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ABSTRACT

Recent 3D Large-Language Models (3D-LLMs) claim to understand 3D worlds,
especially spatial relationships among objects. Yet, we find that simply fine-tuning
a language model on text-only question-answer pairs can perform comparably or
even surpass these methods on the SQA3D benchmark without using any 3D input.
This indicates that the SQA3D benchmark may not be able to detect if the model
exploits textual shortcuts rather than engages in 3D-aware reasoning. To address
this issue, we introduce Real-3DQA, a more rigorous evaluation benchmark that
filters out easy-to-guess questions and introduces a structured taxonomy to assess
various aspects of 3D reasoning. Experiments on Real-3DQA confirm that existing
3D-LLMs struggle with spatial relationships once simple cues are removed. We
further propose a 3D-reweighted training objective that guides model to rely
more on 3D visual clues, substantially enhancing 3D-LLMs’ performance in spatial
reasoning tasks. Our findings underscore the need for robust benchmarks and
tailored training strategies to advance genuine 3D vision-language understanding.
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3D Scene Real-3DQA Benchmark & Solution

✅More 3D-dependent Questions

✅ New Viewpoint Rotation Score

✅ 3D-Reweighted Fine-tuning

Figure 1: Our Real-3DQA Benchmark and Solution. We demonstrate the answer differences
between 3D-LLM (LEO) and its blind-finetuned version on various questions, with correct answers
highlighted in green frames and incorrect ones in red frames. We discover that some questions
can be answered correctly regardless of whether 3D information is used, which we consider to be
3D-independent questions. By filtering out these 3D-independent questions and introducing a new
viewpoint rotation score, the original models’ performance drops significantly on Real-3DQA. Finally,
using our proposed 3D-aware Reweighted Finetuning strategy, performance improves again.

1 INTRODUCTION

Understanding and reasoning about 3D environments is fundamental for embodied AI, AR/VR
applications, autonomous driving, etc. Recent work has proposed 3D Large Language Models
(3D-LLMs) Hong et al. (2023); Chen et al. (2024); Guo et al. (2023); Huang et al. (2024a), aiming to
empower language models with spatial awareness. Early evaluations focused on tasks such as 3D
captioning Chen et al. (2020) and object grounding Yang et al. (2024); Achlioptas et al. (2020), while
3D question answering (3D-QA) Azuma et al. (2022); Ye et al. (2021); Etesam et al. (2022) soon
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emerged as a more flexible benchmark for assessing diverse aspects of spatial understanding. More
recently, 3D Situated QA Ma et al. (2023); Zhang et al. (2025c); Linghu et al. (2025) extended this
line of evaluation by adopting an egocentric, first-person perspective, simulating how humans perceive
the world and challenging models to reason continuously about objects and relations in context.
While these benchmarks are intended to measure progress toward robust embodied intelligence, we
question whether the reported improvements truly reflect genuine 3D spatial reasoning. This paper
investigates this gap between perceived progress and actual spatial understanding.
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Figure 2: Our finding: A language model fine-tuned
only on text QA pairs without any 3D inputs (Blind
Finetuned) can match or even surpass state-of-the-art
3D-LLMs (Original) on multiple 3D-QA benchmarks.
This exposes a critical weakness in current benchmark
design and calls into question their ability to assess
genuine 3D reasoning despite linguistic shortcuts.

We find that much of this apparent progress
is illusory. On the most-widely used sit-
uated QA benchmarks, i.e. SQA3D Ma
et al. (2023), where accuracy has increased
from 30% to over 50% in recent years, 3D-
LLMs can achieve competitive scores with-
out actually processing any 3D data. A sim-
ply fine-tuned blind model1 finetuned on
text-only question-answer pairs can match
or surpass the performance of recent 3D-
LLMs, as illustrated in Fig. 2. This reveals
that many SQA3D questions can be solved
solely by linguistic priors, rather than
genuine spatial reasoning. Importantly,
we observe similar vulnerabilities beyond
SQA3D, including on ScanQA and the
more recent MSR3D benchmark. Mean-
while, our findings echo those of Huang
et al. (2025); Zhang et al. (2024) and indi-
cate that even the latest 3D-LLMs are not
immune to this gap.

What causes existing benchmarks to fall short in accurately evaluating 3D reasoning? One hypothesis
is the presence of bias in 3D-QA datasets. These biases can stem from both manual annotation Azuma
et al. (2022); Ye et al. (2021); Zhang et al. (2025b); Huang et al. (2025) and automatic or semi-
automatic LLM-assisted generation processes Linghu et al. (2025); Zhang et al. (2025c), where
linguistic or commonsense priors are embedded in the data. For example, “What is the black rectan-
gular object on the wall?” almost always yields “TV” for indoor scenes regardless of spatial context.
These questions allow models to succeed via shortcut learning instead of true 3D understanding.
While SQA3D Ma et al. (2023) attempt to mitigate this issue by balancing answer distributions,
such surface-level fixes cannot eliminate deeper biases, like preferences for salient objects, canonical
configurations, or easily guessable answers. These dataset biases are multi-faceted and difficult to
eliminate through either manual correction or distribution balancing.

To address this, we introduce Real-3DQA, a benchmark that filters out questions solvable by language
priors alone, as summarized in Table 1. We compare each 3D-LLM’s accuracy to its “blind”
counterpart—finetuned on text-only QA pairs without any 3D inputs. Questions answered correctly
by both models are considered low in 3D dependency and are removed, as the answer can be inferred
without spatial understanding. By filtering out such trivial questions, we implicitly mitigate a broad
range of biases without requiring detailed manual intervention. This model-based filtering allows our
Real-3DQA more robustly evaluate genuine 3D reasoning.

Although removing low–3D–dependency questions prevents linguistic shortcuts, it does not guarantee
that a model truly understands spatial structure. To further assess genuine 3D understanding, we
propose a cross-question consistency test under viewpoint changes. The key idea is that if a model
truly grasps the 3D scene, it should answer the same question correctly even when the observer’s
orientation changes. Concretely, we rotate the viewpoint while keeping the position and question
fixed, and adjust any directional terms in both the situation description and the expected answer.
This results in logically equivalent QA pairs across different reference frames, forcing the model to
interpret spatial relations consistently. To quantify this, we further introduce the Viewpoint-Rotation
Score, which measures whether the model maintains spatial consistency across varied perspectives.

1We refer readers to section 4.1 for details on how the blind finetuned model is obtained.
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Table 1: Comparison of 3D Question Answering Benchmarks. Our Real-3DQA benchmark
features situated questions, uses LLM-assisted text collection with human verification, applies
debiasing techniques, evaluates robustness across different viewpoints, and provides diverse question
categories to assess true 3D spatial reasoning ability.

Dataset Situated Text collection Debiased Robustness evaluation Quality check Question categories
ScanQA ✗ Human ✗ ✗ ✗ 0
3D-QA ✗ Human ✗ ✗ ✗ 4
SQA3D ✓ Human ✓ ✗ ✓ 5
MSQA ✓ LLM ✗ ✗ ✓ 6
ScanReQA ✗ Human ✗ ✓ ✓ 0
Spartun3D ✓ LLM ✗ ✗ ✓ 3
Beacon3D ✗ Human ✗ ✗ ✓ 5

Real-3DQA ✓ LLM ✓ ✓ ✓ 11

While our proposed benchmark and consistency test offer a more rigorous evaluation, they do not by
themselves prevent models from learning shortcuts during training. We find that standard supervised
fine-tuning still encourages models to learn linguistic shortcuts, limiting the benefit of 3D information.
To address this limitation from the training perspective, we introduce a 3D-aware Reweighted Fine-
tuning (3DR-FT) strategy. Our key idea is to quantify the 3D dependency of each question by
measuring the performance gap between a blind (text-only) model versus a full 3D-LLM. Based on
this gap, we downweight questions that can be guessed easily from text alone, and upweight those
requiring genuine spatial reasoning. This adaptive reweighting encourages models to incorporate
3D cues, and experiments confirm consistent performance gains across multiple 3D-LLMs on our
revised benchmark.

Overall, our contributions can be summarized as below:

• We introduce a new diagnostic benchmark to measure genuine 3D reasoning ability of 3D-LLMs.
It has filtered out questions solvable by linguistic shortcuts and uses a viewpoint-rotation score to
provide a stricter and more reliable evaluation.

• We reveal that modern 3D-LLMs are surprisingly brittle. On our benchmark, their performance
drops by over 60%, and they almost completely fail our viewpoint consistency tests, a critical flaw
overlooked by prior benchmarks.

• To fix this, we propose a 3D-aware reweighted fine-tuning strategy that forces models to focus
more on spatially complex data, consistently boosting the 3D reasoning capabilities of LLMs.

2 RELATED WORK

3D-LLMs. 3D-LLMs integrate spatial data with LLMs for scene understanding Ma et al. (2024b),
including 3D grounding, captioning, and question answering (QA). Prevalent approaches typically
follow a formulation similar to 2D vision-language models (VLMs), by concatenating 3D tokens from
point-cloud encoders with text tokens before being processed by an LLM Hong et al. (2023); Yang
et al. (2023); Wang et al. (2023); Huang et al. (2023); Fu et al. (2024); Xu et al. (2024); Yang et al.
(2024); Chen et al. (2024); Li et al. (2024); Huang et al. (2024b); Guo et al. (2023). Others incorporate
additional visual signals, such as multi-view images, into point-cloud-based 3D-LLMs. This hybrid
design, exemplified by LEO Huang et al. (2024b) and Chat-Scene Huang et al. (2024a), has been
shown to improve 3D captioning, grounding, QA, and Situated QA (SQA). More recently, methods
such as GPT4Scene Qi et al. (2025), LLaVA-3D Zhu et al. (2024), and Video-3D LLM Zheng et al.
(2024) sidestep explicit 3D encoders and instead rely on 2D VLMs for 3D awareness. While these
works primarily aim to boost model accuracy through architectural and training innovations, we take
a different perspective: questioning whether current 3D-LLMs truly acquire consistent understanding
of 3D spaces. Our findings suggest that the answer is far from affirmative.

Linguistic Biases in Multi-modality Models. The issues related to the exploitation of linguistic
bias have been extensively studied in 2D-VLMs Agrawal et al. (2018); Niu et al. (2021); Ouyang
et al. (2021); Ma et al. (2024a), leading to fairer benchmarks Agrawal et al. (2018) and mitigation
strategies Ma et al. (2024a), such as ensemble learning, data augmentation, self-supervised contrastive
learning, and response re-ranking. However, the challenges of mitigating similar exploitation in
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Figure 3: Overview of Real-3DQA Construction Process. Real-3DQA provides a fair and rigorous
evaluation framework for 3D spatial reasoning in 3D-LLMs. The construction process begins with
Filtering 3D-independent Questions, which removes questions that can be correctly answered by
both the 3D-LLM model Mx and its text-only M blind

x counterpart, as well as those answerable by
the GPT model without 3D input. The remaining high-quality questions QFinal are then augmented
using GPT, generating spatially consistent variations through viewpoint rotations while preserving the
underlying 3D relationships. Finally, expert reviews eliminate redundancy and invalid data, ensuring
the highest dataset quality.

3D-QA benchmarks remain largely unexplored. Many existing 3D-QA datasets rely on automatic
or semi-automatically generated QA pairs Yan et al. (2023); Li et al. (2023); Qian et al. (2024),
which often include language priors in their questions. Although Ma et al. (2023) balances answer
categories, it cannot remove deeper annotation artifacts (e.g., saliency preferences, canonical layouts,
or guessable questions). We instead reduce linguistic bias via model-level comparison: by contrasting
a full model with its blind (text-only) fine-tuned variant, we filter items that are solvable through
language priors alone. This consistency-based procedure offers a more robust alternative to purely
rule-based or distributional balancing.

3D-QA Diagnostic Benchmarks. Existing 3D-QA benchmarks largely reuse the 2D-QA protocol
of per-item accuracy Rajpurkar et al. (2016), which overlooks whether predictions are self-consistent
in 3D spaces. To overcome such issues, the recent diagnostic benchmark Beacon3D Huang et al.
(2025), instead assesses 3D understanding through cross-task consistency: whether the model gives
consistent answers across both QA and grounding tasks. In contrast, we evaluate 3D understanding
ability through cross-question consistency, where we test if the model consistently solves the question
under different viewpoint augmentations.

3 REAL-3DQA BENCHMARK DESIGN

Situated Question Answering (SQA) challenges AI to comprehend its position and surroundings
within an environment before responding to queries. The first benchmark for this task, SQA3D Ma
et al. (2023), has been widely adopted by recent research to evaluate the spatial awareness and 3D
reasoning capabilities of 3D-LLMs. However, as shown earlier in Figure 2, we discovered a critical
flaw in the current evaluation benchmark, which reveals that current 3D-LLMs obtain comparable or
even worse results than its blind counterpart trained with text input only.

This observation underscores the need for a more rigorous evaluation framework. To address this gap,
we introduce Real-3DQA, a benchmark derived from SQA3D to more accurately assess 3D spatial
reasoning in 3D-LLMs. The key innovations in constructing Real-3DQA consist of two main steps:
(1) Filtering 3D-independent Questions ( Section 3.1), we identify and filter out those questions
that can be answered by text context alone with high probability, minimizing the model’s reliance on
dataset biases and ensuring a more genuine assessment of 3D reasoning capabilities. (2) Viewpoint
Rotation Score ( Section 3.2), we introduce a viewpoint rotation evaluation metric that complements
existing SQA3D metrics, encouraging models to rely on genuine 3D understanding.

4
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3.1 FILTERING 3D-INDEPENDENT QUESTIONS

In this section, we describe how we remove questions that are “easy-to-guess” without 3D spatial
information. Let Q be the original set of test questions from Ma et al. (2023). We evaluate three
different 3D-LLMs Huang et al. (2024b;a); Hong et al. (2023), denoted as MA, MB , and MC . For
each specific model X , we begin with training the original model MX , where X ∈ {A,B,C} and
its blind counterpart M blind

X , which is the same model finetuned without 3D input2.

Next, we utilize both MX and M blind
X models to identify questions that are independent of 3D input.

Based on our definition, a question q ∈ Q is considered independent of 3D input if both the original
and blind-finetuned models predict the correct answer: MX(q) = M blind

X (q) = correct. For any given
model MX . The set of such questions for each model is: QX = {q ∈ Q | MX(q) = M blind

X (q) =
correct}. To ensure robustness, we repeat this for all three models and take the union of questions
that are independent of 3D input: Q3D-filtered = QA ∪ QB ∪ QC . The underlying hypothesis for
this approach is that if a set of questions can be answered correctly by both the original and blind-
finetuned models, it means the question set is both less relevant to 3D spatial understanding and can
be overfitted by data priors. Thus, we obtain a more rigorous remaining question set by removing
those 3D-independent and trivial questions: Q′ = Q \Q3D-filtered. We refer the reader to Figure 3 to
illustrate the procedure up to this stage.

To ensure the final benchmark exclusively assesses true 3D understanding, we further refine Q′ by
removing questions that a general large language model (i.e., GPT-4o-mini OpenAI (2024)) can
correctly answer based solely on the textual content of the situation and question without 3D input.
Assuming the set of questions, GPT can answer using only textual input as: QGPT = {q ∈ Q′ |
GPT(q) = correct}. The final step to obtain the filtered test set is then: Qfinal = Q′ \ QGPT. In
Section D.1 of Appendix, we present the change in the number of questions at each step of the
filtering (Table 7), as well as the distribution of question types after filtering (Table 8). We also
provide illustrative examples of 3D-independent questions that were removed.

3.2 VIEWPOINT ROTATION SCORE

To comprehensively assess the effectiveness of the Real-3DQA test set, we employ a combination of
standard evaluation metrics and a viewpoint rotation metric specifically designed to measure true 3D
understanding. First, we adopt the same evaluation metrics used in SQA3D, such as refined exact
match (EM R) Huang et al. (2024b), ensuring comparability with existing benchmarks. For a detailed
analysis of their impact on model performance, we refer the readers to Section 5, which presents
comprehensive experimental results.

To reduce the influence of superficial textual cues on model performance, we propose the Viewpoint
Rotation Score (VRS) to assess whether 3D-LLMs genuinely comprehend spatial relationships.
The core idea is to generate rephrased test questions by rotating the situation descriptions and
corresponding answers from the original seed question while preserving underlying 3D relationships.
Figure 4 illustrates this process: in the original scenario, an agent faces a trash can with a table
behind and asks,“What is on my right?” The correct answer is “whiteboard”. By rotating the
agent’s viewpoint (e.g., 90°, 180°, 270°), we create alternative descriptions where the agent faces
a different object, yet spatial relationships of scene objects remain unchanged. The ground-truth
answer dynamically updates based on the new viewpoint. We employ GPT to generate augmented
SQA questions by processing pre-designed templates and scene graphs from Ma et al. (2023) from
the original question. We provide our prompt template in Figure 9 of the Appendix D.

Quality Control. To ensure the reliability of our augmented dataset, we adopt a multi-stage quality
control process combining GPT hallucination mitigation and structured expert review. We guide
GPT generation with in-context examples, apply manual validation to enforce rotation sensitivity
and QA validity, and conduct expert reviews with qualification checks and agreement metrics. Our
annotations achieve strong reliability (Cohen’s κ = 92%, self-consistency 97%), confirming that the
augmented QA pairs are faithful to 3D rotations and grounded in genuine spatial reasoning. Full
details of this process are provided in Appendix D.2.

2We refer readers to Section 4.1 for details on how Blind Finetuned model M blind
X is obtained
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Question: What is on my right?
Answer: White board.

Trash Can

Window White Board

Table

?

Original

Situation: I am facing a trash can, with a 
table behind me.

90°

Situation: I am opening the window, 
with a table on my left. 

Question: What is on my right?
Answer: Trash can. 

Trash Can

Window White Board

Table

?

?

180°

Situation: I am facing a table, with a 
white board on my left.

270°

Situation: I am trying to clean the white 
board, with a trash can on my left.

Question: What is on my right?
Answer: Window.

Question: What is on my right?
Answer: Table.

Trash Can

Window White Board

Table

Trash Can

Window White Board

Table

?

Trash Can

Window

Table

White 
Board

Augmented SQA

Sample Room Layout

Figure 4: Viewpoint Rotation Augmentation. Real-3DQA generates viewpoint-augmented SQA
instances to enforce spatial reasoning. The left panel shows the original room layout, where an agent
asks “What is on my right?” with the correct answer “white board.” The right panels illustrate the
SQA examples of the original viewpoint and rotated viewpoint (90°, 180°, 270°), where the agent’s
perspective shifts and the correct answers dynamically adjust while preserving spatial consistence .

VRS evaluation metric design. VRS measures the robustness of a model to spatial variations on a
scale of 0 to 100%, where higher values indicate better performance. During the evaluation, each
batch consists of four related questions: the original and its three rotated variants (90°, 180° and 270°).
After processing the entire data set, we calculate the percentage of instances in which the model
correctly answers at least k questions, where k ∈ {1, 2, 3, 4}. Formally, let Nk be the number of
instances where at least k questions in a batch are answered correctly, and Ntotal be the total number
of instances. The percentage for each k is given by: Pk = Nk

Ntotal
× 100 ,where Pk represents the

accuracy percentage for answering at least k questions correctly. The final VRS metric is computed
as the mean of these percentages: VRS = 1

4

∑4
k=1 Pk.

To achieve high performance in VRS, the 3D-LLM are expected to correctly answer all variations of
the same question, demonstrating a true understanding of 3D spatial relationships rather than relying
on textual patterns. Intuitively, responses inconsistently across rephrased questions reveal weaknesses
in the model’s 3D reasoning capabilities. By design, VRS is a stricter evaluation metric than the
standard ones mentioned previously, as it penalizes models that fail to provide consistent answers
across multiple question variants. In addition, taking the mean of Pk ensures that the metric does not
disproportionately favor cases where the model succeeds on only a subset of viewpoints.

4 3D-AWARE FINE-TUNING STRATEGY

4.1 ORIGINAL FINE-TUNING

Let the 3D-QA dataset D consist of triplets (x(i)
text,x

(i)
3D ,y

(i)) ∼ D, where xtext represents a textual
prompt that includes a situational description and a corresponding question, x3D denotes the associated
3D context (e.g., point clouds), and y is the ground truth answer.

Supervised Fine-tuning. In a typical 3D-LLM Supervised Fine-Tuning (SFT) setting Huang et al.
(2024b); Wang et al. (2023); Huang et al. (2023); Chen et al. (2024), we fine-tune the model on both
text and 3D data to learn mappings from 3D representations to the correct answers. However, the
SFT process doesn’t consider how the model uses the data. Empirically, we observe that models still
tend to learn over-rely on textual cues rather than learning from 3D context, what we refer to as a
textual shortcut problem.

Blind Fine-tuning. To highlight this potential textual shortcut issue, we next consider Blind Fine-
tuning (BF), where we completely ignore the 3D context x3D and train the model only on textual
inputs. Formally, we fine-tune the model parameters θ using the standard next-token cross-entropy
loss, but conditioned only on the textual prompt xtext. Using BF, we optimize a blind model, which
reveals how much of the 3D question-answering task can be solved (or guessed) by language context
alone. Furthermore, we leverage the BF model as a reference for assessing the true benefit of 3D data.

4.2 3D-AWARE REWEIGHTED FINE-TUNING

Motivated by the observation of SFT and BF models, we propose 3D Reweighted Fine-tuning (3DR-
FT). Our goal is to explicitly encourage the model to use the 3D context, rather than “shortcutting”
through language patterns. We begin with the BF model pϕ and upweight samples adaptively for
which the BF model finds more difficult to guess compared with current model, ensuring that the final
model is pushed to 3D dependency.
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Reweighting function. We define a reweighting function wj(y,xtext) based on the ratio of surprise.
It measures how surprised the blind model pϕ is when it finds out about the ground truth token yj ,
compared to the current training model pθ. More formally, we define

wj(y,xtext) :=
Sϕ(y,xtext)

Sθ(y,xtext)
=

log pϕ
(
yj | y<j ,xtext

)
log pθ

(
yj | y<j ,xtext

) , (1)

where Sθ(y,x) is the surprise function Ash (2012) of predicting the last token in y given x. Higher
values of wj indicate that the BF model places a higher suprise on ground truth token yj than the
current model, indicating the token is harder to guess by textual context alone. Naturally, we increase
the weights to those tokens in the loss function. We then define the 3DR-FT loss function as:

L3DR-FT(θ) := ED

[
−

T∑
j=1

wj(y,xtext) log pθ
(
yj | y<j ,xtext,x3D

)]
. (2)

In Appendix E, we provide theoretical insights on how this objective can promote the model’s
3D-context dependency.

5 EXPERIMENTS ANALYSIS

Our experiments try to answer the following questions: (1) How does our benchmark differ from
SQA3D in evaluating true 3D understanding? (2) Do existing 3D-LLMs exhibit rotation robustness
when evaluated with our proposed Viewpoint-Rotation Score? (3) Does our 3D-Reweighted Fine-
tuning strategy enhance 3D dependency and improve performance on Real-3DQA?

5.1 EXPERIMENTAL SETUP

We evaluate five representative 3D-LLM models (Hong et al., 2023; Huang et al., 2024b;a; Qi
et al., 2025; Huang et al., 2023) across ten reasoning abilities on both the SQA3D and Real-3DQA
benchmarks. For each model, we test their released pretrained model weights. To demonstrate the
effectiveness of our training strategies, we select more advanced models LEO and Chat-Scene as
baselines, then apply our proposed training strategy.

5.2 BENCHMARK EFFECTIVENESS

Table 2: Performance comparison on SQA3D
and our Real-3DQA. We see a significant per-
formance drop in our new benchmark.

3D-LLMs Venue SQA3D Real-3DQA

EM EM R EM EM R

3D-LLM NeurIPS 23 47.8 49.6 7.5 10.4
Chat-3D v2 Arxiv 24 45.0 48.1 20.6 25.7
LEO ICML 24 49.4 52.2 14.3 19.1
Chat-Scene NeurIPS 24 54.4 57.2 17.0 22.1
GPT4Scene Arxiv 25 60.6 63.3 33.1 36.9

Performance comparison with SQA3D. To as-
sess the increased difficulty of Real-3DQA, we
compare model performance before and after the
benchmark update. As shown in Tab. 2, the up-
dated benchmark leads to a substantial drop in the
Exact Match (EM) metric: 40.3 for 3D-LLM Hong
et al. (2023), 24.4 for Chat-3D v2 Huang et al.
(2023), 35.1 for LEO Huang et al. (2024b), 37.4
for Chat-Scene Huang et al. (2024a), and 27.5 for
GPT4Scene Qi et al. (2025), relative to the SQA3D
benchmark. Refined EM metrics show similar de-
clines. These results illustrate that our benchmark
poses greater challenges and better exposes differences in 3D understanding, as methods with similar
SQA3D performance (e.g., 3D-LLM, Chat-3D v2, and LEO) diverge more clearly here. To further
analyze the differences, we also provide a table (Table 5) and a radar chart (Figure 7) for comparison
between each question type in the appendix C.1.

To verify the effectiveness of our proposed viewpoint rotation evaluation, we conduct a probing
experiment on five 3D-LLMs; results of the correct times under four rotations, the overall VRS, and
the per-type breakdown are summarized in Table 3.

3D-LLMs struggle with viewpoint rotation. All models show a consistently increasing decline
in EM Refined as the viewpoint changes from one to four. Except for 3D-LLM which has slightly
higher accuracy (9.0%) at four rotations, other models struggle significantly under this evaluation,
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Table 3: Rotation Robustness Comparison on Real-3DQA. The table shows the performance of
different 3D-LLMs (using refined exact match metric) when tested with varying numbers of correct
rotations. All models demonstrate a clear performance degradation as the required number of correct
rotations increases, highlighting the challenge of rotation robustness in 3D understanding.

3D-LLMs Correct times VRS Question Types

one two three four % measurement color number spatial rel. shape state object visibility navigation reasoning other

3D-LLM 53.1 37.4 31.5 9.0 22.6 28.1 11.8 32.4 14.8 22.8 39.0 5.7 47.9 34.4 12.0 2.1
Chat-3D v2 68.6 37.6 25.3 2.4 33.5 42.7 27.1 49.3 38.7 25.1 31.2 21.2 56.4 30.0 12.5 41.7
LEO 63.0 37.0 24.6 1.9 31.6 75.0 37.3 38.8 20.9 23.8 52.2 18.6 46.4 40.0 18.8 25.0
Chat-Scene 67.0 40.3 28.4 2.4 34.6 12.5 34.4 45.3 24.0 25.0 50.0 20.2 60.7 41.4 33.3 41.7
GPT4Scene 75.3 35.5 23.6 2.7 34.3 25.7 26.2 38.1 38.6 44.1 25.0 26.3 35.3 49.3 50.0 12.5

with the accuracy nearly reduced to zero: LEO (1.9%), Chat-Scene (2.4%), Chat-3D v2 (2.4%) and
GPT4Scene (2.7%). This sharp drop underscores the models’ difficulty in maintaining consistency
across multiple viewpoints, especially for those more recent SOTA models. We hypothesize that
this limitation arises because existing 3D-LLMs have not been explicitly evaluated on rotation
robustness; as a result, current designs largely overlook rotation-invariant 3D feature encoding,
cross-view alignment, and fine-grained spatial relationship modeling, leaving them ill-equipped to
handle viewpoint changes.

Point-wise 3D feature matters for acquiring rotation robustness. Interestingly, although the
earliest method–3D-LLM achieves the lowest overall performance in terms of VRS, it clearly
outperforms other models in answering questions consistently across all four viewpoints. We
hypothesize that this advantage comes from its point-wise feature encoding strategy, where each
point is assigned a 3D feature embedding that encodes both semantic and positional information.
Such representations provide richer geometric cues for learning fine-grained spatial relationships. In
contrast, object-centric approaches (e.g., Chat-3D, LEO, Chat-Scene) first segment the scene into
discrete objects and then extract object-level features with additional 3D position embeddings. While
effective for object semantics, this representation may oversimplify intra-object structures, limiting
their ability to capture fine-grained spatial relationships under rotation.

Overall, our benchmark highlights the fragility in current 3D-LLMs in geometric and spatial represen-
tations that carry over consistently under rotation transformations. We hope that by introducing this
new benchmark and metric (VRS), the community will be better equipped to diagnose and address
the gaps in rotation robustness for 3D-LLMs.

5.3 HOW CAN WE IMPROVE 3D-DEPENDENCY IN REAL-3DQA?

SQA3D

Correct Wrong Change

LEO Chat-Scene

Figure 5: 3D tokens attention score af-
ter 3DR-FT.

Comparison of three training strategies. We compare
the effectiveness of all three training strategies in Tab. 4,
evaluated with the EM Refined metric. Initially, we find
that the Blind FT models yields notabley lower scores for
both LEO and Chat-Scene on Real-3DQA. Again, we con-
firm that Real-3DQA questions are heavily 3D-dependent.
However, on our Real-3DQA benchmark, 3D-reweighted
fine-tuning demonstrates significant improvements over
traditional methods. For LEO, it achieves 29.3 (vs. 19.1
for SFT and 13.6 for Blind FT), while for Chat-Scene, it
reaches 33.9 (vs. 22.1 and 14.4). These results confirm
that our method successfully encourages models to lever-
age 3D context for spatial reasoning tasks. To further
test generalizability of the finding beyond the SQA3D
dataset, we additionally construct another filtered bench-
mark, Real-ScanQA, from the ScanQA test set using the same pipeline described in Sec. 5.2. On
Real-ScanQA, 3DR-FT improves LEO to 13.9 EM Refine (vs. 6.1 for Supervised FT and 5.9 for
Blind FT), mirroring the gains observed in Real-3DQA and highlighting the benefit of 3D-aware
training when questions require genuine 3D evidence.

3D-reweighted finetuning does help 3D-dependency. As shown in Figure 5, we provide a analysis
of attention scores for 3D tokens, following Zhang et al. (2025a), which demonstrates the models’
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Table 4: Ablation Study on Training Strategies. Columns group results by model and dataset: LEO
on ScanQA/Real-ScanQA (left) and SQA3D/Real-3DQA (center), and Chat-Scene on SQA3D/Real-
3DQA (right). 3D-reweighted fine-tuning (3DR-FT) delivers consistent gains across both datasets
and models, with the largest improvements on the 3D-dependent sets—Real-3DQA and Real-
ScanQA—while Supervised FT remains strongest on SQA3D.

Training Strategy LEO ←− LEO −→ Chat-Scene
ScanQA Real-ScanQA SQA3D Real-3DQA SQA3D Real-3DQA

Supervised FT 32.3 6.1 52.2 19.1 57.2 22.1
Blind FT 33.0 5.9 50.6 13.6 51.4 14.4
3D-reweighted FT 31.3 13.9 48.2 29.3 48.9 33.9

overall dependency on 3D tokens when answering questions. Please refer to the appendix for more
implementation details. The results demonstrate that after applying 3D-Reweighted Fine-tuning
(3DR-FT), models exhibit significantly higher average attention scores to 3D tokens for both 3D-
LLMs. These findings align with the performance gains observed on Real-3DQA. The increase in
attention scores confirms that our 3DR-FT strategy not only enhances model performance but, more
importantly, successfully guides the models to rely more on 3D visual information rather than textual
shortcuts when making spatial reasoning.

SQA3D

Correct Wrong Change

Figure 6: Why 3DR-FT reduces SQA3D
performance? For Chat-Scene, 591 ques-
tions flip from correct to wrong after
3DR-FT; 441 of these come from the
Filtered Set (green box with diagonal
hatching). Because SQA3D mixes 3D-
dependent questions (Real-3DQA) with
3D-independent ones (Filtered Set), em-
phasizing 3D evidence via 3DR-FT can
hurt the latter set, lowering the overall
SQA3D score.

Analysis on Failure Cases. Table 4 shows a seemingly
counterintuitive result: while 3DR-FT substantially im-
proves performance on the 3D-dependent Real-3DQA
test set, the overall performance on the original SQA3D
test set decreases; for example, Chat-Scene drops from
57.2 to 48.9 after 3DR-FT. At first glance, this seems
puzzling—why would emphasizing 3D information hurt
performance?

A breakdown of failure cases reveals that this decline is
driven mainly by the 3D-independent portion of SQA3D,
as shown in Figure 6. After 3D-RFT, 591 questions
flipped from correct to incorrect, and 441 of them were
from the filtered set. Notably, nearly 70% (413/591) of
these degraded questions were also answered correctly
by the text-only (blind) model, suggesting they were
shortcut-solvable when using language priors. Many of
these questions fall into reasoning types, such as count-
ing (92), navigation (86), visibility (94), and spatial rela-
tions (93). We hypothesize that these questions can often
be guessed from surface language and answer priors, but
become harder when answers must be grounded in gen-
uine 3D input. Thus, the observed drop does not indicate
weaker 3D understanding; rather, it mainly reveals how
inflated scores on prior benchmarks were driven by lin-
guistic shortcuts, further validating the necessity of our
debiased dataset filtering and the proposed VRS metric score.

6 CONCLUSION

This work examines the 3D reasoning capabilities of 3D-LLMs, revealing that state-of-the-art models
can rely on textual shortcuts rather than true 3D spatial understanding on existing SQA3D dataset.
To address this, we introduce Real-3DQA, a benchmark designed to minimize textual shortcuts and
enforce genuine 3D reasoning. Through rigorous filtering and the Viewpoint Rotation Score, our
benchmark provides a more robust evaluation framework. Additionally, we propose a 3D-reweighted
training strategy that enhances models’ reliance on 3D context, significantly improving the spatial
reasoning performance for existing 3D-LLM models. Our findings underscore the need for stronger
evaluation benchmarks and training methodologies to advance 3D-LLMs.
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7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experimen-
tation was involved. All datasets used, including SQA3D, ScanQA, were sourced in compliance with
relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or
discriminatory outcomes in our research process. No personally identifiable information was used,
and no experiments were conducted that could raise privacy or security concerns. We are committed
to maintaining transparency and integrity throughout the research process.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are repro-
ducible. All code and datasets have been made publicly available in the anonymous repository
(https://anonymous.4open.science/r/Real-3DQA-BCF8/) to facilitate replication and verification. We
have also provided a full description of dataset construction and reweighted finetuning strategy, to
assist others in reproducing our experiments.

Additionally, all pretrained models we evaluate, such as 3D-LLM, Chat-3D v2, LEO, Chat-Scene and
GPT4Scene, are publicly available, ensuring consistent and reproducible evaluation results.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.
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A OUTLINE OF THE APPENDIX

• LLM usage(Section B)
• More experiments and analysis

– Category-wise comparison between SQA3D and Real-3DQA (Table 5)
– Radar chart of 3D-LLMs on Real-3DQA (Figure 7)
– Details of how we calculate 3D token attention score (Section C.2)
– Ablation on LEO Inference (Table 6)

• Details of benchmark construction
– GPT prompt template for rotation-augmentation (Figure 9)
– Statistics and examples of filtering 3D-independent questions (Table 7)
– Data quality control (Section D.2)

• Theoretical insights of 3D-reweighted Fine-tuning (Section E)
• Future work (Section F)

B LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or
polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
does not contribute to plagiarism or scientific misconduct.

C MORE EXPERIMENTS AND ANALYSIS

C.1 PERFORMANCE DROP ACROSS QUESTION TYPES.

To analyze model performance differences across question types, we provide a detailed breakdown in
Tab. 5 and a visualization in the radar chart in Fig. 7. First, we observe that all the question types
undergo a significant performance drop, further confirming that Real-3DQA’s more rigorous nature
over SQA3D. Particularly, we observe that most 3D-LLMs consistently struggle with spatial relation-
ships, shape and state recognition, and reasoning tasks. Two of the largest drops in EM Refine appear
for the shape and state recognition questions, where five models (3D-LLM/Chat-3D v2/LEO/Chat-
Scene/GPT4Scene) drop 55.7/43.2/51.5/47.2/33.3 respectively for shape and 56.5/33.1/49.4/52.7/26.2
respectively on state. Moreover, we find that reasoning questions already had lower scores in SQA3D,
particularly for 3D-LLM at 40.0, LEO at 35.0, and Chat-3D v2 at 50.0, despite GPT4Scene achiev-
ing 52.5. The multi-hop 3D reasoning is considered the most challenging problem for all current
3D-LLMs. When evaluated on Real-3DQA, these scores plummet further where all five models
(3D-LLM/Chat-3D v2/LEO/Chat-Scene/GPT4Scene) drop 40.0/13.6/21.4/21.8/25.2 respectively.
Finally, we find that even some basic question types, including color and object identification, become
substantially harder in Real-3DQA, with even the best-performing GPT4Scene experiencing a 18.6
point drop in color recognition and a 23.0 point drop in object identification.

Together, these findings reinforce that once 3D-independent and guessable questions are filtered out,
current 3D-LLMs routinely fail to demonstrate a robust 3D understanding capabilities and highlight
the necessity of the Real-3DQA. We hope our new benchmark will draw the community’s attention to
the “3D shortcut” issue and help the development of methods that genuinely comprehend 3D context.
This multi-dimensional analysis enables more comprehensive comparison of model differences and
strengths, highlighting each model’s capability preferences and common weaknesses.
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Figure 7: Comparison of 3D-LLMs capabilities across different question types on Real-3DQA.
The radar chart visualizes the performance of five models (LEO, Chat-Scene, 3D-LLM, Chat-3D
v2, GPT4Scene) on ten question categories. Each axis represents a specific question type, and the
distance from the center indicates the model’s performance in that category. The area covered by
each model’s polygon reflects its overall capability across all question types. The chart highlights
that GPT4Scene demonstrates superior performance in most categories, while Chat-3D v2 shows
strengths in reasoning.
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Table 5: Model ability across different question types. We compare model performance on both
the original SQA3D benchmark and our more challenging Real-3DQA. On Real-3DQA, we find
most 3D-LLMs have consistent deficiencies in spatial relationships, shape recognition and reasoning
tasks. We report refined exact match for detailed question types.

3D-LLMs EM EM R measurement color number spatial relation shape state object visibility navigation reasoning other

Refined EM on SQA3D

3D-LLM 47.8 49.6 69.2 45.7 52.4 35.7 59.2 64.7 42.4 63.5 41.5 40.0 39.5
Chat-3D v2 45.0 48.1 36.1 57.0 56.0 43.2 67.8 71.5 60.4 71.1 45.7 50.0 88.4
LEO 49.6 52.2 73.1 58.1 52.8 40.8 59.9 69.9 52.8 66.4 41.5 35.0 76.7
Chat-Scene 54.7 57.4 80.8 58.1 57.2 46.8 66.5 76.0 59.2 70.0 48.1 40.0 81.4
GPT4Scene 60.6 63.3 76.9 70.8 65.8 52.6 73.7 83.7 68.8 73.3 43.3 52.5 79.1

Refined EM on Real-3DQA

3D-LLM 7.5 10.4 0.0 10.1 9.8 9.3 3.5 8.2 10.6 4.0 18.2 0.0 20.0
Chat-3D v2 20.6 25.7 20.0 26.1 22.2 21.8 24.6 38.4 31.3 22.4 28.3 36.4 40.0
LEO 14.3 19.1 0.0 29.0 20.2 16.6 8.8 20.5 22.9 11.8 17.4 13.6 60.0
Chat-Scene 17.0 22.1 60.0 28.3 15.2 22.3 19.3 23.3 33.0 15.8 20.6 18.2 20.0
GPT4Scene 33.1 36.9 40.0 52.2 34.7 31.1 40.4 57.5 45.8 30.3 29.6 27.3 60.0

Rotation Robustness Comparison on Real-3DQA

Figure 8: Rotation robustness comparison. All models show a consistently increasing decline
in EM Refined as the viewpoint changes from one to four, underscoring the models’ difficulty in
maintaining consistency across multiple viewpoints.

C.2 DETAILS OF 3D TOKEN ATTENTION SCORE CALCULATION.

We randomly selected 100 questions from Real-3DQA, and used both original and 3D-Reweighted
fine-tuned versions of LEO and Chat-Scene models for inference. Specifically, we followed the
approach in Zhang et al. (2025a), which quantifies models’ overall dependency on 3D point cloud
tokens when answering questions. By calculating the average attention scores from 3D point cloud
tokens to answer tokens, we can determine how much the model relies on 3D information when
responding to questions. To ensure statistical significance, we performed three separate sampling
runs, collected three sets of data, and calculated standard deviation error bars.

C.3 ABLATION ON LEO INFERENCE

Table 6 presents an ablation study on LEO to evaluate the impact of different input components
on inference performance using the SQA3D benchmark. The study examines how 3D information,
situational descriptions, and question relevance influence exact match (EM) and refined exact match
(EM R) scores. It shows by removing 3D input alone, the model can still obtain 32.4% on EM and
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Table 6: Where does the 3D prior come from in LEO Huang et al. (2024b) on SQA3D? We conduct
this ablation during only the inference time, using checkpoints provided by the authors. Results show
that 3D information and questions are crucial for performance, while situation descriptions have
minimal impact. We report both exact match (EM) and refined exact match (EM Refined) metrics.

Situation Question 3D EM (%) EM R (%)

✓ ✓ ✓ 49.7 52.3
✓ ✓ shuffled 44.2 46.7
✓ ✓ ✗ 32.4 43.3
✗ ✓ ✓ 49.3 51.7
✓ ✗ ✓ 0.2 10.4
✗ ✓ ✗ 18.6 30.1

43.3% on EM R, indicating that part of the model prediction is not rely on 3D information. On
the other hand, by removing situation description, the model’s EM% and EM R% metrics barely
dropped.

D DETAILS OF BENCHMARK CONSTRUCTION

D.1 STATISTICS AND EXAMPLES ON FILTERING 3D-INDEPENDENT QUESTIONS

Table 7 shows filtering statistics from SQA3D using our proposed methods in Section 3.1 of the main
paper. The table compares the number of filtered and remaining questions across different filtering
methods. Specifically, GPT-4o-mini is used for GPT-based filtering, while LEO, Chat-Scene, and
3D-LLM are employed for SFT and Blind Fine-tuned model comparison.

We find that GPT-based filtering removed only 112 questions, leaving 3407 out of the original 3519.
This indicates that GPT filtering alone is relatively conservative, missing many questions that might be
easy-to-guess or non-3D-dependent. In contrast, our model comparison approach filters substantially
more questions.

Table 7: Statistics of filtered questions for each filtering step. The table reports the number of
questions filtered and those remaining for the original test set, GPT-based filtering, and model-based
comparisons filtering across LEO, Chat-Scene, and 3D-LLM.

Filter Type Original Test GPT Model Comparison

LEO Chat-Scene 3D-LLM

Filtered - 112 1197 459 232
Remaining 3519 3407 2176 1717 1485

We also show three representative examples of filtered questions to highlights the effectiveness of
our filtering approach through model comparison. These filtered questions are so directional that the
answer is easily guessable.

• Question: What is to my left that gives me natural light in the room?
Answer: window

• Question: What is to my right that I can use washable marker to write with?
Answer: whiteboard

• Question: What instrument in front of you is ebony and ivory?
Answer: piano

Diversity Check. To ensure that our debiasing process does not sacrifice semantic richness, we
evaluated the distribution of different question types before and after filtering. As shown in Table 8,
Real-3DQA retains broad coverage across ten reasoning categories, with proportions comparable
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Table 8: Comparison of question-type distributions before and after filtering. Real-3DQA
maintains balanced coverage across categories, showing that debiasing preserves semantic diversity.

Dataset Total Spatial Navigation Object State Color Visibility Shape Measure Other
SQA3D 3519 694 545 394 312 291 277 152 66 43
Real-3DQA 1485 286 247 179 123 138 126 57 27 5

to the original SQA3D dataset. This demonstrates that our filtering procedure does not cause mode
collapse; instead, it preserves the diversity necessary for a reliable assessment of spatial reasoning.

D.2 QUALITY CONTROL

To ensure the reliability of our rotation-augmented dataset, we adopt a multi-stage quality control
pipeline that combines GPT prompting strategies with structured expert review. This process ad-
dresses both the risk of hallucination in GPT outputs and the need for consistent, rotation-sensitive
annotations.

D.2.1 HALLUCINATION MITIGATION

A key concern when leveraging GPT for question augmentation is the potential issue of hallucination.
To mitigate this, we employ a two-pronged strategy.

Instruction-following enhancement via ICL examples. We designed structured in-context learning
(ICL) examples (Figure 9) to guide GPT’s generation. These examples reinforced the desired
behavior—producing faithful situation texts that simulate specific 3D rotations—and helped GPT
adhere to the intended transformation format.

Manual verification with dual criteria. We further applied a two-stage manual validation process.
Specifically, we retained only those QA pairs that satisfied both: (i) the situation text is rotation-
sensitive and accurately reflects the intended 3D rotation; (ii) the original question remains meaningful
after rotation, with the updated answer remaining correct in the rotated context. Examples failing
either criterion were discarded or corrected. These measures minimize hallucination and ensure that
the augmented QA pairs are semantically coherent and grounded in 3D reasoning.

D.2.2 EXPERT REVIEW

Beyond hallucination control, we implemented a structured expert review protocol to validate
annotation quality.

Initial filtering of GPT outputs. Despite careful prompting, about 5% of GPT outputs proved invalid
(e.g., incorrect answers after rotation or inconsistent situation descriptions, see Figure 10). To detect
these, we visualized the observer’s position and orientation, determined object quadrants (front, back,
left, right) from bounding box centers, and checked whether GPT’s rotated situations and answers
aligned with the new viewpoint. Inaccurate answers were corrected, while fundamentally invalid
situations were discarded. Ultimately, we retained 750 question–answer pairs valid across all four
viewpoints, yielding 750× 4 = 3000 high-quality pairs.

Structured protocol. We further enforced a three-phase expert review protocol: - Pre-review:
annotators received explicit evaluation criteria and passed a qualification test before large-scale
review. - During review: experts iteratively tracked errors in a shared log (e.g., mismatched rotations,
mishandled states, object counting errors). Random spot checks and annotation speed monitoring
ensured consistency. - Post-review: annotation reliability was measured with agreement metrics,
yielding Cohen’s Kappa of 92% (strong inter-rater agreement) and self-consistency of 97%.

Together, these steps guarantee that the final augmented dataset is rotation-sensitive, reliable, and
well-suited for benchmarking genuine 3D reasoning.
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system_prompt = {'role':'system','content':"""Your job is to augment the testing data by 
rotations for 3D VLM evaluation. The rotation is 90, 180, or 270 degree along the gravity-axis. 
You are given a ego-centric scene description for all objects in a room with distances, 
orientations, heights from the floor, attributes, and relationships between other objects. You 
are also given a situation, a question, and an answer. Your tasks:
1. Read the scene description and understand the spatial relationships between the observer and 
the objects in the room.
2. Rotate the situation but keep the question exactly the SAME. DO NOT change the question.
3. Generate the new answer based on the new situation. Make sure the new answer is still valid 
based on the scene description.
4a. Output the new situation, question (should be the same as the original), and the new answer. 
4b. Try to find a situation that the answer is DIFFERENT from the original answer but still 
VALID and explicitly mentioned in the scene description in the correct direction after rotation.
4c. If you cannot find a valid answer under current rotation, output "skip" and do not generate 
any new situation.
5. If the situation cannot be rotated meaningfully (no explicit direction), please output 
directly "skip" and do not generate any new situation or question.
6. You need to keep the style of the original situation. Keep the length of the answer same as 
the original. For most answers, a single word or two is enough. Uncapitalized unless it is an 
acronym or proper noun like TV.
7. In scene description, the object are named with a type and a number, e.g., chair-13. You only 
refer to the objects by names in situation and question. The number is to distinguish between 
objects. Do not leak the number.

[Example Input] 
Scene: 
  - bed-1: dist=0cm; orient=front; obj_height=43cm; color=white; shape=rectangular; 
material=wood; usage=sleeping; texture=smooth; structure=frame with mattress; state=made; on the 
top of floor-2;
  - window-2: dist=103cm; orient=right; obj_height=154cm; color=white; material=glass; 
usage=lighting; texture=smooth; structure=frame with glass; state=clean; embedded into wall-3;
  - door-3: dist=200cm; orient=left; obj_height=200cm; color=white; material=wood; 
usage=entrance; texture=smooth; structure=frame with handle; state=closed; embedded into wall-3;
Situation: I am standing facing the bed in the bedroom.
Question: What can I see on my left?
Answer: door
Rotation: 270

[Example Output] 
1. Situation: I am standing facing the window in the bedroom.
2. Question: What can I see on my left?
3. Answer: bed

[Explanation] If I rotate 270 degree (=rotate 90 degree to the right), the bed will be on my 
left. The answer should be bed."""}

for angle in [90, 180, 270]:
 messages = [system_prompt]
  messages.append({
    'role':'user',
    'content':f'Scene:\n{scene}\nSituation: {s}\nQuestion: {q}\nAnswer: {a}\nRotation: {angle}'
  })
  output = query(messages)

Figure 9: Prompt Template for Rotation-Augmented Question Generation. We design this
template to guide GPT-4o-mini in creating perspective-rotated variants of the original questions.
The template instructs the model to preserve the original question’s intent while altering the spatial
reference frame according to specified viewpoint changes.
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Question: What color are the window frames to my right?
Answer: light brown

Situation: I am leaning on an end of the table and 
there is trash can behind me.

Figure 10: Example of a view-specific question that cannot be rotated. This question demonstrates
a case where rotation is invalid because it references objects (window frames) that only exist in the
current viewpoint (to my right). When the perspective is rotated, these referenced objects are no
longer visible or identifiable, rendering the question meaningless in the new viewpoint.

E THEORETICAL INSIGHTS OF 3D-REWEIGHTED FINE-TUNING

To quantify the model’s 3D-context dependency, we introduce the conditional-independence gap
between the ground truth token yj and the 3D input x3D, as

δj :=
pθ(yj |y<j ,xtext,x3D)− pθ(yj |y<j ,xtext)

pθ(yj |y<j ,xtext)
. (3)

When δj = 0, the token yj is conditionally independent of x3D given the text input xtext; in other
words, the 3D context is not altering the distribution of yj . This is precisely what we aim to avoid in
the Real-3DQA benchmark, since it implies that the model is ignoring the 3D information.

Below, we link the conditional-independence gap to our loss function. For simplicity, we denote

pθ(yj |y<j ,xtext) := sj , and thus

pθ(yj |y<j ,xtext,x3D) := sj(1 + δj). (4)
Inserting Eq. (1) in main paper and Eq. (4) into Eq. (2) in main paper leads us to

L3DR-FT(θ)

= ED

[
−

T∑
j=1

wj(y,xtext)
(
log sj + log

(
1 + δj

))]

= ED

[
−

T∑
j=1

log pϕ
(
yj | y<j ,xtext

)]
︸ ︷︷ ︸

Perplexity without 3D input

+

ED

[
−

T∑
j=1

wj(y,xtext) log
(
1 + δj

)]
︸ ︷︷ ︸

Weighted conditional-independence gap

.

Here, the first term corresponds to the BF model’s perplexity on the ground truth. It has zero derivative
w.r.t. θ and, thus, does not affect θ during training.

Essentially, the 3DR-FT loss function increases log(1 + δj) during training and leads to a non-zero
δj > 0 whenever yj is correctly dependent on the 3D context. Consequently, 3DR-FT pushes the
model to rely on 3D information for improved predictions, mitigating the textual shortcut problem
observed in standard fine-tuning.
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F FUTURE WORK

For rotation augmentation, we currently use four common angles to generate 3,000 questions. We
believe that considering more rotation angles (such as the 12 o’clock direction) could be valuable.
However, this would require more complex rules to define these directions and angles, as well as
precise language descriptions to match them, ultimately necessitating re-annotation and significantly
increasing manual effort. Nevertheless, from the perspective of expanding rotation robustness, we
consider this a promising direction worth exploring.

Beyond question answering, we have observed similar issues related to shortcut learning and lack
of spatial consistency in 3D grounding and captioning tasks. However, current benchmarks in these
areas do not incorporate situated information; all existing datasets adopt an allocentric (scene-centric)
perspective rather than an egocentric (observer-centric) one. To enable a meaningful evaluation of
spatial understanding in grounding and captioning, future work will require redefining these tasks
with egocentric situation descriptions and constructing new QA or caption variants under viewpoint
changes. This would involve significant annotation efforts, which we leave as promising future
directions to broaden the scope of spatial reasoning evaluation and inspire further attention in the
community.
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