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Abstract

The modelling framework of neural algorithmic reasoning (Veličković & Blundell, 2021) pos-
tulates that a continuous neural network may learn to emulate the discrete reasoning steps
of a symbolic algorithm. We investigate the underlying hypothesis in the most simple con-
ceivable scenario – the addition of real numbers. Our results show that two layer neural
networks fail to learn the structure of the task, despite containing multiple solutions of the
true function within their hypothesis class. Growing the network’s width leads to highly
complex error regions in the input space. Moreover, we find that the network fails to gener-
alise with increasing severity i) in the training domain, ii) outside of the training domain but
within its convex hull, and iii) outside the training domain’s convex hull. This behaviour can
be emulated with Gaussian process regressors that use radial basis function kernels of de-
creasing length scale. Classical results establish an equivalence between Gaussian processes
and infinitely wide neural networks. We demonstrate a tight linkage between the scaling
of a network weights’ standard deviation and its effective length scale on a sinusoidal re-
gression problem, suggesting simple modifications to control the length scale of the function
learned by a neural network and, thus, its smoothness. This has important applications for
the different generalisation scenarios suggested above, but it also suggests a partial remedy
to the brittleness of neural network predictions as exposed by adversarial examples. We
demonstrate the gains in adversarial robustness that our modification achieves on simple
image classification problems. In conclusion, this work shows inherent problems of neural
networks even for the simplest algorithmic tasks which, however, may be partially remedied
through links to Gaussian processes.

1 Introduction

The two most prominent paradigms in artificial intelligence research are discrete, symbolic algorithms on
the one side, and continuous, neural information processing systems on the other (Fodor & Pylyshyn, 1988;
Natarajan, 1989; Marcus, 2003). While systems of the latter kind have caused a revolutionary transformation
of the field, they are often plagued by hard challenges, such as robustness to changes in the input distributions,
for which algorithmic approaches can provide worst-case performance guarantees. Crucially, we know that
both approaches are deployed by humans, akin to Kahneman’s 1 and 2 reasoning systems (Kahneman, 2011),
and that, therefore, algorithms must be implemented in biological neural networks in the human brain (Zador
et al., 2022). For instance, observing a scene in the world, we know that it is represented and processed in
the distributed representation of neural activity in visual cortex. However, the same scene is also represented
when we describe it with the use of symbols and the syntax of our language (Yildirim et al., 2020). Thus,
one of the most mysterious questions in neuroscience as well as in artificial intelligence research is: where
and how do these two representation systems interact?

The concept of neural algorithmic reasoning (Veličković & Blundell, 2021) is a recent proposal for a modeling
framework at the intersection between symbol processing algorithms and continuous distributed information
processing systems (see also Smolensky, 1990; Bear et al., 2020; Sabour et al., 2017). As an illustrative
example of this hybrid approach, we can think of a robot equipped with a neural network that processes
input images to extract, e.g., its position in space (visual encoder); this is coupled with a planning algorithm
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(e.g., Dijkstra) that computes the shortest path from the current location to the target; that output is then
fed into another neural network (motor controller) which translates the symbolic action plan into continuous
motor control outputs. The obvious question is how such a hybrid architecture may be trained, since we
usually require differentiability of the whole system for end-to-end training. To solve this, Veličković &
Blundell (2021) propose training a neural network to approximate the output of the algorithm in the middle
of the model. This differentiable approximation would then allowing gradient flow from motor controller to
visual encoder for effective end-to-end training.

The purpose of our work is to investigate the feasibility of neural algorithmic reasoning in one of the most
simple conceivable settings: the addition of real numbers. Integer calculus and floating-point arithmetic in
binary (symbolic) representations have previously received more attention (Nogueira et al., 2021; Talmor
et al., 2020; Jiang et al., 2019; Thawani et al., 2021; Zhou et al., 2022; Hendrycks et al., 2021; Bansal et al.,
2022). By contrast, we want to know if a simple multi-layer perceptron (MLP, (Rosenblatt, 1958)), i.e. the
basic building block of most neural networks, can learn to add real-valued numbers on a compact domain
such as the unit disc. Specifically, we look at two layer MLPs which are particularly interesting because:
i) they contain a parameter subspace that perfectly solves the task (see below), ii) they can provide an
approximation of unlimited precision in the infinite width limit (Hornik et al., 1989), iii) they reveal an
interesting failure case that prompts further study of neural network functions.

In summary, in this paper we find that artificial neural networks are unable to learn the simple function
of adding real numbers, even if abundant training data is available, leaving nonlinear, uneven regions of
error within the training domain and struggling to extrapolate beyond. A comparison to Gaussian processes
suggests a simple partial remedy, exploiting classic results (Neal, 1996) about the equivalence between
these two model classes, based on a correct adjustment of the smoothness of the learned function. We
show that these modifications also translate to increased adversarial robustness on handwritten character
image recognition (Goodfellow et al., 2014). This has important implications for real world applications,
such as self-driving car vision controllers that need to be robust to shifting input statistics, where smooth,
generalisable model functions are required. It also aligns with the motivation behind neural algorithmic
reasoning to build differentiable models that generalise as broadly as classical algorithms with worst case
analytical performance guarantees. Finally, we are interested in this minimal setting where seeing how a
neural network fails to learn the correct algorithm reveals an interesting phenomenon that advances our
basic understanding of the functions learned by neural networks and how to control their smoothness.

2 Background

Simple mathematical reasoning (Saxton et al., 2019; Charton, 2021) and, specifically, the addition of real
numbers is a particularly interesting setting because it is so simple, while still elucidating important functional
complexity of neural networks (Hendrycks & Dietterich, 2019) (Fig. 1) and clearly exposing the difficult
inductive inference from an infinite look-up table to the proper representation of an algorithm (Henderson,
2022). Moreover, we know that the hypothesis class of neural networks with rectified linear unit (ReLU)
activation functions trivially contains a parameter subspace with the correct solution, i.e., given inputs
x ∈ R2, the following set of functions

f(x) := W2 max(0, W1x + b1) + b2, W1 :=


α 0
β 0
0 γ
0 δ

 , W2 :=


α−1

β−1

γ−1

δ−1

 (1)

with α, γ ∈ R>0, β, δ ∈ R<0 and b1, b2 := 0 are a subspace of the network parameters that correspond to a
perfect representation of the desired output y = x1 + x2.

Given input and output training pairs, a neural network can learn to approximate this function. However,
it is an open question how accurate the approximation will be within the compact domain of the training
data; possibly in the limit of infinite data and a model that is a universal function approximator (Hornik
et al., 1989). Secondly, it is unclear how the model will generalise outside the domain of the training data.
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Ideally, the concept of addition should only require a limited amount of training examples to understand the
underlying algorithm for producing the correct answer on any pair of inputs.

A crucial difference between algorithms and neural network solutions is the way they generalise to different
inputs (Marcus, 2003; Veličković & Blundell, 2021; Zador et al., 2022). Addition is defined on all numbers
in R, but the approximation learned by a NN can only observe a subset of those inputs in its training data
(i.e., i.i.d. – independent identically distributed). Recent discussions have investigated this from the point
of view of interpolation versus extrapolation (Nakkiran et al., 2021; Schott et al., 2021). Overparameterised
NN exhibit a double descent phenomenon, which is thought to improve their generalisation performance
by interpolating between training points (Chatterji et al., 2021) – although see (Balestriero et al., 2021).
Going beyond the convex hull of the training data would, by contrast, require the ability to extrapolate to
a new domain (o.o.d. – out of distribution). This is one of the key motivations behind neural algorithmic
reasoning and it has recently been explored with transformers (Nogueira et al., 2021; Kim et al., 2021; Anil
et al., 2022; Zhou et al., 2022; Charton, 2021; Zhang et al., 2021) and recurrent neural networks Bansal et al.
(2022); Linsley et al. (2018); Schwarzschild et al. (2021). Apart from extensions of the compact training data
domain, we also study robustness to specific distribution shifts such as added Gaussian noise (Hendrycks
& Dietterich, 2019; Rusak et al., 2020). We also study adversarial robustness (Goodfellow et al., 2014),
which can be thought of as worst-case distribution shifts, this has recently been studied in two layer MLPs
(Dohmatob & Bietti, 2022) and is specifically interesting as it relates to Lipschitz constants (Virmaux &
Scaman, 2018) and a neural networks smoothness (see section 3.5).

An important caveat is that the point of this study is not to find a tailored solution to the problem of adding
real numbers. There are many handcrafted fixes to the specific experimental setup in this paper, which i)
reduce the size of the network down to the exact required dimensions (i.e., 4, see equation 1), ii) encourage
sparsity to switch off all superfluous units, or iii) use more involved transformer-based models (Vaswani et al.,
2017; Zhou et al., 2022) to solve the task. However, none of these settings are of interest for the present
research question: i) and ii) provide solutions only to this specific problem without any transferable insights
into neural network functions as we obtain in this paper (section 3.3); and iii) obscures the simple failure
cases of MLPs, which are the minimal building blocks to study if we want to understand neural networks
(Wang et al., 2020; Dohmatob & Bietti, 2022).

3 Results

3.1 Neural Networks and Gaussian Processes Learning Addition

We first investigate learning addition of real numbers in two dimensions. For this, we uniformly draw D = 128
points on the unit disc (see also fig. 6)

D := {x | x ∈ R2, ||x||2 ≤ 1}. (2)

We train a two layer neural network with ReLU nonlinearities after the first layer to solve the addition task
using a simple squared loss function (for additional experimental details see Appendix section A.1)

LMSE(f, x) = (f(x) − (x1 + x2))2. (3)

Across the top row of fig. 1 we change the number of hidden units N (i.e., the width) of the network and
observe the effect on the learned solution. With few units (N = 16), the model exhibits the recently proposed
polytope structure of neural network approximated functions (Balestriero et al., 2018). With more units
we are entering the interpolation regime (i.e., zero training error), where recent work on double descent
might suggest better performance (Nakkiran et al., 2021). While the performance does increase (Appendix
A.2.1), we can see that the model uses the additional capacity to cut up the input space into increasingly
complex, uneven regions. Interestingly, the network learns intricate, nonlinear ridges of good performance
on which the training data lies. These ridges appear to be connected on continuous paths – an intriguing
observation for future NN research. Importantly, these patterns suggest that larger ReLU networks learn
sieve-like solutions of increasing complexity (see also Fig. 10), but they do not enter a qualitatively different
regime that would resemble the simple algorithmic solution to the task.
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Figure 1: Unit Disc Loss Surfaces. These plots show the network error in input space (remember, we are
trying to model f : R2 → R, f(x) = x1 + x2, x ∈ D ⊆ R2), where brighter regions indicate lower error, i.e.,
colorscale shows the log of the loss function equation 3 (red dots – training data points). Top row shows the
loss surface for a ReLU neural network with increasing number of hidden units (N , left to right). Bottom
row shows the loss surface for a GP with a RBF kernel of increasing length scale (λ).

We can produce a similar sequence of model behaviours with Gaussian process (GP) regressors with varying
radial basis function (RBF) kernel scales. We use the standard GP implementation in sklearn (Pedregosa
et al., 2011). Usually, this would include maximum likelihood length scale selection (optimum near λ ∼ 150).
However, setting this by hand lets us visualise the different solutions for suboptimal length scales. Specifically,
we see that setting the length scale too low (fig. 1 bottom left) forces the model to learn ridges of good
solutions through the training data – similar to the NN model.1

Note that the anti-diagonal line passing through the origin indicates the null space of the target function.
Precisely, adding any vector n from the subspace N := ⟨(1, −1)⟩ = {a · (1, −1) | a ∈ R} to an input x, does
not change the output of the algorithm y(x) = x1 + x2, i.e.

y(x) = x1 + x2 = (x1 + a) + (x2 − a) = y(x + n), ∀n = a · (1, −1) ∈ N . (4)

Thus, on the anti-diagonal passing through the origin, the correct output is y(x) = 0 for all possible inputs
x = (0, 0) + N . We see that the chosen GP with a zero mean function, naturally, converges to this solution
outside of the training data. For detailed average performance levels see Appendix A.2.1 and for density
dependent solutions see Appendix A.2.4.

3.2 Out of Domain Generalisation

Building models that generalise outside of the training data is a key motivation behind neural algorithmic
reasoning (Veličković & Blundell, 2021; Zhou et al., 2022). We adjust our setting slightly to study all aspects
of generalisation. Specifically, the training data is now randomly sampled from the annulus

A := {x ∈ R2 | 0.5 ≤ ∥x∥2 ≤ 1}. (5)
1The geometry of these ridges can be studied analytically for GPs. We recognise that this might give meaningful insights

into the appearance of similar ridges for NNs. However, we leave this open for future work.
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Figure 2: Annulus Loss Surfaces and Generalisation Performance. The first column shows the loss
surfaces for a NN (top) with N hidden units, and a nearly unlimited amount of training data; and (bottom)
the loss surfaces for a GP with optimal length scale (λ) and D = 256 training data points, shown as red dots.
The second column shows the negative log loss as a function of eccentricity (dots coloured by angle, black
dotted lines radially averaged kernel density estimate – ‘kde’) in the three regimes of o.o.d. (within convex
hull), i.i.d. and o.o.d. (outside of convex hull) generalisation for the NN (top) and GP (bottom). The third
column (top) shows the colour scheme of the second column; and (bottom) the GP’s uncertainty estimate.

This allows us to test how well the model generalises:

• Within the training domain: A (fig. 2, middle column, green).

• Outside of the training domain but within its convex hull: {x ∈ R2 | ∥x∥2 < 0.5} (fig. 2, yellow).

• Outside of the training domain and outside its convex hull: {x ∈ R2 | ∥x∥2 > 1} (fig. 2, red).

Moreover, to ensure that the findings from fig. 1 do not depend on limited training data or finite network
size, we set the number of hidden units to N = 10, 000 and generate a new random batch for every gradient
step (totalling D = 256 × 50, 000 = 12, 800, 000 training examples). As before, for full experimental details,
please refer to Appendix section A.1.

The learned solution by the NN is shown in fig. 2 top left. Again, we see an intricate, uneven pattern emerging
within the training data domain (i.i.d.) with ridges of good performance but large valleys of bad predictions.
We also observe that the model predictions deteriorate both inside the convex hull of the training data as
well as outside. This is quantified in fig. 2 top middle as a function of the input norm (we can also see the
different ridges outside the training domain distinguished by their angles). For the GP, even with limited
training data (D = 256), we see higher performance levels (fig. 2 bottom middle) both on training data
(green), in its convex hull (yellow) as well as outside (red). Moreover, for o.o.d. regions outside the training
data’s convex hull, where the performance starts dropping, the GP at least produces meaningful uncertainty
estimates (fig. 2 bottom right).
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Figure 3: Sinusoidal Regression. Top row shows GP models with different length scales (λ) fitted to a
sinusoidal regression problem with: true function (yellow i.i.d., purple o.o.d.), training points (red), model
prediction (light blue), uncertainty (shaded, two standard deviations). The top right plot shows the different
losses (mean squared error – MSE, and log likelihood) as a function of length scale (dotted lines indicate
length scales in plots to the left). The bottom row gives the same regression plots for the NN with TanH
activation and varying length scales (σ−1) and (right) the training and test error as a function thereof.

3.3 Setting the Length Scale of Neural Networks

The similarity between the solution patterns for neural networks with many hidden units (fig. 1, top right)
and GPs with short length scales (fig. 1, bottom left) is not surprising given classical results (Neal, 1996).
Briefly, Neal established that for NNs with a hyperbolic tangent (TanH) nonlinearity

tanh(x) := sinh(x)
cosh(x) = e2x − 1

e2x + 1 (6)

and an infinite number of hidden units (with appropriate scaling of their initialisation variances) the distri-
bution over learned functions (ab initio) becomes equivalent to that of a GP. This opens an interesting path
forward in understanding and improving the neural network solution.

An important step in fitting a GP with a RBF kernel to data is finding the best length scale for the kernel.
Effectively, this controls the smoothness (Lederer et al., 2019) of the resulting non-parametric model and,
thus, the complexity of the hypothesis class (Vapnik, 1999). Translating this into the space of neural network
functions is nontrivial in the general setting with ongoing work into the Lipschitz constants of trained models
(Virmaux & Scaman, 2018; Fazlyab et al., 2019). In this section, thanks to the equivalence in the considered
settings, we are able to investigate, in parallel, the length scale selection process both in GPs and NNs.

For easier visualisation of the learned input-output mapping we reduce complexity even further: The dataset
is now simply a noisy sine function on x ∈ [−2π, 2π] (for o.o.d., we extrapolate to [−3π, 3π]). Precisely, we
are trying to model the function y = sin(x) + ϵ with ϵ ∼ N (0, 0.25). In fig. 3 we can see that there exists
a sweet spot for the kernel’s length scale (top middle), and that the model overfits (top left) for smaller
length scales and underfits (top right) for larger length scales. This is confirmed quantitatively (top right)
by looking at the likelihood (blue) as well as the training and test error as a function of the length scale.

To get a NN to behave like a GP, we closely follow the construction in (Neal, 1996) making the following
changes to our NN model: i) We use a TanH nonlinearity; ii) We restrict the standard deviation (std)
of the weights to σ

√
N where N is the number of inputs to a layer and σ a scaling factor. Importantly,

in contrast to Neal (1996), we enforce this standard deviation (let µ(w) =
∑N

i wi denote the mean of the
weights w) throughout training by using the scaled weights
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Figure 4: Controlling the Smoothness of Neural Network Functions. The four columns show learned
TanH two layer NN loss surfaces for the two datasets: top, disc (section 3.1, N = 10, 000, D = 128); bottom,
annulus (section 3.2, N = 10, 000, D → ∞) for increasing length scales σ−1 (left to right) producing an
increasingly smooth mapping (for comparison, see also Neal (1996) Fig. 2.3).

w̃ = w
σ√

Nstd(w)
= w

σ∑N
i (wi − µ(w))2

. (7)

Intuitively, σ−1 behaves like the length scale in GPs (fig. 3 bottom), i.e., a smaller σ−1 means larger weights
and higher curvature/lower smoothness (potentially overfitting to the training data) whereas too large σ−1

means very small weights and lower curvature/higher smoothness (potentially underfitting the training data)
(see also Neal (1996) Fig. 2.3). Again, we establish the existence of an optimum length scale σ−1 (fig. 3,
bottom right) that produces the smallest test error. In summary, these results suggest a simple remedy to
improve NN approximations to simple algorithmic functions by making them more similar to GPs (with
TanH nonlinearity) and correctly adjusting their length scale and, thus, their functional smoothness.

3.4 Controlling Neural Network Smoothness: Addition

Returning to the initial two examples of adding real numbers from a disc or an annulus, we can now observe
the effect of varying the length scale (σ−1) of a two layer NN with a large number of hidden units (N = 10, 000,
approaching the GP regime) and TanH activation functions (see Appendix A.1 for additional details).

On both datasets (fig. 4) it is apparent that increasing the length scale makes the learned output function
more smooth. Thus, the NN becomes qualitatively more similar to a GP with a well adjusted learning scale
for its RBF kernel. We show in Appendix A.2.6 that the weight normalisation (equation 7) is crucial for
these results, both in the case of addition and, for further verification and extension, multiplication.

3.5 Controlling Neural Network Smoothness: Classification

As further evidence in support of the claim that this approach effectively controls the smoothness of the
learned NN input-output mapping, we turn towards the more complicated problem of performing image
recognition on MNIST (LeCun et al., 1989) and CIFAR10 (Krizhevsky et al., 2009) under different distribu-
tion shifts. Briefly, we have a dataset of flattened images xi ∈ R784 and labels yi = 1, ..., 10. We are using the
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Figure 5: Neural Network Classification Robustness. Top, MNIST: Left) Accuracy as a function of
(FGSM) perturbation strength for TanH NN models with different length scales (σ−1); Right) Accuracy as
a function of white noise standard deviation for the same models. Bottom, same for CIFAR10 dataset.

same two layer TanH model as above, with the minimal modification that the second layer output dimension
is now 10 – i.e. the logits. All other details remain the same (see Appendix A.1), except for the objective
function. Over training, we are minimising the standard cross-entropy loss between the output logits and
the target label LCE(f, xi, yi) = CE(f(xi), yi).

Since the input domain is now much more complex and high dimensional than in the previous settings, we
have to adjust the different generalisation settings. Firstly, we look at additive white (Gaussian) noise of
varying standard deviation (fig. 5, right) – i.e. exploring random L2 epsilon balls around the training data
manifold (Hendrycks & Dietterich, 2019). Secondly, we look at worst case (adversarial) distribution shifts
(fig. 5, left) where we search for minimal perturbations that maximally change the output, which is a proxy
for the model’s smoothness (Goodfellow et al., 2014; Dohmatob & Bietti, 2022). More specifically, for a fixed
maximum L2 perturbation norm c (horizontal axis in fig. 5), we look for

max
ϵ

LCE(f(x + ϵ), y) s.t. ||ϵ||2 ≤ c. (8)

This second setting is particularly interesting: a) in high dimensions and complex input manifolds (here
digit images) that defy simple separation of settings (fig. 2, (Balestriero et al., 2021)), and b) because those
are the edge cases analysed when assessing the theoretical performance guarantees for classical algorithms
(Veličković & Blundell, 2021).

fig. 5 (left) shows that controlling the length scale of a neural network on handwritten character recognition
does indeed increase the robustness to L2 adversarial perturbations. fig. 5 (right) shows that the robustness
to white noise perturbations can be controlled in a similar way. In both cases, we can see a trade-off between
the clean and the robust accuracy with large length scales increasing the robustness while decreasing the
clean accuracy (Rusak et al., 2020). In a control experiment, we test whether the same robustness gains
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may be achieved with a simple control model using ReLU activations and standard weight decay (Appendix
A.2.2). We find that this also increases adversarial and noise robustness, however, to a smaller extent. To
reduce computational costs, we have used the fast gradient sign (FGSM) attack (Goodfellow et al., 2014).
However, in Appendix A.2.3 we show that we obtain the same qualitative results with the much stronger
adaptive attacks implemented in AutoAttack (Croce & Hein, 2020).

4 Limitations

The proposed modifications are only applicable to simple two layer MLPs – i.e., the minimal example for
which the complex input space behaviour (fig. 1) arises (Wang et al., 2020). It is insightful to observe how
the smoothness of this simple model class can be controlled in the GP regime (Lederer et al., 2019). However,
this does not generalise to more layers (confirmed by preliminary experiments) and it is open for future work
to investigate how the composite function of more than two layers contributes to global smoothness of a NN,
potentially building on recent work extending the NN-GP equivalence to multilayer networks (Lee et al.,
2017). To extend the current results we would need a closed form, or at least simple enough, expression for
the length scale of a NN with more than two layers that allows us to control this parameter.

Even with the modifications, the network only becomes more similar to a tuned GP. However, there is
still a gap between this smoother function approximation and the qualitative inference step of actually
understanding the underlying arithmetic and learning the right solution for all possible inputs Henderson
(2022). Put differently, the non-zero error rates, even for the GP, indicate that even smooth NNs are only
taking us closer to the bold goal of learning how to infer and emulate simple algorithms.

While GPs show more desired behaviour on this task, again we want to highlight the fact that they do not
offer a general solution to the problem that we are interested in, because they: i) fail to generalise properly
to o.o.d. settings (see Figs. 1, 2); ii) scale poorly to problems with more data and larger input dimensions;
and iii) cannot be integrated into a differentiable model pipeline, which is the original motivation for neural
algorithmic reasoning. Moreover, using GPs instead of NNs (rather than as an inspiring analogy) would not
allow us to extract the insights into neural network functions which we obtain in this paper (section 3.3).
Therefore, we did not devote more time into studying different GP kernel and mean functions.

5 Discussion

The promise of neural algorithmic reasoning to combine distributed and discrete reasoning systems via dif-
ferentiable NN approximations is intriguing (Veličković & Blundell, 2021). Here, we show that the functions
learned by neural networks, even in one of the most simple conceivable examples of symbolic manipulation
(real addition), is prone to learning a highly complex and uneven output mapping that falls short of learn-
ing the proper algorithmic target. There are many different perspectives on this problem, with previous
approaches mostly focusing on transformers for manipulating arithmetic expressions (Thawani et al., 2021;
Zhou et al., 2022; Anil et al., 2022; Nogueira et al., 2021; Jiang et al., 2019; Talmor et al., 2020). However,
looking at the loss surface of the NN solution for a simple two layer MLP, reveals an intriguing structure
of the loss surface and analogy to GPs that we decided to pursue in this work and that may also provide a
useful pointer for future directions in basic NN theory. Specifically, as it challenges prior results stating that
MLPs are able to perfectly learn linear functions (Xu et al., 2020) (under stricter theoretical assumptions)
and that they are biased towards low frequency (i.e., smooth) solutions (Rahaman et al., 2019).

We have demonstrated how the NN mapping can be made more similar to that of a well-calibrated GP,
specifically, by making it more smooth which also improved adversarial robustness. The smoothness is
closely related to a neural networks’ Lipschitz constant (Virmaux & Scaman, 2018). Whereas prior work
derived GP Lipschitz constants depending on the specific kernel (Lederer et al., 2019), note that designing
Lipschitz neural networks with (provably) bounded smoothness is an open research area (Fazlyab et al., 2019;
Jordan et al., 2019). Also, the performance levels in fig. 5 are far from state of the art robust models on this
task, however, they eschew the need for (expensive) adversarial training (Kurakin et al., 2016; Wong et al.,
2020) or generative inference (Schott et al., 2018). Thus, this is a proof-of-principle that the smoothness of
a NN function can indeed be controlled with the construction proposed in this paper.
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A different inductive bias (other than smoothness), is symmetry (Vapnik, 1999). For instance, the real
numbers with the addition operation form an Abelian group and, thus, addition is commutative. Finding
the right symmetries, such as permutation invariance of the inputs in the case of a commutative algorithm,
is crucial in controlling the complexity of a learning problem (Bronstein et al., 2021). Intuitively, symmetries
reduce the size of the search space by grouping parameter combinations that lead to the same function (cf.,
Entezari et al., 2021). We see in preliminary experiments that adding this additional constraint, does force
the model to become permutation invariant (commutative) in its inputs (Appendix A.2.5), but it does not
take us closer to properly learning the correct algorithm.

Finally, while this study focuses on the smoothness of NN approximations to simple algorithms, the larger
question remains still open how NNs can make the inferential step from any finite amount of data to an
infinite look-up table (see MLST episode 061) – this amounts to Hume’s problem of induction (Hume,
1896; Henderson, 2022) which may not be solvable with connectionist architectures (Fodor & Pylyshyn,
1988). Indeed, there remains a gap between the correct algorithm and its neural approximation which future
research may seek to close, for instance, by taking a closer look at the biological solution (Zador et al.,
2022). Surely, humans are a proof-of-concept that noisy and distributed processing systems (i.e., brains) can
implement discrete symbolic algorithms (Fias et al., 2021). We hope that future research in this area will
benefit more from interdisciplinary approaches that take inspiration across fields.

Broader Impact Statement

As neural network applications become more and more ubiquitous in transforming data, for instance, in
self-driving cars or autonomous flying drones, the need for reliable system grows proportionally. By studying
the smoothness of neural networks, we hope to contribute to these efforts. Specifically, algorithms in high
stake scenarios (such as traffic control) undergo thorough theoretical evaluation to ensure that they reach
minimal performance targets even for worst case inputs. Analogously, controlling the smoothness of neural
networks to equip them with this crucial aspect (in the spirit of neural algorithmic reasoning), takes small
steps towards the same desideratum.
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A Appendix

A.1 Experimental Details

Figure 6: Visualisation of Addition on Disc Datasets.

To sample uniformly from the disc D := {x | x ∈ R2, ||x||2 ≤ 1}, we first sample a random angle θ ∼ U(0, 2π)
and then a random length r′ ∼ U(0, 1) of which we take the square root r =

√
r′ to get a uniform sampling

on the disc. These polar coordinates are then transform into standard euclidean coordinates x1 = r cos θ and
x2 = r sin θ (see fig. 6). For the Annulus A := {x ∈ R2 | 0.5 ≤ ∥x∥2 ≤ 1}, we simply sample the length from
r′ ∼ U(0.25, 1). We train for 50, 000 steps with the Adam optimizer (Kingma & Ba, 2014), an initial learning
rate of 0.001 and a learning rate decay of 0.9. We verified in initial experiments that these settings led to
best held-out performance and convergence of gradient descent for the tested models. For the adversarial
robustness experiments in section 3.5, we use the fast gradient sign attack (Goodfellow et al., 2014).

A.2 Additional Experiments

A.2.1 Performance on Disc Addition

(Model) MSEtrain MSEtest MSEo.o.d.

ReLU (N=16) 2.93e-11 (2.39e-11 ) 8.46e-06 (2.89e-06 ) 1.99e-02 (4.49e-03 )
ReLU (N=64) 8.05e-08 (1.20e-08 ) 6.22e-06 (1.10e-06 ) 6.94e-03 (1.91e-03 )
ReLU (N=256) 1.46e-09 (3.20e-10 ) 6.10e-06 (5.94e-07 ) 2.46e-03 (4.31e-04 )
ReLU (N=1024) 1.95e-10 (6.30e-11 ) 5.54e-06 (6.10e-07 ) 1.48e-03 (1.51e-04 )
GP (λ=0.2) 2.09e-14 (1.79e-14 ) 1.58e-03 (5.11e-04 ) 1.55e-00 (1.12e-02 )
GP (λ=1) 3.67e-12 (1.09e-13 ) 1.12e-10 (3.41e-11 ) 9.29e-04 (8.08e-05 )
GP (λ=5) 1.18e-12 (4.50e-14 ) 2.12e-12 (2.71e-13 ) 4.24e-08 (3.77e-09 )
GP (λ=50) 2.43e-14 (2.69e-15 ) 3.04e-14 (4.34e-15 ) 6.97e-12 (9.52e-13 )

Table 1: Performance on Disc Addition. For ReLU networks with different numbers of hidden units
(N) and GPs with different length scales (λ) corresponding to the models in fig. 1. Reported is the mean
squared error (MSE) on the training and test sets, as well as out of distribution Xo.o.d. := [−1.5, 1.5]2 \ D.
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A.2.2 Weight Decay Robustness Comparison

Figure 7: Neural Network Classification Robustness. Left) Accuracy on MNIST as a function of
(FGSM) perturbation strength for ReLU NN models with different levels of weight decay. Right) Accuracy
on MNIST as a function of white noise standard deviation for the same models.

A.2.3 Stronger Adversarial Attacks

Figure 8: Neural Network Classification Robustness. Accuracy on MNIST as a function of (L2)
adversarial perturbation size (||ϵ||2) for TanH NN models with different levels of weight decay. Attacks
computed with the stronger adaptive attacks implemented in AutoAttack (Croce & Hein, 2020).
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A.2.4 Density Dependent Fitting

Figure 9: TanH Neural Network Learning Addition on Gaussian Data. Data drawn from standard
normal distribution N (0, 1). Colorbar indicates the log of the loss function (equation 3).

A.2.5 Inductive Bias – Commutative Symmetry

Figure 10: Exploring Commutative Symmetry as Inductive Bias. TanH model (σ−1 = 1.0) trained on
disc addition task (fig. 1), however, forcing commutativity in the outputs by changing the network function
f to fsym(x) = (f(x1, x2) + f(x2, x1))/2. Colorbar indicates the log of the loss function (equation 3).
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A.2.6 Results on Addition and Multiplication

Figure 11: Addition and Multiplication for ReLU Network. Results of ReLU network trained on both
addition (fig. 1) and multiplication. Colorbar indicates the log of the loss function (equation 3).
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Figure 12: Addition and Multiplication for TanH Network. Results of TanH network, but without
weight normalisation (equation 7), trained on both addition (fig. 1) and multiplication. Colorbar indicates
the log of the loss function (equation 3).
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