Sushant Prakash.
Federated reconstruction: Partially local federated learning. Advances in Neural Information
Processing Systems, 34, 2021.

12



Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated Multi-Task
Learning. In NeurIPS, volume 30, pp. 4427–4437, 2017.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
arXiv preprint arXiv:2103.00710, 2021.

Wan Tianchun, Cheng Wei, Luo Dongsheng, Yu Wenchao, Ni Jingchao, Tong Liang, Chen Haifeng,
and Xiang Zhang. Icdm. In Personalized Federated Learning via Heterogeneous Modular Networks,
2022.

Joe H Ward Jr. Hierarchical grouping to optimize an objective function. JASA, 58(301):236–244,
1963.

Hongwei Yang, Hui He, Weizhe Zhang, and Xiaochun Cao. FedSteg: A Federated Transfer Learning
Framework for Secure Image Steganalysis. IEEE TNSE, 2020.

Qian Yang, Jianyi Zhang, Weituo Hao, Gregory P Spell, and Lawrence Carin. Flop: Federated
learning on medical datasets using partial networks. In KDD, pp. 3845–3853, 2021.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and
applications. arXiv: Artificial Intelligence, 2019.

Fuxun Yu, Weishan Zhang, Zhuwei Qin, Zirui Xu, Di Wang, Chenchen Liu, Zhi Tian, and Xiang
Chen. Fed2: Feature-aligned federated learning. In KDD, pp. 2066–2074, 2021.

Honglin Yuan, Warren Richard Morningstar, Lin Ning, and Karan Singhal. What do we mean by
generalization in federated learning? In International Conference on Learning Representations,
2022.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, and Nghia Hoang. Sta-
tistical model aggregation via parameter matching. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32, 2019a.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In International
Conference on Machine Learning, pp. 7252–7261. PMLR, 2019b.

Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie Wu. Parameterized
knowledge transfer for personalized federated learning. In NeurIPS, volume 34, 2021a.

Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M Alvarez. Personalized federated
learning with first order model optimization. In ICLR, 2020.

Qingsong Zhang, Bin Gu, Cheng Deng, Songxiang Gu, Liefeng Bo, Jian Pei, and Heng Huang.
Asysqn: Faster vertical federated learning algorithms with better computation resource utilization.
In KDD, pp. 3917–3927, 2021b.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
federated learning. In ICML, 2021.

13



APPENDICES FOR THE SUBMISSION: EFFICIENT PERSONALIZED FEDERATED
LEARNING VIA SPARSE MODEL-ADAPTATION

We provide more details and further experiments about our work in appendices:

• Sec.A: the summarized algorithm of the proposed method.

• Sec.B: the full proof of Proposition 1.

• Sec.C: the full proof of Theorem 1.

• Sec.D: the full proof of Theorem 2.

• Sec.E: the detailed discussion about the space-time complexity comparing with other FL
methods.

• Sec.E: the detailed discussion about more related works.

• Sec.G: the implementation details of experiments such as datasets, baselines, models,
hyper-parameters and sparse model aggregation procedure of pFedGate.

• Sec.H: further experimental results including: Sec.H.1, the performance in novel client
participation case; Sec.H.2, the performance in partial clients participation case; Sec.H.3,
the convergence study; and Sec.H.4, the model compression manner study, in which we
compare pFedGate to the SOTA binary quantization method FedMask (Li et al., 2021a).

A THE ALGORITHM OF THE PROPOSED PFEDGATE METHOD

Algorithm 1: Efficient Personalized FL with pFedGate

Input: T , ηg , η, θ0g , {ϕ0
i }i∈C , smin, {si}i∈C

1 for t = 1, · · · , T do
2 Server sends θt−1

g to clients Cs sampled from C
3 for client i ∈ Cs in parallel do
4 for data sample (x, y) ∈ Si do
5 Get sparse gated weight: M ′

i = g(ϕt−1
i ;x)

6 Do personalized model-adaption: θ
′

i = θt−1
g ⊛M ′

i

7 Update global model and local gating layer: θtg = θt−1
g − ηg(∇θf(θ

′

i;x, y))

8 ϕt
i = ϕt−1

i − η(∇ϕθ
′

i∇θf(θ
′

i;x, y))
9 Upload sparse ∆θtg,i := θtg − θt−1

g

10 Server updates global model: θtg = AGGREGATE
(
θt−1
g , {∆θtg,i}i∈Cs

)
11 return θg , {ϕi}i∈C

We summarize the overall algorithm in Algorithm 1. Besides, we present more details about the
gradients flow through the gating layer, which contains a knapsack solver.

We leverage the straight-through trick (Hubara et al., 2016) to make the combination of the two
flows predicted by the gating layer (red G and blue M in Figure 2) still differentiable. Recall that
the combination is M ′ = M · I∗ where I∗ is a binary index and a solution to the knapsack problem
(Section 5.2). The “straight-through” (ST) here means that we build such a computation graph, in
which we only use binary variable I∗ in the forward pass stage, while replace I∗ into the differentiable
variable G in backward gradient propagation. Specifically, this can be implemented by the following
demonstrative PyTorch code: I∗ST = I∗ - G.detach() + G. In this way, the tensor I∗ST and M are both
differentiable and can be used to pass the gradient flow via their combination tensor M ′ = I∗ST ∗M
and the following adapted tensor of the sparse model θ

′

i = θt−1
g ⊛M ′

i . And thus we can train the
personalized model and the gating layer as Algorithm 1, lines 6 and 7 shown.
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B PROOF OF PROPOSITION 1

Since f is µ-strongly convex, by definition we have

f(θ′) ≥ f(θ) +∇θf(θ)
T (θ′ − θ) +

µ

2
∥θ′ − θ∥2, ∀θ, θ′. (8)

We have f ′(θ) = f(θ)− µ
2 ||θ||

2 is also convex due to the first order condition of f with Equation
(8). Considering the monotone gradient condition for convexity of f ′, we get

(∇θf(θ)−∇θf(θ
′))T (θ − θ′) ≥ µ∥θ − θ′∥2, ∀θ, θ′. (9)

Applying Cauchy-Schwartz inequality on Equation (9), we get
∥∇θf(θ)−∇θf(θ

′)∥∥θ − θ′∥
≥ (∇θf(θ)−∇θf(θ

′)T (θ − θ′)

≥ µ∥θ − θ′∥2.
(10)

Dividing ∥θ − θ′∥ on both sides of Equation (10), we get
∥θ − θ′∥ ≤ ∥∇θf(θ)−∇θf(θ

′)∥/µ, ∀θ, θ′. (11)
Under Assumption 1, for all (θ∗i , θ

∗
g) pairs with Equation (11), we have

∥(M∗
i − 1)θ∗g∥2 ≤ · σ

2
i

µ2
, ∀i ∈ C. (12)

Using the reversed Cauchy-Schwarz inequality (Hardy et al., 1952), we have
Ai · ∥(M∗

i − 1)θ∗g∥2 ≥ ∥(M∗
i − 1)∥∥θ∗g∥, (13)

where Ai = 1
4

(Rθi
Rθg+rθirθg )

2

Rθi
Rθg rθirθg

is a positive constant, rθi and rθg are the infimum of θi and θg

respectively, Rθi and Rθg are the supremum of θi and θg respectively. Since RθiRθg ≥ rθirθg , we

have Ai ≤ 1
4

(2Rθi
Rθg )

2

Rθi
Rθg rθirθg

=
Rθi

Rθg

rθirθg
. Combining Equation (12) and Equation (13), we get the upper

bound in Propostion 1 and finish the proof.

C PROOF OF THEOREM 1

Let Hn denote the function space with its elements parametrized by θg , ϕ1, · · · , ϕn and the distance
metric is defined as:

d((θg, ϕ1, · · · , ϕn)− (θ
′

g, ϕ
′

1, · · · , ϕ
′

n))

=
1

n
Ex,y∼Di

[∣∣∣∑(f(θg, ϕi;x, y)−
∑

f(θ
′

g, ϕ
′

i;x, y)
∣∣∣] , (14)

With the Lipshitz conditions in Assumption 2, we have:

d((θg, ϕ1, · · · , ϕn)− (θ
′

g, ϕ
′

1, · · · , ϕ
′

n))

≤
∑
i

1

n
Ex,y∼Di

[
ℓ(hθg,ϕi

(x), y)− ℓ(hθ′
g,ϕ

′
i
(x), y)

]
≤Lf ||hθg,ϕi

− hθ′
g,ϕ

′
i
||

=Lf ||hs(θi)− hs(θ
′

i)||

≤LfLh||θgMi − θ
′

gM
′

i || (Lipshitz condition)

≤LfLh||θgMi − θgM
′

i + θgM
′

i − θ
′

gM
′

i ||

≤LfLh

[
||θg|| · ||Mi −M

′

i ||+ ||M
′

i || · ||θg − θ
′

g||
]

≤LfLh

[
R||Mi −M

′

i ||+ ||θg − θ
′

g||
]

(Assumption 2)

≤LfLh

[
R||g(ϕi)− g(ϕ

′

i)||+ ||θg − θ
′

g||
]

≤LfLh

[
RLg||ϕi − ϕ

′

i||+ ||θg − θ
′

g||
]
, (Lipshitz condition)

(15)
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where R is radius of the ball that can bound the parameters of global model and the gating layer (men-
tioned in Assumption 2). We can get an ϵ-covering in metric d((θg, ϕ1, · · · , ϕn)− (θ

′

g, ϕ
′

1, · · · , ϕ
′

n))

if we select a covering of in the parameter space with both ||ϕi − ϕ
′

i|| and ||θg − θ
′

g|| equal to
ϵ

LfLg(RLg+1) . Therefore, the covering number of H|C|, denoted as B(ϵ,H|C|) is: log(B(ϵ,H|C|) =

O
(
(|C|dϕ + d) log

RLfLh(RLg+1)
ϵ

)
.

According to Baxter (2000); Shamsian et al. (2021), there exit Ñ and Ñ = O
(

1
nϵ2 log

B(ϵ,H|C|)
δ

)
=

O
(

d
|C|ϵ2 log

RLfLh(RLg+1)
ϵ +

dϕ

ϵ2 log
RLfLh(RLg+1)

ϵ − log δ
|C|ϵ2

)
.

D PROOF OF THEOREM 2

We note that Marfoq et al. (2021) extends the surrogate optimization into FL setting and provide
convergence results for the algorithms which approximates the target objective functions using first-
order surrogate or partial first-order surrogate functions. For simplicity, we use two more compact
notations for all the learnable parameters introduced in our formulation as v⃗M ′ ≜ {Mi}i∈C and
v⃗M ′ ,ϕ ≜ {M ′

i = g(ϕi;x)}i∈C,x∈Xi
. Here we prove that our method described in Algorithm 1 can

be regarded as to optimize the objective function F (θg, v⃗M ′ ) in Equation (5) with another partial
first-order surrogate function, and the convergence results from Marfoq et al. (2021) can be applied
into our method. We first recap the formal definition of partial first-order surrogate:
Definition 1 (Partial first-order surrogate Marfoq et al. (2021)). A function F ′(u⃗, v⃗) : Rdu × V → R
is a partial-first-order surrogate of F (u⃗, v⃗) wrt u⃗ near (u⃗0, v⃗0) ∈ Rdu × V when the following
conditions are satisfied:

1. F ′(u⃗, v⃗) ≥ F (u⃗, v⃗) for all u⃗ ∈ Rdu and v⃗ ∈ V;

2. e(u⃗, v⃗) ≜ F ′(u⃗, v⃗)− F (u⃗, v⃗) is differentiable and L-smooth with respect to u⃗. Moreover,
we have e(u⃗0, v⃗0) = 0 and ∇u⃗e(u⃗0, v⃗0) = 0.

3. F ′(u⃗, v⃗0) − F ′(u⃗, v⃗) = dV (v⃗0, v⃗) for all u⃗ ∈ Rdu and v⃗ ∈ argminv⃗′∈V F ′(u⃗, v⃗′), where
dV is non-negative and dV(v⃗, v⃗

′) = 0 ⇐⇒ v⃗ = v⃗′.

Definition 1 indicates that in partial parameter set V , F ′ is majorant to F and the smoothness is
satisfied in the neighborhood of given point.

Denote F ′
i (θg, v⃗M ′,ϕ) as the transformed local objective function depicted by the gating layer ϕi, i.e.,

the sparse gated weight M
′

i is generated by the process described in Section 5.2 and intermediate
objective in Equation (6). We then restrict our attention from the function F (θg, v⃗M ′ ) over all clients
into |C| local functions Fi(θg, v⃗M ′ ,ϕ) for each client i, since the weighted sum operation is convex
and holds the partial majorization and smoothness properties. Consider the iterative version of Fi

and F ′
i corresponding to the produce in Algorithim 1. We have the partial set of gated weights

Vϕ = {{M ′

i = g(ϕt
i;x)}x∈Xi

}ϕt
i=argminϕ(F

′
i (θ

t−1
g ,v⃗t−1

ϕ )) for all t ∈ [T ]. For v⃗M ′ ,ϕt
i
∈ Vϕ, due to

the optimality of ϕt
i and equality between v⃗M ′ and v⃗M ′ ,ϕt

i
using block-to-element scatter operation

on the gated weights, we have F ′
i (θg, v⃗M ′ ) = Fi(θg, v⃗M ′ ,ϕt

i
) and Condition 1 satisfied.

Note that the difference between F ′
i (θg, v⃗M ′ ) and Fi(θg, v⃗M ′ ,ϕ) is differentiable w.r.t. θg since

both of them is differentiable by adopting either element-wise or block-wise production on θg
and the sparse gated weights. With the smoothness Assumption 3, we have the Condition 2 sat-
isfied. For the Condition 3, it is clear that if the right statement holds, i.e., v⃗M ′ ,ϕ = v⃗′

M ′ ,ϕ
, then

dV(v⃗M ′ ,ϕ, v⃗
′
M ′ ,ϕ

) = F ′
i (θg, v⃗M ′ ,ϕ) − F ′

i (θg, v⃗
′
M ′ ,ϕ

) = 0 and we have the sufficiency between the
two statements of Condition 3 satisfied. For the necessity between the two statements of Con-
dition 3, we can consider such a set Vϕ \ (Ṽϕ ∪ Vϕ), where Ṽϕ indicates the subset of Vϕ in
which t ∈ [T̃ , T ] if F ′

i converges at step T̃ ≤ T , and Vϕ indicates the subset of Vϕ in which
t ∈ {t′|F ′

i (θ
t−1
g , v⃗t−1

ϕ ) = F ′
i (θ

t′−1
g , v⃗t

′−1
ϕ ),∀t, t′ ∈ [T ], t′ ̸= t}. The new partial subset ensures the

optimal v⃗M ′ ,ϕ is unique by discarding the redundant v⃗M ′ ,ϕ that have the same F ′
i (θg, v⃗M ′ ,ϕ). For
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such a new partial subset Vϕ \ (Ṽϕ ∪ Vϕ), we have the necessity between the two statements of Con-
dition 3 satisfied due to the uniqueness of the solutions of argminv⃗′

M
′
,ϕ
∈Vϕ\(Ṽϕ∪Vϕ)

F ′(θ⃗g, v⃗
′
M ′ ,ϕ

),

and the Condition 1 and Condition 2 still hold since Vϕ \ (Ṽϕ ∪ Vϕ) is a subset of Vϕ.

We finally show that the assumptions required by the convergence proof in Marfoq et al. (2021) hold
when using our approach.
Proposition 2. Under the assumptions 1–5, when taking the parameter from θg to θϕi = θg ⊛ ϕi(x)
over all i ∈ C, x ∈ Xi, the gradient variance of f and diversity across clients are also bounded, and
the smoothness of f holds.

Proof. Note that using the chain rule, the gradients on ϕi can be written as ∇ϕ(f(θϕi
;x, y)) =

∇ϕθϕi
∇θf(θϕi

;x, y) for (x, y) ∈ Di. For simplicity, we denote ∇ϕ(f(θϕi
;x, y)) ≜ f(θϕi

). Since
we generate sparse model as θϕi

= θg ⊛ M
′

i , we have ∇ϕθϕi
= M

′

i∇ϕM
′

i . The block-wise
production operation ⊛ is differentiable and f over θg is differentiable according to Assumption 3,
thus f over ϕi is also differentiable. Then recall that the optimal gated weights are bounded as shown
in Proposition 1. Further, we explicitly bound the sparse gated weight during FL training process in
[0, 1]L using sigmoid function as introduced in Section 5.2. We thus can assume that

||∇ϕθϕ′
i
−∇ϕθϕi

|| ≤ Lϕ||θϕ′
i
− θϕi

||2, (16)

where Lϕ is a Lipshitz constant corresponding to our bounded gated weights. We get

||∇ϕf(θϕ′
i
)−∇ϕf(θϕi

)||2

=||∇ϕθϕ′
i
∇θf(θϕ′

i
)−∇ϕθϕi∇θf(θϕi)||2 (Chain Rule)

=||∇ϕθϕ′
i
∇θf(θϕ′

i
)−∇ϕθϕ′

i
∇θf(θϕi

) +∇ϕθϕ′
i
∇θf(θϕi

)−∇ϕθϕi
∇θf(θϕi

)||2

≤||∇ϕθϕ′
i
∇θf(θϕ′

i
)−∇ϕθϕ′

i
∇θf(θϕi

)||2 + ||∇ϕθϕ′
i
∇θf(θϕi

)−∇ϕθϕi
∇θf(θϕi

)||2

≤L||∇ϕθϕ′
i
||2||θϕ′

i
− θϕi ||2 + Lϕ||∇θf(θϕi)||2||θϕ′

i
− θϕi ||2 (Assumption 3 & Eqn. (16))

≤2LLϕ||θϕ′
i
− θϕi

||2,
(17)

where the last two lines is because of that Lipschitz implies bounded gradient. Thus we get that f is
(2LLϕ)-smooth using our method. Similar to the proof of smoothness that leverages the chain rule
and bounded Mi, we can generalize Assumption 1 and Assumption 5 for our method such that the
gradients dissimilarity is bounded and f has bounded variance characterized by another constant
factor.

Now we see that each client can optimize a partial first-order surrogate function and the necessary
assumptions satisfy with Proposition 2. Applying the Theorem 3.2

′
in Marfoq et al. (2021), we

conclude the proof of our Theorem 2.

Remark on the assumptions. We note that the adopted theoretical assumptions are widely used by
numerous related FL works. Specifically, the assumptions 1 (bounded data diversity), 3 (smoothness
of f ), 4 (bounded output of f ), 5 (bounded gradients variance) are used in works such as Li et al.
(2019); Ma et al. (2022); Dinh et al. (2020b); Liang et al. (2020); Marfoq et al. (2021). These
assumptions are reasonable and fairly mild in FL scenarios:

• The assumptions 3 and 4 are easily satisfied for most discriminative models such as neural networks
(Tan et al., 2021; Kairouz et al., 2021; Li et al., 2019).

• The assumptions 1 and 5 are necessary to a feasible and effective FL course, in which there is
knowledge that can be shared and mutually beneficial between the FL participants (Ma et al., 2022;
Dinh et al., 2020b; Liang et al., 2020; Marfoq et al., 2021).

• As for the assumption 2 (bounded parameters of the global model and the gating layer), it is
dependent on the hypothesis space of the adopted global model and gating layer, which are
controllable by users. For example, we can hard clip their model parameters, and introduce bounded
activation functions such as sigmoid into the gating layer structure as the proposed method does. A
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more specific example of this is our implementation, where we use zero initialization, kaiming-
uniform initialization and (0, 1)-uniform initialization for the parameters of adopted global model
and gating layer, which leads to all these init parameters are bounded by one of 0, 1, or constants
calculated by the bounded fan_in (usually determined by the data shape). Then during the FL
courses, we clip the gradients at each backpropagation step (via torch.nn.utils.clip_grad_norm_()),
resulting in the bounded parameters and thus the assumption holds.

• Besides, assumption similar to our assumption 2 can be found in the related pFL work,
pFedHN (Shamsian et al., 2021), in which the authors assume that their introduced weights
of the hyper-network and the embeddings are bounded and follow several Lipschitz conditions with
constants different from ours.

E SPACE-TIME COMPLEXITY

Table 3: The proposed pFedGate achieves better computation, communication and storage complexity
over state-of-the-art personalized FL methods. The underlined results indicate the examples when
taking default hyper-pameters: the embedding and hypernetwork size dv = 0.25|C|, dh = 100 for
pFedHN Shamsian et al. (2021), the component model number k = 3 for FedEM Marfoq et al.
(2021), the client sparsity si = 0.5, and relative sparsity of gating layer sϕi

= d/2dXL = 0.05 for
pFedGate. Besides, for pFedGate, we report the average non-zero parameter ratio qi = 0.67, which
is dependent on datasets and local training steps. Here we report the average value of qi when we run
FL experiments 3 times on FEMNIST and CIFAR10 with si = 0.5, local update step as 1 epoch, and
batch size as 128.

FedAvg pFedHN FedEM pFedGate

Computation

Train (Client) O(2d) O(2d) O(2kd) O
(
2d(si + sϕi)

)
O(6d) O(1.1d)

Infer (Client) O(d) O(d) O(d) O
(
d(si + sϕi)

)
O(0.55d)

Train (Server) O(1) O
(
(dv + dh)|Cs|

)
O(1) O(1)

O(6d) O
(
(0.25|C|+100)|Cs|

)
Communication

Client O(d) O(d) O(kd) O(qid)
O(3d) O(0.67d)

Server O(d|Cs|) O(d|Cs|) O(kd|Cs|) O(d|Cs|)
O(3d|Cs|)

Storage
Client O(d) O(d) O(kd) O

(
(1 + sϕi)d

)
O(3d) O(1.05d)

Server O(d) O(dvdh + dv|C|) O(kd) O(d)
O(25|C|+0.25|C|2) O(3d)

We now examine the efficiency of pFedGate described in Algorithm 1 in terms of computation,
communication, and storage costs. We will see that pFedGate gains improvements on computation
and communication costs with a tolerable storage cost. Table 3 summarizes the costs for pFedGate
and competitors including FedAvg and two SOTA personalized FL methods, where the training
and inference costs on client is considered for each training batch (or each sample when the batch
size is 1), and the communication cost is considered for each FL round. We also mark some
specific example values when taking the default hyper-parameters of different methods in Table 3.
For comparison simplicity, here we assume that for the computation costs, the inference and back-
propagation times are proportional to the model size. We hide both constants and polylogarithmic
factors dependent on the specific model architectures in O(·), since we compare these methods
with the same model architectures and the same trained data samples. As for communication and
storage, O(·) hides constants and lower-order factors dependent on specific implementations such
as platforms, storage, and communication protocols. The pFedGate uploads parameters in O(qid),
where qi = count(∆θi ̸= 0)/d indicates the ratio of non-zero model updates. Specifically, qi can be
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regarded as the probability that a parameter is finally not masked in the local training process. We
can consider qi =

(
1−

∏|S|
j=1(1− pj)

)
, where pj indicates the probability that a parameter is not

within the sub-blocks the gating layer predicts to mask when taking the j-th data batch as input, and
|S| indicates the number of data batches trained in each local FL round. Note that p1 is equal to the
sparsity factor si at client i, and pj becomes smaller as j increases, due to the fact that the local data
samples usually share some similarities, and the newly predicted sub-blocks are more likely to be the
same as the sub-blocks have been selected.

From Table 3 we can see that pFedGate achieves better efficiency than FedAvg in training, inference,
and uploading with negligible additional storage cost on clients (as marked in red). By contrast,
to achieve good personalization, FedEM introduces more than one global model and pays larger
costs in training, communication, and storage (as marked in blue). And pFedHN learns client-wise
embedding in the server, which may lead to a single-point bottleneck for cross-device setting and
potentially disclose personal information.

F MORE RELATED WORK COMPARISON

Here we present more details about the works related to our method. QuPeD (Ozkara et al., 2021)
combines quantization and knowledge distillation for personalized federated learning. FedMask (Li
et al., 2021a) freezes the local models during the whole FL process, learns distinct binary masks for
the last several layers of the models, and only transmits and aggregates the learned masks. Different
from the quantization based methods, we adopts continuous gated weights on all sub-blocks of the
local model and transmits the sparse model updates, enabling flexible model size reduction and high
capability to capture the client relationships via the shared global model.

FedRep (Collins et al., 2021) proposes to upload partial sub-parameters as shared representation
and leave the others locally trained. HereroFL (Diao et al., 2021) selects different subsets of
global model parameters for clients based on their computational capabilities. Different from these
model-decoupling based works that use the same parameter subset for those clients having the same
computation capability, our method generates different sub-models from the whole global model with
a larger learnable parameter space to handle heterogeneous data distribution. More importantly, our
method differs from these works by adaptively generating the sparse model weights at a fine-grained
sample level, which achieves a good estimation for the conditional probability of heterogeneous local
data and high accuracy as shown in our experiments.

FedPNAS Minh & Carl (2021) leverages neural architecture search (NAS) to search suitable sub-
networks for clients, and FedMN Tianchun et al. (2022) proposes to use routing-hypernetwork to
select personalized sub-blocks. For the FedPNAS, we differ from it in the target and studied problem.
FedPNAS mainly focuses on improving the personalization performance with sufficient hardware
resources. For example, they adopt 5 clients in their experiments that usually correspond to the
cross-silo case. While pFedGate focuses on the cross-device setting, where the clients’ resources
are usually very limited. Compared with FedMN, the performance of pFedGate is theoretically
guaranteed for both generalization and convergence. While FedMN doesn’t provide any theoretical
analyses for generalization or convergence. Besides, the proposed pFedGate method adopts a much
larger hypotheses space than FedMN. In FedMN, each modular is either connected or dropped. While
pFedGate doesn’t only decide the connections of network (connected or dropped), but also scales
weights of the remained blocks simultaneously to improve the personalized performance.

G IMPLEMENTATION DETAILS

Datasets. We conduct experiments on several widely used FL datasets including EMNIST Cohen
et al. (2017) and FEMNIST Caldas et al. (2018) for 62-class hadnwritten character recognition, and
CIFAR10/CIFAR100 Krizhevsky (2009) for 10-class/100-class image classification. We follow the
heterogeneous partition manners used in Marfoq et al. (2021); Caldas et al. (2018); Diao et al. (2021);
Fallah et al. (2020): FEMNIST was partitioned by writer and we generate the other three FL datasets
using Dirichlet allocation of parameter α=0.4. We adopt 10% sub-samples of EMNIST (81,425
samples) and 15% sub-samples of FEMNIST (98,671 samples), and allocate the sub datasets to 100
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and 539 clients for EMNIST and FEMNIST respectively. For CIFAR10/CIFAR100 (60,000 samples),
we allocate them to 100/50 clients. All datasets are randomly split into train/valid/test sets with ratio
6:2:2.

Baselines and models. We consider the following competitive baselines including SOTA personal-
ized and efficient FL methods in this work:

• FedAvg McMahan et al. (2017): the classical FL method that simply aggregates model
updates in a weighted averaging manner;

• FedAvg-FT: a basic personalised baseline that fine-tunes the global model with local data
before model local evaluation;

• Local: a naive personalized method that trains models on local datasets without FL commu-
nication;

• pFedMe Dinh et al. (2020b) decouples the personalized model and global model with
Moreau envelops based regularization;

• LG-FedAvg Liang et al. (2020) achieves personalization with improved communication
efficiency;

• Ditto Li et al. (2021b) is a SOTA pFL method that introduces a local personalized model for
each client, which is trained with model parameter regularization according to global model;

• FedEM Marfoq et al. (2021) deals with data heterogeneity via the mixture of multiple global
models. We use 3 models according to the authors’ default choice;

• FedRep Marfoq et al. (2021) proposes to improve the FL performance and communication
efficiency via sharing partial model parameters among FL participants. Only the low-layers
of models for feature extraction are uploaded to server and aggregated, and the remaining
head parameters are locally trained for personalization. Following the authors’ sharing
manner, we adopt the last classification layers as local personalized model parameter;

• FedMask Li et al. (2021a) learns distinct binary masks for the last several layers of the local
models, and aggregates the masks with an intersection operation. Following the mask layer
choice manner similar to the authors, in our experiments, the one-shot mask is applied in the
last layer for the adopted 2-layer CNN and the last 2 layers for the adopted 3-layer CNN
respectively;

• HeteroFL Diao et al. (2021) uses heterogeneous model architectures for different clients
to achieve personalization and improvements in both computational and communication
efficiency. Recall that we can vary each client’s sparse ratio s to reflect the clients’ resource
heterogeneity, since the affordable sparse ratio s can fairly reflect the client’s computation
and communication capabilities. Clients with very limited computation and communication
resources have to set s close to 0; On the contrary, clients with sufficient resources can set s
close to 1. Here we use the full model parameters for 10% clients and 50% parameters for
the other 90% clients following the authors’ computation complexity setting, which leads to
an average sparsity s̄′ = 0.55.

To align with previous works, we use a 2-layer CNN Reddi et al. (2021); Marfoq et al. (2021) for
EMNIST/FEMNIST, and two LeNet-based CNNs Dinh et al. (2020b); Liang et al. (2020); Shamsian
et al. (2021) with different capabilities for CIFAR10 and CIFAR100. Specifically, the model used
for EMNIST/FEMNIST two convolutional layers with 5 × 5 kernels, max pooling and two dense
layers with a total of 2,171,786 parameters. The models used for CIFAR10 and CIFAR100 have
a LeNet-based structure with an additional linear classification layer, and a total of 256,830 and
3,537,444 parameters respectively.

Platform and Hyper-parameters. We implement all models with PyTorch, and run experiments on
Tesla V100 and NVIDIA GeForce GTX 1080 Ti GPUs. For fair comparisons, we adopt the same com-
munication rounds for all methods and search for the optimal configuration of hyper-parameters using
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Table 4: The adopted learning rates for pFedGate in all datasets.

EMNIST FEMNIST CIFAR10 CIFAR100
ηg η ηg η ηg η ηg η

s=1 0.1 0.1 0.1 0.1 0.03 0.05 0.1 1.5
s=0.5 0.1 0.1 0.1 0.05 0.03 1.5 0.03 1.5
s=0.3 0.03 0.5 0.3 0.05 0.03 1.5 0.05 0.5

the validation sets. We run each experiment 3 times with the optimal configurations and different ran-
dom seeds, and report the average results. For each method on each dataset, we use the SGD optimizer
and grid search the learning rate ηg from [0.005, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5], set the communica-
tion round T = 400, the batch size as 128 and the local update step as 1 epoch. For pFedGate, the
learning rate of gating layer η is searched from [0.01, 0.05, 0.1, 0.3, 0.5, 1, 1.5], and we set the block
size splitting factor B = 5 for all evaluated models. For FedAvg-FT, we use the local fine-tuning step
as 1 epoch. For pFedMe, we search its penalization parameter µ from [0.0001, 0.001, 0.01, 0.1, 1, 10].
For Ditto, we search its regularization factor from [0.05, 0.1, 0.5, 0.8]. For FedRep, we search its
learning rate for personalized model from [0.05, 0.005, 0.5, 0.01, 0.1]. For FedEM, we set its number
of global models as 3. We summarize the adopted learning rates in Table 4.

Global Model Aggregation Detail. We present more details about the global model aggregation of
pFedGate. After local training, the client only uploads the updates of the parameters in the global
model that are selected to form the client’s local model. In other words, the client uploads the
non-zero parameters updates with their corresponding index in the global model. The server then
aggregates the received model updates according to their index.

Considering the following toy example: there are four clients, and the global model has a total of
three parameter blocks. Each client uploads a dictionary whose key denotes the index and the value
denotes the corresponding parameter updates.

• Client 1: 0: δ0, 2: δ2;

• Client 2: 1: δ0, 2: δ2;

• Client 3: 0: δ0, 1: δ2;

• Client 4: 0: δ0, 1: δ0, 2: δ2.

After receiving the above updates, the server aggregates the parameter updates with index 0 by
weighted averaging the δ0s from clients 1, 3, and 4. The other parameters are aggregated similarly.

H ADDITIONAL EXPERIMENTS

H.1 NOVEL CLIENTS GENERALIZATION

To evaluate the generalization of pFedGate for the novel clients that haven’t participated in the
previous FL training stage, we conduct experiments with similar simulation settings to Diao et al.
(2021); Marfoq et al. (2021); Yuan et al. (2022), where the novel clients only fine tune the global
model on their local dataset. Specifically, we randomly select 20% clients as novel clients, and
evaluate the selected and remaining clients separately. The results are summarized in Table 5,
where Acc and Ãcc indicate the results of FL-participated clients and novel clients respectively, and
∆ = Acc− Ãcc indicates the accuracy generalization gap. The results show that the proposed method
pFedGate can generalize to novel clients well and gain smaller accuracy gaps than compared methods.
For the novel clients, instead of re-training the over-parameterized global model on (possibly small
amounts of) local data, pFedGate only needs to train the personalized lightweight gating layers with
a small number of parameters, and thus achieves an efficient and effective local adaptation.
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Table 5: Averaged accuracy when testing on novel clients that are not participated in the training
stage of FL. The Ãcc indicates the results of novel clients, and ∆ indicates the generalization gap
Acc− Ãcc.

FEMNIST CIFAR10
Acc Ãcc ∆ Acc Ãcc ∆

FedAvg 76.39 74.93 1.46 67.78 66.15 1.63
FedEM 79.21 78.26 0.95 71.92 70.75 1.17

pFedGate, s=1 87.79 87.18 0.61 73.97 73.18 0.79
pFedGate, s=0.5 86.64 86.19 0.45 74.12 73.19 0.93
pFedGate, s=0.3 85.69 85.12 0.57 73.64 72.78 0.86

H.2 PARTIAL CLIENTS PARTICIPATION

We have seen our method can consistently and simultaneously improve the efficiency and model
accuracy as Table 1 shows. One can arise such a natural question: when combined with other
efficiency improvement techniques such as client sampling, is pFedGate still effective? Here we run
experiments by uniformly sampling 20% clients without replacement at each round, and summarize
the results in Table 6. It is observed that compared with baselines having about 1.45% ∼ 3.56%
performance drop, our method still achieves strong and comparable performance to the non-sampled
case, verifying the effectiveness and robustness of our proposed method again.

H.3 CONVERGENCE STUDY

We demonstrate the convergence curves of FedAvg, HeteroFL with average sparsity rate as 0.55,
the strongest baseline, FedEM, and the proposed pFedGate with different sparsity rates on EMNIST
dataset in Figure 6. We can see that the proposed method achieves comparable convergence speeds
with the baselines, which provides empirical evidence for the Theorem 2. In addition, to gain further
insights into the proposed method, we plot the histogram of averaged gating weights of all clients
on the CIFAR10 dataset in Figure 7. We can see that the sparse pattern becomes stable as we train
the gating layer with more local datasets, showing that the proposed method can achieve effective
optimization and converge to certain global points under distinct personalized local models.

H.4 MODEL COMPRESSION MANNER STUDY

We gain sparse local models in the proposed framework via learning personalized gating layers and
predicting sparse gated weights for model sub-blocks. As introduced in Section 5.2, we propose a
simple and general split manner that chunks the model parameters into B equal-sized sub-blocks,
where the split factor B provides flexible splitting granularity. Here we study the sparsification
technique proposed in our method by varying the split factor B and comparing it with a SOTA
pFL method FedMask Li et al. (2021a), that adopts binary masks to compress the parameters of
models’ last layers. The results are shown in Table 7, where we examine the FL accuracy by setting
B = [2, 5, 10] and s = [0.3, 0.5].

Table 6: Averaged accuracy when randomly sampling 20% clients at each round. The last two
columns indicate the average drop compared to non-sampled case.

FEMNIST (↑) CIFAR10 (↑) Drop (↓)
Acc

(

Acc Acc

(

Acc Acc

(

Acc

FedAvg 77.45 57.98 66.31 57.96 3.56 2.55
FedEM 78.54 63.37 71.12 60.76 1.45 1.78

pFedGate, s=1 87.86 77.43 74.29 64.11 0.82 1.13
pFedGate, s=0.5 86.72 75.12 74.25 64.36 0.79 0.21
pFedGate, s=0.3 85.78 74.89 73.91 64.38 0.36 0.80
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Figure 6: The convergence curves of FedAvg, HereroFL, pFedGate and the strongest baseline,
FedEM on EMNIST. The pFedGate achieves comparable or even better (s=1) convergence speeds
than baselines.

Round Round

Round Round

Figure 7: The convergence curves of pFedGate in terms of the histogram of averaged gating weights
over all clients on the CIFAR10 dataset.

From Table 7 we have the following observations: Our method achieves better performance than
FedMask in various sparsity settings. Besides, when increasing the sparsity (s = 0.5 to s = 0.3), our
method with B = 5 still achieves good performance while FedMask gains larger performance drops.
These results verify the effectiveness of the proposed adaptive sparse weights prediction again. As
for the impact of B, on the one hand, we can see that too small B = 2 gains relatively worse results
than B = 5 as there may be insufficient sub-blocks to model the clients’ diversity. On the other hand,
the larger B = 10 achieves similar results to B = 5 while larger performance drop when increasing
sparsity. We empirically found that B = 5 has good robustness and adopt it as the default value in
our experiments.
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Table 7: Averaged accuracy comparison for pFL methods with and without model compression. The
numbers in the parentheses indicate the accuracy difference between sparsity s = 0.5 and s = 0.3
for FedMask and pFedGate.

FEMNIST CIFAR10
Acc

(

Acc Acc

(

Acc

FedAvg 76.51 60.82 68.33 60.22
FedEM 80.12 64.81 72.43 62.88

FedMask s=0.5 78.69 62.18 70.54 61.37
s=0.3 77.41 (−1.28) 60.69 (−1.49) 68.46 (−2.08) 59.05 (−1.32)

pFedGate

B=5 s=0.5 86.31 75.68 74.07 64.21
s=0.3 86.75 (+0.44) 76.47 (+0.79) 73.65 (−0.42) 64.39 (+0.18)

B=2 s=0.5 81.10 71.28 70.81 61.03
s=0.3 80.03 (−1.07) 70.72 (−0.56) 70.65 (−0.16) 60.66 (−0.37)

B=10 s=0.5 85.38 74.91 72.94 63.59
s=0.3 84.67 (−0.71) 75.10 (+0.19) 72.48 (−0.46) 63.58 (−0.11)
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