The Next Symbol Prediction Problem:
PAC-learning and its relation to Language Models

Satwik Bhattamishra' Phil Blunsom'!? Varun Kanade!
1University of Oxford 2Cohere

{satwik.bmishra, phil.blunsom, varun.kanadel}@cs.ox.ac.uk

Abstract

The next symbol prediction (NSP) problem has been widely used to empirically
evaluate the performance of neural sequence models on formal language tasks. We
formalize the setting so as to make it amenable to PAC-learning analysis. In the
NSP setting, a learning algorithm receives valid sequences (positive examples)
from the underlying language, along with rich labels indicating for every prefix,
whether the prefix is in the language and what symbols could appear subsequently
that lead to accepting string. In the conventional classification setting where
learning occurs with only positive and negative examples, the problem of learning
regular languages or even subclasses represented by acyclic DFAs is known to be
computationally hard based on cryptographic assumptions. In contrast, our main
result shows that regular languages are efficiently PAC-learnable in the next symbol
prediction setting. Further, we provide a more efficient learning algorithm for the
case where the target DFA is known to be acyclic. Given the rich labels required in
the NSP setting, one may wonder whether this setting is applicable to non-artificial
tasks. We explain how language models can act as a source of such labeled data,
and consequently, our algorithm can be applied to fit a finite-state model (DFA)
that learns the (truncated) support of the language model.

1 Introduction

The ability of large language models (LLMs) to generate well-formed text has improved significantly
over the past decade. However, they remain largely uninterpretable, and the sentences they could
generate in practice remain to some degree unpredictable. An interesting and arguably fundamental
question about language models is the following: Given a neural network-based language model, can
we construct an interpretable formal system such as a finite automaton that (approximately) accepts
the same strings that are in the support of the model and rejects them otherwise? In this work, we
formally introduce and examine this problem.

Problem. We study the problem of learnability of languages in the Next Symbol Prediction (NSP)
setting. In this setting, the learning algorithm is granted access to an example oracle, capable of
supplying positively labeled strings. For every prefix of a given string, the oracle presents the set of
permissible continuations and the label associated with that prefix. During evaluation, a prediction on
a test example is considered correct if the output hypothesis can predict the set of valid continuations
as well as the labels for every prefix correctly.

Why study this problem? There are two primary motivations behind understanding the complexity
of learning in the NSP setting.

(a) Learning support of LMs. First, developing efficient learning algorithms for the NSP setting
can be applied to learning the support of the language models. The support of the model contains

Mathematics of Modern Machine Learning Workshop at NeurIPS 2023.

strings that are assigned nonzero probability by a model. Although softmax-based LMs assign a
nonzero probability to all strings, texts are sampled from language models by employing methods
such as top-k [Fan et al.|, |2018} Radford et al.,|2019]] or top-p sampling [Holtzman et al.;,2019] where
not all strings have a nonzero probability of being generated. To learn the set of strings that can be
generated by language models, efficient algorithms for the NSP setting can be applied which could
be useful for understanding the robustness and verification of the language model. Past works [Hewitt
et al., [2020, [Yellin and Weiss| 2021} [Yao et al.l 2021]] have also evaluated language models by testing
them in the same way as is done in the NSP setting. Such evaluations can be made more robust by
applying learning algorithms to verify the correctness of the models instead of sampling examples to
evaluate the prediction of the models.

(b) Empirical analysis of models. There has been significant interest in characterizing the class of
formal languages that sequence models such as Transformers and LSTMs can learn in practice. Past
works on understanding neural sequence models by conducting experiments in the NSP framework
date back to a couple of decades ago [[Gers and Schmidhuber, 2001} |Rodriguez, 2001]] and are more
recently used in numerous works (see |Suzgun et al.|[2019bla]], Ebrahimi et al.[[2020]], Bhattamishra
et al.| [2020] and references within). On the other hand, several other works evaluate the capabilities
of models in the standard classification setting [Delétang et al., [2022] [Liu et al.| 2022}, Weiss et al.,
2018]]. Prior works seem to have adopted the NSP setting because the evaluation of models seems
to be much stricter than classification in the sense that models have to make correct predictions for
every prefix and hence, the accuracy of Null classifier or random guessing is near zero. While several
works have adopted the NSP setting for experiments, the learnability of languages in the setting
and its relation to learnability in the classification setting is not clear. Before drawing conclusions
about the kind of formal languages neural networks can learn by conducting such experiments, it is
essential to formally understand the learnability of languages in this setting.

Our contributions. We show that regular languages, i.e. languages that can be represented using
DFAs, are efficiently PAC-learnable in the NSP setting. This is particularly interesting because
the problem of finding the minimum consistent DFA or properly learning DFAs from just positive
and negative examples is known to be NP-hard [Gold, |1978| |Angluin, (1978, |Pitt and Warmuth),
1993]]. Moreover, the problem of improperly learning (output hypothesis need not be a DFA) DFAs
or even the subclass of DFAs without cycles is known to be computationally intractable under
cryptographic assumptions [Kearns and Valiant, [1994]. In this work, we give a O(n3L?)-time
algorithm of learning DFAs, where n is the number of states in the DFA, and L is the length of the
longest string; furthermore, we give a more efficient O(n?L) algorithm in the case where the target
DFA has no cycles. Our algorithms are based on state-merging algorithms [Oncina and Garcia, |1992]
and leverage the fact that certain labels in the NSP setting can help us identify distinguishing strings
to efficiently find the minimum consistent DFA. Our results suggest that even if the NSP setting has
a stricter evaluation protocol, due to the rich set of labels provided to the learning algorithm, the
problem of learning in the NSP setting is easier than the standard PAC-learning setting.

2 Problem

Notation. A deterministic finite automaton (DFA) is characterized by a finite set of states (), a finite
alphabet 3 (or the vocabulary), a transition function d :) X 3 — (@), a start state ¢y € @, and a set of
accepting states F'4 C Q. Let x.,, denote the prefix of = up to length n. We denote the empty string
with A. We use Pref(z) = {z.;, |0 < k < |z|} to denote a function that takes a string as input and
returns all its prefixes including the empty string A as output. Given a set of strings .S, the function
Pref(.S) returns the set of all prefixes of all strings in S. For any state g, we use F'(¢) to denote a
function that outputs 1 if ¢ € F4 and 0 otherwise. We use ggeaq to denote a dead state which is a
reject state where all symbols have a transition to the same dead state. Let (g, o) denote a function
which outputs 1 if §(¢, o) = qqeaq and 0 otherwise.

Next Symbol Prediction task. In the next symbol prediction (NSP) setting, the example oracle
produces only positive examples but for every prefix in an input string, it also provides the set of
valid/legal symbols for the next step as well as the label ¢(z.,,) of the prefix. More concretely, for
any string = sq, 81, S2, - - . , Sp, the example oracle provides |X| + 1 labels € {0, 1} for each prefix
Ty = Sg,-.-,5, Where 0 < k < n and sg is the empty string A. For any prefix, there is a label
corresponding to each symbol in the alphabet 3. For any prefix z.,, a label 1 corresponding to a
symbol o € ¥ indicates that there exists a suffix s such that the string z.,, - o - s has a positive label

or it belongs to the language induced by the concept c. Similarly, the label O for a symbol ¢ indicates
that there are no suffixes (including the empty string) such that x.,, - o - s has a positive label. Hence,
for an input string of length [, the labels can be seen as a vector of the form {0, 1}“2‘“)(”1). Note
that, although the example oracle provides only positive examples, information about the negative
examples can be obtained from the labels of the prefixes and the labels indicating the valid set of
symbols for the next step.

For any input x, a predictor h has to predict the next set of valid symbols and the label for each prefix
— (|2 + 1)(1 4 1) labels. The error of h for any input is 1 if it predicts any of the (|| + 1)(I + 1)
incorrectly and the error is 0 otherwise. Let h(z) denote the (|X| + 1)(I 4 1) length output vector,
then the error for a given input is defined as err(h(z), c(z)) = ||h(z) — c(x) HOO and the error of h
with respect to target ¢ and the distribution D is Lxsp (h; ¢, D) = Eplerr(h(z), c(z))].

Boolean Acyclic DFAs. The concept class of Boolean Acyclic DFAs (B-DFA) contains DFAs
which represent functions of the form f : {0,1}* — {0, 1} where for all = ¢ {0, 1}*, the function
f(z) = 0. Hence, the class B-DFA can be seen as a class of functions comprising Boolean functions
which are of the form {0, 1}* — {0,1}.

We use DFA,, and B-DFA,, to denote the class of DFAs and Boolean Acyclic DFAs with at most n
states respectively.

3 Results

Definition 3.1. — PAC-learning in NSP setting. A concept class C' is PAC-learnable in the next
symbol prediction setting using hypothesis class H if there exists a learning algorithm L which
satisfies the following: for every ¢ € C, for every distribution D over X, for every 0 < € < 1/2, for
every 0 < § < 1/2,if L is given access to EX(c, D), and inputs € and , then L outputs h such that
with probability 1 — 4, the error Lnsp(h) < e. Further, the runtime of L and the number of calls to
the example oracle EX(c, D) must be bounded by a polynomial in size(c), L, and .

A well-known approach to designing learning algorithms is the ERM (Empirical Risk Minimization)
framework, where finding a hypothesis consistent with the labeled data from a constrained class
of functions suffices to guarantee generalization on unseen examples. In particular, if the class of
hypotheses, H is finite, a straightforward application of Occam’s principle guarantees that if the i
has a low error on O(log | H|/€) data, then the hypothesis has at most e error with high probability.
Hence, the main difficulty in designing learning algorithms is to develop methods that find automata
with a relatively small number of states (a measure of complexity) consistent with the data. In fact,
our algorithms find the minimum consistent DFA in polynomial time in the NSP setting — something
known to be NP-hard when only using positive and negative examples.

Prefix tree DFA. For both of our results, the algorithm begins by creating a prefix tree DFA which is
a trie-like structure where each prefix of the sample set (Pref(.S)) corresponds to a state in the DFA.
For each prefix s € Pref(S) and o € ¥ such that s - ¢ € Pref(5), a transition between the states
corresponding to s and s - ¢ exist in the DFA. Based on the labels provided in the NSP setting, the
states are marked as accept or reject and transitions to dead state are added. Further details about the
prefix tree DFA are provided in Appendix B}

Theorem 3.1. The concept class of DFAs is efficiently PAC-learnable in the Next Symbol Prediction
setting.

The proof is provided in Appendix [C| Given a set of examples and their corresponding labels, the
algorithm begins by constructing a prefix tree DFA (Algorithm[I) where each state corresponds to
a prefix in the sample set (Pref(.S)). The states are partitioned into three sets — permanent states,
candidate states, and unlabelled states. Initially, the set of permanent states only has the initial state
corresponding to the empty string (\) and the states corresponding to o € ¥ which are neighboring
the initial state are in the set of candidate states.

The algorithm iteratively tries to merge the candidate states with each of the permanent states. The
merge between a candidate state and a permanent state succeeds if and only if certain conditions
regarding the consistency of the resulting DFA can be guaranteed. If a candidate state cannot be
merged with any permanent state then it is promoted to a permanent state. In both cases, some
unlabelled states may also be promoted to candidate states. The state-merging process is designed in

such a way that, for every pair of permanent states, a distinguishing string in the minimum consistent
DFA is guaranteed to exist which ensures that the resulting DFA at the end is minimum. The algorithm
terminates when no candidate or unlabelled states remain and returns the minimum DFA consistent
with the sample set.

Given m examples, the time complexity of the algorithm is O(m3L3). Due to Lemma the
minimum consistent learner PAC-learns the class DFA,, in O((nlogn)>L3).

While regular languages are computationally hard to learn with positive and negative examples, they
are efficiently PAC-learnable with access to a membership query oracle [Angluin, [1987]. Our result
implies that in the case of the NSP setting, efficient (PAC) learning of regular languages is possible
even without membership queries. Whether membership queries can be used to derive more efficient
learning algorithms is an open problem.

Theorem 3.2. The concept class of Boolean Acyclic DFAs is efficiently PAC-learnable in the Next
Symbol Prediction setting.

The proof is provided in Appendix |D] Similar to the previous case, the algorithm begins by con-
structing a prefix tree DFA using the samples and labels provided by the oracle. The algorithm then
iteratively tries to merge states corresponding to prefixes of different lengths. The merge between any
two states succeeds if the corresponding prefixes are indistinguishable based on the sample set. For
any two states that are not merged till the end, they are guaranteed to have a distinguishing string
based on the labels provided in the sample set. Unlike the case of the general class of DFAs, we
can leverage certain properties known about the structure of the DFA to minimize the DFA more
efficiently. Since the algorithm iterates over prefixes of different lengths and the merge is attempted
among prefixes at a particular length, the time complexity of the algorithm is O(m?L). Given that the
log of the size of the hypothesis set is O(nlogn) (Lemma , this implies that the state-merging
algorithm PAC-learns the class of Boolean Acyclic DFAs in O((nlogn)?L) time. Note that, we
focus on the case where ¥ = {0, 1} given the hardness results associated with it in the standard
classification setting but the algorithm can be extended for any finite sized ¥ with minor changes.

Reduction to learning support of LMs. Given a PAC-learning algorithm for the NSP setting, a
language model (LM) can act as an example oracle and target function to generate labeled examples.
An LM is a function of the form ©* — Al®I=1 where the simplex A¥I=1 is set of all possible
probability distributions over . Suppose, the generation of sequences is done using top-k or top-p
sampling. The set of strings that can be generated by such top-k or top-p sampling has been referred
to as the e-truncated support [Hewitt et al.,[2020} Yellin and Weiss|, [2021]]. For any input string, the
symbols in the top k ranking (or in top-p probability mass) are valid continuations and are assigned
label 1, and other symbols are assigned label 0. The symbols which correspond to the end of sequence
(such as space for words or °.” for sentences) can be considered as the equivalent of the label of
the entire sequence. For formal (or programming) languages, the end of sequence symbol will be
more well-defined. Suppose a PAC-learning algorithm A exists for learning a concept class C' in the
NSP setting (such as Algorithm [2)) and assume that the support of the language is in class C' as well.
Then, the LM can act as the example oracle where the examples can be labeled as described above.
Note that, while our algorithm to learn DFAs in the NSP is primarily discussed with only positive
examples, with minor changes, it works with both positive and negative examples (along with other
labels) as well. Given sufficient examples from some distribution over ¥* labeled by an LM, the
algorithm will output a hypothesis h such that with high probability, h can accurately predict whether
the string belongs to the truncated support of the LM with error at most e.

4 Conclusion

We formally introduced the problem of learnability in the next symbol prediction setting and discussed
its relation to learning the support of LMs and empirical analysis of sequence models. We showed
that certain fundamental concept classes that are not PAC-learnable in the conventional classification
setting are efficiently learnable in the NSP setting. Note that, while the time and sample complexity
of the algorithm for learning DFAs is polynomial, it could still get quite large when applying them to
practical problems related to language models. Understanding the effectiveness and drawbacks of the
described algorithm by applying it to language models for text or even formal languages is a natural
direction for future work. An interesting open problem is whether the use of membership queries can
help in any way to improve efficiency in the next symbol prediction setting.

References

Dana Angluin. On the complexity of minimum inference of regular sets. Information and control, 39
(3):337-350, 1978.

Dana Angluin. Learning regular sets from queries and counterexamples. Information and computation,
75(2):87-106, 1987.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the Ability and Limitations of Trans-
formers to Recognize Formal Languages. In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP), pages 7096—7116, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.576. URL
https://aclanthology.org/2020.emnlp-main.576.

Colin De la Higuera. Grammatical inference: learning automata and grammars. Cambridge
University Press, 2010.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Marcus Hutter, Shane Legg, and Pedro A Ortega. Neural networks and the chomsky hierarchy.
arXiv preprint arXiv:2207.02098, 2022.

Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. How can self-attention networks recognize dyck-n
languages? arXiv preprint arXiv:2010.04303, 2020.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833, 2018.

Felix A Gers and E Schmidhuber. Lstm recurrent networks learn simple context-free and context-
sensitive languages. IEEE Transactions on Neural Networks, 12(6):1333—-1340, 2001.

E Mark Gold. Complexity of automaton identification from given data. Information and control, 37
(3):302-320, 1978.

John Hewitt, Michael Hahn, Surya Ganguli, Percy Liang, and Christopher D Manning. Rnns can
generate bounded hierarchical languages with optimal memory. arXiv preprint arXiv:2010.07515,
2020.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

Michael Kearns and Leslie Valiant. Cryptographic limitations on learning boolean formulae and
finite automata. Journal of the ACM (JACM), 41(1):67-95, 1994.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

José Oncina and Pedro Garcia. Identifying regular languages in polynomial time. In Advances in
structural and syntactic pattern recognition, pages 99-108. World Scientific, 1992.

Leonard Pitt and Manfred K Warmuth. The minimum consistent dfa problem cannot be approximated
within any polynomial. Journal of the ACM (JACM), 40(1):95-142, 1993.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Paul Rodriguez. Simple recurrent networks learn context-free and context-sensitive languages by
counting. Neural computation, 13(9):2093-2118, 2001.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and Sebastian Gehrmann. LSTM networks can
perform dynamic counting. In Proceedings of the Workshop on Deep Learning and Formal Lan-
guages: Building Bridges, pages 44—54, Florence, August 2019a. Association for Computational
Linguistics. doi: 10.18653/v1/W19-3905. URL https://www.aclweb.org/anthology/W19-3905.

https://aclanthology.org/2020.emnlp-main.576
https://www.aclweb.org/anthology/W19-3905

Mirac Suzgun, Yonatan Belinkov, and Stuart M. Shieber. On evaluating the generalization of
LSTM models in formal languages. In Proceedings of the Society for Computation in Linguistics
(SCiL) 2019, pages 277-286, 2019b. doi: 10.7275/s02b-4d91. URL https://www.aclweb.org/
anthology/W19-0128.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite
precision RNNs for language recognition. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages 740-745, Melbourne,
Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2117.
URL https://www.aclweb.org/anthology/P18-2117.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention networks
can process bounded hierarchical languages. arXiv preprint arXiv:2105.11115,2021.

Daniel M Yellin and Gail Weiss. Synthesizing context-free grammars from recurrent neural networks.
In International Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 351-369. Springer, 2021.

https://www.aclweb.org/anthology/W19-0128
https://www.aclweb.org/anthology/W19-0128
https://www.aclweb.org/anthology/P18-2117

A Definitions

Definition A.1. A Deterministic Finite Automaton (DFA) is a 5-tuple (Q, X, 6, go, F') where:

* () is a finite set of states,

e Y is a finite alphabet,

e §:(Q x X — (@ is the transition function,
e ¢) € () is the start state, and

* [C (@ is the set of accepting states.

For any string € X*, the DFA starts with the start state ¢, and transitions to other states based on
the function § and the symbols in the string. If the transitions end on a final or accept state, then the
string is accepted or else it is rejected. For any particular DFA, the set of strings in 2* that lead to the
accept state is also referred to as the language of the DFA.

Minimum consistent learner is an algorithm which, given a hypothesis class # and a set of training
examples .5, selects the hypothesis & € H that is consistent with the examples in S and minimizes the
complexity of the hypothesis. Formally, for a target function c, a hypothesis h is consistent with .S if
and only if Vo € S, h(x) = ¢(x), meaning it accurately predicts the label of every example in the
training set S. In the context of the NSP setting where h(z) € {0, 1}(FHD 0+ "3 hypothesis A is
consistent with samples in S if and only if ||h(z) — c(z) Hoo = 0 for all examples in S. In our work,
we focus on proper PAC learning where the target concept class and hypothesis class are the same. In
other words, the learner for the class DFA,, or B-DFA,, finds the minimum consistent hypothesis
within the same class of functions respectively.

Note that, even in the NSP setting, finding the minimum consistent hypothesis implies the PAC-
learnability of a concept class. Given a set S of examples and labels, let L be a minimum consistent
learner which produces a hypothesis & in polynomial time such that the error on the sample set

ﬁNSp(h, S) = 0. Let h be a ‘bad’ hypothesis — Lnsp(h) > e. Let Ap, be the event where a

minimum consistent learner converges to h where Lxsp(h) > € and Lygp(h, S) = 0. See that,
P[AL] < (1 — €)™ < e “™. With a simple application of union bound, the failure probability can be
bounded by,

P A < D PlA] < [H|- e < 4.

h bad h bad

This implies that when m > 1 (log |H| +), then with probability 1 — §, the error Lygp(h) < e.

B Preliminaries

Prefix tree DFA is a DFA with a trie-like structure that is consistent with a given set of samples S.
The algorithm to construct the prefix tree DFA is given in Algorithm[I] In our setting, to construct a
prefix tree DFA, we first create a state for every prefix Pref(.S) in the sample set S. We then create
a transition §(z.;,0) = .54+ between any two states corresponding to prefixes x.; and x4 if
Z.k+1 = T - 0. For every prefix z.;, we have a set of |Z| + 1 labels that indicate which symbols are
allowed or not and whether the prefix is accepted by the target DFA or not. We mark the states as
accept or reject based on the latter label. Based on the first || labels indicating valid continuations
we create a transition to dead state for o € X that are labelled as not allowed. The dead state is a
reject state where all symbols have a transition to the same dead state. This DFA is returned by the
Prefix-Tree(S) algorithm when it is provided with the set of samples and labels .S. At this point for
every state we have three types of transitions for the symbols in the alphabet X2, (a) valid transitions to
another non-dead state, (b) transitions to dead states, and (c) undefined transitions for symbols which
are valid continuations based on labels. Note that, if we add self-loops in the DFA for states with
symbols that are allowed but undefined then we will have a consistent (but not necessarily minimum)
DFA.

Ordering. The states are numbered according to the length-lexicographic order which is later used
by the Select function to return the respective state. In the prefix tree, every state corresponds to a
unique prefix, and the ordering between two prefixes (and the respective states) is determined by the
length if two prefixes have different lengths or it is determined lexicographically if two prefixes have
the same length. Formally, & <jength—icz ¥ iff [2] < |y| V (2 <iez y A |z| = |y]).

Algorithm 1 Prefix-Tree

Input: a sample set S
Output: Prefix tree A = (X, Q, gx,Fa, d)
Fa 0
Q + {qu:u € Pref(5)}
for each ¢,., € QQ do
0 (qu»a) < Qua
end for
for each ¢, € @ do
if u has a positive label then
Fpo <+ FayU {qu}
end if
for eacho € Y do
if u - o is not allowed then
6(Qua U) = {dead
end if
end for
end for
return A

Lemma B.1. For DFAs with at most n states, log |DFA,,| = O(nlogn).

This is a well-known result [De la Higueral 2010] and can be proved in the following way. The proof
follows from the fact that for a DFA with at most n states, there are nl=l"" and each state can either
be an accept or reject state (a factor of 2" and one of the states can be an initial state. Hence, the total
number of possible DFAs is 2" - n/>I""*1 Thus, log |DFA,,| = O(nlogn).

C Learning DFAs in NSP setting

Theorem C.1. In the next symbol prediction setting, given m examples labeled by any A € DFA,,,
the minimum consistent DFA can be computed in O(m?L)-time where L is the length of the longest
string in the m examples.

Proof. We show that Algorithm [2] finds the minimum consistent DFA for a given set of examples
with the labels corresponding to the NSP setting. The algorithm works as follows:

Overview. The state merging algorithm begins by creating a prefix tree DFA using algorithmI]and
then iteratively merging the states unless no two states can be merged any further. During the run, the
states are merged in such a way that the resulting DFA remains consistent with the training set and
when two states cannot be merged, then they are provably different in the minimum consistent DFA
as well.

The algorithm maintains two sets of states namely permanent states (PERM) and candidate states
(CAND). Initially, the set PERM only contains the initial state ¢, and the set CAND contains all the
neighbours of the initial state. The algorithm iteratively tries to merge the candidate states with the
permanent states until the set of candidate states is empty and then the algorithm returns the minimum
consistent DFA and terminates.

State-merging. The algorithm goes through the set of candidate states and picks a state ¢, based
on the length-lexicographic order of the prefixes corresponding to the states (Step 7). Then, the
algorithm tries to merge the candidate state g. with each of the permanent states until it finds a
permanent state g, with which the merge succeeds. If a merge between g. and a permanent state
succeeds, then all the outgoing neighbors of permanent states which are not in CAND are added to

the candidate set (Step 13). The outgoing neighbours of any state g, is defined as the set of states
{a]0(gp,0) = qis defined A (¢ # qacaa)}-

If the merge does not succeed with any of the permanent states then the candidate state g, is promoted
to a permanent state. The Promote(q) function adds the state ¢ to the set of permanent states PERM
and adds all the outgoing neighbors of ¢. to the set CAND.

It is important to note that the state merging algorithm is designed in such a way that for every
candidate state, there is always only one incoming edge and if that edge is removed then the candidate
state is the root of a tree (ignoring the transitions to dead state).

Merge and Fold Algorithm. After a candidate state ¢. and the permanent state g, have been chosen,
the merge algorithm works as follows: first, the transition from the parent of the state g, is reassigned
to ¢, (Step 2-3 in Alg.). This creates a separate tree with g.. as the root which we refer to as F-Tree.
The Fold algorithm (Alg. [3) then recursively tries to fold the tree with g. into the main DFA. The
recursive folding process works as follows: the algorithm first tries to fold the candidate state g,
into g,. Here, by folding we mean that g. will be replaced by ¢, in the original DFA. The fold only
proceeds further if both the states are either accept or reject states (Steps 2-4). Additionally, the set of
symbols that lead to the dead state gqeaq from both states should be exactly the same (Steps 5-9). In
other words, a fold between two states is only possible if both of them either accept states or reject
states and the set of symbols for valid continuation from both states are the same.

If both these criteria are satisfied then the algorithm recursively checks these criteria for the states
which are in those paths that are defined from both g, and g.. In particular, for a symbol o € ¥ if
both 6(gp, o) = ¢, and 6(g., o) = g, are defined then the algorithm will try to fold ¢, into g, (Step
13). While folding any two states such as g into ¢,, if for any symbol o the transition §(gp, o) = gx
is defined but 6(g,, o) is not defined then the algorithm adds a transition §(q,, o) = gx. If any of
the criteria fails while trying to fold any two states then the merge between ¢, and ¢, fails and the
algorithm tries to merge q. with the next permanent state.

After the state merging process ends the algorithm adds self-loops to states which have symbols
which are not defined since they are valid continuations based on the label. This ensures that the final
DFA is consistent with the labels in the training set.

Algorithm 2 State-Merge-NSP Algorithm 3 Fold
1: Input: Samples and labels S 1: Input: g, g.
2: Output: Minimum DFA A consistent with 2: if F(qp) # F(q.) then
S 3 return False
3: A < Prefix-Tree(S) 4: end if
4: PERM + {q»} 5: for each o in ¥ do
5: CAND <« {q, : « € ¥ N PREF(S)} 6: if (gp,0) # (gc, o) then
6: while CAND # () do 7 return False
7 e < Select(CAND) 8: end if
8: CAND < CAND \ ¢, 9: end for
9: merged = false 10: for each ¢ in X do
10: for each g, € PERM do 11: if 0(gc, o) is defined then
11: if Merge(gp, ¢.) then 12: if (g, o) is defined then
12: merged = true 13: return Fold(6(gp,0),0(gc, 0))
13: Make-Candidate(.A) 14: else
14: break 15: 3(gp,) < 6(qe,0)
15: end if 16: end if
16: end for 17: end if
17: if — merged then 18: end for
18: Promote(q.) 19: return A with Q \ ¢,

19: end if
20: end while
21: Add-SelfLoops(.A)
22: return A

Remarks. There are a few things to note here. First see that, since F-Tree is disconnected from the
DFA, the states within F-Tree are either folded into some state in the main DFA or a transition is
added from a state in the main DFA to a state in F'-Tree. Secondly, while the merging process begins
with folding a candidate state into a permanent state, further iterations could fold non-candidate states
in F-Tree into non-permanent states in the main DFA.

Consistency. By construction, the state merging algorithm keeps the DFA consistent with labels in
the training set. As described earlier, the prefix tree DFA constructed initially is consistent with the
training set (with the addition of self-loops).

Let’s say after a merge between ¢, and g, the labels of a particular example are inconsistent with the
resulting DFA. We show that this event cannot occur. First, the examples that do not go through ¢,
remain unaffected since only the states and transitions in the F-Tree (g, and its children) are altered.
Given an example © = s1,..., S such that s1, ..., s;_1 leads to the state q., it is straightforward to
see that the prefix sy, ..., s;_1 still remains consistent since only the transition for the symbol s;_1
is changed to g, instead of ¢.. By construction, the labels for both g, and ¢, have to be the same for
the merge to succeed. For the remaining suffix, let’s consider two parts in general terms: the first
part is the substring s;, . .., s; such that the transitions from both ¢, and g, are defined. The second
part sj41,..., S is not defined in the path from g,. In other words, 6(d(gp, (si, ... 5;)), s;+1) is not
defined whereas §(6(qc, (i, .- $;5)), Sj4+1) is defined.

For the first part, note that for any substring w1, us, ..., u; such that both the sequence of transi-

tions g5 = 8(gp.u1),qs” = 8(as ua),- s = 8l ux) and ¢t = 6(gesur), &) =

5(qg2), UD)y ey qgk) = 5(q§k_1), uy,) are defined, a merge between ¢, and g. succeeds only when

F(g) = F(¢) and ¢(¢)”,0) = ¢(¢t”,0)Vo € S forall i = 1,..., k. Hence, the substring
S;,...,58; in x cannot be inconsistent after the merge operation. For the second part, s;41, ..., s,
the algorithm adds a transition is added from a state in the main DFA to the corresponding state (for
prefix s1,..., s;41) in the F-Tree. Hence, the states and transitions in the path for this suffix remain
unaltered and this cannot lead to inconsistency.

Algorithm 4 Merge
1: Input: g, q.
2: Let 6(qy, o) be such that §(gs,0) = ¢

3: 6(qr,0) = qp
4: FOLD(gy, g.)

The above argument also holds when either of the two parts is an empty string that covers the other
two specific cases for the suffix s;, ..., sy where the entire suffix falls into one of the above two
categories.

Minimum. To see that the algorithm leads to the DFA with the minimum number of states, see
that whenever the merge between two states fails, it is guaranteed that there exists a string that
distinguishes the two states. If the merge fails because one of the states is an accept state while the
other is a reject state then we have a distinguishing string. If the merge fails because for a pair of
states ©(qq,0) # ©(qp, o), then it is guaranteed that a suffix exists such that it leads to the accept
state from one of the states and to the reject state from the another.

By construction, a candidate state is only promoted to a permanent state after it is guaranteed that a
distinguishing string exists for every existing permanent state. Hence, with only permanent states
remaining in the end, it is guaranteed that the number of states cannot be reduced any further.

Complexity. Given m examples where L is the length of the longest string, the prefix tree construction
can take at most O(mL) time. In the worst case, a merge can be attempted between every two states
which could take O(m?L?) computational steps. Since the consistency check for each merge attempt
can take at most O(mL) time, the total time complexity of the algorithm is O(m3L3).

O

Corollary C.1.1. The concept class of DFA,, is efficiently PAC-learnable in the Next Symbol
Prediction setting.

10

Samples S = {aaa, bba}

abF
[111] [111]
a a a
[100] [111]
[111] [100]
b a
[111] [111]

Figure 1: The target DFA and a set of labelled examples for an example run of the algorithm. See
Section[C. 1] for more details.

This immediately follows from the fact that the minimum consistent DFA can be obtained in O(m?3L?3)
time. Using Lemma[B.I] we have that the algorlthm to compute the minimum consistent DFA PAC-
learns the class of DFAs with at most n states in O((nlogn)3L3) time.

C.1 A Simulation of the Algorithm

We go over an example run of the state-merging algorithm (Alg. [2) to help make it clearer. The target
DFA and the set of samples for the simulation are given in Figure[I] The target DFA has three states
where ¢ is the start state and the alphabet 3 = {a, b}. The two final states ¢; and g5 are marked with
a dotted inner circle. We only have two samples S = {aaa, bba} both of which lead to the final state.
In the NSP setting, the algorithm is provided with |X| + 1 labels for each prefix (labelled according
to the target DFA) and the corresponding labels for each prefix of inputs are shown in Figure[T] (right).
For each prefix, a label vector is shown where the first two labels indicate whether the symbols a and
b are allowed as a suffix or not and the last label indicates whether the prefix is accepted by the DFA
or not. See Section 2] for more details about problem setting.

((

(a) Prefix Tree DFA b) g2 promoted

(c) Merging g1 and g3 (d) Merge failed and g3 promoted

Figure 2: A part of simulation of the state-merging Algorithm 2] The algorithm starts with the
prefix-tree DFA. The permanent states are marked as red and the candidate states are marked as blue.
The algorithm iteratively tries to merge the candidate states with the permanent states. If a candidate
state cannot be merged with any permanent state, it is promoted to a permanent state. See Section [C.1]
for more details.

Prefix Tree. Algorithm 2|begins with constructing the prefix-tree DFA (Line 3) using the labelled
examples (see Algorithm|[T). The prefix tree DFA is depicted in Figure[2(a). The permanent states

11

PERM = {q; } are marked in red and the candidate states CAND = {q2, g3} are marked in blue. The
states are numbers according to the length-lexicographic order described in Section [B] Note that the
accept and reject states are marked based on labels and the transitions to the reject state qgeaq are also
added based on the labels.

State-Merging. The state-merging process (Lines 7-20) begins after that. The algorithm first tries to
merge the states go and ¢; but since ¢; is an accept state and g5 is a reject state (F'(q1) # F'(g2)), the
merge fails. Since there is no other permanent state to try and merge with, the state g is promoted to
a permanent state and its outgoing neighbour g4 is added to the set of candidate states (see Figure
2Ib)). The algorithm then tries to merge the states ¢; and 3. As defined in the Algorithm[] the
incoming transition to the state gs is first changed to ¢; and then the algorithm tries to fold the states
q1 and g3 (see Figure c)). Since both §(g¢1,b) and (g3, b) are defined, the algorithm tries to fold
the respective states. However, since ¢; = §(q1,b) and g5 = (g3, b) are both not either accept or
reject states, the merge fails. The merge between g3 and go (the other permanent state) fails as well
since F'(q2) # F(gq3). Hence, the state g3 is promoted and its outgoing neighbour g5 is added to the
set of candidate states (see Figure |de)).

The next candidate state in the set is ¢4. The merge between ¢; and g4 fails because F'(d(q1,a)) #
F(6(qg4, a)) and the merge with ¢, fails since F'(g2) # F(q4). The algorithm then tries to merge the
state q4 with g3 (Figure Eke)) which succeeds and ¢g is added to the set of candidate states (Figure
Blf). Similarly the merge between states g2 and g5 succeeds where the state g is folded with g2 and
the state g; = (g5, a) is folded with g3 = (g2, a) (see Figure g)). Lastly, the state ¢g is merged
with ¢; which leads to our final DFA which has no more candidate states. Since the transitions from
all the states in the final DFA are defined, we do not need to add self-loops (line 21 in Alg. Q) Hence,
the algorithm returns the DFA in Figure 3[h) as its output.

(9) g5 merged with g2 (h) g6 merged with g; resulting in final DFA

Figure 3: A part of simulation of the state-merging Algorithm 2} The algorithm merges the candidate
states with the permanent states or promotes the candidate states to permanent states. When no
candidate states are left, the algorithm returns the DFA as its output. See Section [C.I|for more details.

D Learning Boolean acyclic DFAs

The concept class of Boolean Acyclic DFAs (B-DFA) contains DFAs which represent functions of
the form f : {0,1}* — {0, 1} where for all z ¢ {0,1}", the function f(x) = 0. Hence, the class
B-DFA can be seen as a class of functions comprising Boolean functions which are of the form
{0,1}™ — {0, 1}. Note that with only positive and negative examples as in the standard classification
setting, the problem of finding the minimum consistent DFA for Boolean acyclic DFAs is intractable
under cryptographic assumptions [[Kearns and Valiant, [1994].

12

Theorem D.1. In the next symbol prediction setting, given m examples labeled by any A € B-DFA,,,
the minimum consistent DFA can be computed in time O(m?L) where L is the length of the longest
string in the m examples.

Proof. We show that for any given m examples and labels obtained according to the example oracle
in the NSP setting, the minimum consistent DFA can be obtained in O(m?L) time. The algorithm
begins by constructing a prefix tree DFA (as in Algorithm[T)) using the samples and labels provided
by the example oracle.

Unlike the case of the general class of DFAs, certain properties of the structure are known. For any
B-DFA f € B-DFA which represent functions over {0, 1}* — {0, 1}, for every input such that
f(x) = 1, the path from the initial state to the final state will go through exactly L states (excluding
the initial state). For any DFA in the class B-DFA, every state can be reached or identified by prefixes
of a unique length. In other words, every equivalence class in the language of the DFA (apart from
the dead state q4eaq) has strings of a fixed length.

Once the prefix tree is constructed using Algorithm 1} for every length in [L], there exists a set of
states such that they can be reached with a prefix of length [€ L. Let () denote the set of states in
the initial prefix tree which can be reached with a prefix of length exactly [. For simplicity, we refer
to the states in ()(() as the states at depth [.

State-merging. The state-merging algorithm works as follows: The algorithm iteratively goes
through states at each depth (Q(!)) from L, L — 1,..., 1 and tries to merge the states at each depth

I. At any depth [, for every state ¢} € Q(1), it attempts to merge it with every other state in Q(1).

The merge between two states qc(f) and qél) succeeds if two conditions are satisfied. Condition (i):

for every o € {0, 1}, <p(q((ll), o) = go(q,gl), o) which is to say that two states cannot be merged if a

symbol leads to the dead state from one of them and to a non-dead state from the other. Condition

(ii): for any o € {0, 1} if both the transitions J (qél), o) and & (qél), o) are defined, then the merge can
only succeed if 5(qL(ll), o) = 5(qél), o).

Fold. If the merge between two states q((zl) and qél) succeeds then the state ql(,l) is folded into state

¢". The fold consists of two changes. (a) For any o € {0, 1} such that § (ql()l), o) was defined and

) (q((ll), o) was not defined, the algorithm adds a transition ¢ (q((ll), o)=24 (q}()l), o). (b) For all states
¢'=' € Q(I — 1) such that §(¢' 7, 0) = qél), the transitions are replaced by §(¢' !, o) = q((ll).

The state-merging algorithm iteratively merges the states at each depth starting from the final state at
depth L to states at depth 1. After the state-merging process is complete, for every remaining state
q € Q,, atleast one of o in {0, 1} will have a defined transition to the next state. For all states ¢ € @,
such that 6(g, 0) is not defined (which also indicates that ©(q,0) = 1, we add §(g,0) = (g, 1). We
do the same with states where 6(g, 1) is not defined.

This results in the minimum consistent DFA for a given set of examples sampled according to
the examples oracle in the NSP setting. By the construction, the DFA always remains consistent
throughout the state-merging process since two states are only merged if they are indistinguishable
based on the sample set. The resulting DFA is minimal since we know a distinguishing string exists
between every pair of states in the DFA. First, see that two states at different depths cannot be merged
because for ¢ # j, every state at depth L — ¢ has a suffix that is accepted whereas for all states at
depth L — j every suffix of length ¢ leads to a reject state. For every pair of states g; and gs at the
same depth 1 <[< L, the merge fails if a distinguishing string is guaranteed to exist. The merge
fails, if for a symbol §(q1,0) # (g2, o) when both the transitions are defined. Since, the symbol
leads to transitions to different states, by definition there is a suffix that distinguishes the two states.
In the other case where the merge fails, we know that a symbol leads to the dead state from one of the
states and not from the other. Consequently, we know that a suffix starting with that symbol exists
that leads to an accept state from only one of the states.

Complexity. Given m examples, see that after the prefix tree construction, the number of states at
each depth |Q(1))| < m and hence the number of merge operations at each depth will be O(m?).
Since we are iterating over L, the time complexity of the state-merging algorithm is O(m?L).

O

13

Corollary D.1.1. The concept class of B-DFA,, is efficiently PAC-learnable in the Next Symbol
Prediction setting.

Similar to the previous case, it immediately follows from the fact that the algorithm described above
finds the minimum consistent hypothesis in O(m?L) time, and given the size of the hypothesis class
(Lemma |B.1), the algorithm PAC-learns the concept class B-DFA,, in O((nlogn)?L) time.

14

	Introduction
	Problem
	Results
	Conclusion
	Definitions
	Preliminaries
	Learning DFAs in NSP setting
	A Simulation of the Algorithm

	Learning Boolean acyclic DFAs

