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Abstract001

Personalized text generation requires a unique002
ability of large language models (LLMs) to003
learn from context that they often do not en-004
counter during their standard training. One005
way to encourage LLMs to better use personal-006
ized context for generating outputs that better007
align with the user’s expectations is to instruct008
them to reason over the user’s past preferences,009
background knowledge, or writing style. To010
achieve this, we propose Reasoning-Enhanced011
Self-Training for Personalized Text Gener-012
ation (REST-PG), a framework that trains013
LLMs to reason over personal data during re-014
sponse generation. REST-PG first generates015
reasoning paths to train the LLM’s reason-016
ing abilities and then employs Expectation-017
Maximization Reinforced Self-Training to it-018
eratively train the LLM based on its own019
high-reward outputs. We evaluate REST-PG020
on the LongLaMP benchmark, consisting of021
four diverse personalized long-form text gener-022
ation tasks. Our experiments demonstrate that023
REST-PG achieves significant improvements024
over state-of-the-art baselines, with an aver-025
age relative performance gain of 14.5% on the026
LongLaMP benchmark.027

1 Introduction028

Personalizing large language models (LLMs)029

emerges as a critical topic in natural language030

processing (Salemi et al., 2024b; Kumar et al.,031

2024), due to its wide-ranging applications in rec-032

ommender systems (Hua et al., 2023; Chen, 2023),033

virtual assistants (Li et al., 2024b; Kocaballi et al.,034

2019), and content generation (Alhafni et al., 2024).035

The importance of personalization in such systems036

stems from the fact that they provide targeted con-037

tent to their users, which enhances user satisfaction,038

improves engagement, and increases efficiency.039

Augmenting the input context of the LLMs with040

retrieved personalized context alongside the user041

prompt has proven effective in tailoring responses042

to individual users (Salemi et al., 2024b,a). How- 043

ever, defining the notion of relevance, a prereq- 044

uisite for retrieving personalized context, is chal- 045

lenging (Salemi et al., 2024a). In personalization, 046

a part of the user’s context that appears not di- 047

rectly “relevant” to the prompt might be more use- 048

ful (than a directly relevant one) if it better reflects 049

the user’s implicit preferences. For example, a 050

sentence like “I have two children of age 3 and 051

4...” in the user context does not seem directly rel- 052

evant to the prompt “Give some suggestions about 053

brands of room heaters.” However, this knowl- 054

edge indicates that the user could be concerned 055

about safety for children and therefore would ex- 056

pect the model to consider this in its response of 057

recommending room heaters. Establishing such an 058

“implicit” relevance requires reasoning beyond the 059

words or semantics of the provided personalized 060

user context, just like the user themselves does. We 061

argue that an approach for encouraging an LLM to 062

better use personalized context is also asking it to 063

reason over it prior to generating the final response. 064

For instance, the model may summarize the user’s 065

writing style, interests, background knowledge, and 066

preferences before actually responding to the user 067

prompt. However, it is often infeasible or costly to 068

obtain sufficient human reasoning paths to train an 069

LLM for personalized reasoning. 070

This paper addresses these challenges by in- 071

troducing Reasoning-Enhanced Self-Training for 072

Personalized Text Generation (REST-PG), a multi- 073

stage framework designed to teach LLMs reason- 074

ing over personalized context through reinforced 075

self-training. As an alternative to human reason- 076

ing paths, REST-PG uses an LLM to generate the 077

reasoning steps considering the input, expected out- 078

put, and personalized context. These generated 079

reasoning paths are then used to train the LLM, 080

through supervised fine-tuning, to produce both the 081

reasoning steps and the final response in a single in- 082

ference path. Nevertheless, we find that supervised 083
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fine-tuning on generated reasoning data alone is in-084

sufficient for training the LLMs to produce both the085

reasoning path and final response, and exploring086

diverse reasoning paths plays a key role in obtain-087

ing effective personalized outputs; we observe a088

drop in performance compared to an LLM without089

reasoning. This suggests that the reasoning paths090

generated by the fine-tuned LLMs may not yet091

align well with the user’s preferences. To address092

this, we employ Expectation-Maximization Rein-093

forced Self-Training, which optimizes the model to094

generate reasoning paths that yield better aligned095

responses—-i.e., responses that achieve higher re-096

wards. In an Expectation (E) step, the LLM gen-097

erates different reasoning paths and responses for098

each input. In a Maximization (M) step, the rea-099

soning paths that result in high-reward responses—100

those with high similarity to the expected output101

for the user—are then used to train the LLM in102

subsequent iterations. Through iterative process of103

expectation maximization, the LLM learns to gen-104

erate reasoning steps and responses that are more105

aligned with the user’s preferences.106

We perform our experiments on the Long-form107

Language Model Personalization (LongLaMP)108

benchmark (Kumar et al., 2024), comprising four109

diverse long-form personalized text generation110

tasks. Experiments on this benchmark show that111

REST-PG on average significantly outperforms all112

state-of-the-art baseline models across all tasks of113

the LongLaMP benchmark. Specifically, REST-PG114

improves performance by up to 14.5% compared115

to supervised fine-tuning (SFT) and by 6.5% com-116

pared to self-training without reasoning enhance-117

ment. Additionally, our extensive ablation study118

provides valuable insights into various components119

of the proposed method about self-training and rea-120

soning in personalizing LLMs.121

2 Problem Formulation122

This paper addresses personalized text generation,123

a task that uses user-specific information to tailor124

responses to individual users. A general LLM Mθ125

generates a piece of text in response to an input126

prompt x from a user u, denoted as ŷ = Mθ(x).127

To personalize an LLM for the user u, we as-128

sume each prompt x from the user, with the ex-129

pected output y, is accompanied by the user profile130

Pu = {d(u,i)}
|Pu|
i=1 , consisting of unstructured in-131

formation pieces about the user u. Accordingly,132

we assume access to training and evaluation data133
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Figure 1: The overview of Reasoning-Enhanced Self-
Training for Personalized Text Generation (REST-PG).

D = {(xi, yi, Pi)}|D|i=1 in the above format. Our 134

primary objective is to utilize the personalized in- 135

formation from user profile with LLM Mθ to gen- 136

erate a response ŷ = Mθ(x, Pu) that maximizes 137

the reward r = R(x, y, ŷ) generated from a reward 138

functionR given the input prompt x, the expected 139

output y by the user u, and the actually generated 140

response ŷ. The primary objective of the reward 141

model is to evaluate the similarity between the gen- 142

erated output and the expected personalized output. 143

3 REST-PG 144

LLMs have proven effective in learning from their 145

context (Wei et al., 2022; Brown et al., 2020), mak- 146

ing the augmentation of their input with person- 147

alized context an effective strategy for personaliz- 148

ing their responses (Salemi et al., 2024b; Salemi 149

and Zamani, 2024). However, learning to person- 150

alize from context requires a specialized form of 151

context-based learning, as it involves not only un- 152

derstanding task-relevant information but also in- 153

ferring user-specific preferences. For instance, a 154

sentence in the personalized context that is seem- 155

ingly irrelevant to the user prompt could indicate 156

implicit preference, like mentioning children could 157

imply prioritizing safety. Teaching LLMs to rec- 158

ognize this nuanced notion of relevance is crucial 159

for improving personalized text generation. One 160

approach to do this is to instruct LLMs to reason 161

over the personalized context by generating a sum- 162

mary of the user’s preferences before responding 163

to the prompt. However, collecting training data 164

for this is challenging, as human annotations are 165

costly and often fail to accurately capture the nu- 166

ances of individual user preferences. To address 167

this, LLMs can be used to generate reasoning paths 168

based on the personalized context, input prompt, 169

and expected output to creating reasoning training 170

data that guides the model from the input to the 171
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output without relying on human annotation. This172

data can be used to train LLMs to do reasoning173

during personalized response generation.174

While this approach seems effective, the gen-175

erated reasoning paths are based on the model’s176

implicit understanding of user preferences, which177

may not always align with the actual preferences.178

To address this, the LLM can be trained to improve179

this alignment by optimizing a reward function180

that evaluates the user’s satisfaction by comparing181

the generated output with the expected output for182

that user. This alignment pushes the model toward183

generating reasoning paths that lead to responses184

more consistent with the user’s preferences. This185

paper focuses on training the LLM to reason over186

personalized contexts and to generate personalized187

outputs in a single forward pass.188

Figure 1 provides an overview of our optimiza-189

tion approach used in this paper for training an190

LLM capable of reasoning in a single forward191

path for personalized text generation. We em-192

ploy Expectation-Maximization Reinforced Self-193

Training (Singh et al., 2024) as a preference align-194

ment algorithm to self-train the LLM, enhancing195

its ability to generate reasoning paths that lead to196

more effective personalized outputs, according to197

a reward model that considers the expected per-198

sonalized output. This enables the model to better199

leverage user-specific context with improved rea-200

soning ability, ultimately improving the quality of201

the generated personalized responses.202

3.1 Enhancing Personalization by Reasoning203

Current state-of-the-art methods for personaliz-204

ing LLMs augment the input with a personalized205

context (often retrieved from a personal corpus)206

(Salemi et al., 2024b,a; Kumar et al., 2024). We207

argue that effectively utilizing personalized con-208

text necessitates a specialized form of context-209

based learning, as it requires understanding both210

task-relevant information and user-specific prefer-211

ences—an aspect that LLMs are rarely exposed to212

during standard training. One way to encourage213

LLMs to better utilize personalized context is to in-214

struct them to focus on user-specific elements such215

as preferences, interests, background knowledge,216

and writing style that are present in the personal-217

ized context. Incorporating these attributes from218

the personalized context enables the model to gen-219

erate more aligned, user-specific responses. These220

attributes can be inferred by the LLM through rea-221

soning over the personalized context, enabling it222

to interpret the user’s preferences, interests, knowl- 223

edge, and writing style before generating the final 224

personalized response to the user’s prompt. This 225

reasoning step helps the model produce more accu- 226

rate and personalized outputs. 227

To generate the necessary data for training the 228

LLM to perform such reasoning steps, we introduce 229

a semi-supervised data generation method tailored 230

for this purpose. In this method, for a given input 231

x for user u, the user profile Pu, and the expected 232

output y, we use an LLM1 to generate a summary 233

of user’s preferences, interests, background knowl- 234

edge, and writing style features tailored to the given 235

input and corresponding output from the user con- 236

text. The detailed prompt is presented in Figure 7 in 237

Appendix C. This prompt encourages the model to 238

take into account both the expected output and the 239

input, and based on this, generate its interpretation 240

of the user’s interests, preferences, and familiarity 241

with various topics from the personalized context 242

as a reasoning path. Additionally, the approach 243

guides the model to infer patterns in the user’s pref- 244

erences across different topics. For instance, if the 245

user writes about a specific topic in a particular 246

style, the model can generalize this pattern, assum- 247

ing the user might adopt a similar style for other 248

topics as well. Figures 12 and 13 in Appendix E 249

present some examples of the generated reasoning 250

paths. These figures illustrate how the model rea- 251

sons over the personalized context by analyzing the 252

key aspects of user’s preferences. 253

Finally, to train the LLM to reason over person- 254

alized context during output generation, the gener- 255

ated reasoning over personalized context is com- 256

bined with the expected output using a predefined 257

template, as shown in Figure 8 in Appendix C. This 258

template allows us to train the model to generate 259

this combined output given an input from a specific 260

user accompanied by its personalized context. The 261

model is first asked to generate a summary of the 262

user’s preferences and writing style features based 263

on the input and personalized context then gener- 264

ates a response to the input. Here, the combined 265

generated reasoning and expected output are used 266

as the new expected output for the corresponding 267

input in the template. Indeed, the model’s task is 268

to generate both the reasoning path, based on the 269

personalized context, and the final response in a sin- 270

gle inference pass. This structured approach helps 271

1We utilize Gemma 7B (Gemma-Team, 2024) as the LLM
to generate preliminary reasoning data.

3



Algorithm 1 Reasoning-Enhanced Self-Training for Personalized Text Generation (REST-PG).

1: Input: training dataset D, training LLM Mθ, data generation LLM for preference summarization
2: // generating the reasoning data
3: Dreasoning = {(x, concat(reasoning, y), P )|(x, y, P ) ∼ D : reasoning = LLM(x, y, P )}
4: // SFT on the reasoning dataset
5: θ1 = argmaxθ E(x,y,P )∼Dreasoning [log pθ(y|x;P )]
6: // training the model for T iterations
7: for t = 1 to T do
8: // Expectation step: generating different reasoning paths and outputs to be rewarded
9: Dt = {(x, y, P, ŷj)|(x, y, P ) ∼ D, ŷj ∼Mθt(x, P ) : R(x, y, ŷj) ≥ τ}

10: // Maximization step: maximizing the probability of the outputs with high reward
11: θt+1 = argmaxθ E(x,y,ŷ,P )∼Dt

[R(x, y, ŷ) log pθ(ŷ|x;P )]
12: end for

the LLM learn to incorporate reasoning over the272

personalized context as the steps toward generating273

the final response to the input.274

3.2 Reasoning-Enhanced Self-Training275

While we can train the model using SFT on the276

generated reasoning data from Section 3.1 so that it277

reasons towards generating personalized responses,278

the reasoning itself is derived from the LLM’s inter-279

pretation of the user profile, input prompt, and ex-280

pected output. This reliance on the LLM’s implicit281

understanding introduces potential limitations, as282

the reasoning path may not fully align with the283

user’s preferences. Moreover, there is no guarantee284

that the generated reasoning path can consistently285

improve the final output. There may exist alter-286

native reasoning paths that lead to more effective287

personalized responses, which are not captured by288

the initially generated reasoning paths for SFT.289

A solution to address this is to employ RL, which290

allows the model to explore the trajectory space291

(i.e., reasoning paths) to identify those that lead to292

personalized outputs with higher rewards. By lever-293

aging exploration, the model can discover reason-294

ing paths that yield higher rewards, corresponding295

to more desirable personalized outputs. Specifi-296

cally, we employ Expectation-Maximization Re-297

inforced Self-Training (Singh et al., 2024) as an298

offline RL algorithm to encourage the model to dis-299

cover reasoning paths that lead to higher rewards.300

The algorithm used for this purpose is detailed in301

Algorithm 1. After performing SFT on the data302

generated in Section 3.1, we iteratively alternate303

between the following steps:304

Expectation Step: In this step, the optimized pa-305

rameter set from the previous iteration (i.e., θt)306

is used to collect new trajectories for training the 307

model for the next iteration (i.e., θt+1). Specif- 308

ically, for each input x ∈ D, the LLM Mθt is 309

employed to generate m outputs using a decod- 310

ing temperature γ. The temperature γ controls the 311

amount of randomness in the generated outputs, 312

which indicates the freedom of the model in the 313

exploration phase of the reinforcement learning al- 314

gorithm. The generated outputs are then evaluated 315

using the reward model, denoted as R(x, y, ŷj). 316

The reward model focuses solely on the final output 317

generated by the model, disregarding the reason- 318

ing path itself, and assigns a score to each output. 319

Thus, the reward model only considers the similar- 320

ity between the generated response and expected 321

output to score the reasoning paths. Finally, the 322

outputs that achieve a reward of τ or higher are 323

considered high quality outputs and are included in 324

the next round of training data, where they act as 325

the expected output for the corresponding inputs. 326

To prevent the model from overfitting on easy ex- 327

amples, we limit the number of outputs retained 328

per input to a maximum of 10 to ensures diverse 329

outputs and avoid overfitting to simpler cases. 330

Maximization Step: This step uses the dataset 331

generated from the expectation step to optimize the 332

model. In this phase, the outputs that received high 333

rewards are used as the expected outputs for their 334

corresponding inputs. Furthermore, the weight of 335

each output is adjusted according to the reward 336

it receives, as detailed in Algorithm 1 (line 11). 337

Indeed, instead of maximization, a SFT sequence- 338

to-sequence loss (Sutskever et al., 2014) can be 339

minimized to train the LLM,2 with the loss being 340

2Minimizing seq2seq loss corresponds to maximizing like-
lihood of generating the ground-truth sequence.
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adjusted based on the amount of reward each output341

receives. The underlying idea is that samples result-342

ing in higher rewards should have a larger impact343

on the loss. This approach ensures that the model344

learn more from high-reward examples, helping it345

generate high-quality, personalized responses.346

4 Experiments347

4.1 Experimental Setup348

Datasets. We adopt the LongLaMP benchmark349

(Kumar et al., 2024) to conduct our experiments,350

which consists of four personalized long-form text351

generation tasks: (1) Personalized Email Comple-352

tion, (2) Personalized Abstract Generation, (3) Per-353

sonalized Review Writing, and (4) Personalized354

Topic Writing. Each example in this dataset rep-355

resents a separate user, including an input prompt,356

an expected output, and a user profile containing357

information about the user (i.e., documents written358

by the user over time). This setup allows us to359

evaluate the effectiveness of our approach in gener-360

ating personalized responses across diverse tasks.361

More details about the datasets in the LongLaMP362

benchmark are provided in Appendix B.363

Reward Modeling & Evaluation. While the364

LongLaMP benchmark uses ROUGE metrics (Lin,365

2004) for evaluating long-form generated text, pre-366

vious research shows that term-matching metrics367

like ROUGE often struggle to capture nuanced text368

similarities (Zhang et al., 2020), particularly in369

long-form text generation (Koh et al., 2022; Kr-370

ishna et al., 2021). Following recent text genera-371

tion evaluation approaches (Kocmi and Federmann,372

2023; Liu et al., 2023b), we use LLMs, in our case373

Gemma 7B (Gemma-Team, 2024), as the text gen-374

eration evaluator. We provide the evaluator LLM375

with the input prompt, the generated output, and376

the expected output, along with an explaination377

of the evaluation criteria, as shown in Figure 6 in378

Appendix A. The LLM then scores the generated379

personalized response by comparing it to the ex-380

pected reference output, taking into account the381

evaluation criteria. These scores range from 1 to382

10 in our work, based on the defined criteria. Fi-383

nally, we normalize this score in range of 0 and 1384

by dividing it by 10. The details of the evaluation385

metric are explained in Appendix A.386

Training & Inference Setting. We use Gemma387

2B (Gemma-Team, 2024) as the personalized gen-388

erator LLM. Given that user profiles can contain389

numerous items, making it impractical to use all of 390

them, we utilize RAG to integrate personalized con- 391

text (Salemi et al., 2024b). We employ the prompt 392

illustrated in Figure 8 in Appendix C, where we 393

retrieve k = 5 items from the user profile using 394

Contriever (Izacard et al., 2022), based on their 395

similarity of the items to the input. Since LLMs 396

have been shown to effectively handle multiple 397

tasks concurrently, we train a single model on all 398

datasets. Following Singh et al. (2024), the mod- 399

els are trained for T = 3 iterations, generating 400

m = 32 outputs for each input during the expecta- 401

tion step with temperature γ = 0.7 using Nucleus 402

Sampling (Holtzman et al., 2020), unless otherwise 403

specified. We set the output selection threshold 404

τ = 1.0. At each iteration, we start from a new 405

untrained checkpoint unless otherwise noted. For 406

inference, temperature γ = 0.1 is used. The details 407

are provided in Appendix B. 408

4.2 Main Findings 409

How does training the LLM with REST-PG af- 410

fect the performance? We trained the LLM us- 411

ing the proposed approach, which incorporates 412

both reasoning-enhancement and self-training. For 413

the baselines, we evaluate LLMs that were: (1) 414

trained using SFT with retrieval augmentation 415

(Salemi et al., 2024b; Kumar et al., 2024), (2) 416

trained using SFT with Reasoning-Enhancement 417

as described in Section 3.1, and (3) trained exclu- 418

sively using self-training with ReST-EM (Singh 419

et al., 2024). The results, shown in Table 1, indi- 420

cate that the proposed approach, REST-PG, outper- 421

forms all baselines across all tasks, with statisti- 422

cally significant improvements in 3 out of 4 tasks. 423

Additionally, the approach shows statistically sig- 424

nificant superior performance on average across all 425

tasks. This demonstrates that using reasoning over 426

personalized context, combined with self-training, 427

can significantly enhance the performance of per- 428

sonalized text generation, highlighting the value of 429

incorporating reasoning during personalized gener- 430

ation. The main reason for this improvement is that 431

combining reasoning with self-training enhances 432

the model’s ability to effectively use the personal- 433

ized context and align its reasoning process with 434

the user’s preferences. This, in turn, results in more 435

tailored and accurate output for the user. 436

How does reasoning-enhancement alone af- 437

fect the performance? We compare the model 438

trained on the reasoning-enhancement data gener- 439
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Model
LongLaMP-1: LongLaMP-2: LongLaMP-3: LongLaMP-4: AveragePersonalized Personalized Personalized Personalized

Email Completion Abstract Generation Review Writing Topic Writing (macro)

1 SFT 0.2974 0.41352 0.6525 0.2270 0.3976
2 SFT w/ Reasoning-Enhancement 0.2834 0.3829 0.67731 0.2184 0.3905
3 ReST-EM 0.3032 0.454912 0.6656 0.285912 0.427412

REST-PG 0.3059 0.4845123 0.7077123 0.3238123 0.4554123

Table 1: The performance of all methods on the test sets of the LongLaMP benchmark. The superscripts 1, 2, and 3
denote statistically significant improvements compared to the model in the corresponding row using the two-tailed
paired t-test (p < 0.05). The results on the validation sets are reported in Table 3 in Appendix D.

Figure 2: The performance of our approach with different exploration budgets (m) when trained for one iteration
on the test set. The same plot on validation sets is depicted in Figure 9 in Appendix D.

ated in Section 3.1 and the SFT model trained on440

the original inputs and outputs of the LongLaMP441

dataset. The results of this experiment are reported442

in Table 1. These indicate that supervised fine-443

tuning on the generated reasoning-enhancement444

data from a larger model only statistically signif-445

icantly improves performance on LongLaMP-3.446

However, there is a performance drop on the rest447

of the tasks, with the model performing worse than448

the SFT on average across all datasets, where on449

LongLaMP-2 this drop is statistically significant.450

However, on average, there is no statistically sig-451

nificant difference between this approach and SFT.452

Note that this approach underperforms compared453

to both methods that incorporate self-training. This454

observation suggests that, as discussed in our moti-455

vation, training solely on generated reasoning data456

is suboptimal as there is no alignment between457

these reasoning paths and the user’s preferences for458

personalized text generation.459

How does self-training alone affects the perfor-460

mance? We trained the LLM with ReST-EM461

(Singh et al., 2024), similar to our approach for462

self-training but without considering reasoning en-463

hancement. This approach operates similarly to464

ours but does not involve reasoning over the per-465

sonalized context. The results of this experiment466

are reported in Table 1 with the model name ReST-467

EM. The results indicate that self-training signif-468

icantly improves performance on LongLaMP-2469

and LongLaMP-4 over both SFT and SFT with470

Reasoning-Enhancement. Although it improves re-471

sults on LongLaMP-1 and LongLaMP-3, these im- 472

provements are not statistically significant. More- 473

over, it does not outperform SFT with Reasoning- 474

Enhancement on LongLaMP-3. However, on aver- 475

age, this approach significantly outperforms both 476

baselines. Note that this model is unable to outper- 477

form REST-PG on any of the tasks, with significant 478

differences in performance observed in 3 out of 4 479

tasks and in the overall average performance. This 480

observation suggests that self-training is a promis- 481

ing approach for enhancing performance in person- 482

alized text generation. However, without explicitly 483

considering the user’s implicit preferences or writ- 484

ing style, the improvement on personalized text 485

generation tasks is limited. 486

How does the exploration budget affect the per- 487

formance of REST-PG? We apply our method 488

using different exploration budgets m during the 489

expectation step, generating 8, 16, 32, 64, and 128 490

outputs per input and train the LLM for one iter- 491

ation on them. The results are shown in Figure 2. 492

While different tasks benefit from varying explo- 493

ration budgets, on average, increasing this explo- 494

ration budget improves the results up to a certain 495

point before decreasing the performance. This sug- 496

gests that overly increasing the exploration bud- 497

get may not be beneficial; as the model generates 498

more examples, the diversity among high-reward 499

examples can negatively impact the model’s perfor- 500

mance. Therefore, tuning this parameter consider- 501

ably affects performance. 502
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Figure 3: The effect of number of expectation-maximization steps on the performance on the test set. The same
plot on validation sets is depicted in Figure 11 in Appendix D.

How does the number of training iterations af-503

fect the performance? We vary the number of504

training iterations for self-training models, ReST-505

EM and REST-PG, and evaluate them after each506

iteration. The results are illustrated in Figure 3.507

This figure suggests that, on average, increasing508

the number of iterations leads to improvements509

in both models. However, the performance gap510

between the models widens as the number of itera-511

tions increases, with REST-PG consistently outper-512

forming ReST-EM. Additionally, while without any513

self-training, the SFT with reasoning-enhancement514

performs worse than the SFT on 3 out of 4 tasks, af-515

ter just one iteration of self-training, REST-PG sur-516

passes ReST-EM in all tasks. This show that while517

both benefit from more iterations, improvements518

are more pronounced for REST-PG, as additional it-519

erations allow the model to discover more effective520

reasoning paths, further enhancing its performance.521

Is it better to start from a base checkpoint or522

continue training from the SFT? We train two523

models using the proposed approach: one start-524

ing from the base checkpoint and the other from525

the SFT checkpoint, which was trained with the526

data generated in Section 3.1. We plotted the rel-527

ative performance of these two models after train-528

ing using our approach in Figure 4. This figure529

demonstrates that the model starting from the SFT530

checkpoint underperforms compared to the model531

starting from the base checkpoint across all tasks,532

achieving only 96% of the performance of the latter533

on average. This suggests that starting from a new534

base model in each iteration is more effective. We535

believe this is because starting from a base check-536

point allows the model to learn reasoning paths537

more freely, without being constrained by patterns538

learned during previous training iteration.539

4.3 Case Study540

To compare the generated outputs using our ap-541

proach, we provide two categories of examples.542

Improvements in the final generated response. 543

Figure 15 in Appendix E shows an output gener- 544

ated by REST-PG and ReST-EM for a prompt from 545

the personalized abstract generation dataset. REST- 546

PG provides a more precise description of the pro- 547

posed method and correctly predicts the evaluation 548

dataset, ImageNet, while ReST-EM produces a hal- 549

lucinated and incorrect prediction. This example 550

highlights that REST-PG better utilizes the user’s 551

personalized context to generate more accurate and 552

personalized response. In this case, REST-PG’s cor- 553

rect prediction was guided by the author’s previous 554

experiments on the ImageNet dataset. 555

Improvements in reasoning path toward gen- 556

erating the final response. Figure 14 in Ap- 557

pendix E shows an example of personalized output 558

generated by REST-PG and SFT with Reasoning- 559

Enhancement for a prompt from the personalized 560

review writing dataset. Here, SFT with Reasoning- 561

Enhancement introduced some hallucinated names 562

in the reasoning, which were carried over into the 563

final output. In contrast, REST-PG successfully 564

avoided this issue by recognizing that adding inac- 565

curate details negatively affects the reward model’s 566

evaluation. Notably, REST-PG inferred that the 567

user “values well-developed characters and rela- 568

tionships” and incorporated this into the review, 569

aligning closely with the expected output. 570

5 Related Work 571

Personalization is an important topic with use 572

cases in search, recommendation, and text genera- 573

tion (Fowler et al., 2015; Xue et al., 2009; Naumov 574

et al., 2019; Salemi et al., 2024b). Salemi et al. 575

(2024b) introduced a Retrieval-Augmented Gener- 576

ation (RAG)-based method for personalizing LLMs 577

and the LaMP benchmark for evaluating short-form 578

personalized text generation. Kumar et al. (2024) 579

extended this by introducing the LongLaMP bench- 580

mark for long-form personalized text generation. 581

Another direction has focused on designing person- 582
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alized writing assistants (Li et al., 2023a; Mysore583

et al., 2023; Lu et al., 2024) and agents (Zhang584

et al., 2024b). Efforts to personalize LLMs include585

training retrieval models based on feedback for text586

generation (Salemi et al., 2024a), optimizing LLMs587

with personalized feedback (Jang et al., 2023), and588

automatic personalized prompt generation (Li et al.,589

2024a). Recent studies have explored parameter-590

efficient fine-tuning (Tan et al., 2024) and their591

integration with RAG (Salemi and Zamani, 2024).592

This paper differs itself by focusing on training593

LLMs to effectively leverage personalized context594

and incorporate reasoning into output generation.595

Reasoning-Enhancement in LLMs is the596

model’s ability to think step-by-step, also known597

as chain-of-thoughts (CoT), before responding to598

prompts. This improves performance of LLMs599

in complex tasks such as mathematical, logical,600

and commonsense reasoning (Wei et al., 2024;601

Liu et al., 2023a; Yin et al., 2024). Additionally,602

smaller LLMs can acquire this ability through603

distillation from larger models (Li et al., 2023b).604

Reasoning-enhancement has not been studied for605

personalization due to difficulty of understanding606

user’s implicit intent and collecting data to train607

LLMs for this ability. This paper focuses on608

training LLMs to achieve this using RL. Con-609

currently, OpenAI released O1 (OpenAI, 2024),610

incorporating reasoning into response generation,611

focusing on math and logical problems.612

Self-Training is a new paradigm in which LLMs613

generate the training data for themselves (Amini614

et al., 2024). Here, the LLM generates outputs615

for given inputs, and those that are of high quality,616

assessed by a reward function, are used to train617

the model further (Singh et al., 2024; Zelikman618

et al., 2022). Singh et al. (2024) employ expecta-619

tion maximization with RL to optimize the model620

on self-generated outputs, focusing on math and621

code generation. Similarly, Zelikman et al. (2022)622

use CoT prompting to generate answers for math623

and commonsense problems, utilizing only those624

that lead to correct answers for training the model.625

Extensions to both approaches includes improved626

rewarding mechanism (Zhang et al., 2024a) and627

generating per token rationals. Our work differs628

from prior studies in key aspects. Previous work629

focuses on math reasoning and code generation,630

where multiple-choice or clearly defined correct631

answers are present. Conversely, free-form person-632

alized generation lacks a definitive correct or incor-633

Figure 4: The relative performance of our model
trained from the base checkpoint and the SFT check-
point for one iteration on the test set. The same plot on
validation sets is depicted in Figure 10 in Appendix D.

rect answer because an output might be desirable 634

for one user but not for the others. Additionally, our 635

approach extends the work of Singh et al. (2024) by 636

incorporating reasoning into response generation, 637

allowing for more personalized responses. 638

6 Conclusions 639

This paper proposes REST-PG, a multi-stage frame- 640

work designed to train LLMs to reason over per- 641

sonalized contexts during response generation. The 642

framework begins by instructing the LLM to gener- 643

ate a reasoning path, based on the input, expected 644

output, and personalized context, outlining how the 645

final output should be derived. This reasoning paths 646

are then used to train the LLM to generate both the 647

reasoning steps and the response in a single infer- 648

ence path, instilling a preliminary reasoning ability 649

in the LLM. Following this, we apply expectation- 650

maximization reinforced self-training to iteratively 651

align the model’s reasoning with the user’s pref- 652

erences based on a reward function that evaluates 653

the similarity between the generated response and 654

the expected output for the user. Our results on 655

the LongLaMP benchmark show that our approach 656

significantly outperforms supervised fine-tuning, 657

achieving 14.5% improvement, and it outperforms 658

self-training without reasoning by 6.5% in person- 659

alized text generation. Additionally, we conduct 660

a detailed ablation study which provides insights 661

into various aspects of our proposed method. 662
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Limitations663

This work has limitations concerning both evalua-664

tion and latency of the proposed approaches.665

Evaluation of Long-Form Personalized Text666

Generation. Evaluating personalization in text667

generation presents inherent challenges, as the668

ideal judge for the outputs would be the individ-669

ual who created the inputs (Salemi et al., 2024b).670

Unfortunately, accessing these original users for ex-671

isting datasets is often unfeasible. Furthermore, hu-672

man evaluation remains difficult, as it’s not guaran-673

teed that annotators can accurately assess whether674

the output meets the original prompt writer’s ex-675

pectations. Additionally, as highlighted in previous676

studies, evaluating long-form text generation is a677

complex and active area of research in the natural678

language processing community (Koh et al., 2022;679

Krishna et al., 2021; Belz and Reiter, 2006). In this680

paper, we combine these two challenging concepts,681

which further complicates the evaluation process.682

To the best of our knowledge, there is currently683

no widely accepted metric for evaluating generated684

personalized outputs. Traditional metrics, such as685

ROUGE (Lin, 2004) and BLEU (Papineni et al.,686

2002), which rely on term matching, have proven687

inadequate for assessing long-form text generation688

(Koh et al., 2022; Krishna et al., 2021; Belz and689

Reiter, 2006). Recent efforts in the community690

have shifted toward utilizing LLMs as evaluators691

(Li et al., 2024c). Given that we have access to the692

expected output for each user, we follow the same693

approach and employ LLMs to assess the similar-694

ity between the generated output and the expected695

output for that specific user. While this evalua-696

tion method is not perfect, it represents the most697

effective approach available within the constraints.698

Latency of Reasoning During Response Gener-699

ation. While incorporating reasoning over per-700

sonalized context in this paper leads to substantial701

improvements in the quality of the final generated702

output, it also introduces a trade-off: an increase703

in the overall output length. This extended length,704

when processed by a standard transformer-based705

LLM, results in a rise in decoding time. This study,706

however, does not address or attempt to optimize707

this increased decoding overhead by reasoning-708

enhancement. While the current focus is on en-709

hancing output quality and personalization, future710

research could explore strategies to mitigate these711

computational costs.712

Effect of the LLM Family and Size. One limi- 713

tation of this work is that we conduct our experi- 714

ments using only the Gemma family of open-source 715

models at the 2B parameter scale. While evaluat- 716

ing the proposed method on additional backbone 717

LLMs of varying sizes could offer further insights 718

into its generalizability, it is very costly and time- 719

consuming to perfrom. Additionally, the primary 720

objective of this paper is to demonstrate the effec- 721

tiveness of the proposed approach in incorporating 722

reasoning in personalized generation, independent 723

of the specific LLM backbone. Thus, although 724

broader model evaluations could enhance the scope 725

of our findings, this remains a limitation rather than 726

a fundamental shortcoming of this paper. 727

Comparison with the Reasoning and Think- 728

ing LLMs. Recent models designed for reason- 729

ing and problem-solving, such as GPT-O1, have 730

demonstrated strong performance on mathemati- 731

cal and logical tasks. In this work, we do not 732

include GPT-O1 in our comparisons. While we 733

acknowledge that large-scale commercial models 734

like GPT-O1 could provide valuable insights into 735

this task, including them as baselines would lead to 736

an unfair comparison. The models we evaluate are 737

significantly smaller (around 2 billion parameters) 738

and fully open-source. Comparing across such a 739

large gap in model scale makes it difficult to isolate 740

the effectiveness of our proposed method. More- 741

over, since GPT-O1 is a closed-source system, it 742

is unclear what kind of reasoning-specific training 743

it may have received, which further complicates 744

any fair assessment. At the time we conducted our 745

experiments, no open-source models explicitly op- 746

timized for reasoning were available. That said, 747

we believe results from models like GPT-O1 could 748

help contextualize our findings, but are not essen- 749

tial to demonstrate the effectiveness of REST-PG. 750
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A Large Language Model Evaluator &1031

Human Evaluation1032

Although the LongLaMP benchmark (Kumar et al.,1033

2024) primarily relies on ROUGE (Lin, 2004) to as-1034

sess the quality of long-form text generation, prior1035

studies suggest that lexical overlap metrics often1036

fail to capture semantic similarities (Zhang et al.,1037

2020), especially in long-form generation tasks1038

(Koh et al., 2022; Krishna et al., 2021; Belz and1039

Reiter, 2006). Following the approach proposed1040

by Liu et al. (2023b), we employ an instruction-1041

tuned LLM, Gemma (Gemma-Team, 2024), with 71042

billion parameters as our text similarity evaluator. 1043

Since this LLM is trained on large instruction tun- 1044

ing datasets, if provided with a well-defined eval- 1045

uation instruction, it can serve as effective judges 1046

for text similarity tasks (Li et al., 2024c). 1047

Following Kocmi and Federmann (2023), to eval- 1048

uate the generated outputs, we feed the evaluator 1049

LLM with the input prompt, the generated text, and 1050

the reference output, accompanied by a prompt that 1051

explains the evaluation criteria (as depicted in Fig- 1052

ure 6). In this prompt, the criteria that determine 1053

whether the generated output receives the defined 1054

score are clearly outlined. After feeding the model 1055

with the prompt (containing the input, expected 1056

output, and generated output), the LLM evalua- 1057

tor generates the score for the generated output by 1058

comparing it to the reference expected output, con- 1059

sidering the conditions defined by the criteria in 1060

the prompt. This score is in the rage of 1 to 10. To 1061

normalize the score and ensure it falls within the 1062

range of 0 to 1, the selected score is divided by 10 1063

(i.e., the maximum score that the LLM evaluator 1064

can assign to an output). This normalized score 1065

reflects the model’s assessment of the generated 1066

output based on the predefined criteria. To validate 1067

whether the LLM evaluator model can accurately 1068

assess the quality of generated texts, we design two 1069

experiments. 1070

In the first experiment, we conducted a human 1071

evaluation to validate the LLM evaluator. Anno- 1072

tators were presented with 100 pairs of generated 1073

texts from the models discussed in this paper. For 1074

each pair, the annotators were asked to select the 1075

text that best reflected the expected output given the 1076

input. The pairs were selected such that there was 1077

a score difference of at least 0.5 between the two 1078

texts, as determined by our LLM evaluator model. 1079

The results of the human evaluation indicate that 1080

our metric aligns with human judgment in 73% of 1081

the cases. Additionally, the metric shows a correla- 1082

tion of 0.46 with human judgment, suggesting that 1083

the LLM evaluator model generally agrees with 1084

human assessments. Note that previous studies on 1085

designing automatic metrics for personalized text 1086

generation have highlighted that such approaches 1087

may struggle to achieve very high agreement with 1088

human evaluations. This is because personalized 1089

text generation is inherently subjective, and only 1090

the individual who wrote the input can fully assess 1091

whether the generated output meets their expec- 1092

tations or preferences (Wang et al., 2023). Since 1093

access to these specific annotators is not possible 1094
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for existing datasets, this type of evaluation may1095

not provide a completely reliable measure of the1096

quality of personalized text generation.1097

To further evaluate the LLM evaluator, we de-1098

signed an experiment in which the model trained1099

on the LongLaMP benchmark using supervised1100

fine-tuning (as detailed in Section 4) is tested with1101

personalized contexts that are randomly assigned to1102

inputs at varying rates. Specifically, we randomly1103

replaced S percent of the personalized contexts1104

with those from other users, while keeping the in-1105

put prompt and expected output unchanged. This1106

experiment aims to determine whether the LLM1107

evaluator can detect changes in the personalized1108

context based on the generated text and its compar-1109

ison with the expected output. The results of this1110

experiment are shown in Figure 5. The figure illus-1111

trates that as the rate of random sampling increases,1112

the LLM evaluator linearly assigns lower scores to1113

the texts generated by the same model. This sug-1114

gests that the LLM evaluator is linearly sensitive1115

to discrepancies in the generated text context from1116

unmatched personalized context with the expected1117

output for the given input.1118

Therefore, considering both experiments, we be-1119

lieve and are convinced that the LLM evaluator1120

used in this paper is capable of evaluating the qual-1121

ity of generated personalized text when a person-1122

alized expected output is provided. These findings1123

demonstrate that the LLM evaluator can effectively1124

align with human judgments and is sensitive to1125

changes in personalized context, supporting its util-1126

ity for assessing personalized text generation.1127

B Detailed Experiments Setup1128

This section outlines the detailed configuration of1129

the experiments conducted in this paper.1130

Datasets & Tasks. In this paper, we utilize the1131

LongLaMP benchmark (Kumar et al., 2024), pub-1132

licly accessible benchmark for personalized text1133

generation, to conduct our experiments, which con-1134

sists of four personalized long-form text generation1135

tasks:1136

1. Personalized Email Completion: Given an in-1137

put email, the task is to generate a personal-1138

ized continuation based on the user’s writing1139

style and preferences.1140

2. Personalized Abstract Generation: This task1141

involves generating personalized abstracts for1142

technical documents or articles given the ti- 1143

tle and some keywords, reflecting the user’s 1144

writing patterns and focus areas. 1145

3. Personalized Review Writing: The model gen- 1146

erates personalized product reviews that re- 1147

flect the user’s preferences, given the descrip- 1148

tion of the product and the score that is as- 1149

signed to the product by the user. 1150

4. Personalized Topic Writing: For a post sum- 1151

mary on a topic, the task is to generate a per- 1152

sonalized long-form full post that reflects the 1153

user’s writing style, preferences, and opinion 1154

on topic. 1155

Each example in the dataset represents a distinct 1156

user and includes, an input prompt relevant to the 1157

task, an expected output tailored to that specific 1158

user, and a user profile containing historical data, 1159

such as previously generated texts, to capture the 1160

user’s writing habits and preferences. We utilize 1161

the user-based setting of the LongLaMP benchmark 1162

to perform our experiments. The statistics of the 1163

datasets are reported in Table 2. 1164

Training Setup. We utilize the Gemma model 1165

(Gemma-Team, 2024) with 2 billion parameters 1166

as the LLM. To incorporate personalized context, 1167

we follow the retrieval-augmented generation ap- 1168

proach for personalized text generation, as de- 1169

scribed in Salemi et al. (2024b), with the prompt 1170

shown in Figure 8 in Appendix C. We employ 1171

multi-task learning to train a single model across 1172

all tasks in the LongLaMP benchmark, allowing 1173

the model to generalize and perform well on di- 1174

verse personalized text generation tasks. We re- 1175

trieve k = 5 items from the user profile using Con- 1176

triever (Izacard et al., 2022). Following Singh et al. 1177

(2024), the models are trained over T = 3 itera- 1178

tions, generating m = 32 outputs per input during 1179

the expectation step, with a decoding temperature 1180

of γ = 0.7 using Nucleus Sampling (Holtzman 1181

et al., 2020), unless otherwise specified. We set the 1182

output selection threshold to τ = 1.0, and at each 1183

iteration, the training begins from a new, untrained 1184

checkpoint unless otherwise stated. 1185

For each iteration of training, we use the Adafac- 1186

tor optimizer (Shazeer and Stern, 2018) with a 1187

learning rate of 5 × 10−6 and a linear learning 1188

rate decay of 0.1, along with 250 warmup steps, 1189

for a maximum of 10,000 training steps. The batch 1190

size is set to 64, and we apply a weight decay of 1191
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Figure 5: The affect of randomly shuffling profiles on the reward model’s scores.

Figure 6: The prompt used for reward model to evalu-
ate the generated text based on the input, the reference
output, and the provided criteria.

0.01. We also utilize a gradient cliping of 1.0 for1192

optimization. The input length is limited to a maxi-1193

mum of 5,120 tokens, and the output is capped at1194

1,536 tokens. The experiments are conducted on1195

64 TPU-v4 (Jouppi et al., 2023) cores, each with1196

32GB of memory, for a maximum duration of 11197

day. All reported results are based on a single run.1198

Inference Setup. During inference, we limit the1199

input to a maximum of 5,120 tokens and the output1200

to 1536 tokens, where we use nucleus sampling1201

(Holtzman et al., 2020) with a sampling tempera-1202

ture of γ = 0.1 to produce more deterministic out-1203

puts from the LLM. For evaluation, models are as-1204

sessed using full precision on the entire test dataset.1205

However, during checkpoint validation in the train-1206

ing phase, we randomly sample 1,024 examples1207

from the validation set to evaluate the model and1208

choose the best checkpoint every 1000 steps. Infer-1209

ence is conducted on the same infrastructure and1210

resources used during the training setup.1211

C Overview of Prompts and Templates1212

We utilize an instruction-tuned Gemma (Gemma-1213

Team, 2024) LLM with 7 billion parameters to gen-1214

erate the initial reasoning over personalized con-1215

text data. These reasoning data is used to train the1216

model to develop a preliminary reasoning ability1217

over personalized user context. The prompt used 1218

to generate such data is shown in Figure 7. This 1219

prompt encourages the model to consider both the 1220

final output and the input prompt, and based on 1221

this, generate a summary of user’s preferences, in- 1222

terests, background knowledge, and writing style 1223

features from the user’s personalized context that 1224

reflects their interests, preferences, and familiarity 1225

with various topics. Additionally, the prompt en- 1226

courages the model to make reasonable inferences 1227

about the user’s preferences on different topics. For 1228

instance, if a user writes in a specific writing style 1229

on a particular topic, the model may infer that the 1230

user is likely to use a similar approach for other 1231

related topics as well. 1232

Finally, to train the LLM to perform reasoning 1233

over personalized context during output generation, 1234

the generated reasoning data is combined with the 1235

expected output using a predefined template, as 1236

shown in Figure 8. This template enables the model 1237

to generate personalized responses by incorporat- 1238

ing reasoning based on the user’s preferences. The 1239

model is fed with an input consisting of the user’s 1240

prompt and personalized context. The model is first 1241

tasked with generating a summary of user’s pref- 1242

erences and writing style features based on the in- 1243

put, which is then followed by generating the final 1244

response to the prompt. The combined output—– 1245

both the reasoning path and the final response—– 1246

serves as the expected output in this template. Es- 1247

sentially, the model is trained to generate both the 1248

reasoning steps and the final response in a single 1249

inference pass. 1250

D Results on the Validation Sets 1251

This section reports the results of the experiments 1252

performed in Section 4 on the validation set of 1253

the datasets in the LongLaMP benchmark (Kumar 1254

et al., 2024). To accelerate the training phase, we 1255

randomly selected at most 1,024 samples from each 1256

dataset and evaluated the checkpoints on those sam- 1257

ples. Therefore, the results presented here are not 1258
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Figure 7: The prompt used to generate summary of user’s preferences, interests, background knowledge, and
writing style features as a reasoning method over the personalized context.

Figure 8: The input output template used for training the model with reasoning-enhancement data.

Figure 9: The performance of our approach with different exploration budgets (m) when trained for one iteration
on the validation set. In order to speed up the experiments, a maximum of 1,024 samples from each task randomly
was selected, instead of evaluating on the full validation set.
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Task #train #validation #test Input Length Output Length Profile Size

LongLaMP-1: Personalized Email Completion 3286 958 823 46.45 ± 21.45 92.59 ± 60.68 85.65 ± 51.67

LongLaMP-2: Personalized Abstract Generation 13693 4560 4560 33.82 ± 5.71 144.28 ± 68.40 120.30 ± 118.81

LongLaMP-3: Personalized Review Writing 14745 1826 1822 119.39 ± 73.06 304.54 ± 228.61 34.39 ± 57.31

LongLaMP-4: Personalized Topic Writing 11442 2452 2453 28.36 ± 36.08 263.03 ± 243.34 50.39 ± 2898.60

Table 2: The statistics of the datasets in the LongLaMP benchmark on user-based setting.

Model
LongLaMP-1: LongLaMP-2: LongLaMP-3: LongLaMP-4: AveragePersonalized Personalized Personalized Personalized

Email Completion Abstract Generation Review Writing Topic Writing (macro)

1 SFT 0.3672 0.4046 0.6455 0.2293 0.4116
2 SFT w/ Reasoning-Enhancement 0.3426 0.3824 0.7181 0.2495 0.4231
3 ReST-EM 0.3711 0.4550 0.6664 0.2853 0.4444

REST-PG 0.3800 0.4827 0.7197 0.3561 0.4846

Table 3: The performance of all methods on the validation sets of the LongLaMP benchmark. In order to speed up
the experiments, a maximum of 1,024 samples from each task randomly was selected, instead of evaluating on the
full validation set.

Model Metric
LongLaMP-1: LongLaMP-2: LongLaMP-3: LongLaMP-4:
Personalized Personalized Personalized Personalized

Email Completion Abstract Generation Review Writing Topic Writing

1 SFT
ROUGE-1 46.4 43.1 41.3 29.0
ROUGE-L 41.4 27.5 18.0 15.0

BLEU 41.6 15.5 7.2 7.0

2 SFT w/ Reasoning-Enhancement
ROUGE-1 44.5 42.1 34.5 28.4
ROUGE-L 39.7 26.2 16.9 14.1

BLEU 37.2 14.6 5.2 4.3

3 ReST-EM
ROUGE-1 41.5 43.6 32.4 26.5
ROUGE-L 37.5 28.3 17.8 14.8

BLEU 36.7 16.3 6.5 6.3

REST-PG
ROUGE-1 41.5 43.9 31.3 26.1
ROUGE-L 37.0 28.4 16.9 14.0

BLEU 33.3 16.5 4.4 4.1

Table 4: The performance of all methods on the test sets of the LongLaMP benchmark, using traditional term-
matching metrics. However, as noted in prior work on evaluating long-form text generation (Koh et al., 2022;
Krishna et al., 2021; Belz and Reiter, 2006), standard automatic metrics are not reliable indicators of quality in this
setting. For the sake of transparency, we report these metrics, but we do not rely on them for our core evaluation.

based on the entire validation set of the datasets.1259

The results of baselines and the proposed ap-1260

proaches on the dev set are reported in Table 3. The1261

results in this table suggest that SFT with reasoning-1262

enhancement, unlike on the test set, was able to1263

help the model outperform the SFT model with-1264

out reasoning. Additionally, we observe that self-1265

training without reasoning using ReST-EM outper-1266

forms the SFT baselines, similar to the results on1267

the test set. Finally, REST-PG outperforms all the1268

baselines across all tasks in the LongLaMP bench-1269

mark, consistent with the test set results.1270

The results of the experiment on varying the1271

exploration budget in the expectation step of self-1272

training on the dev set are shown in Figure 9. Sim-1273

ilar to the test set, the results indicate that while 1274

different tasks may benefit from different budgets, 1275

on average, generating 32 outputs leads to the best 1276

performance. This again emphasizes the impor- 1277

tance of hyper-parameter tuning for this approach. 1278

The results of the experiments on varying the 1279

number of training iterations are reported in Fig- 1280

ure 11. This figure suggests that, similar to the test 1281

set, increasing the number of iterations leads to im- 1282

proved performance for both ReST-EM and REST- 1283

PG. The gap between their performance grows as 1284

iterations increase, showing that REST-PG benefits 1285

more from additional iterations. Note that after just 1286

one iteration, REST-PG outperforms ReST-EM on 1287

all datasets, even on those that performed worse 1288

16



with reasoning-enhancement before self-training.1289

Finally, the results of experiments on starting1290

from a new base checkpoint or continuing training1291

from the previous checkpoint are reported in Fig-1292

ure 10. Similar to the test set, the results show that,1293

on average, starting from a fresh base checkpoint1294

performs better than continuing training from the1295

previous checkpoint. This finding reinforces the1296

idea that initializing from a fresh checkpoint leads1297

to improved performance compared to fine-tuning1298

from previously trained models.1299

E Case Study & Output Examples1300

This section presents samples of the outputs gener-1301

ated at various stages of our approach.1302

Generated reasoning path using Gemma 7B1303

given input, output, and personalized context.1304

As explained in Section 3.1, we utilize the Gemma1305

7B model to generate reasoning over personalized1306

context by considering the personalized context, in-1307

put prompt, and expected output. Figures 12 and 131308

showcase two examples of such reasoning outputs.1309

These generated reasoning summaries are subse-1310

quently used to train a smaller model, enabling it1311

to develop preliminary reasoning abilities during1312

the generation of responses.1313

Figure 10: The relative performance of our model
trained from the base checkpoint and the SFT check-
point for one iteration on the validation set. In order
to speed up the experiments, a maximum of 1,024 sam-
ples from each task randomly was selected, instead of
evaluating on the full validation set.

Improvements in the final generated response.1314

Figure 15 provides an example of personalized out-1315

put generated by REST-PG and ReST-EM for a1316

prompt from the personalized abstract generation1317

dataset. The REST-PG model delivers a more ac- 1318

curate description of the proposed method and cor- 1319

rectly predicts the evaluation dataset, ImageNet, 1320

while the ReST-EM model hallucinates and pro- 1321

vides an incorrect guess. This example illustrates 1322

that REST-PG more effectively leverages the user’s 1323

past history to generate more accurate and person- 1324

alized text. In this case, the author’s previous exper- 1325

iments on the ImageNet dataset helped the model 1326

make the correct prediction. 1327

Improvements in reasoning path toward gener- 1328

ating the final response. Figure 14 shows an ex- 1329

ample of outputs generated by REST-PG and SFT 1330

with Reasoning-Enhancement for a given prompt 1331

from the personalized review writing dataset. In 1332

this case, the SFT with Reasoning-Enhancement 1333

model hallucinated some names in the reasoning 1334

path and incorporated them into the final generated 1335

output. In contrast, REST-PG effectively avoided 1336

such reasoning, as it recognizes that introducing 1337

inaccurate details negatively impacts the reward 1338

model’s assessment. Additionally, an interesting 1339

observation is that REST-PG inferred that the user 1340

"values well-developed characters and relation- 1341

ships" and reflected this in the review text, aligning 1342

with the expected output. 1343
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Figure 11: The affect of number of expectation-maximization steps on the performance on the validation set. In
order to speed up the experiments, a maximum of 1,024 samples from each task randomly was selected, instead of
evaluating on the full validation set.

Figure 12: The generated profile summary with Gemma 7B on personalized abstract generation task.
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Figure 13: The generated profile summary with Gemma 7B on personalized review writing task.
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Figure 14: The comparison between answer generated with REST-PG and SFT with Reasoning-Enhancement on
an example from personalized review writing task.
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Figure 15: The comparison between answer generated with REST-PG and ReST-EM on an example from person-
alized abstract generation task.
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