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Abstract

Spike camera is an emerging bio-inspired vision sensor with ultra-high temporal
resolution. It records scenes by accumulating photons and outputting continuous
binary spike streams. Optical flow is a key task for spike cameras and their
applications. A previous attempt has been made for spike-based optical flow.
However, the previous work only focuses on motion between two moments, and it
uses graphics-based data for training, whose generalization is limited. In this paper,
we propose a tailored network, Spike2Flow that extracts information from binary
spikes with temporal-spatial representation based on the differential of spike firing
time and spatial information aggregation. The network utilizes continuous motion
clues through joint correlation decoding. Besides, a new dataset with real-world
scenes is proposed for better generalization. Experimental results show that our
approach achieves state-of-the-art performance on existing synthetic datasets and
real data captured by spike cameras. The source code and dataset are available at
https://github.com/ruizhao26/Spike2Flow.

1 Introduction

Neuromorphic camera (NeurCam) is a kind of emerging vision sensor [35; 43; 46; 18; 11; 19] inspired
by retina. Using asynchronous sampling models, NeurCams can record the natural scene continuously
by firing sparse spike streams with an ultra-high temporal resolution. Besides, NeurCams have high
dynamic range, low latency, and low energy consumption. Compared with traditional cameras with
single-exposure imaging, NeurCams are more suitable for high-speed imaging in application scenarios
such as unmanned aerial vehicles and chemical particle observation. One kind of NeurCams is the
event camera [35; 43; 46; 18] inspired by the peripheral retina. It asynchronously fires spikes when
the brightness change exceeds a certain threshold in the logarithmic domain. However, event cameras
can hardly recover textures due to their differential sampling model, especially for static regions.
Another kind of emerging NeurCam is the spike camera [11; 19] inspired by the fovea of retina.
Spike cameras also record the scene by firing spikes asynchronously in each pixel, but different from
event cameras that record the relative brightness changes, each pixel in spike cameras encodes the
scene by accumulating photons and firing a spike once the accumulation exceeds a certain threshold
independently. With such an integral sampling model, spike cameras can record fine textures of the
scene, which makes it more appropriate for pixel-level tasks than event cameras. Since spike cameras

*Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).


https://github.com/ruizhao26/Spike2Flow

can record high-speed motion and recover the scenes well, they have shown great potential in tasks
such as video reconstruction [73; 66; 69; 75; 67; 74], denoising [61], super-resolution [65; 59] and
detection [19]. In these tasks, the relative motion between the spike camera and objects in the scene,
i.e., the optical flow, is fundamental and pivotal.

Optical flow estimation has been an important and challenging problem since it was proposed [16]. In
recent years, there are a deal of developments in optical flow [12; 23; 52; 20; 21; 62; 56; 68; 54; 27; 64].
A simple way to estimate optical flow for spike cameras is reconstructing images and use video-based
methods. However, there are two problems. Firstly, simple reconstruction methods may introduce
a lot of noise while complex methods have high computational costs [66; 69; 67; 65]. Secondly,
simple reconstruction ways such as averaging the spike streams along the temporal axis would lose
the precise temporal information in spike streams and introduce blur, which may mislead the flow
estimation. Event-based methods [71; 72; 32; 15; 14] also cannot have satisfactory performance
for optical flow estimation for spike cameras due to the difference of data modalities. Thus, more
efficient methods are needed for estimating optical flow from spike streams. Hu et al. [17] propose
SCFlow as an early exploration of this question. They design a pyramidal network and two synthetic
datasets based on graphics models to train and evaluate the network, respectively. However, the
above-mentioned method is not robust since it omits several issues:

(1) Efficient representation of binary spikes. Each spike output by the spike camera represents not
the status at the current moment but the result of the integral process of the spike. Besides, a single
spike cannot express the information of the corresponding space-time point. Using only convolution
to extract features from the spike streams may not be efficient.

(2) Continuousness of spike streams. Previous work only considers motion between two single
moments in spike streams, and it omits the continuousness information in the moving procedure.

(3) Reality of the datasets. Previous work use datasets synthesized by graphics models to train and
evaluate the network. However, there is a huge gap between virtual scenes and the real world.

In this paper, we propose the Spike2Flow to estimate flow from continuous spike streams. We
propose the differential of spike firing time (DSFT) to transform the binary spikes to better represent
the procedure of the integration for each spike. A spatial information aggregation (SIA) module
is proposed to aggregate a larger receptive field for each pixel with a self-attention mechanism.
The DSFT and SIA form the temporal-spatial representation (TSR) for spike streams. Besides, we
propose a joint correlation decoding (JCD) module to use continuous motion clues by simultaneously
estimating a series of flow fields. To train and evaluate the network in real scenes, based on scenes in
Slow Flow [25], we generate flow fields and spike streams to construct a dataset, i.e., real scenes with
spike and flow (RSSF). The main contributions of this paper can be summarized as follows:

(1) A spike-based optical flow network, Spike2Flow, is proposed. The Spike2Flow extracts features
from binary spikes with temporal-spatial representation and jointly estimates a series of flow fields to
utilize the continuousness of the moving procedure.

(2) A dataset for spike-based optical flow, real scenes with spike and flow (RSSF) is proposed. The
scenes in RSSF are from the real world, improving the generalization of networks trained by RSSF.

(3) Experiments demonstrate that the Spike2Flow achieves state-of-the-art performance on RSSF,
photo-realistic high-speed motion (PHM) dataset, and real data captured by spike cameras.

2 Related Work

Neuromorphic Cameras. Neuromorphic cameras (NeurCams) are a kind of vision sensor that gets
inspiration from the retina and works asynchronously in each pixel. Event cameras (including DVS
[35], DAVIS [43], ATIS [46], CeleX [18] and et al.) and spike cameras [11; 19] are two types of
mainstream NeurCams. Both the above-mentioned cameras record the optical scene asynchronously
in each pixel, which brings advantages for NeurCams compared with traditional cameras with a
single-exposure imaging pattern, such as ultra-high temporal resolution, high dynamic range, low
latency, and low energy consumption. Event cameras employ a differential sampling model that
only fires events when illuminance change in the logarithmic domain exceeds a certain threshold,
while spike cameras use an integral sampling model that accumulates photons and fires spikes when
the accumulation exceeds a certain threshold. Thus, the spikes output by event cameras are more



sparse, but fine textures in the scene are lost especially in static regions. More details of the working
mechanism of the spike camera can be found in [17; 19; 67; 73; 69; 66].

Video-Based Optical Flow. Optical flow estimation aims to find dense pixel correspondences between
two moments in videos, which has lots of applications, such as video enhancement [57; 6], frame
interpolation [26; 2; 33] and recognition [3; 9; 55]. FlowNet [12] is the first end-to-end flow estimation
network trained by the synthetic FlyingChairs dataset. Subsequent works [47; 23; 52; 20; 21; 53; 68]
get inspiration from variational methods [4; 51; 49]. They introduce classical knowledge such as
the pyramid, coarse-to-fine, and cost volume to the networks. VCN [62] and DICL [56] design new
approaches to build more robust correlation between frames. RAFT [54] builds a multi-scale all-pairs
cost volume and performs recurrent refinement in a fixed resolution. RAFT has excellent performance
and becomes the baseline of the subsequent works [28; 60; 27; 64]. The methods mentioned above
are based on supervised learning. There are also some unsupervised optical flow estimation networks
[41; 58; 37; 38; 36; 39; 29; 50]. Besides optical flow between two frames, there are also methods for
flow among multi-frames. [24; 38; 36] use temporal context by jointly estimating flow from a frame
to its previous and future frames. [44; 48; 22] propagate the temporal information from the previous
pair of images to the next pair by passing warped flow or latent states of the decoder.

Event-Based Optical Flow. There are also several works on event-based optical flow. EV-FlowNet
[71] is the first end-to-end deep network, which is trained based on MVSEC [70] dataset. It is
in an encoder-decoder fashion and uses gray images from the active pixel sensor (APS) of event
cameras to construct the photometric loss. Zhu et al. [72] turn to use the average timestamp of
warped events to construct the loss function, leaving the help of gray images. Spike-FlowNet [32]
uses both spiking neural networks (SNNs) and analog neural networks (ANNS) to encode the events,
achieving lower energy consumption. STEFlow [10] uses recurrent networks to encode the event
stream and constructs correlation among features from events through time. Hagenaars et al. [15]
estimate event-based flow using deep networks composed fully of SNNs. Gehrig et al. [14] propose
E-RAFT to implement all-pairs correlation and recurrent refinement in event-based flow based on a
more complex autonomous driving dataset DSEC [13].

3 Approaches

3.1 Working Mechanism of Spike Cameras

The spike camera is composed of an array of pixels working asynchronously. Each pixel of a spike
camera is composed of three main components: photon-receptor, integrator, and comparator. The
integrator accumulates the photoelectrons from the photon-receptor and transfers them to the voltage.
The comparator compares the accumulation with the threshold continuously. Once the voltage of
the integrator exceeds a certain threshold, the camera fires a spike and resets the accumulation. The
voltage of the accumulator can be formulated as:

¢
A(x,t) = / a-I(x,7)dT mod 6 (1
0

where A(x,t) is the voltage of the accumulator at pixel x = (z,y). I(x, 7) is the lights intensity in
pixel x at time 7. 6 is the threshold of the comparator. The above-mentioned working mechanism
is called Integral-and-Fire (IF). With such an IF procedure, the spike cameras can fire spikes
asynchronously and continuously. The reading time of the spikes is quantified with a period 7', and
the T" can reach a micro-second level. The spike camera fires spikes at time n7,n € N. Thus, the
output of the spike camera is a spatial-temporal binary stream S in H x W x N size. The H and W
are the height and width of the sensor, respectively, and [V is the temporal steps of the spike stream.

3.2 Problem Statement and Data Generation

Problem Statement. Optical flow estimation for spike cameras is to estimate the pixel-level motion
field of the projection from the optical scene to the sensor plane. Suppose that we denote a binary
spike stream as S = {S(x,t) | x € Q, t € N, t < n}, if we set tsart = o as the starting moment,
the optical flow can be denoted as w = {w(x,t | t9) |t € N, tg <t < n}. The ideally meaning of
w can be formulated as:

S(x+w(x,t|ty), t) = S(x,t0), teN,tg<t<n )
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Figure 1: The overall architecture of the Spike2Flow. The input spike stream is firstly clipped to
several sub-streams. Each sub-stream is extracted to be a feature for correlation through temporal-
spatial representation, and the first feature constructs correlations with all other features. The recurrent
decoder estimates flow fields from all the correlations and the context feature.

where — means pixel-level registration. Given a spike stream .S, the target of optical flow estimation
is estimating w. The data format of the spike stream is continuous binary matrices, which is different
from the classic data pattern of video. Correspondingly, the processing method should also be
different. Firstly, unlike a pixel in videos, a single spike represents the result of the integral procedure
rather than the status at the current moment, and a single spike cannot express spatial-temporal
information. Secondly, the spike streams are more continuous than classic videos. Thus, taking
advantage of the continuousness for analyzing the scene is a challenge and an opportunity.

Data Generation. SCFlow proposed two synthetic datasets through a graphics simulator for training
and evaluation, respectively. However, there are several limitations of the simulating and rendering,
such as unrealistic textures, overly simplified lighting conditions, and unreasonable appearance.
The huge gap between the synthetic scenes and the real world causes the models often have poor
generalization on the real domain due to the gap [34; 45; 63; 7]. Thus, it is essential to train networks
with data from real scenes. To improve the generalization on the real domain, we use a high-speed
dataset Slow Flow [25] with a high spatial and temporal resolution to synthesize an optical flow
dataset, i.e., real scenes with spike and flow (RSSF) for spike cameras with real scenes. We use the
raw data of Slow Flow to generate RSSF. The raw data have 41 scenes and sum to tens of thousands of
frames, and there are three kinds of spatial resolution: 2560 x 2048, 2560 x 1440, and 2048 x 1152.
We select 11 scenes to generate the testing set and the other 30 scenes to generate the training set.
More details are included in supplementary materials. The generation pipeline is as follows.

Firstly, we imitate the image signal processor (ISP) to process the raw data in Bayer pattern to color
images, where the operations include demosaicing, white balance, and intensity mapping. The image
frames are 2x downsampled spatially and temporally for saving computing and storage sources.
Secondly, we use GMA [27] network trained on data mixed by Sintel [5], KITTI [42], HD1K [31]
and FlyingThings [40] to generate the reference optical flow of the image frames. Thirdly, We use
the reference flow to simulate the motion of the scene and construct a virtual spike camera to fire
the spike streams. We interpolate 20 time steps of images between every two adjacent frames for
generating spikes, and we use 10 times temporal oversampling to improve the precision of the scene.
The ground truth contains flow for the duration of 20, 40, and 60 interpolated images, denoted as
dt = 20,dt = 40, and dt = 60, respectively. It is noted that although the reference flow is not
absolutely accurate, it is still reliable due to the following reasons.

(1) High-quality data. The images for generating the spike have a high spatial and temporal
resolution, which can approximate the ideal high-speed scenes that we can hardly get in the real
world. Estimating the reference flow from such high-quality data is reliable.

(2) Correspondence between spike and reference flow. Although the reference flow fields are not
absolutely accurate for color frames, they correspond to the spike streams since the spike streams are
generated from the reference motion. Thus, the reference flow fields are reliable for the spike streams.
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Figure 2: Illustration of temporal-spatial representation (TSR) for spike streams. A spike sub-stream is
firstly aggregated temporal information through the differential of spike firing time (DSFT) transform.
A primary feature is then extracted from the DSFT to the primary feature with downsampling. Then
the primary feature is processed by the spatial information aggregation (SIA) module.

(3) Good generalization. Results in section 4.2 show satisfactory performance of our network
on PHM dataset [17] and real data. For PHM, the ground truth flow is nearly absolutely reliable,
which indicates the generalization of synthetic data and the reliability of our training data. Good
performance on real data demonstrates the generalization of our training data on real scenes although
there is a domain gap between real and simulated spikes.

3.3 Overall Architecture of the network

The overall architecture is shown in Fig. 1. The input spike stream S is firstly clipped to
spike sub-streams {Sy, S1, ..., Sn}. Each sub-stream is extracted to be the feature for matching
{FM, FM . F}\\;[}, which represents the central moment of the corresponding spike sub-stream,
and the first feature Sy is extracted to be context feature F(gj like RAFT [54]. Noted that it is hard to
extract rich features directly from binary spike stream, we propose temporal-spatial representation
(TSR) for the above-mentioned feature extraction. To utilize the continuousness of the spike streams,
the first matching feature F)' constructs all-pairs correlations {Cy, . .., Cy } with all other matching
features. The recurrent decoder jointly estimates flow fields from the central time of .S, to the central
time of {5y, ..., Sy} through all the correlations and the context feature F§’.

For better embedding the spike streams to the feature domain, we propose to aggregate the information
in the temporal and spatial domains. We design the differential of spike firing time (DSFT) in the
temporal domain to transform the spike stream from the binary domain, which aggregates information
along the temporal axis for each pixel. Based on DSFT, the spike stream is then embedded in a
high-dimensional feature with a downsampling operation. A spatial information aggregation (SIA)
module is proposed to extract the information in the spike further. To utilize the continuousness of
spike streams, which reflects the procedure of motion, we propose a joint correlation decoding (JCD)
module to jointly estimate a series of flow fields starting from the same moment.

3.4 Temporal-Spatial Representation for Spikes

Differential of Spike Firing Time. Each spike in spike streams represents the result of the integral
procedure of photons rather than status at the current moment. Different "1" correspond to various
light intensities since the "1" in the spike streams represents the number of accumulated photons rather
than the arrival rate of the photons. Using features extracted from the binary spikes for matching
may not be appropriate to reflect the structures of scenes. We propose to represent the information
contained in the spike through the firing time, which can better represent the arrival rate of the photons
at each pixel, i.e., the light intensity at each pixel. For better aggregating the temporal information, as
shown in Fig. 3, we propose to use the differential of spike firing time to represent the binary spike.
If we denote the DSFT of spike stream S = S(x,t) as D = D(x,t), the DSFT transform can be
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Figure 4: Illustration of the detailed structure of the recurrent decoder. Local correlations are looked
up from the correlation and encoded to be motion features with the corresponding flow fields. The
context feature and all the motion features are used to update the hidden state of the ConvGRUs. A
series of flow fields are decoded with different prediction heads.

formulated as:
D(Xv t) = D[S(Xv t)] = Thext (X; t) - Tpre (X7 t)
= {mln(T) | S(p’ T) =1, 7> t}pGD(x) - {maX(T) | S(pa T) =17 t}peD(x)

Where D is the DSFT transform. Thext (%, t) and Tpre(x, t) denote the firing time of the next and
previous spike at spatial-temporal moment (x,¢). ID(x) denote the domain of definition of x. We
use DSFT to reflect the firing rate of the spikes. The firing rate here is a statistical concept, and
the average of individual spike intervals is connected with the firing rate. The motion in the scenes
changes the brightness, and the Poisson process of photon arrivals causes fluctuations in the firing
rate. Thus, the firing rate is temporally variational at each pixel. DSFT can better recover the spikes’
dynamic process than obtaining a more constant firing rate with longer time windows.

3

Spatial Information Aggregation. A single spike in space-time coordinates can hardly describe the
scene, and we need a group of spikes to represent each pixel. The DSFT aggregates the information
in the temporal domain. However, the DSFT is still fluctuating since the arrival of the photons follows
the Poisson process, and the firing rate of spikes exhibits remarkable randomness. The fluctuation of
spikes can make the value of features for matching unstable. To enhance the features of spike for
better matching, we propose a spatial information aggregation (SIA) module to integrate context
information with a larger receptive field. As shown on the right side of Fig. 2, we use the self-attention
mechanism to aggregate the spatial information, which can be formulated by:

F = F, + softmax (0(F},) ¢(Fp)") - g(Fy) )

Where F' denotes the feature finally output by the encoder. F}, denotes the primary feature before
SIA. 6, ¢, and g embed the primary feature to query, key, and value, respectively. Through the SIA
module, each pixel gets a long-range aggregation with pixels in its relative area.

3.5 Joint Decoding of Correlation

There is more continuously temporal information in spike streams compared with videos. To extract
the continuous moving procedure of the optical scene in spike, we propose to jointly decode a series
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Figure 5: Visual results on RSSF in dt = 20 case, the meaning of each column is on the top. PO%
means the percentage of outliers. Please enlarge the figures for better comparison.

of motions from the same starting moment, i.e. {w(x,¢ | to)}. To simplify the computation, we
sparsely sample the motion and estimate {w; = w(x,iT + tq | to)},, where T is the sampling
cycle, 7 is the sampling index, and NN is the maximum sampling index. For each sampling moment,
we construct a multi-scale all-pairs correlation [54] from the matching features F! and FM:

2l—12—1

SO (Fwy), FM(m -2+ pn -2+ q))

p=0 ¢=0

Cé(x,y,m,n) - ﬁ

&)

Local correlations {L, ..., Ly} are then looked up through current estimated flow fields with a
radius r. The local grid for looking up can be formulated as:

(6

The structure of the recurrent decoder is shown in Fig. 4. In each iteration, the decoder optimizes the
flow fields by estimating their residual through local correlations and context feature Fi’. Suppose
that the start moment of the flow is 5, and the sampling cycle of the flow is 7T'. The local correlations
{L;}¥, and currently estiamted flow fields {wy_1; = Wj_1(ts + T | t5)}2, are extracted to be
motion features {M; } ; by the motion encoder, where & is the iteration index of the ConvGRUs.
All the motion features { My, ..., My} and F{ are concatenated and input to the ConvGRUs [8] to
update the hidden states. For all the flow fields to be estimated, we use a single hidden state. Different
prediction heads are employed to estimate the residual of different flow fields.

N(®)ira = {(x+wW(x,iT +1to [ 10))/2' +y |y € 2% |ly[L < r}

Suppose the recurrent decoder has V iterations. Given ground truth flow fields {wft}izl the loss

function is defined as:
N V

£=33 0w = wil

i=1 j=1

(N

where 1y is the decay factor set as 0.8.

4 Experimental Results

4.1 Implementation Details

In the experiments, we set N as 3 and T as 20, which means we jointly estimate optical flow under
20, 40, and 60 time steps difference. We set the number of input spike frames as 21. For constructing
correlation, we set the multi-scale level as 3, and we set the looking-up radius = 3. The model is
trained on the training set of the real scenes with the spike and flow (RSSF) dataset. We randomly
crop the spike stream to 320 x 448 spatially during the training procedure and set the batch size as
6. We use randomly horizontal and vertical flips as data augmentation to balance the motion in the
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Table 1: Quantitative results on the testing set of RSSF. All the models are retrained on the training
set of RSSF based on the official code. The best results over each group are bolded. PO%: the
percentage of outliers.

dt =20 dt =40 dt = 60
AEPE PO% AEPE PO% AEPE PO%

RAFT [54] — Avglmg 0.244 8.08 0390 1241 0573 14.85
RAFT [54] — Spike 0.181 5.62 0.295 8.69 0.437 10.71
SCV [28] — Avglmg 0.534 3386 0.762 39.54 1.056 42.29
SCV [28] — Spike 0.570 40.03 0.808 4390 1.132 4434
GMA [27] - Avglmg 0226 720 0388 1254 0.632 14.81
GMA [27] — Spike 0.230 7.45 0401 11.60 0.603 14.16
SCFlow [17] 0389 14.00 0.668 19.00 1.264 23.40
Spike2Flow(ours) 0117 257 0197 518 0286  6.98

Method

training dataset. We use Adam optimizer [30] with 51 = 0.9 and 82 = 0.999. The learning rate is
initially set as 3e-4 and scaled by 0.7 every 10 epoch. The model is trained for 100 epochs.

We use average end-point error (AEPE) and percentage of outliers (PO%) as evaluating metrics.
AEPE is the spatial average of Euclidean distance between optical flow w and the ground truth w:

1
AEPE = T Zx: [w(x) — Wt (%)]|2 )

where H and W are the height and width of the flow. The percentage of outliers is the percentage of
the pixel with end-point error larger than 0.5 and 5% of its ground truth at the same time.

4.2 Comparative Results

We compare our method with SCFlow [17] and methods straightforwardly designed based on RAFT
[54], SCV [28], and GMA [27] for estimating optical flow for spike cameras. There are two ways to
input the spikes to the methods for optical flow estimation for spike cameras:

(1) Avglmg. Averaging the spike stream along the temporal axis as a gray image.
(2) Spike. Directly input the spike streams into the network work as a multi-channel image.

We do not use the event-based optical flow architecture since it has been proven to be noneffective in
[17], and we do not use the training set in [17] since it is synthetic and the generalization ability is
limited. We use "RAFT — Avglmg" and "RAFT — Spike" to represent the direct adaptation based
on RAFT with Avglmg and spike, respectively. Adapted methods for other architectures are the
same. All the methods are retrained under settings in section 4.1 based on the official code on
RSSF training set with spike streams as input, respectively. Noted that Spike2Flow jointly estimates
flow fields with time duration dt = 20, 40, 60. We set the training data for comparable models and
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Figure 7: Visual results on real data in dt = 20 case, the “Scene” is the average of spike stream on
temporal axis with gamma transform.

Table 2: Quantitative results on PHM. All the models are retrained on the training set of RSSF based
on the official code. The best results for each group are bolded. PO%: the percentage of outliers.

dt =10 dt =20
AEPE PO% AEPE PO%
RAFT [54] — Avglmg 1.635 32.55 2.753 40.85

Method

RAFT [54] — Spike 0.622 21.50 1.219 23.79
SCV [28] — Avglmg 1.055 44.17 1.829 54.24
SCV [28] - Spike 0.841 34.18 1.466  41.26
GMA [27] — Avglmg 0.874 28.30 1.784  39.67
GMA [27] — Spike 1.485 2741 1.888 29.25
SCFlow [17] 1.027 34.54 1.775 38.57
Spike2Flow(ours) 0.545 16.07 1.088 19.61

randomly select dt from {20, 40,60} for each sample in a mini-batch for the sake of fairness. We
evaluate the models on three kinds of data: (1) The testing set of real scenes with spike and flow
(RSSF), (2) photo-realistic high-speed motion (PHM), and (3) real data captured by spike cameras.

Results on real scenes with spike and flow (RSSF). The quantitative results on RSSF is shown
in Tab. 1. The Spike2Flow jointly estimates the flow in dt = 20, 40, 60 cases while other models
estimate respectively. Spike2Flow gets the best performance in both AEPE and PO% in all cases.
The visual results on RSSF are shown in Fig. 5. All the optical flow color-coding rule is the same
with [1]. More results are included in the supplementary material.

Results on photo-realistic high-speed motion (PHM). For comparative experiments on PHM, we
use the same model as experiments on the testing set of RSSF, which is trained on the training set
of RSSF. The ground truth of optical flow in PHM is generated from a graphics simulator, which
is highly reliable. PHM contains ground truth flow in dt = 10 and 20 cases. For Spike2Flow, we
jointly estimate flow fields in dt = 10, 20, 30 cases. For other models, we estimate flow fields in
dt = 10 and dt = 20 cases, respectively. Noted that we select the 9 scenes in PHM except fly since
the motion speed of fly is excessive and unrealistic. Quantitative results are shown in Tab. 2, and
the results are average among all the scenes we use of the PHM. Spike2Flow still achieves the best
performance in all the cases, which demonstrates the good generalization of our method. Compare
Tab. 2 with Tab. 1, the performance results on PHM are lower than those on RSSF since the scene in
PHM is simulated through a graphics model, and the speed motion of the scenes is ultra-high, which
is more challenging for optical flow estimation. The visual results on PHM are shown in Fig. 6 and
more results are included in the supplementary material.

Results on real data. We evaluate the models on real data captured by spike cameras. The visual
results are shown in Fig 7. Although we do not have the ground truth of optical flow in real data, we
can see that results of Spike2Flow have sharper edges and more clear background, which shows a
better generalization. More details are included in the supplementary material.



4.3 Ablation Study

To verify the efficiency of the modules we propose, we implement a series of ablation studies. The
quantitative results are shown in Tab. 3. We use color gradation from yellow to green for each column,
where greener represents better performance. The results demonstrate the effectiveness of DSFT,
SIA, and JCD modules. Although the Exp. (D) and (E) have similar performance in dt = 20 and
dt = 40, Exp. (E) performs better than (D) in the percentage of outliers under d¢t = 60, which shows
the effectiveness of the STA module. Comparison between Exp. (B) and (C) can also show that STA
is effective. Besides proposed modules, we also perform ablation studies on the number of input
spike frames (NISF). We select {1,5,11, 15,21} as the NISF candidates. The quantitative results are
shown in Tab. 4, where we can see larger NISF makes the performance better.

Table 3: Ablation study of our proposed modules. Greener blocks represent better performance with
lower AEPE or the percentage of outliers (PO%).

. . dt =20 dt =40 dt = 60
Index  Setting of experiment

AEPE PO% AEPE PO% AEPE PO%
(A) Removing DSFT transform 0.236 7.69 0.382 1349 0.536 16.94
B) Removing SIA and JCD module  0.128 330 0.218 6.37  0.325 8.40
© Removing JCD module 0.126  3.13 0210 596 0310 7.88
(D)  Removing SIA module 0.116 254 0.199 516 0298 7.24
(E) Our final model 0.117 257 0.197 518 0.286 698

50.6 _ . .
£ i Table 4: Ablation study of the number of input
%0'5 —=— dt=60 spike frames (NISF). Greener blocks represent
£04 '\’\‘\’\—‘ better performance with lower AEPE or PO%.
& 0.3 — — —
% NISE dt =20 dt =40 dt = 60
R I S AEPE PO% AEPE PO% AEPE PO%
b3 o

R R 15 21 I 0174 437 0315 10.85 0.463 1501

Number of input spike frames (NISF)

0.153 3.44 0.277 7.70 0.417 11.35

Figure 8: AEPE of ablation on NISF, shadow I 0125 298 0218 6.30 0.323 8.55

: 15 0123 3.01 0.211 5.83 0.312 7.85
areas represent the average of the standard devi- 51 0117 257 0197 518 028 698
ation of each scene.

5 Conclusions

We propose a method for learning optical flow from continuous spike streams. To improve the
generalization of spike-based optical flow, we propose a flow dataset RSSF with real scenes. For
better extracting information from binary spike streams, we propose DSFT and SIA modules to
extract the temporal and spatial information, respectively. To use the continuousness of spike streams
as motion clues, we propose a JCD module to jointly estimate a series of flow fields. Experimental
results show that Spike2Flow achieves state-of-the-art performance in spike-based optical flow on
RSSF, PHM, and real data, and ablation studies verify the effectiveness of our proposed modules.

Limitations. The characteristics of spike firing in extremely dark or bright scenes are quite different,
so the same representation strategy may not work well all the time. We plan to extend our model to
handle these questions in future work.
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