
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2025

MEMORISABLE PROMPTING: PREVENTING LLMS FORGET-
TING FALSE POSITIVE ALARM

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are widely recognized for their superior performance
across various domains. However, their tendency to generate inaccurate or misleading
responses presents significant challenges, particularly in the natural language domain. This
issue underscores the need to enhance both the explainability and reliability of LLMs.
While recent advancements in prompting have focused on leveraging in-context learn-
ing—such as providing step-by-step explanations—these approaches often overlook the
critical importance of understanding the response dependency of LLMs on specific datasets.
This understanding is crucial for interpreting their outputs and improving their consistency.
Moreover, if we can capture and encode these response dependencies, we can integrate
them into LLMs as memorized knowledge to mitigate false positive responses over time.
In this paper, we tackle this challenge by introducing the Memorizable Prompting (MP)
paradigm, which enables LLMs to retain and utilize information from past responses.
Specifically, our approach leverages hint samples—a small set of annotated examples—to
learn the response dependencies, defined as the relationship between LLM outputs and the
ground-truth annotations for a given dataset. This equips LLMs with the ability to recall
past false positives and use that knowledge for self-correction in future predictions. We
have evaluated our method on a diverse set of domain-specific datasets, demonstrating its
effectiveness across large-scale benchmarks.

1 INTRODUCTION

Large Language Models (LLMs), such as ChatGPT, have recently gained immense popularity due to their
remarkable capabilities across various domains. However, since LLMs (Devlin et al., 2018; Touvron et al.,
2023; OpenAI, 2023) are trained on open-domain knowledge, the generated outputs often exhibit randomness,
leading to unreliable or inconsistent predictions. These issues are particularly problematic in high-stakes
domains that require high-quality supervision, such as recommendation systems and text mining. Therefore,
it is vital to devise effective approaches to address these challenges and enable LLMs to generate more
consistent and accurate predictions. One potential solution is the use of prompting strategies. Research studies
(Brown et al., 2020; Wei et al., 2021; Yao et al., 2022; Liu et al., 2023) have shown that the effectiveness of
LLMs is intricately tied to the prompting strategy employed for each specific task. However, these methods
can only be considered "static prompting," meaning they do not enable LLMs to self-reflect and self-correct
their responses. Consequently, many studies have focused on enabling LLMs to perform self-correction (Bang
et al., 2023; Huang et al., 2023; Li et al., 2023; Wei et al., 2024; Zhou et al., 2023; 2022). The self-correction
simply means using LLMs to do the self-verification and self-correction. Despite these efforts, Huang et al.
(2023) has shown that intrinsic self-correction is not yet achievable using only the self-generated output.
Recently, Chen & Tsang (2024) proposed utilising hint samples, a method that allows LLMs to iteratively
learn from their consistent samples, thereby improving their predictions. This approach uses hint samples as
relevant demonstrations (Shi et al., 2023), but it lacks the memorisation capability necessary for effective

1



047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2025

reflection. Memorisation can be understood from various perspectives; in our problem setting, it refers to
the ability to memorise a response dependence. It can be defined as the relationship between an LLM’s
predictions and the ground truth annotations for a given query, such as X . Response dependence includes
false positive predictions and true positive prediction. It can be used to refine the selection criteria to improve
predictions in subsequent rounds. According to (Attias et al., 2024) memorization plays an essential role
for good generalization. However, in the prompt based task, the memorisation related prompt based task of
LLMs remains limited. If LLMs could memorise past mistakes, they would likely not make the same false
positive predictions again. In this paper, We demonstrate the important part of memorisation in prompt based
task. This leads us to consider:

"How can we design a prompting scheme that enables Large Language Models (LLMs) to remember false
positive predictions as alarm, thereby improving response accuracy and consistency?"

To achieve this, we propose the Memorisable Prompting (MP) method. MP aims to accomplish two
primary objectives. Firstly, it provides a paradigm that allows LLMs to understand their response dependence.
Secondly, leveraging these patterns by storing them in a memory bank, thereby endowing LLMs with
memorisation capabilities. The goal is to use the memory bank to prevent LLMs from repeating false positive
predictions, generating more consistent outputs from the LLMs. Specifically, MP uses small amounts of
annotated samples as hints to obtain the label dependence between LLM predictions and ground truth for each
query. This dependence is stored in a memorisation bank and used to prevent LLMs from forgetting false
positive predictions, enhancing their ability to self-reflect and self-correct, subsequently improving prediction
accuracy. In the subsequent stage, for every query and prediction generated using ChatGPT, we will retrieve
potential correct label candidates from the memory bank based on the prediction for the large unsupervised
training samples. For a more detailed explanation, please refer to Section 3. Our experimental results validate
the effectiveness of the Memorisable Prompting method. The main contributions of this paper have been
listed below:

• Introduction of Memorisable Prompting Method: We introduce the Memorisable Prompting method,
which endows LLMs memorising their past false positive prediction. This approach facilitates
LLMs to circumvent repetitive false positive predictions by recording and encoding these response
dependence into the Memorisable mask matrix.

• Improvement of adaptability and Reliability: We have justified our approach through the lens of
probability to interpret the importance of the Memorisable masking matrix. We have provided a
new perspective on exploiting the response dependence of LLMs to improve their explainability and
reliability, making them more robust and adaptable across various tasks.

• Demonstrated Effectiveness Across Large-Scale Datasets: We have verified the Memorisable Prompt-
ing method on various domain datasets. Our experiments show its effectiveness in improving the
performance of LLMs across large-scale datasets with a large number of classes, showcasing its
potential for broad applicability.

2 RELATED WORKS

Prompt-based learning was initially studied in (Brown et al., 2020). It uses few-shot examples as illustrations
to aid large language models (LLMs) in generating more refined predictions. Subsequently, (Wei et al.,
2021) proposed instruction fine-tuning to improve the performance of LLMs. The ReAct method (Yao et al.,
2022) combines chain-of-thought prompting with action. It endows generating more coherent supplemental
data from external information, such as the Wikipedia API, to circumvent problems such as hallucinations
resulting from chain-of-thought reasoning. Active Prompt (Diao et al., 2023) proposes a question selection
approach named ’active-prompt’ to improve the accuracy of generated predictions. The ’Generate Knowledge
Prompting’ method (Liu et al., 2023) uses external information to enable the model to generate more accurate

2



094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

responses. Consistency Prompting (Wang et al., 2023) aims to improve the response accuracy of LLMs by
considering consistently generated answers through selecting multiple and diverse paths in a few-shot chain of
thought approach. The problem with this method is its dependence on multiple sources of paths; even slight
changes in one source’s prediction can drastically impact the final prediction. Chain of Thought Prompting:
The chain of thought method (Wei et al., 2022) provides step-by-step illustrations for the given query to the
LLMs.Few-Shot Thought Prompting: (Brown et al., 2020) uses a few relevant examples as illustrations in
the prompt to aid the model in self-correction. Tree of Thought Prompting (Long et al., 2023; Yao et al.,
2023) (Yao et al., 2024; Long, 2023) proposes the Tree of Thoughts (ToT) prompt, which encourages Large
Language Models (LLMs) to engage in step-by-step exploration and self-correction by simulating different
agents that communicate and provide critiques for each other. Our work is also related to Self-Reflection
Prompt-Based Learning. (Huang et al., 2022)suggests a self-correction method that requires LLMs to question
their initial responses before providing a final answer. Similarly, (Madaan et al., 2024) proposes generating
feedback for its output and using it iteratively to refine itself. However, recent work (Huang et al., 2023)
has shown that intrinsic self-correction is not yet achievable. Additionally, since the generated feedback is
evaluated solely by the LLMs themselves without any external validation, the trustworthiness of this feedback
can be questionable. Unlike (Shinn et al., 2024), which proposes an iterative feedback refinement strategy,
our approach involves storing feedback in short-term and long-term memory.

3 MEMORISABLE PROMPTING PROBLEM SETTING

3.1 PRELIMINARIES

Consider a feature space X ⊆ Rd and a label space Y = {1, . . . , c}, where c denotes the number of classes.
Each instance X ∈ X has a true label Y ∈ Y . In many real-world scenarios, full supervision is unavailable
for the entire dataset. Instead, there is usually a small subset of cleanly labelled samples alongside a larger
set of unlabeled data. More specifically, we can define Dsmall as the distribution of the cleanly labelled
small sample set, denoted as hints, which contains pairs (X,Y, Y⃗ ) where Y⃗ = Y , representing a candidate
label set encompassing all class labels. This can be expressed as {(Xi, Yi, Y⃗ )}si=1, with s being the total
number of clean samples. We define Dlarge as the distribution for the large unsupervised dataset, denoted as
{Xi, Y⃗ }ni=s+1, where n is the total number of both labelled and unlabeled training samples. The Dlarge is
considered an unsupervised dataset, meaning neither no ground truth label nor weak supervision is associated
with each instance in the distribution. The learning objective is to design a prompting strategy that leverages
Dsmall, which constitutes about 5% of the total training samples, to allow large language models (LLMs) to
accurately annotate the large unsupervised dataset Dlarge.

3.2 ENDOWING LLMS WITH MEMORISATION USING ESTIMATED MEMORISATION MASKING MATRIX

In this section, we introduce a hints-based Memorisation masking matrix to mimic the memorisation bank for
LLMs, aiming at preventing LLMs from forgetting the false positive predictions in the API-based prompting
task. Specifically, we denote a memorisation bank as M(x), a transition matrix that captures the dependencies
between a specific true class Y and predicted classes Y ′ ∈ Y for instance x. Given x and Y , we record
all possible Y ′ from ChatGPT. This setup enables the construction of M(x), representing the dependency
between Y and Y ′ given x. We record the frequency of predictions from ChatGPT for each Y , noting each
occurrence as a potential candidate label. Ideally, the matrix’s diagonal entries will be positive (indicating
that Y and all corresponding Y ′ from ChatGPT are the same), while other entries remain zero, signifying
correct classification by ChatGPT. However, mismatches often occur between the true label and ChatGPT’s
predictions, reflected by non-zero off-diagonal entries. Each column of M(x) represents the dependency
of the truncated candidate label set on Y . For illustration purposes, consider the following example of the

3



141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2025

Figure 1: Estimated Memorisation Masking for datasets CLINC, MTOP (INTENT), Massive (Domain),
MTOP (INTENT), Stack-Exchange, and Finance77. The diagonal line indicates the correct prediction from
LLMs given each dataset, whereas the other highlighted entries indicate false positive predictions.

masking matrix M :

M(x) =


mY ′

1Y1
mY ′

1Y2
mY ′

1Y3
mY ′

1Y4

mY ′
2Y1

mY ′
2Y2

mY ′
2Y3

mY ′
2Y4

mY ′
3Y1

mY ′
3Y2

mY ′
3Y3

mY ′
3Y4

mY ′
4Y1

mY ′
4Y2

mY ′
4Y3

mY ′
4Y4

 =

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 =


−−MY ′

1
−−

−−MY ′
2
−−

−−MY ′
3
−−

−−MY ′
4
−−


In this case, mY ′

1Y1
= 1 and mY ′

4Y1
= 1 indicate that given the ground truth label is Y1, the prediction classes

are Y ′
1 and Y ′

4 . On the other hand, mY ′
2Y1

= 0 and mY ′
3Y1

= 0 suggest that ChatGPT did not predict Y ′
2

or Y ′
3 given Y1. M(x)Y ′,Y indicates whether Y ′ is a candidate label for Y . Each row of the matrix M(x)

corresponds to a candidate label Y ′, and each column corresponds to a true label Y . The value at M(x)Y ′,Y

is 1 if Y ′ is a candidate for Y , and 0 otherwise. Overall, by estimating a discrete memorization masking
matrix M from hint samples, we construct deterministic mappings between the LLM’s generation Y ′ and the
ground truth labels Y . Given new inputs, we exploit M to infer potential ground truth labels based on the
LLM’s generations, refining our candidate sets and improve the LLM’s accuracy for subsequent generation.

4 PREVENTING LLMS FORGETTING WITH ESTIMATED MEMORISATION MASKING
THROUGH THE LENS OF PROBABILITY

Let G denote the LLM, which generates a prediction Y ′ given a query X and a set of all label candidates Y⃗ ,
the G selects a label from the Y⃗ given X . The process can be formulated as:

P (Y ′|X, Y⃗ ) = G(X, Y⃗ ), (1)

4



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

Algorithm 1 Memorisable Prompting

1: Input: Small clean samples Dsmall = {(Xi, Yi)}si=1, unlabeled data Dlarge = {Xi}Ni=1, total number of categories
K.

2: Output: Refined predictions ȲRefined
3: Stage 1: Initialization
4: Generate initial candidate set Y⃗Query initialized with all ones
5: Stage 2: Construct Memorisation Masking
6: Estimate initial mask from noisy similar data pairs
7: Update Y⃗Query using the estimated mask
8: Stage 3: Predict Ground Truth Labels
9: Use Dsmall to obtain initial predictions

10: Stage 4: Estimate Memorisation Masking
11: Estimate memorisation mask based on the occurrence of potential correct candidate set labels and predicted labels.
12: Stage 5: Update Candidate Set
13: for i = 1 to s do
14: Update Y⃗i based on the corresponding row in the memorisation mask
15: end for
16: Stage 6: Refining Predictions
17: Refine predictions ȲRefined = G(X, Y⃗Updated)
18: return ȲRefined

where Y ′ is a prediction from the set Y⃗ , and P (Y ′|X, Y⃗ ) represents the posterior probability. The learning
objective aims to optimise the parameter of G through a prompting strategy to obtain P (Y |X, Y⃗ ), where Y is
the underlying ground truth label. In addition, the output from ChatPGT is only discrete output either in text
or one hot label vector depending on the request of the query. According to equation 1, we can marginalise
over Y by deriving P (Y ′|X, Y⃗ ) =

∑
Y P (Y ′|Y,X, Y⃗ )P (Y |X, Y⃗ ). We aim to solve P (Y |X, Y⃗ ). Given

P (Y ′|X, Y⃗ ) is known, and if the P (Y |Y ′, X, Y⃗ ) can be obtained, our problem can be solved.

P (Y ′|X, Y⃗ ) =
∑
Y

P (Y ′, Y |X, Y⃗ ) (2)∑
Y

P (Y ′, Y |X, Y⃗ ) =
∑
Y

P (Y ′|Y,X, Y⃗ )P (Y |X, Y⃗ )

In this paper, we assume the universal Memorisable masking matrix for the whole dataset Dlarge and denote
it as P (Y ′|Y,X, Y⃗ ). Because of that, large language models, such as ChatGPT, have evolved to be so
powerful that they can even differentiate nuanced differences within a category, not to mention that individual
instances manifest unique features. Mathematically, we have formulated the universal Memorisable masking
assumption as follows:

P (Y ′|Y,X, Y⃗ ) = P (Y ′|Y,X ′, Y⃗ ), (3)

where X and X ′ represent different distinct features of the category Y . Intuitively, one might expect a specific
instance-dependent transition matrix for each instance to represent the label Y ′ ’s generation process given
instance X . However, we argue that this is generally not the case if a category Y within the textual type
dataset typically exhibits unique and distinct features, denoted as X and X ′. Some category features are
so unique that they completely differ from those of other categories. Assuming that LLM can detect the
subtle difference between two instances, there should be no problem with correctly predicting the input. For
instance, considering a category Y such as "dog," and the features X ′ and X represented by P (X ′|Y, Y⃗ ) and
P (X|Y, Y⃗ ) respectively. Assume P is the LLM. In this specific category, its feature representations X ′ and
X are so unique that, even though there may be some deviations, they are distinguishable. Consequently, the
LLM will consistently predict them correctly, i.e., P (Y ′|Y,X, Y⃗ ) and P (Y ′|Y,X ′, Y⃗ ) are equal.

5



235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2025

In addition, we have provided some learnability conditions for the variance of these distributions. Let
q1 and q2 represent the data model that represents the data generation process, for instance, generating
the features description given the category and the features X . Specifically, given that the variance of
X ∼ q1(X|Y ) and Y ′ ∼ q2(Y

′|X) is small, this implies that the variations within the features X conditioned
on Y and the supervision signal Y ′ conditioned on X are minimal. This further supports the assumption
that P (Y ′|Y,X, Y⃗ ) = P (Y ′|Y,X ′, Y⃗ ) holds, as the minimal variance ensures that the instances X and X ′

within the same category Y remain distinct yet consistently classifiable by the generative model.

4.1 MEMORY MASKING ESTIMATION THROUGH HINTS SAMPLES

In this section, we provide memory masking estimation using hint samples. We treat the LLM as a black-box
model, which means that given an input X , it generates a predicted label Y ′. We cannot retrieve any model
parameter information from the LLMs; we only have access to the predictions for given queries. To estimate
the ground truth label Y , we need to compute P (Y ′ | X, Y⃗ ) and

∑
y P (Y ′ | Y = y,X, Y⃗ )P (Y = y | X, Y⃗ )

according to Equation 2. The term P (Y ′ | X, Y⃗ ) can be obtained directly from the LLM’s predictions.
However, the term

∑
y P (Y ′ | Y = y,X, Y⃗ )P (Y = y | X, Y⃗ ) cannot be computed directly since we do

not have access to the ground truth annotations for all samples. Nevertheless, this sum can be estimated if
we have access to a small number of samples with known ground truth annotations (hint samples). Given
Equation 2, we can write the estimation process as:

P (Y ′ = 2 | X, Y⃗ ) =
∑
y

P (Y ′ = 2 | Y = y,X, Y⃗ )P (Y = y | X, Y⃗ ). (4)

If we know for sure that Y = 1 for a given X = x1, then P (Y = 1 | X = x1, Y⃗ ) = 1. As a result, the above
equation simplifies to:

P (Y ′ = 2 | X = x1, Y⃗ ) = P (Y ′ = 2 | Y = 1, X = x1, Y⃗ ). (5)

Returning to the general equation:

P (Y ′ | X, Y⃗ ) =
∑
y

P (Y ′ | Y = y,X, Y⃗ )P (Y = y | X, Y⃗ ), (6)

under the condition that the example X belongs to a specific class almost surely. For instance, if we know
with high confidence that an example X has the ground truth label Y = y, meaning P (Y = y | X, Y⃗ ) = 1,
this indicates a hint sample where the true label is known. Therefore, as long as we can collect these samples
where P (Y = y | X, Y⃗ ) = 1, we can subsequently estimate P (Y ′ | Y = y,X, Y⃗ ). As a result, we use
hint samples to learn the dependence of the LLM’s generated responses on the ground truth responses. By
analyzing the relationship between the hint samples’ true labels and the predicted labels from the LLMs,
we can estimate the true P (Y ′ | Y,X, Y⃗ ). In our context, P (Y ′ | Y,X, Y⃗ ) can be obtained for these hint
samples since P (Y = y | X, Y⃗ ) = 1. There are relevant works Yang et al. (2022), Han et al. (2018), Patrini
et al. (2017) that exploit label dependence or transition matrices to obtain consistent classifiers. Nonetheless,
these works are mainly conducted in white-box settings, assuming that model parameters are accessible and
the estimated transition matrices are in probabilistic formats. In reality, the majority of advanced LLMs are
only accessible via API calls, and there are many constraints on the format of the output. Thus, there is still
a gap in providing a more feasible approach for estimating the transition matrix under the black-box LLM
setting, which involves only applying prompting to retrieve informative information to improve the LLMs’
responses. Moreover, limited work in prompt-based learning applies estimated transition matrix methods to
help prevent LLMs from forgetting false positive predictions.

6



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2025

4.2 DISAMBIGUATION THROUGH HINTS BASED ESTIMATED MEMORISABLE MATRIX

4.3 MEMORISATION MASKING CONSTRUCTION

Initially, we have a full set of candidate labels Y⃗ for each query Xi, representing all possible classes. Our goal
is to obtain the correct predictions by utilizing the deterministic mappings between the LLM’s predictions
and the ground truth labels established from hint samples. Let Dhint = {(Xi, Yi)}si=1 be a set of hint samples
where s = 4. Each Xi is an input for which we know the ground truth label Yi. We use these hint samples
to construct the memorization matrix M , which captures the mappings between the LLM’s predictions Y ′

i

and the ground truth labels Yi. Additionally, we denote whole query samples as Dlarge =(Xi)
N
i=1 the initial

queries X = {X1, X2, . . . , Xs} and the corresponding candidate set Y⃗Query = {Y⃗1, Y⃗2, . . . , Y⃗s}. Assuming
we know the total number of K and the corresponding label for each k − th category, therefore, for every
x, there always exists universal candidate set Y⃗ , therefore, Y⃗1 = Y⃗2 = · · · = Y⃗s = Y⃗ . In the initial stage,
we have only access to the full set label candidate set for each query x. We can denote the initial whole
query label candidate set for all training samples as Y⃗ and it is a s × c matrix containing all ones and set
YTrue = {Y1, Y2, . . . , Ys}, where Y is an s× c matrix containing all ones.

Y⃗Query =

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 Y⃗G =

0 0 0 1
0 1 0 0
1 1 1 1
0 0 0 1

 Y⃗Updated =

1 0 0 1
0 1 0 0
1 0 0 1
1 0 0 0

 Y⃗Refined =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The matrix Y⃗ is filled with ones, representing that all classes are potential candidates. Our goal is to design
a prompting scheme to enable LLMs to generate the correct annotation for each q from the corresponding
y⃗, transforming Y⃗ to Y⃗True. Predictions by ChatGPT for each Query are Y ′

1 = [0, 0, 0, 1], Y ′
2 = [0, 1, 0, 0],

Y ′
3 = [0, 0, 0, 1], Y ′

4 = [1, 0, 0, 0] and the corresponding Ground Truth Label vectors Y1 = [1, 0, 0, 0],
Y2 = [0, 1, 0, 0], Y3 = [0, 0, 1, 0], Y4 = [0, 0, 0, 1]. Estimated Memorisation Masking M

M =


mY ′

1Y1
mY ′

1Y2
mY ′

1Y3
mY ′

1Y4

mY ′
2Y1

mY ′
2Y2

mY ′
2Y3

mY ′
2Y4

mY ′
3Y1

mY ′
3Y2

mY ′
3Y3

mY ′
3Y4

mY ′
4Y1

mY ′
4Y2

mY ′
4Y3

mY ′
4Y4

 =

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1


ȲRefined = G(X, Y⃗Updated). Let Y⃗Updated be an s×K matrix. If Y ′

i = 1 (i.e., the prediction is the first class),
the corresponding potential candidate set is the first row of Y⃗Updated. We hope that the subsequent generation
ȲRefined is same to the true class Y .

5 EXPERIMENTS

Dataset:In this paper, we evaluate our proposed Memorisable prompting method on a wide range of datasets
sourced from Zhang et al. (2023). Each dataset contains both smaller and larger sizes. For a fair comparison,
we only i.i.d sample 5% from the large size dataset and test on the small size dataset. According to Zhang et al.
(2023), each size dataset contains the same number of clusters. More information is provided in Table 2. For
the CLINC, Massive, and MTOP datasets, different domains are used as labels to transform them into domain
discovery. Bank77 Casanueva et al. (2020) is a banking dataset containing fine-grained intent categories
classification for a single domain. CLINC(I) Larson et al. (2019) is a dataset for our intent detection from the
supported intents, in this experiment, only in-domain ones are used. Massive(I) FitzGerald et al. (2022) and
MTOP(I) Li et al. (2020) are both from MTEB Muennighoff et al. (2022). The “I” and “D” are abbreviations
for intent and for domain, respectively.

7



329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

Metric ChatGPT-4o ChatGPT-4o ChatGPT-4o ChatGPT-4o ChatGPT-4o
Dataset StackExchange CLINC FINANCE11 MOTE Massive(D)

cot baseline 44.72% ± 0.19% 74.55% ± 2.73% 59.41% ± 0.50% 69.70% ± 1.07% 63.99% ± 0.69%
Memorisable cot 49.54% ± 0.31% 75.76% ± 3.22% 65.32% ± 1.73% 69.25% ± 1.32% 66.40% ± 0.38%
tot baseline 41.62% ± 0.28% 76.86% ± 0.18% 65.62% ± 1.24% 69.73% ± 0.42% 68.33% ± 0.02%
Memorisable tot 47.02% ± 0.33% 77.73% ± 1.19% 69.26% ± 1.84% 69.00% ± 1.07% 71.30% ± 0.26%
fot baseline 42.81% ± 0.40% 73.14% ± 2.33% 55.87% ± 0.10% 66.23% ± 0.81% 67.49% ± 0.12%
Memorisable fot 48.09% ± 0.35% 74.60% ± 2.48% 62.74% ± 0.89% 67.60% ± 0.94% 70.03% ± 0.19%
Vanilla 49.94% ± 0.36% 83.23% ± 1.11% 66.61% ± 1.82% 73.79% ± 0.61% 72.04% ± 0.07%
Memorisable + Vanilla 50.02% ± 0.25% 82.70% ± 1.56% 69.45% ± 2.30% 73.72% ± 0.94% 71.03% ± 0.07%
consistent baseline 47.63% ± 0.37% 81.85% ± 0.63% 66.08% ± 1.38% 74.00% ± 0.32% 70.82% ± 0.02%
Memorisable + consistent 48.19% ± 0.27% 79.86% ± 1.53% 65.86% ± 1.30% 79.82% ± 0.90% 69.81% ± 0.40%
Feedback baseline 51.72% ± 0.27% 79.34% ± 0.49% 64.81% ± 1.33% 71.93% ± 0.02% 71.35% ± 0.29%
Memorisable + Feedback 51.69% ± 0.24% 80.21% ± 1.37% 68.71% ± 2.68% 71.06% ± 0.60% 71.72% ± 0.38%
Correction 47.55% ± 0.34% 81.85% ± 0.63% 65.58% ± 1.23% 73.57% ± 0.47% 70.84% ± 0.05%
Memorisable Correction 49.71% ± 0.34% 81.77% ± 1.28% 68.92% ± 1.86% 73.11% ± 0.68% 71.26% ± 0.21%

Metric ChatGPT-3.5 ChatGPT-3.5 ChatGPT-3.5 ChatGPT-3.5 ChatGPT-3.5
Dataset StackExchange CLINC FINANCE11 MOTE Massive(D)

cot baseline 49.59% ± 0.00% 64.62% ± 1.63% 19.16% ± 0.14% 57.42% ± 0.40% 60.54% ± 0.24%
Memorisable cot 54.72% ± 0.17% 68.09% ± 1.92% 31.90% ± 0.30% 64.91% ± 0.36% 68.11% ± 0.43%
tot baseline 40.50% ± 0.04% 65.11% ± 0.09% 57.87% ± 0.11% 66.05% ± 0.05% 62.04% ± 0.31%
Memorisable tot 51.33% ± 0.03% 69.53% ± 0.50% 63.23% ± 0.44% 73.63% ± 0.37% 68.33% ± 0.50%
fot baseline 46.04% ± 0.01% 61.62% ± 1.16% 36.77% ± 0.44% 55.93% ± 0.23% 58.23% ± 0.45%
Memorisable fot 51.92% ± 0.08% 63.53% ± 1.23% 45.94% ± 0.60% 63.94% ± 1.15% 66.70% ± 0.86%
Vanilla 51.96% ± 0.02% 63.18% ± 1.13% 62.55% ± 0.85% 65.84% ± 0.47% 62.22% ± 0.05%
Memorisable + Vanilla 56.29% ± 0.04% 67.84% ± 1.70% 66.92% ± 1.10% 74.36% ± 0.73% 67.26% ± 0.12%
consistent baseline 51.75% ± 0.06% 68.90% ± 0.08% 56.61% ± 0.34% 68.26% ± 0.26% 62.49% ± 0.19%
Memorisable + consistent 53.96% ± 0.08% 69.36% ± 0.19% 57.42% ± 0.44% 75.57% ± 0.77% 64.63% ± 0.12%
Feedback baseline 48.46% ± 0.00% 71.63% ± 1.24% 53.90% ± 2.94% 71.88% ± 0.59% 63.55% ± 0.02%
Memorisable + Feedback 54.09% ± 0.04% 75.29% ± 1.23% 57.87% ± 3.37% 68.05% ± 0.29% 68.27% ± 0.40%
Correction 51.81% ± 0.04% 65.06% ± 0.83% 55.94% ± 0.32% 68.24% ± 0.09% 62.81% ± 0.07%
Memorisable Correction 56.60% ± 0.04% 69.71% ± 1.13% 61.93% ± 0.80% 70.23% ± 0.62% 68.33% ± 0.40%

Table 1: The table shows the accuracy results for various methods evaluated using ChatGPT 3.5 and ChatGPT
4-o-mini on different datasets. For each method, both the accuracy (Acc) and standard deviation (STD) are
reported. The highest accuracy achieved for each dataset ( combining our method with other prompting
techniques) is in bold. Comparison of Accuracy for Self-Consistency, Few-Shot, Chain of Thought and Tree
of Thought Methods

Task Name #Classes #data(small) #data(large)

Intent
Bank77 77 3,080 10,003

CLINC(I) 150 4,500 15,000
MTOP(I) 102 4,386 15,638

Massive(I) 59 2,974 11,510
Topic StackEx 121 4,156 50,000

Table 2: We have used MTOP(I), MASSIVE(I), CLINC(D), Bank77 and StackEX. Overview of datasets
across different tasks and domains with details on number of classes sizes and sample distribution.

5.1 BASELINE METHODS

For the experimental design, we conducted the following experiments: Baseline Method vs (Baseline Method
+ Our in ChatGPT 3.5 and ChatGPT 4o-mini). The learning objective is to show that Memorisable prompting
can consistently perform well, and our method is universal and can be adapted to other prompting techniques.
Note( The estimated confusion matrix uses 5 % of total clean training samples and the estimated
confusion is based on ChatGPT 3.5 only ). For a more precise comparison, our work has applied a single
prompting, unlike Cheng et al. (2023); Lin et al. (2023). We believe that using a single query minimises the
uncertainty. Consistency Prompting Wang et al. (2023) aims to improve the response accuracy of LLMs by
considering consistently generated answers through selecting multiple and diverse paths in a few-shot chain
of thought approach. The problem with this method is its dependence on multiple sources of paths; even
slight changes in one source’s prediction can drastically impact the final prediction. The vanilla prompting

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

means we ask questions naively without additional information, only the query and full candidate set. The
chain of thought method Wei et al. (2022) is a step-by-step illustration for the given query to the LLMs.
Few-Shot Thought Prompting: Brown et al. (2020) uses a few relevant examples as illustrations in the prompt
to aid the model in self-correction. Tree of Thought Prompting (Long, 2023; Yao et al., 2023) Yao et al. (2024)
Long (2023) proposes the Tree of Thoughts (ToT) prompt, which encourages Large Language Models (LLMs)
to engage in step-by-step exploration and self-correction by simulating different agents that communicate and
provide critiques for each other.

5.2 EXPERIMENTAL RESULT

Our proposed Memorisable prompting method has proven effective and can be adapted to other prompting
tasks, consistently improving the performance of other prompting techniques. The results in Table 3 show
the improvements in accuracy achieved by combining our method with various prompting techniques. Our
method has consistently improved across different datasets, illustrating its adaptability and effectiveness. More
specifically, Vanilla Prompting-Random demonstrates drastic improvements, especially for MTOP (I), with a
14.2% increase and a significant improvement of 10.1% for StackEX (TM). The improvement is also notable
for Few-Shot-Cot, showing a 14.2% We have conducted additional experiments using ChatGPT-4o-mini and
ChatGPT-3.5 with two different random seeds on the datasets StackExchange, CLINC, BANK77, MOTE,
and Massive(D). These experiments were performed for our method, Memorisable Prompting, as well as
other baseline methods. Additionally, we have included (feedback)[1] and Self-Improve (Correction)[3] to
demonstrate the effectiveness of our proposed Memorisable Prompting. The estimated Memorisable masking
is acquired using a sample of hints and predictions from GPT-3.5 turbo. Therefore, the performance on
ChatGPT-4o-mini is not very promising.

5.3 ABLATION STUDY

We have conducted our Memorisable prompting using the latest ChatGPT 4 model to illustrate the consistency
of our proposed method across different LLMs. It shows that using the estimated masking based on ChatGPT
3.5 and applying it to ChatGPT 4 can still help improve the baseline Vanilla Prompting by 3.5% accuracy. The
ablation study’s results, which show GPT-4 as less effective than GPT-3.5, could be attributed to the transition
matrix being estimated using GPT-3.5. The parameters of GPT-4 and GPT-3.5 are different, resulting in poor
performance of GPT-4.

5.4 ABLATION STUDY APPLYING CHATGPT 4O-MINI ESTIMATED MEMORISABLE MASKING MATRIX

Method Accuracy (%)
Vanilla Prompting-Random t -ChatGPT 3.5 62.99
Our Methods + Vanilla Prompting t -ChatGPT 3.5 67.35
Chain of Thought Prompting-Random + ChatGPT 4 61.98
Our Methods + Chain of Thought Prompting + ChatGPT 4 64.48

Table 3: Accuracy comparison of different prompting methods with ChatGPT 3.5 and ChatGPT 4 on BANK77

5.4.1 STUDY OF THE IMPACT OF HINT SAMPLE SIZE ON LLM ACCURACY

We have also conducted an ablation study to show that as more hint samples are used for estimating the
Memorisable Masking Matrix, the accuracy of the LLM-generated annotations tends to improve.

9



423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2025

Figure 2: Accuracy for Finace77 on ChatGPT 4 in comparision with CoT and CoT+Memorisable Prompting.

Figure 3: Comparison between using 1% and 5% of hints of total training sample estimating Memorisation
Masking for datasets CLINC.

5.5 CONCLUSION

This paper proposes a Memorisable promoting method to prevent LLMs from forgetting positive predictions.
The learning objective is to endow LLMs with the capability to memorise their past mistakes and, therefore,
avoid repeating the same mistakes. We utilise small clean samples to obtain label dependence between LLMs
prediction and the ground truth label. We can encode them as masking into LLMs to prevent forgetting false
positive predictions. We have verified our method on a different domain dataset, showing its effectiveness
across large-scale datasets.

6 LIMITATION

In our work, we use only a small number of clean samples (samples with ground truth annotations) to estimate
Memorisable Matrix. However, for reasoning tasks, our method can be applied if the ground truth labels
of the training samples are available. These ground truth labels are necessary to estimate the Memorisable
mask, which can then be applied to the testing dataset. We plan to conduct additional experiments on datasets
involving reasoning tasks, such as commonsense reasoning benchmarks or problem-solving datasets.

REFERENCES

Idan Attias, Gintare Karolina Dziugaite, Mahdi Haghifam, Roi Livni, and Daniel M Roy. Information
complexity of stochastic convex optimization: Applications to generalization and memorization. arXiv
preprint arXiv:2402.09327, 2024.

10



470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei Ji,
Tiezheng Yu, Willy Chung, et al. A multitask, multilingual, multimodal evaluation of chatgpt on reasoning,
hallucination, and interactivity. arXiv preprint arXiv:2302.04023, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić. Efficient intent
detection with dual sentence encoders. arXiv preprint arXiv:2003.04807, 2020.

Cheng Chen and Ivor Tsang. Self-teaching prompting for multi-intent learning with limited supervision. In
The Second Tiny Papers Track at ICLR 2024, 2024. URL https://openreview.net/forum?id=
DeoamI1BFh.

Zhoujun Cheng, Jungo Kasai, and Tao Yu. Batch prompting: Efficient inference with large language model
apis. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing:
Industry Track, pp. 792–810, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong Zhang. Active prompting with chain-of-thought for large
language models, 2023.

Jack FitzGerald, Christopher Hench, Charith Peris, Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron
Nash, Liam Urbach, Vishesh Kakarala, Richa Singh, Swetha Ranganath, Laurie Crist, Misha Britan,
Wouter Leeuwis, Gokhan Tur, and Prem Natarajan. Massive: A 1m-example multilingual natural language
understanding dataset with 51 typologically-diverse languages, 2022.

Bo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou, Ivor Tsang, Ya Zhang, and Masashi Sugiyama. Masking:
A new perspective of noisy supervision. Advances in neural information processing systems, 31, 2018.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han. Large
language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, and Denny
Zhou. Large language models cannot self-correct reasoning yet. In The Twelfth International Conference
on Learning Representations, 2023.

Stefan Larson, Anish Mahendran, Joseph J Peper, Christopher Clarke, Andrew Lee, Parker Hill, Jonathan K
Kummerfeld, Kevin Leach, Michael A Laurenzano, Lingjia Tang, et al. An evaluation dataset for intent
classification and out-of-scope prediction. arXiv preprint arXiv:1909.02027, 2019.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit Gupta, Sonal Gupta, and Yashar Mehdad. Mtop: A
comprehensive multilingual task-oriented semantic parsing benchmark. arXiv preprint arXiv:2008.09335,
2020.

Zekun Li, Baolin Peng, Pengcheng He, Michel Galley, Jianfeng Gao, and Xifeng Yan. Guiding large language
models via directional stimulus prompting. arXiv preprint arXiv:2302.11520, 2023.

Jianzhe Lin, Maurice Diesendruck, Liang Du, and Robin Abraham. Batchprompt: Accomplish more with
less. In The Twelfth International Conference on Learning Representations, 2023.

11

https://openreview.net/forum?id=DeoamI1BFh
https://openreview.net/forum?id=DeoamI1BFh


517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2025

Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training and
downstream tasks for graph neural networks. In Proceedings of the ACM Web Conference 2023, 2023.

Jieyi Long. Large language model guided tree-of-thought. arXiv preprint arXiv:2305.08291, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback.
Advances in Neural Information Processing Systems, 36, 2024.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316, 2022.

OpenAI. Gpt-4 technical report, 2023.

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making deep
neural networks robust to label noise: A loss correction approach. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1944–1952, 2017.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael Schärli, and
Denny Zhou. Large language models can be easily distracted by irrelevant context. In International
Conference on Machine Learning, pp. 31210–31227. PMLR, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing Systems,
36, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, and Quoc V Le. H. chi, sharan narang, aakanksha chowdhery,
and denny zhou. self-consistency improves chain of thought reasoning in language models. In The Eleventh
International Conference on Learning Representations, volume 1, 2023.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training fail?
Advances in Neural Information Processing Systems, 36, 2024.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652,
2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information
Processing Systems, 35:24824–24837, 2022.

Shuo Yang, Erkun Yang, Bo Han, Yang Liu, Min Xu, Gang Niu, and Tongliang Liu. Estimating instance-
dependent bayes-label transition matrix using a deep neural network. In International Conference on
Machine Learning, pp. 25302–25312. PMLR, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree
of thoughts: Deliberate problem solving with large language models. Advances in Neural Information
Processing Systems, 36, 2024.

12



564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2025

Yuwei Zhang, Zihan Wang, and Jingbo Shang. Clusterllm: Large language models as a guide for text
clustering. In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song,
Mingjie Zhan, et al. Solving challenging math word problems using gpt-4 code interpreter with code-based
self-verification. In The Twelfth International Conference on Learning Representations, 2023.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba.
Large language models are human-level prompt engineers. arXiv preprint arXiv:2211.01910, 2022.

13



611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2025

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 MEMORISABLE PROMPTING: DISAMBIGUATION PROCESS

Let Dsmall = {(xi, yi)}si=1 be a set of small, clean samples, which is denoted as hint samples, where s is
the size of hint samples and s = 10. The x is the hint query, and y is the corresponding ground truth label.
Additionally, we denote whole query samples as Dlarge =(xi)

N
i=1 the initial queries X = {x1, x2, . . . , xs}

and the corresponding candidate set Y⃗Query = {y⃗1, y⃗2, . . . , y⃗s}. Assuming we know the total number of K
and the corresponding label for each k − th category, therefore, for every x, there always exists universal
candidate set y⃗, therefore, y⃗1 = y⃗2 = · · · = y⃗s = y⃗. In the initial stage, we have only access to the full set
label candidate set for each query x, and we can denote the initial whole query label candidate set for all
training samples as Y⃗ and it is a s×K matrix containing all ones and set YTrue = {y1, y2, . . . , ys}, where Y
is an s×K matrix containing all ones.

Y⃗Query =



1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


Y⃗G =



0 0 0 1
0 1 0 0
1 1 1 1
0 0 0 1
1 0 0 0
0 0 1 0
1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0


Y⃗Updated =



1 0 0 1
0 1 0 0
1 0 0 1
1 0 0 0
0 1 1 0
1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 0
0 1 0 0


YTrue =



1 0 0 0
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0
0 1 0 0


The Y⃗ is filled with ones, representing that all classes are potential candidates. Our goal is to design a
prompting scheme to enable LLM generating the correct annotation for each q from the corresponding y⃗,
transforming Y⃗ to Y⃗True.

Predictions by ChatGPT for each Query:

Y ′
1 = [0, 0, 0, 1] Y ′

2 = [0, 1, 0, 0] Y ′
3 = [0, 0, 0, 1] Y ′

4 = [1, 0, 0, 0]

Y ′
5 = [0, 0, 1, 0] Y ′

6 = [1, 0, 0, 0] Y ′
7 = [0, 1, 0, 0] Y ′

8 = [0, 0, 1, 0]

Y ′
9 = [1, 0, 0, 0] Y ′

10 = [0, 1, 0, 0]

Ground Truth Labels:

Y1 = [1, 0, 0, 0] Y2 = [0, 1, 0, 0] Y3 = [0, 0, 1, 0] Y4 = [0, 0, 0, 1]

Y5 = [0, 1, 0, 0] Y6 = [1, 0, 0, 0] Y7 = [0, 0, 0, 1] Y8 = [0, 0, 1, 0]

Y9 = [0, 1, 0, 0] Y10 = [1, 0, 0, 0]

Estimated Memorisation Masking M :

T =


mY ′

1Y1
mY ′

1Y2
mY ′

1Y3
mY ′

1Y4

mY ′
2Y1

mY ′
2Y2

mY ′
2Y3

mY ′
2Y4

mY ′
3Y1

mY ′
3Y2

mY ′
3Y3

mY ′
3Y4

mY ′
4Y1

mY ′
4Y2

mY ′
4Y3

mY ′
4Y4

 =

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1


14



658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2025

Estimated Memorisation Masking M representing a potential candidate set for given an prediction label of
the LLMs Y ′ :

M =

1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 1



15


	Introduction
	Related Works
	Memorisable Prompting Problem Setting
	Preliminaries
	Endowing LLMs with Memorisation using Estimated Memorisation Masking Matrix

	Preventing LLMs Forgetting with Estimated Memorisation Masking through the lens of probability
	Memory Masking Estimation Through Hints Samples
	Disambiguation Through Hints Based estimated Memorisable Matrix
	Memorisation Masking Construction

	Experiments
	Baseline Methods
	Experimental Result
	Ablation Study
	Ablation Study Applying ChatGPT 4o-mini Estimated Memorisable Masking Matrix
	Study of the Impact of Hint Sample Size on LLM Accuracy

	Conclusion

	limitation
	Appendix / supplemental material
	Memorisable Prompting: Disambiguation Process


