DO 3D LARGE LANGUAGE MODELS REALLY UNDERSTAND 3D SPATIAL RELATIONSHIPS?

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent 3D Large-Language Models (3D-LLMs) claim to understand 3D worlds, especially spatial relationships among objects. Yet, we find that simply fine-tuning a language model on text-only question-answer pairs can perform comparably or even surpass these methods on the SQA3D benchmark without using any 3D input. This indicates that the SQA3D benchmark may not be able to detect if the model exploits textual shortcuts rather than engages in 3D-aware reasoning. To address this issue, we introduce **Real-3DQA**, a more rigorous evaluation benchmark that filters out easy-to-guess questions and introduces a structured taxonomy to assess various aspects of 3D reasoning. Experiments on Real-3DQA confirm that existing 3D-LLMs struggle with spatial relationships once simple cues are removed. We further propose a **3D-reweighted training objective** that guides model to rely more on 3D visual clues, substantially enhancing 3D-LLMs' performance in spatial reasoning tasks. Our findings underscore the need for robust benchmarks and tailored training strategies to advance genuine 3D vision-language understanding.

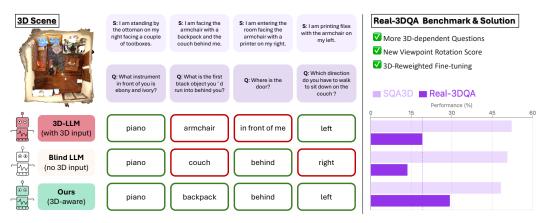


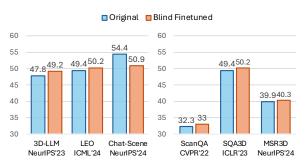
Figure 1: **Our Real-3DQA Benchmark and Solution.** We demonstrate the answer differences between 3D-LLM (LEO) and its blind-finetuned version on various questions, with correct answers highlighted in green frames and incorrect ones in red frames. We discover that some questions can be answered correctly regardless of whether 3D information is used, which we consider to be 3D-independent questions. By filtering out these 3D-independent questions and introducing a new viewpoint rotation score, the original models' performance drops significantly on Real-3DQA. Finally, using our proposed 3D-aware Reweighted Finetuning strategy, performance improves again.

1 Introduction

Understanding and reasoning about 3D environments is fundamental for embodied AI, AR/VR applications, autonomous driving, etc. Recent work has proposed 3D Large Language Models (3D-LLMs) Hong et al. (2023); Chen et al. (2024); Guo et al. (2023); Huang et al. (2024a), aiming to empower language models with spatial awareness. Early evaluations focused on tasks such as 3D captioning Chen et al. (2020) and object grounding Yang et al. (2024); Achlioptas et al. (2020), while 3D question answering (3D-QA) Azuma et al. (2022); Ye et al. (2021); Etesam et al. (2022) soon

 emerged as a more flexible benchmark for assessing diverse aspects of spatial understanding. More recently, 3D Situated QA Ma et al. (2023); Zhang et al. (2025c); Linghu et al. (2025) extended this line of evaluation by adopting an egocentric, first-person perspective, simulating how humans perceive the world and challenging models to reason continuously about objects and relations in context. While these benchmarks are intended to measure progress toward robust embodied intelligence, we question whether the reported improvements truly reflect genuine 3D spatial reasoning. This paper investigates this gap between perceived progress and actual spatial understanding.

We find that much of this apparent progress is illusory. On the most-widely used situated QA benchmarks, i.e. SQA3D Ma et al. (2023), where accuracy has increased from 30% to over 50% in recent years, 3D-LLMs can achieve competitive scores without actually processing any 3D data. A simply fine-tuned blind model¹ finetuned on text-only question-answer pairs can match or surpass the performance of recent 3D-LLMs, as illustrated in Fig. 2. This reveals that many SQA3D questions can be solved solely by linguistic priors, rather than genuine spatial reasoning. Importantly, we observe similar vulnerabilities beyond SQA3D, including on ScanQA and the more recent MSR3D benchmark. Meanwhile, our findings echo those of Huang et al. (2025); Zhang et al. (2024) and indicate that even the latest 3D-LLMs are not immune to this gap.



Various Models on SQA3D, EM [%] LEO on Various Benchmarks, EM [%]

Figure 2: **Our finding**: A language model fine-tuned only on text QA pairs without any 3D inputs (Blind Finetuned) can match or even surpass state-of-the-art 3D-LLMs (Original) on multiple 3D-QA benchmarks. This exposes a critical weakness in current benchmark design and calls into question their ability to assess genuine 3D reasoning despite linguistic shortcuts.

What causes existing benchmarks to fall short in accurately evaluating 3D reasoning? One hypothesis is the presence of bias in 3D-QA datasets. These biases can stem from both manual annotation Azuma et al. (2022); Ye et al. (2021); Zhang et al. (2025b); Huang et al. (2025) and automatic or semi-automatic LLM-assisted generation processes Linghu et al. (2025); Zhang et al. (2025c), where linguistic or commonsense priors are embedded in the data. For example, "What is the black rectangular object on the wall?" almost always yields "TV" for indoor scenes regardless of spatial context. These questions allow models to succeed via shortcut learning instead of true 3D understanding. While SQA3D Ma et al. (2023) attempt to mitigate this issue by balancing answer distributions, such surface-level fixes cannot eliminate deeper biases, like preferences for salient objects, canonical configurations, or easily guessable answers. These dataset biases are multi-faceted and difficult to eliminate through either manual correction or distribution balancing.

To address this, we introduce Real-3DQA, a benchmark that filters out questions solvable by language priors alone, as summarized in Table 1. We compare each 3D-LLM's accuracy to its "blind" counterpart—finetuned on text-only QA pairs without any 3D inputs. Questions answered correctly by both models are considered low in 3D dependency and are removed, as the answer can be inferred without spatial understanding. By filtering out such trivial questions, we implicitly mitigate a broad range of biases without requiring detailed manual intervention. This model-based filtering allows our Real-3DQA more robustly evaluate genuine 3D reasoning.

Although removing low–3D–dependency questions prevents linguistic shortcuts, it does not guarantee that a model truly understands spatial structure. To further assess genuine 3D understanding, we propose a *cross-question consistency* test under viewpoint changes. The key idea is that if a model truly grasps the 3D scene, it should answer the same question correctly even when the observer's orientation changes. Concretely, we rotate the viewpoint while keeping the position and question fixed, and adjust any directional terms in both the situation description and the expected answer. This results in logically equivalent QA pairs across different reference frames, forcing the model to interpret spatial relations consistently. To quantify this, we further introduce the Viewpoint-Rotation Score, which measures whether the model maintains spatial consistency across varied perspectives.

¹We refer readers to section 4.1 for details on how the *blind* finetuned model is obtained.

Table 1: **Comparison of 3D Question Answering Benchmarks.** Our Real-3DQA benchmark features situated questions, uses LLM-assisted text collection with human verification, applies debiasing techniques, evaluates robustness across different viewpoints, and provides diverse question categories to assess true 3D spatial reasoning ability.

Dataset	Situated	uated Text collection		Text collection Debiased Robustness evaluation		Quality check	Question categories
ScanQA	X	Human	Х	X	Х	0	
3D-QA	X	Human	X	×	X	4	
SQA3D	/	Human	✓	×	✓	5	
MSQA	1	LLM	X	×	✓	6	
ScanReQA	X	Human	X	✓	✓	0	
Spartun3D	1	LLM	X	×	✓	3	
Beacon3D	X	Human	X	X	✓	5	
Real-3DQA	 	LLM	✓	✓	✓	11	

While our proposed benchmark and consistency test offer a more rigorous evaluation, they do not by themselves prevent models from learning shortcuts during training. We find that standard supervised fine-tuning still encourages models to learn linguistic shortcuts, limiting the benefit of 3D information. To address this limitation from the training perspective, we introduce a 3D-aware Reweighted Fine-tuning (3DR-FT) strategy. Our key idea is to quantify the 3D dependency of each question by measuring the performance gap between a blind (text-only) model versus a full 3D-LLM. Based on this gap, we downweight questions that can be guessed easily from text alone, and upweight those requiring genuine spatial reasoning. This adaptive reweighting encourages models to incorporate 3D cues, and experiments confirm consistent performance gains across multiple 3D-LLMs on our revised benchmark.

Overall, our contributions can be summarized as below:

- We introduce a new diagnostic benchmark to **measure genuine 3D reasoning** ability of 3D-LLMs. It has filtered out questions solvable by linguistic shortcuts and uses a viewpoint-rotation score to provide a stricter and more reliable evaluation.
- We reveal that modern 3D-LLMs are surprisingly brittle. On our benchmark, their performance
 drops by over 60%, and they almost completely fail our viewpoint consistency tests, a critical flaw
 overlooked by prior benchmarks.
- To fix this, we propose a **3D-aware reweighted fine-tuning** strategy that forces models to focus more on spatially complex data, consistently boosting the 3D reasoning capabilities of LLMs.

2 Related Work

3D-LLMs. 3D-LLMs integrate spatial data with LLMs for scene understanding Ma et al. (2024b), including 3D grounding, captioning, and question answering (QA). Prevalent approaches typically follow a formulation similar to 2D vision-language models (VLMs), by concatenating 3D tokens from point-cloud encoders with text tokens before being processed by an LLM Hong et al. (2023); Yang et al. (2023); Wang et al. (2023); Huang et al. (2023); Fu et al. (2024); Xu et al. (2024); Yang et al. (2024); Chen et al. (2024); Li et al. (2024); Huang et al. (2024b); Guo et al. (2023). Others incorporate additional visual signals, such as multi-view images, into point-cloud-based 3D-LLMs. This hybrid design, exemplified by LEO Huang et al. (2024b) and Chat-Scene Huang et al. (2024a), has been shown to improve 3D captioning, grounding, QA, and Situated QA (SQA). More recently, methods such as GPT4Scene Qi et al. (2025), LLaVA-3D Zhu et al. (2024), and Video-3D LLM Zheng et al. (2024) sidestep explicit 3D encoders and instead rely on 2D VLMs for 3D awareness. While these works primarily aim to boost model accuracy through architectural and training innovations, we take a different perspective: questioning whether current 3D-LLMs truly acquire consistent understanding of 3D spaces. Our findings suggest that the answer is far from affirmative.

Linguistic Biases in Multi-modality Models. The issues related to the exploitation of linguistic bias have been extensively studied in 2D-VLMs Agrawal et al. (2018); Niu et al. (2021); Ouyang et al. (2021); Ma et al. (2024a), leading to fairer benchmarks Agrawal et al. (2018) and mitigation strategies Ma et al. (2024a), such as ensemble learning, data augmentation, self-supervised contrastive learning, and response re-ranking. However, the challenges of mitigating similar exploitation in

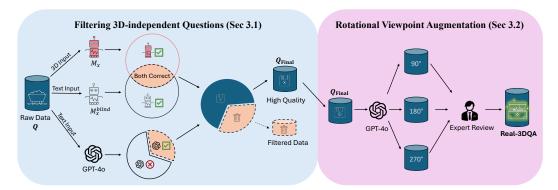


Figure 3: Overview of Real-3DQA Construction Process. Real-3DQA provides a fair and rigorous evaluation framework for 3D spatial reasoning in 3D-LLMs. The construction process begins with Filtering 3D-independent Questions, which removes questions that can be correctly answered by both the 3D-LLM model M_x and its text-only M_x^{blind} counterpart, as well as those answerable by the GPT model without 3D input. The remaining high-quality questions Q_{Final} are then augmented using GPT, generating spatially consistent variations through viewpoint rotations while preserving the underlying 3D relationships. Finally, expert reviews eliminate redundancy and invalid data, ensuring the highest dataset quality.

3D-QA benchmarks remain largely unexplored. Many existing 3D-QA datasets rely on automatic or semi-automatically generated QA pairs Yan et al. (2023); Li et al. (2023); Qian et al. (2024), which often include language priors in their questions. Although Ma et al. (2023) balances answer categories, it cannot remove deeper annotation artifacts (e.g., saliency preferences, canonical layouts, or guessable questions). We instead reduce linguistic bias via *model-level* comparison: by contrasting a full model with its *blind* (text-only) fine-tuned variant, we filter items that are solvable through language priors alone. This consistency-based procedure offers a more robust alternative to purely rule-based or distributional balancing.

3D-QA Diagnostic Benchmarks. Existing 3D-QA benchmarks largely reuse the 2D-QA protocol of per-item accuracy Rajpurkar et al. (2016), which overlooks whether predictions are self-consistent in 3D spaces. To overcome such issues, the recent diagnostic benchmark Beacon3D Huang et al. (2025), instead assesses 3D understanding through cross-task consistency: whether the model gives consistent answers across both QA and grounding tasks. In contrast, we evaluate 3D understanding ability through cross-question consistency, where we test if the model consistently solves the question under different viewpoint augmentations.

3 REAL-3DQA BENCHMARK DESIGN

Situated Question Answering (SQA) challenges AI to comprehend its position and surroundings within an environment before responding to queries. The first benchmark for this task, SQA3D Ma et al. (2023), has been widely adopted by recent research to evaluate the spatial awareness and 3D reasoning capabilities of 3D-LLMs. However, as shown earlier in Figure 2, we discovered a critical flaw in the current evaluation benchmark, which reveals that current 3D-LLMs obtain comparable or even worse results than its blind counterpart trained with text input only.

This observation underscores the need for a more rigorous evaluation framework. To address this gap, we introduce Real-3DQA, a benchmark derived from SQA3D to more accurately assess 3D spatial reasoning in 3D-LLMs. The key innovations in constructing Real-3DQA consist of two main steps: (1) **Filtering 3D-independent Questions** (Section 3.1), we identify and filter out those questions that can be answered by text context alone with high probability, minimizing the model's reliance on dataset biases and ensuring a more genuine assessment of 3D reasoning capabilities. (2) **Viewpoint Rotation Score** (Section 3.2), we introduce a viewpoint rotation evaluation metric that complements existing SQA3D metrics, encouraging models to rely on genuine 3D understanding.

3.1 FILTERING 3D-INDEPENDENT QUESTIONS

In this section, we describe how we remove questions that are "easy-to-guess" without 3D spatial information. Let Q be the original set of test questions from Ma et al. (2023). We evaluate three different 3D-LLMs Huang et al. (2024b;a); Hong et al. (2023), denoted as M_A , M_B , and M_C . For each specific model X, we begin with training the original model M_X , where $X \in \{A, B, C\}$ and its *blind* counterpart M_X^{blind} , which is the same model finetuned without 3D input².

Next, we utilize both M_X and M_X^{blind} models to identify questions that are independent of 3D input. Based on our definition, a question $q \in Q$ is considered independent of 3D input if both the original and blind-finetuned models predict the correct answer: $M_X(q) = M_X^{\text{blind}}(q) = \text{correct}$. For any given model M_X . The set of such questions for each model is: $Q_X = \{q \in Q \mid M_X(q) = M_X^{\text{blind}}(q) = \text{correct}\}$. To ensure robustness, we repeat this for all three models and take the union of questions that are independent of 3D input: $Q_{\text{3D-filtered}} = Q_A \cup Q_B \cup Q_C$. The underlying hypothesis for this approach is that if a set of questions can be answered correctly by both the original and blind-finetuned models, it means the question set is both less relevant to 3D spatial understanding and can be overfitted by data priors. Thus, we obtain a more rigorous remaining question set by removing those 3D-independent and trivial questions: $Q' = Q \setminus Q_{\text{3D-filtered}}$. We refer the reader to Figure 3 to illustrate the procedure up to this stage.

To ensure the final benchmark exclusively assesses true 3D understanding, we further refine Q' by removing questions that a general large language model (i.e., GPT-4o-mini OpenAI (2024)) can correctly answer based solely on the textual content of the *situation* and *question* without 3D input. Assuming the set of questions, GPT can answer using only textual input as: $Q_{\text{GPT}} = \{q \in Q' \mid \text{GPT}(q) = \text{correct}\}$. The final step to obtain the filtered test set is then: $Q_{\text{final}} = Q' \setminus Q_{\text{GPT}}$. In Section D.1 of Appendix, we present the change in the number of questions at each step of the filtering (Table 7), as well as the distribution of question types after filtering (Table 8). We also provide illustrative examples of 3D-independent questions that were removed.

3.2 VIEWPOINT ROTATION SCORE

To comprehensively assess the effectiveness of the Real-3DQA test set, we employ a combination of standard evaluation metrics and a viewpoint rotation metric specifically designed to measure true 3D understanding. First, we adopt the same evaluation metrics used in SQA3D, such as refined exact match (EM_R) Huang et al. (2024b), ensuring comparability with existing benchmarks. For a detailed analysis of their impact on model performance, we refer the readers to Section 5, which presents comprehensive experimental results.

To reduce the influence of superficial textual cues on model performance, we propose the Viewpoint Rotation Score (VRS) to assess whether 3D-LLMs genuinely comprehend spatial relationships. The core idea is to generate rephrased test questions by rotating the situation descriptions and corresponding answers from the original seed question while preserving underlying 3D relationships. Figure 4 illustrates this process: in the original scenario, an agent faces a trash can with a table behind and asks, "What is on my right?" The correct answer is "whiteboard". By rotating the agent's viewpoint (e.g., 90°, 180°, 270°), we create alternative descriptions where the agent faces a different object, yet spatial relationships of scene objects remain unchanged. The ground-truth answer dynamically updates based on the new viewpoint. We employ GPT to generate augmented SQA questions by processing pre-designed templates and scene graphs from Ma et al. (2023) from the original question. We provide our prompt template in Figure 9 of the Appendix D.

Quality Control. To ensure the reliability of our augmented dataset, we adopt a multi-stage quality control process combining GPT hallucination mitigation and structured expert review. We guide GPT generation with in-context examples, apply manual validation to enforce rotation sensitivity and QA validity, and conduct expert reviews with qualification checks and agreement metrics. Our annotations achieve strong reliability (Cohen's $\kappa=92\%$, self-consistency 97%), confirming that the augmented QA pairs are faithful to 3D rotations and grounded in genuine spatial reasoning. Full details of this process are provided in Appendix D.2.

 $^{^2}$ We refer readers to Section 4.1 for details on how Blind Finetuned model M_X^{blind} is obtained

Figure 4: **Viewpoint Rotation Augmentation.** Real-3DQA generates viewpoint-augmented SQA instances to enforce spatial reasoning. The left panel shows the original room layout, where an agent asks "What is on my right?" with the correct answer "white board." The right panels illustrate the SQA examples of the original viewpoint and rotated viewpoint (90°, 180°, 270°), where the agent's perspective shifts and the correct answers dynamically adjust while preserving spatial consistence.

VRS evaluation metric design. VRS measures the robustness of a model to spatial variations on a scale of 0 to 100%, where higher values indicate better performance. During the evaluation, each batch consists of four related questions: the original and its three rotated variants (90°, 180° and 270°). After processing the entire data set, we calculate the percentage of instances in which the model correctly answers at least k questions, where $k \in \{1,2,3,4\}$. Formally, let N_k be the number of instances where at least k questions in a batch are answered correctly, and N_{total} be the total number of instances. The percentage for each k is given by: $P_k = \frac{N_k}{N_{\text{total}}} \times 100$, where P_k represents the accuracy percentage for answering at least k questions correctly. The final VRS metric is computed as the mean of these percentages: $\text{VRS} = \frac{1}{4} \sum_{k=1}^4 P_k$.

To achieve high performance in VRS, the 3D-LLM are expected to correctly answer all variations of the same question, demonstrating a true understanding of 3D spatial relationships rather than relying on textual patterns. Intuitively, responses inconsistently across rephrased questions reveal weaknesses in the model's 3D reasoning capabilities. By design, VRS is a stricter evaluation metric than the standard ones mentioned previously, as it penalizes models that fail to provide consistent answers across multiple question variants. In addition, taking the mean of P_k ensures that the metric does not disproportionately favor cases where the model succeeds on only a subset of viewpoints.

4 3D-AWARE FINE-TUNING STRATEGY

4.1 Original Fine-tuning

Let the 3D-QA dataset \mathcal{D} consist of triplets $(\boldsymbol{x}_{\text{text}}^{(i)}, \boldsymbol{x}_{\text{3D}}^{(i)}, \boldsymbol{y}^{(i)}) \sim \mathcal{D}$, where $\boldsymbol{x}_{\text{text}}$ represents a textual prompt that includes a situational description and a corresponding question, $\boldsymbol{x}_{\text{3D}}$ denotes the associated 3D context (e.g., point clouds), and \boldsymbol{y} is the ground truth answer.

Supervised Fine-tuning. In a typical 3D-LLM *Supervised Fine-Tuning* (SFT) setting Huang et al. (2024b); Wang et al. (2023); Huang et al. (2023); Chen et al. (2024), we fine-tune the model on both text and 3D data to learn mappings from 3D representations to the correct answers. However, the SFT process doesn't consider how the model uses the data. Empirically, we observe that models still tend to learn over-rely on textual cues rather than learning from 3D context, what we refer to as a textual shortcut problem.

Blind Fine-tuning. To highlight this potential textual shortcut issue, we next consider *Blind Fine-tuning* (BF), where we completely ignore the 3D context x_{3D} and train the model only on textual inputs. Formally, we fine-tune the model parameters θ using the standard next-token cross-entropy loss, but conditioned only on the textual prompt x_{text} . Using BF, we optimize a blind model, which reveals how much of the 3D question-answering task can be solved (or guessed) by language context alone. Furthermore, we leverage the BF model as a reference for assessing the true benefit of 3D data.

4.2 3D-AWARE REWEIGHTED FINE-TUNING

Motivated by the observation of SFT and BF models, we propose 3D Reweighted Fine-tuning (3DR-FT). Our goal is to explicitly encourage the model to use the 3D context, rather than "shortcutting" through language patterns. We begin with the BF model p_{ϕ} and upweight samples adaptively for which the BF model finds more difficult to guess compared with current model, ensuring that the final model is pushed to 3D dependency.

Reweighting function. We define a reweighting function $w_j(y, x_{\text{text}})$ based on the ratio of *surprise*. It measures how surprised the blind model p_{ϕ} is when it finds out about the ground truth token y_j , compared to the current training model p_{θ} . More formally, we define

$$w_j(\boldsymbol{y}, \boldsymbol{x}_{\text{text}}) := \frac{S_{\phi}(\boldsymbol{y}, \boldsymbol{x}_{\text{text}})}{S_{\theta}(\boldsymbol{y}, \boldsymbol{x}_{\text{text}})} = \frac{\log p_{\phi}(\boldsymbol{y}_j \mid \boldsymbol{y}_{< j}, \boldsymbol{x}_{\text{text}})}{\log p_{\theta}(\boldsymbol{y}_j \mid \boldsymbol{y}_{< j}, \boldsymbol{x}_{\text{text}})}, \tag{1}$$

where $S_{\theta}(\boldsymbol{y}, \boldsymbol{x})$ is the surprise function Ash (2012) of predicting the last token in \boldsymbol{y} given \boldsymbol{x} . Higher values of w_j indicate that the BF model places a higher suprise on ground truth token \boldsymbol{y}_j than the current model, indicating the token is harder to guess by textual context alone. Naturally, we increase the weights to those tokens in the loss function. We then define the 3DR-FT loss function as:

$$\mathcal{L}_{3DR\text{-FT}}(\theta) := \mathbb{E}_{\mathcal{D}} \Big[-\sum_{j=1}^{T} w_j(\boldsymbol{y}, \boldsymbol{x}_{\text{text}}) \log p_{\theta}(\boldsymbol{y}_j \mid \boldsymbol{y}_{< j}, \boldsymbol{x}_{\text{text}}, \boldsymbol{x}_{3D}) \Big].$$
 (2)

In Appendix E, we provide theoretical insights on how this objective can promote the model's 3D-context dependency.

5 EXPERIMENTS ANALYSIS

Our experiments try to answer the following questions: (1) How does our benchmark differ from SQA3D in evaluating true 3D understanding? (2) Do existing 3D-LLMs exhibit rotation robustness when evaluated with our proposed *Viewpoint-Rotation Score*? (3) Does our 3D-Reweighted Finetuning strategy enhance 3D dependency and improve performance on Real-3DQA?

5.1 EXPERIMENTAL SETUP

We evaluate five representative 3D-LLM models (Hong et al., 2023; Huang et al., 2024b;a; Qi et al., 2025; Huang et al., 2023) across ten reasoning abilities on both the SQA3D and Real-3DQA benchmarks. For each model, we test their released pretrained model weights. To demonstrate the effectiveness of our training strategies, we select more advanced models LEO and Chat-Scene as baselines, then apply our proposed training strategy.

5.2 Benchmark Effectiveness

Performance comparison with SQA3D. To assess the increased difficulty of Real-3DQA, we compare model performance before and after the benchmark update. As shown in Tab. 2, the updated benchmark leads to a substantial drop in the Exact Match (EM) metric: 40.3 for 3D-LLM Hong et al. (2023), 24.4 for Chat-3D v2 Huang et al. (2023), 35.1 for LEO Huang et al. (2024b), 37.4 for Chat-Scene Huang et al. (2024a), and 27.5 for GPT4Scene Qi et al. (2025), relative to the SQA3D benchmark. Refined EM metrics show similar declines. These results illustrate that our benchmark

Table 2: **Performance comparison on SQA3D** and our Real-3DQA. We see a significant performance drop in our new benchmark.

3D-LLMs	Venue	SQA3	BD	Real-3DQA		
		EM EM	I_R	EM	EM_R	
3D-LLM	NeurIPS 23	47.8 49	0.6	7.5	10.4	
Chat-3D v2	Arxiv 24	45.0 48	3.1	20.6	25.7	
LEO	ICML 24	49.4 52	2.2	14.3	19.1	
Chat-Scene	NeurIPS 24	54.4 57	.2	17.0	22.1	
GPT4Scene	Arxiv 25	60.6 63	3.3	33.1	36.9	

poses greater challenges and better exposes differences in 3D understanding, as methods with similar SQA3D performance (e.g., 3D-LLM, Chat-3D v2, and LEO) diverge more clearly here. To further analyze the differences, we also provide a table (Table 5) and a radar chart (Figure 7) for comparison between each question type in the appendix C.1.

To verify the effectiveness of our proposed viewpoint rotation evaluation, we conduct a probing experiment on five 3D-LLMs; results of the correct times under four rotations, the overall VRS, and the per-type breakdown are summarized in Table 3.

3D-LLMs struggle with viewpoint rotation. All models show a consistently increasing decline in EM Refined as the viewpoint changes from one to four. Except for 3D-LLM which has slightly higher accuracy (9.0%) at four rotations, other models struggle significantly under this evaluation,

Table 3: **Rotation Robustness Comparison on Real-3DQA.** The table shows the performance of different 3D-LLMs (using refined exact match metric) when tested with varying numbers of correct rotations. All models demonstrate a clear performance degradation as the required number of correct rotations increases, highlighting the challenge of rotation robustness in 3D understanding.

3D-LLMs	(Corre	ct time	es	VRS		Question Types									
	one	two	three	four	%	measurement	color	number	spatial rel.	shape	state	object	visibility	navigation	reasoning	other
3D-LLM	53.1	37.4	31.5	9.0	22.6	28.1	11.8	32.4	14.8	22.8	39.0	5.7	47.9	34.4	12.0	2.1
Chat-3D v2	68.6	37.6	25.3	2.4	33.5	42.7	27.1	49.3	38.7	25.1	31.2	21.2	56.4	30.0	12.5	41.7
LEO	63.0	37.0	24.6	1.9	31.6	75.0	37.3	38.8	20.9	23.8	52.2	18.6	46.4	40.0	18.8	25.0
Chat-Scene	67.0	40.3	28.4	2.4	34.6	12.5	34.4	45.3	24.0	25.0	50.0	20.2	60.7	41.4	33.3	41.7
GPT4Scene	75.3	35.5	23.6	2.7	34.3	25.7	26.2	38.1	38.6	44.1	25.0	26.3	35.3	49.3	50.0	12.5

with the accuracy nearly reduced to zero: LEO (1.9%), Chat-Scene (2.4%), Chat-3D v2 (2.4%) and GPT4Scene (2.7%). This sharp drop underscores the models' difficulty in maintaining consistency across multiple viewpoints, especially for those more recent SOTA models. We hypothesize that this limitation arises because existing 3D-LLMs have not been explicitly evaluated on rotation robustness; as a result, current designs largely overlook rotation-invariant 3D feature encoding, cross-view alignment, and fine-grained spatial relationship modeling, leaving them ill-equipped to handle viewpoint changes.

Point-wise 3D feature matters for acquiring rotation robustness. Interestingly, although the earliest method–3D-LLM achieves the lowest overall performance in terms of VRS, it clearly outperforms other models in answering questions consistently across all four viewpoints. We hypothesize that this advantage comes from its point-wise feature encoding strategy, where each point is assigned a 3D feature embedding that encodes both semantic and positional information. Such representations provide richer geometric cues for learning fine-grained spatial relationships. In contrast, object-centric approaches (e.g., Chat-3D, LEO, Chat-Scene) first segment the scene into discrete objects and then extract object-level features with additional 3D position embeddings. While effective for object semantics, this representation may oversimplify intra-object structures, limiting their ability to capture fine-grained spatial relationships under rotation.

Overall, our benchmark highlights the fragility in current 3D-LLMs in geometric and spatial representations that carry over consistently under rotation transformations. We hope that by introducing this new benchmark and metric (VRS), the community will be better equipped to diagnose and address the gaps in rotation robustness for 3D-LLMs.

5.3 How can we improve 3D-dependency in Real-3DQA?

Comparison of three training strategies. We compare the effectiveness of all three training strategies in Tab. 4, evaluated with the EM Refined metric. Initially, we find that the Blind FT models yields notabley lower scores for both LEO and Chat-Scene on Real-3DQA. Again, we confirm that Real-3DQA questions are heavily 3D-dependent. However, on our Real-3DQA benchmark, 3D-reweighted fine-tuning demonstrates significant improvements over traditional methods. For LEO, it achieves 29.3 (vs. 19.1 for SFT and 13.6 for Blind FT), while for Chat-Scene, it reaches 33.9 (vs. 22.1 and 14.4). These results confirm that our method successfully encourages models to leverage 3D context for spatial reasoning tasks. To further test generalizability of the finding beyond the SQA3D dataset, we additionally construct another filtered benchmark.

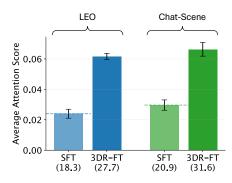


Figure 5: **3D tokens attention score after 3DR-FT.**

mark, *Real-ScanQA*, from the ScanQA test set using the same pipeline described in Sec. 5.2. On *Real-ScanQA*, 3DR-FT improves LEO to 13.9 EM Refine (vs. 6.1 for Supervised FT and 5.9 for Blind FT), mirroring the gains observed in Real-3DQA and highlighting the benefit of 3D-aware training when questions require genuine 3D evidence.

3D-reweighted finetuning does help 3D-dependency. As shown in Figure 5, we provide a analysis of attention scores for 3D tokens, following Zhang et al. (2025a), which demonstrates the models'

Table 4: **Ablation Study on Training Strategies.** Columns group results by model and dataset: LEO on ScanQA/Real-ScanQA (left) and SQA3D/Real-3DQA (center), and Chat-Scene on SQA3D/Real-3DQA (right). 3D-reweighted fine-tuning (3DR-FT) delivers consistent gains across both *datasets* and *models*, with the largest improvements on the 3D-dependent sets—Real-3DQA and Real-ScanQA—while Supervised FT remains strongest on SQA3D.

Training Strategy		LEO	← 1	LEO	Chat-Scene		
Training Strategy	ScanQA	Real-ScanQA	SQA3D	Real-3DQA	SQA3D	Real-3DQA	
Supervised FT	32.3	6.1	52.2	19.1	57.2	22.1	
Blind FT	33.0	5.9	50.6	13.6	51.4	14.4	
3D-reweighted FT	31.3	13.9	48.2	29.3	48.9	33.9	

overall dependency on 3D tokens when answering questions. Please refer to the appendix for more implementation details. The results demonstrate that after applying 3D-Reweighted Fine-tuning (3DR-FT), models exhibit significantly higher average attention scores to 3D tokens for both 3D-LLMs. These findings align with the performance gains observed on Real-3DQA. The increase in attention scores confirms that our 3DR-FT strategy not only enhances model performance but, more importantly, successfully guides the models to rely more on 3D visual information rather than textual shortcuts when making spatial reasoning.

Analysis on Failure Cases. Table 4 shows a seemingly counterintuitive result: while 3DR-FT substantially improves performance on the 3D-dependent Real-3DQA test set, the overall performance on the original SQA3D test set decreases; for example, Chat-Scene drops from 57.2 to 48.9 after 3DR-FT. At first glance, this seems puzzling—why would emphasizing 3D information hurt performance?

A breakdown of failure cases reveals that this decline is driven mainly by the 3D-independent portion of SQA3D, as shown in Figure 6. After 3D-RFT, 591 questions flipped from correct to incorrect, and 441 of them were from the filtered set. Notably, nearly 70% (413/591) of these degraded questions were also answered correctly by the text-only (blind) model, suggesting they were shortcut-solvable when using language priors. Many of these questions fall into reasoning types, such as counting (92), navigation (86), visibility (94), and spatial relations (93). We hypothesize that these questions can often be guessed from surface language and answer priors, but become harder when answers must be grounded in genuine 3D input. Thus, the observed drop does not indicate weaker 3D understanding; rather, it mainly reveals how inflated scores on prior benchmarks were driven by linguistic shortcuts, further validating the necessity of our debiased dataset filtering and the proposed VRS metric score.

Figure 6: Why 3DR-FT reduces SQA3D performance? For Chat-Scene, 591 questions flip from correct to wrong after 3DR-FT; 441 of these come from the Filtered Set (green box with diagonal hatching). Because SQA3D mixes 3D-dependent questions (Real-3DQA) with 3D-independent ones (Filtered Set), emphasizing 3D evidence via 3DR-FT can hurt the latter set, lowering the overall SQA3D score.

6 Conclusion

This work examines the 3D reasoning capabilities of 3D-LLMs, revealing that state-of-the-art models can rely on textual shortcuts rather than true 3D spatial understanding on existing SQA3D dataset. To address this, we introduce Real-3DQA, a benchmark designed to minimize textual shortcuts and enforce genuine 3D reasoning. Through rigorous filtering and the Viewpoint Rotation Score, our benchmark provides a more robust evaluation framework. Additionally, we propose a 3D-reweighted training strategy that enhances models' reliance on 3D context, significantly improving the spatial reasoning performance for existing 3D-LLM models. Our findings underscore the need for stronger evaluation benchmarks and training methodologies to advance 3D-LLMs.

7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experimentation was involved. All datasets used, including SQA3D, ScanQA, were sourced in compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discriminatory outcomes in our research process. No personally identifiable information was used, and no experiments were conducted that could raise privacy or security concerns. We are committed to maintaining transparency and integrity throughout the research process.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All code and datasets have been made publicly available in the anonymous repository (https://anonymous.4open.science/r/Real-3DQA-BCF8/) to facilitate replication and verification. We have also provided a full description of dataset construction and reweighted finetuning strategy, to assist others in reproducing our experiments.

Additionally, all pretrained models we evaluate, such as 3D-LLM, Chat-3D v2, LEO, Chat-Scene and GPT4Scene, are publicly available, ensuring consistent and reproducible evaluation results.

We believe these measures will enable other researchers to reproduce our work and further advance the field.

REFERENCES

- Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mohamed Elhoseiny, and Leonidas Guibas. Referit3d: Neural listeners for fine-grained 3d object identification in real-world scenes. In *ECCV*, 2020.
- Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and Aniruddha Kembhavi. Don't just assume; look and answer: Overcoming priors for visual question answering. In *CVPR*, pp. 4971–4980, 2018.
- Robert B Ash. Information theory. Courier Corporation, 2012.
- Daichi Azuma, Taiki Miyanishi, Shuhei Kurita, and Motoaki Kawanabe. Scanqa: 3d question answering for spatial scene understanding. In *CVPR*, 2022.
- Dave Zhenyu Chen, Ali Gholami, Matthias Nießner, and Angel X. Chang. Scan2cap: Context-aware dense captioning in rgb-d scans. In *CVPR*, 2020.
- Sijin Chen, Xin Chen, Chi Zhang, Mingsheng Li, Gang Yu, Hao Fei, Hongyuan Zhu, Jiayuan Fan, and Tao Chen. Ll3da: Visual interactive instruction tuning for omni-3d understanding reasoning and planning. In *CVPR*, pp. 26428–26438, 2024.
- Yasaman Etesam, Leon Kochiev, and Angel X. Chang. 3dvqa: Visual question answering for 3d environments. In *Conference on Robots and Vision (CRV)*, 2022.
- Rao Fu, Jingyu Liu, Xilun Chen, Yixin Nie, and Wenhan Xiong. Scene-llm: Extending language model for 3d visual understanding and reasoning. *arXiv preprint arXiv:2403.11401*, 2024.
- Ziyu Guo, Renrui Zhang, Xiangyang Zhu, Yiwen Tang, Xianzheng Ma, Jiaming Han, Kexin Chen, Peng Gao, Xianzhi Li, Hongsheng Li, et al. Point-bind & point-llm: Aligning point cloud with multi-modality for 3d understanding, generation, and instruction following. *arXiv* preprint *arXiv*:2309.00615, 2023.
- Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang Gan. 3d-llm: Injecting the 3d world into large language models. *NeurIPS*, 2023.
- Haifeng Huang, Zehan Wang, Rongjie Huang, Luping Liu, Xize Cheng, Yang Zhao, Tao Jin, and Zhou Zhao. Chat-3d v2: Bridging 3d scene and large language models with object identifiers. *arXiv preprint arXiv:2312.08168*, 2023.

- Haifeng Huang, Yilun Chen, Zehan Wang, Rongjie Huang, Runsen Xu, Tai Wang, Luping Liu, Xize
 Cheng, Yang Zhao, Jiangmiao Pang, et al. Chat-scene: Bridging 3d scene and large language
 models with object identifiers. *NeurIPS*, 2024a.
 - Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li, Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world. In *ICML*, 2024b.
 - Jiangyong Huang, Baoxiong Jia, Yan Wang, Ziyu Zhu, Xiongkun Linghu, Qing Li, Song-Chun Zhu, and Siyuan Huang. Unveiling the mist over 3d vision-language understanding: Object-centric evaluation with chain-of-analysis. *arXiv preprint arXiv:2503.22420*, 2025.
 - Mingsheng Li, Xin Chen, Chi Zhang, Sijin Chen, Hongyuan Zhu, Fukun Yin, Gang Yu, and Tao Chen. M3dbench: Let's instruct large models with multi-modal 3d prompts. *arXiv preprint arXiv:2312.10763*, 2023.
 - Zeju Li, Chao Zhang, Xiaoyan Wang, Ruilong Ren, Yifan Xu, Ruifei Ma, Xiangde Liu, and Rong Wei. 3dmit: 3d multi-modal instruction tuning for scene understanding. In 2024 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 1–5. IEEE, 2024.
 - Xiongkun Linghu, Jiangyong Huang, Xuesong Niu, Xiaojian Shawn Ma, Baoxiong Jia, and Siyuan Huang. Multi-modal situated reasoning in 3d scenes. *NeurIPS*, 37:140903–140936, 2025.
 - Jie Ma, Pinghui Wang, Dechen Kong, Zewei Wang, Jun Liu, Hongbin Pei, and Junzhou Zhao. Robust visual question answering: Datasets, methods, and future challenges. *IEEE TPAMI*, 2024a.
 - Xianzheng Ma, Yash Bhalgat, Brandon Smart, Shuai Chen, Xinghui Li, Jian Ding, Jindong Gu, Dave Zhenyu Chen, Songyou Peng, Jia-Wang Bian, et al. When Ilms step into the 3d world: A survey and meta-analysis of 3d tasks via multi-modal large language models. *arXiv preprint arXiv:2405.10255*, 2024b.
 - Xiaojian Ma, Silong Yong, Zilong Zheng, Qing Li, Yitao Liang, Song-Chun Zhu, and Siyuan Huang. Sqa3d: Situated question answering in 3d scenes. *ICLR*, 2023.
 - Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu, Xian-Sheng Hua, and Ji-Rong Wen. Counterfactual vqa: A cause-effect look at language bias. In *CVPR*, pp. 12700–12710, 2021.
 - OpenAI. Gpt-4o, 2024. URL https://openai.com/research/gpt-4o.
 - Ninglin Ouyang, Qingbao Huang, Pijian Li, Yi Cai, Bin Liu, Ho-fung Leung, and Qing Li. Suppressing biased samples for robust vqa. *IEEE Transactions on Multimedia*, 24:3405–3415, 2021.
 - Zhangyang Qi, Zhixiong Zhang, Ye Fang, Jiaqi Wang, and Hengshuang Zhao. Gpt4scene: Understand 3d scenes from videos with vision-language models. *arXiv preprint arXiv:2501.01428*, 2025.
 - Tianwen Qian, Jingjing Chen, Linhai Zhuo, Yang Jiao, and Yu-Gang Jiang. Nuscenes-qa: A multimodal visual question answering benchmark for autonomous driving scenario. In *AAAI*, volume 38, pp. 4542–4550, 2024.
 - Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for machine comprehension of text. *EMNLP*, 2016.
 - Zehan Wang, Haifeng Huang, Yang Zhao, Ziang Zhang, and Zhou Zhao. Chat-3d: Data-efficiently tuning large language model for universal dialogue of 3d scenes. *arXiv preprint arXiv:2308.08769*, 2023.
 - Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Pointllm: Empowering large language models to understand point clouds. *ECCV*, 2024.
 - Xu Yan, Zhihao Yuan, Yuhao Du, Yinghong Liao, Yao Guo, Shuguang Cui, and Zhen Li. Comprehensive visual question answering on point clouds through compositional scene manipulation. *TVCG*, 2023.

- Jianing Yang, Xuweiyi Chen, Shengyi Qian, Nikhil Madaan, Madhavan Iyengar, David F Fouhey, and Joyce Chai. Llm-grounder: Open-vocabulary 3d visual grounding with large language model as an agent. *ICRA*, 2024.
- Senqiao Yang, Jiaming Liu, Ray Zhang, Mingjie Pan, Zoey Guo, Xiaoqi Li, Zehui Chen, Peng Gao, Yandong Guo, and Shanghang Zhang. Lidar-Ilm: Exploring the potential of large language models for 3d lidar understanding. *arXiv preprint arXiv:2312.14074*, 2023.
- Shuquan Ye, Dongdong Chen, Songfang Han, and Jing Liao. 3d question answering, 2021.
- Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the diagrams in visual math problems? In *ECCV*, 2024.
- Shaolei Zhang, Qingkai Fang, Zhe Yang, and Yang Feng. Llava-mini: Efficient image and video large multimodal models with one vision token. *arXiv preprint arXiv:2501.03895*, 2025a.
- Weichen Zhang, Ruiying Peng, Chen Gao, Jianjie Fang, Xin Zeng, Kaiyuan Li, Ziyou Wang, Jinqiang Cui, Xin Wang, Xinlei Chen, et al. The point, the vision and the text: Does point cloud boost spatial reasoning of large language models? *arXiv preprint arXiv:2504.04540*, 2025b.
- Yue Zhang, Zhiyang Xu, Ying Shen, Parisa Kordjamshidi, and Lifu Huang. Spartun3d: Situated spatial understanding of 3d world in large language models. In *ICLR*, 2025c.
- Duo Zheng, Shijia Huang, and Liwei Wang. Video-3d llm: Learning position-aware video representation for 3d scene understanding. *arXiv preprint arXiv:2412.00493*, 2024.
- Chenming Zhu, Tai Wang, Wenwei Zhang, Jiangmiao Pang, and Xihui Liu. Llava-3d: A simple yet effective pathway to empowering lmms with 3d-awareness. *arXiv preprint arXiv:2409.18125*, 2024.

A OUTLINE OF THE APPENDIX

• LLM usage(Section B)

- More experiments and analysis
 - Category-wise comparison between SQA3D and Real-3DQA (Table 5)
 - Radar chart of 3D-LLMs on Real-3DQA (Figure 7)
 - Details of how we calculate 3D token attention score (Section C.2)
 - Ablation on LEO Inference (Table 6)
- · Details of benchmark construction
 - GPT prompt template for rotation-augmentation (Figure 9)
 - Statistics and examples of filtering 3D-independent questions (Table 7)
 - Data quality control (Section D.2)
- Theoretical insights of 3D-reweighted Fine-tuning (Section E)
- Future work (Section F)

B LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript. Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing, grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or experimental design. All research concepts, ideas, and analyses were developed and conducted by the authors. The contributions of the LLM were solely focused on improving the linguistic quality of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and does not contribute to plagiarism or scientific misconduct.

C MORE EXPERIMENTS AND ANALYSIS

C.1 Performance Drop Across Question Types.

To analyze model performance differences across question types, we provide a detailed breakdown in Tab. 5 and a visualization in the radar chart in Fig. 7. First, we observe that all the question types undergo a significant performance drop, further confirming that Real-3DQA's more rigorous nature over SQA3D. Particularly, we observe that most 3D-LLMs consistently struggle with spatial relationships, shape and state recognition, and reasoning tasks. Two of the largest drops in EM Refine appear for the shape and state recognition questions, where five models (3D-LLM/Chat-3D v2/LEO/Chat-Scene/GPT4Scene) drop 55.7/43.2/51.5/47.2/33.3 respectively for shape and 56.5/33.1/49.4/52.7/26.2 respectively on state. Moreover, we find that reasoning questions already had lower scores in SQA3D, particularly for 3D-LLM at 40.0, LEO at 35.0, and Chat-3D v2 at 50.0, despite GPT4Scene achieving 52.5. The multi-hop 3D reasoning is considered the most challenging problem for all current 3D-LLMs. When evaluated on Real-3DQA, these scores plummet further where all five models (3D-LLM/Chat-3D v2/LEO/Chat-Scene/GPT4Scene) drop 40.0/13.6/21.4/21.8/25.2 respectively. Finally, we find that even some basic question types, including color and object identification, become substantially harder in Real-3DQA, with even the best-performing GPT4Scene experiencing a 18.6 point drop in color recognition and a 23.0 point drop in object identification.

Together, these findings reinforce that once 3D-independent and guessable questions are filtered out, current 3D-LLMs routinely fail to demonstrate a robust 3D understanding capabilities and highlight the necessity of the Real-3DQA. We hope our new benchmark will draw the community's attention to the "3D shortcut" issue and help the development of methods that genuinely comprehend 3D context. This multi-dimensional analysis enables more comprehensive comparison of model differences and strengths, highlighting each model's capability preferences and common weaknesses.

3D-LLMs Performance Comparison on Real-3DQA Spatial Relation Shape Number State \50 ⊄olor Object Reasoning LEO Chat-Scene 3D-LLM Visibility Chat-3D v2 Navigation GPT4Scene

Figure 7: Comparison of 3D-LLMs capabilities across different question types on Real-3DQA. The radar chart visualizes the performance of five models (LEO, Chat-Scene, 3D-LLM, Chat-3D v2, GPT4Scene) on ten question categories. Each axis represents a specific question type, and the distance from the center indicates the model's performance in that category. The area covered by each model's polygon reflects its overall capability across all question types. The chart highlights that GPT4Scene demonstrates superior performance in most categories, while Chat-3D v2 shows strengths in reasoning.

Table 5: **Model ability across different question types.** We compare model performance on both the original SQA3D benchmark and our more challenging Real-3DQA. On Real-3DQA, we find most 3D-LLMs have consistent deficiencies in spatial relationships, shape recognition and reasoning tasks. We report refined exact match for detailed question types.

3D-LLMs	EM	EM_R	measurement	color	number	spatial relation	shape	state	object	visibility	navigation	reasoning	other		
	Refined EM on SQA3D														
3D-LLM	47.8		69.2	45.7	52.4	35.7	59.2	64.7	42.4	63.5	41.5	40.0	39.5		
Chat-3D v2 LEO	45.0 49.6	48.1 52.2	36.1 73.1	57.0 58.1	56.0 52.8	43.2 40.8	67.8 59.9	71.5 69.9	60.4 52.8	71.1 66.4	45.7 41.5	50.0 35.0	88.4 76.7		
Chat-Scene	54.7	57.4	80.8	58.1	57.2	46.8	66.5	76.0	59.2	70.0	48.1	40.0	81.4		
GPT4Scene	60.6	63.3	76.9	70.8	65.8	52.6	73.7	83.7	68.8	73.3	43.3	52.5	79.1		
					Refine	d EM on Real-3L)QA								
3D-LLM	7.5	10.4	0.0	10.1	9.8	9.3	3.5	8.2	10.6	4.0	18.2	0.0	20.0		
Chat-3D v2	20.6		20.0	26.1	22.2	21.8	24.6	38.4	31.3	22.4	28.3	36.4	40.0		
LEO	14.3	19.1	0.0	29.0	20.2	16.6	8.8	20.5	22.9	11.8	17.4	13.6	60.0		
Chat-Scene	17.0	22.1	60.0	28.3	15.2	22.3	19.3	23.3	33.0	15.8	20.6	18.2	20.0		
GPT4Scene	33.1	36.9	40.0	52.2	34.7	31.1	40.4	57.5	45.8	30.3	29.6	27.3	60.0		

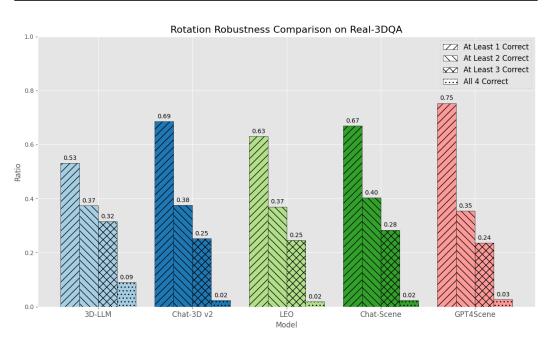


Figure 8: **Rotation robustness comparison.** All models show a consistently increasing decline in EM Refined as the viewpoint changes from one to four, underscoring the models' difficulty in maintaining consistency across multiple viewpoints.

C.2 Details of 3D Token Attention Score Calculation.

We randomly selected 100 questions from Real-3DQA, and used both original and 3D-Reweighted fine-tuned versions of LEO and Chat-Scene models for inference. Specifically, we followed the approach in Zhang et al. (2025a), which quantifies models' overall dependency on 3D point cloud tokens when answering questions. By calculating the average attention scores from 3D point cloud tokens to answer tokens, we can determine how much the model relies on 3D information when responding to questions. To ensure statistical significance, we performed three separate sampling runs, collected three sets of data, and calculated standard deviation error bars.

C.3 ABLATION ON LEO INFERENCE

Table 6 presents an ablation study on LEO to evaluate the impact of different input components on inference performance using the SQA3D benchmark. The study examines how 3D information, situational descriptions, and question relevance influence exact match (EM) and refined exact match (EM_R) scores. It shows by removing 3D input alone, the model can still obtain 32.4% on EM and

Table 6: Where does the 3D prior come from in LEO Huang et al. (2024b) on SQA3D? We conduct this ablation during only the inference time, using checkpoints provided by the authors. Results show that 3D information and questions are crucial for performance, while situation descriptions have minimal impact. We report both exact match (EM) and refined exact match (EM_Refined) metrics.

Situation	Question	3D	EM (%)	EM_R (%)
√	✓	✓	49.7	52.3
\checkmark	\checkmark	shuffled	44.2	46.7
\checkmark	\checkmark	X	32.4	43.3
X	\checkmark	\checkmark	49.3	51.7
\checkmark	×	\checkmark	0.2	10.4
X	\checkmark	X	18.6	30.1

43.3% on EM_R, indicating that part of the model prediction is not rely on 3D information. On the other hand, by removing situation description, the model's EM% and EM_R% metrics barely dropped.

D DETAILS OF BENCHMARK CONSTRUCTION

D.1 STATISTICS AND EXAMPLES ON FILTERING 3D-INDEPENDENT QUESTIONS

Table 7 shows filtering statistics from SQA3D using our proposed methods in Section 3.1 of the main paper. The table compares the number of filtered and remaining questions across different filtering methods. Specifically, GPT-4o-mini is used for GPT-based filtering, while LEO, Chat-Scene, and 3D-LLM are employed for SFT and Blind Fine-tuned model comparison.

We find that GPT-based filtering removed only 112 questions, leaving 3407 out of the original 3519. This indicates that GPT filtering alone is relatively conservative, missing many questions that might be easy-to-guess or non-3D-dependent. In contrast, our model comparison approach filters substantially more questions.

Table 7: **Statistics of filtered questions for each filtering step.** The table reports the number of questions filtered and those remaining for the original test set, GPT-based filtering, and model-based comparisons filtering across LEO, Chat-Scene, and 3D-LLM.

Filter Type	Original Test	GPT	Model Comparison					
			LEO	Chat-Scene	3D-LLM			
Filtered	-	112	1197	459	232			
Remaining	3519	3407	2176	1717	1485			

We also show three representative examples of filtered questions to highlights the effectiveness of our filtering approach through model comparison. These filtered questions are so directional that the answer is easily guessable.

• Question: What is to my left that gives me natural light in the room? Answer: window

Question: What is to my right that I can use washable marker to write with?
 Answer: whiteboard

Question: What instrument in front of you is ebony and ivory?
 Answer: piano

Diversity Check. To ensure that our debiasing process does not sacrifice semantic richness, we evaluated the distribution of different question types before and after filtering. As shown in Table 8, Real-3DQA retains broad coverage across ten reasoning categories, with proportions comparable

Table 8: Comparison of question-type distributions before and after filtering. Real-3DQA maintains balanced coverage across categories, showing that debiasing preserves semantic diversity.

Dataset	Total	Spatial	Navigation	Object	State	Color	Visibility	Shape	Measure	Other
SQA3D	3519	694	545	394	312	291	277	152	66	43
Real-3DQA	1485	286	247	179	123	138	126	57	27	5

to the original SQA3D dataset. This demonstrates that our filtering procedure does not cause mode collapse; instead, it preserves the diversity necessary for a reliable assessment of spatial reasoning.

D.2 QUALITY CONTROL

To ensure the reliability of our rotation-augmented dataset, we adopt a multi-stage quality control pipeline that combines GPT prompting strategies with structured expert review. This process addresses both the risk of hallucination in GPT outputs and the need for consistent, rotation-sensitive annotations.

D.2.1 HALLUCINATION MITIGATION

A key concern when leveraging GPT for question augmentation is the potential issue of hallucination. To mitigate this, we employ a two-pronged strategy.

Instruction-following enhancement via ICL examples. We designed structured in-context learning (ICL) examples (Figure 9) to guide GPT's generation. These examples reinforced the desired behavior—producing faithful situation texts that simulate specific 3D rotations—and helped GPT adhere to the intended transformation format.

Manual verification with dual criteria. We further applied a two-stage manual validation process. Specifically, we retained only those QA pairs that satisfied both: (i) the situation text is rotation-sensitive and accurately reflects the intended 3D rotation; (ii) the original question remains meaningful after rotation, with the updated answer remaining correct in the rotated context. Examples failing either criterion were discarded or corrected. These measures minimize hallucination and ensure that the augmented QA pairs are semantically coherent and grounded in 3D reasoning.

D.2.2 EXPERT REVIEW

Beyond hallucination control, we implemented a structured expert review protocol to validate annotation quality.

Initial filtering of GPT outputs. Despite careful prompting, about 5% of GPT outputs proved invalid (e.g., incorrect answers after rotation or inconsistent situation descriptions, see Figure 10). To detect these, we visualized the observer's position and orientation, determined object quadrants (front, back, left, right) from bounding box centers, and checked whether GPT's rotated situations and answers aligned with the new viewpoint. Inaccurate answers were corrected, while fundamentally invalid situations were discarded. Ultimately, we retained 750 question—answer pairs valid across all four viewpoints, yielding $750 \times 4 = 3000$ high-quality pairs.

Structured protocol. We further enforced a three-phase expert review protocol: - *Pre-review*: annotators received explicit evaluation criteria and passed a qualification test before large-scale review. - *During review*: experts iteratively tracked errors in a shared log (e.g., mismatched rotations, mishandled states, object counting errors). Random spot checks and annotation speed monitoring ensured consistency. - *Post-review*: annotation reliability was measured with agreement metrics, yielding Cohen's Kappa of 92% (strong inter-rater agreement) and self-consistency of 97%.

Together, these steps guarantee that the final augmented dataset is rotation-sensitive, reliable, and well-suited for benchmarking genuine 3D reasoning.

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950 951

952

953

954

955

956 957

958

959

960 961

962963964

965

966

967

968969970971

```
system_prompt = {'role':'system','content':"""Your job is to augment the testing data by
rotations for 3D VLM evaluation. The rotation is 90, 180, or 270 degree along the gravity-axis.
You are given a ego-centric scene description for all objects in a room with distances,
orientations, heights from the floor, attributes, and relationships between other objects. You
are also given a situation, a question, and an answer. Your tasks:
1. Read the scene description and understand the spatial relationships between the observer and
the objects in the room.
2. Rotate the situation but keep the question exactly the SAME. DO NOT change the question.
3. Generate the new answer based on the new situation. Make sure the new answer is still valid
based on the scene description.
4a. Output the new situation, question (should be the same as the original), and the new answer.
4b. Try to find a situation that the answer is DIFFERENT from the original answer but still
VALID and explicitly mentioned in the scene description in the correct direction after rotation.
4c. If you cannot find a valid answer under current rotation, output "skip" and do not generate
any new situation.
5. If the situation cannot be rotated meaningfully (no explicit direction), please output
directly "skip" and do not generate any new situation or question.
6. You need to keep the style of the original situation. Keep the length of the answer same as
the original. For most answers, a single word or two is enough. Uncapitalized unless it is an
acronym or proper noun like TV
7. In scene description, the object are named with a type and a number, e.g., chair-13. You only
refer to the objects by names in situation and question. The number is to distinguish between
objects. Do not leak the number.
[Example Input]
Scene:
  bed-1: dist=0cm: orient=front: obi height=43cm: color=white: shape=rectangular:
material=wood; usage=sleeping; texture=smooth; structure=frame with mattress; state=made; on the
top of floor-2;
   window-2: dist=103cm; orient=right; obj_height=154cm; color=white; material=glass;
usage=lighting: texture=smooth: structure=frame with glass: state=clean: embedded into wall-3:
   door-3: dist=200cm; orient=left; obj_height=200cm; color=white; material=wood;
usage=entrance; texture=smooth; structure=frame with handle; state=closed; embedded into wall-3;
Situation: I am standing facing the bed in the bedroom.
Question: What can I see on my left?
Answer: door
Rotation: 270
[Example Output]
1. Situation: I am standing facing the window in the bedroom.
2. Question: What can I see on my left?
Answer: bed
[Explanation] If I rotate 270 degree (=rotate 90 degree to the right), the bed will be on my
left. The answer should be bed."
for angle in [90, 180, 270]:
 messages = [system_prompt]
 messages.append({
    'role':'user'
    content':f'Scene:\n{scene}\nSituation: {s}\nQuestion: {q}\nAnswer: {a}\nRotation: {angle}'
  output = query(messages)
```

Figure 9: **Prompt Template for Rotation-Augmented Question Generation.** We design this template to guide GPT-4o-mini in creating perspective-rotated variants of the original questions. The template instructs the model to preserve the original question's intent while altering the spatial reference frame according to specified viewpoint changes.

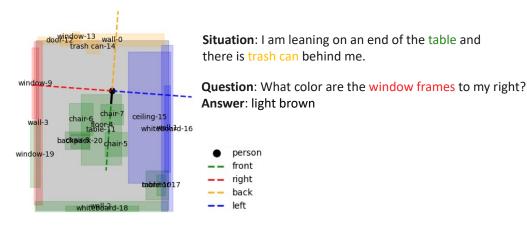


Figure 10: **Example of a view-specific question that cannot be rotated.** This question demonstrates a case where rotation is invalid because it references objects (window frames) that only exist in the current viewpoint (to my right). When the perspective is rotated, these referenced objects are no longer visible or identifiable, rendering the question meaningless in the new viewpoint.

E THEORETICAL INSIGHTS OF 3D-REWEIGHTED FINE-TUNING

To quantify the model's 3D-context dependency, we introduce the *conditional-independence gap* between the ground truth token y_j and the 3D input x_{3D} , as

$$\delta_j := \frac{p_{\theta}(\boldsymbol{y}_j | \boldsymbol{y}_{< j}, \boldsymbol{x}_{\text{text}}, \boldsymbol{x}_{3D}) - p_{\theta}(\boldsymbol{y}_j | \boldsymbol{y}_{< j}, \boldsymbol{x}_{\text{text}})}{p_{\theta}(\boldsymbol{y}_j | \boldsymbol{y}_{< j}, \boldsymbol{x}_{\text{text}})}.$$
 (3)

When $\delta_j = 0$, the token y_j is *conditionally independent* of x_{3D} given the text input x_{text} ; in other words, the 3D context is *not* altering the distribution of y_j . This is precisely what we aim to avoid in the Real-3DQA benchmark, since it implies that the model is ignoring the 3D information.

Below, we link the conditional-independence gap to our loss function. For simplicity, we denote

$$p_{\theta}(\boldsymbol{y}_{j}|\boldsymbol{y}_{< j}, \boldsymbol{x}_{\text{text}}) := s_{j}, \quad \text{and thus}$$

$$p_{\theta}(\boldsymbol{y}_{j}|\boldsymbol{y}_{< j}, \boldsymbol{x}_{\text{text}}, \boldsymbol{x}_{3D}) := s_{j}(1 + \delta_{j}). \tag{4}$$

Inserting Eq. (1) in main paper and Eq. (4) into Eq. (2) in main paper leads us to

$$\begin{split} \mathcal{L}_{\text{3DR-FT}}(\theta) \\ &= \mathbb{E}_{\mathcal{D}}\Big[-\sum_{j=1}^{T} w_{j}(\boldsymbol{y}, \boldsymbol{x}_{\text{text}}) \Big(\log s_{j} \ + \ \log \big(1 + \delta_{j}\big)\Big)\Big] \\ &= \mathbb{E}_{\mathcal{D}}\Big[-\sum_{j=1}^{T} \log p_{\phi}(\boldsymbol{y}_{j} \mid \boldsymbol{y}_{< j}, \boldsymbol{x}_{\text{text}})\Big] \ + \\ &\underbrace{\mathbb{E}_{\mathcal{D}}\Big[-\sum_{j=1}^{T} w_{j}(\boldsymbol{y}, \boldsymbol{x}_{\text{text}}) \log \big(1 + \delta_{j}\big)\Big]}_{\text{Weighted conditional-independence gap} \end{split}$$

Here, the first term corresponds to the BF model's perplexity on the ground truth. It has zero derivative w.r.t. θ and, thus, does not affect θ during training.

Essentially, the 3DR-FT loss function increases $\log(1+\delta_j)$ during training and leads to a non-zero $\delta_j>0$ whenever \boldsymbol{y}_j is correctly dependent on the 3D context. Consequently, 3DR-FT pushes the model to rely on 3D information for improved predictions, mitigating the textual shortcut problem observed in standard fine-tuning.

F FUTURE WORK

For rotation augmentation, we currently use four common angles to generate 3,000 questions. We believe that considering more rotation angles (such as the 12 o'clock direction) could be valuable. However, this would require more complex rules to define these directions and angles, as well as precise language descriptions to match them, ultimately necessitating re-annotation and significantly increasing manual effort. Nevertheless, from the perspective of expanding rotation robustness, we consider this a promising direction worth exploring.

Beyond question answering, we have observed similar issues related to shortcut learning and lack of spatial consistency in 3D grounding and captioning tasks. However, current benchmarks in these areas do not incorporate situated information; all existing datasets adopt an allocentric (scene-centric) perspective rather than an egocentric (observer-centric) one. To enable a meaningful evaluation of spatial understanding in grounding and captioning, future work will require redefining these tasks with egocentric situation descriptions and constructing new QA or caption variants under viewpoint changes. This would involve significant annotation efforts, which we leave as promising future directions to broaden the scope of spatial reasoning evaluation and inspire further attention in the community.