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ABSTRACT

Task decomposition is a fundamental mechanism in program synthesis, enabling
complex problems to be broken down into manageable subtasks. ExeDec, a state-
of-the-art program synthesis framework, employs this approach by combining a
Subgoal Model for decomposition and a Synthesizer Model for program gener-
ation to facilitate compositional generalization. In this work, we develop REG-
ISM, an adaptation of ExeDec that removes decomposition guidance and relies
solely on iterative execution-driven synthesis. By comparing these two exem-
plary approaches—ExeDec, which leverages task decomposition, and REGISM,
which does not—we investigate the interplay between task decomposition and
program generation. Our findings indicate that ExeDec exhibits significant ad-
vantages in length generalization and concept composition tasks, likely due to its
explicit decomposition strategies. At the same time, REGISM frequently matches
or surpasses ExeDec’s performance across various scenarios, with its solutions
often aligning more closely with ground truth decompositions. These observa-
tions highlight the importance of repeated execution-guided synthesis in driving
task-solving performance, even within frameworks that incorporate explicit de-
composition strategies. Our analysis suggests that task decomposition approaches
like ExeDec hold significant potential for advancing program synthesis, though
further work is needed to clarify when and why these strategies are most effective.

1 INTRODUCTION

In 2019, François Chollet introduced the Abstraction and Reasoning Challenge (ARC-AGI) bench-
mark to advance Artificial General Intelligence (AGI) research by assessing systems on their ability
to perform broad reasoning tasks (Chollet, 2019). Among the many approaches to achieving AGI,
program synthesis has emerged as a particularly promising avenue (Chollet, 2019). Program synthe-
sis automates the creation of programs that meet specified requirements, such as Input-Output (I/O)
examples (Devlin et al., 2017), formal logical descriptions (Hocquette & Cropper, 2023), natural
language instructions (Desai et al., 2016), or partial program templates (Alur et al., 2013). Despite
recent progress, current systems still fall short of human-level performance (Chollet et al., 2024),
making human cognition a key inspiration for generalizable reasoning methods. One such capabil-
ity is the ability to decompose unfamiliar problems into smaller, manageable components (Marcus,
2003; Frankland & Greene, 2020). Task decomposition leverages this principle by dividing com-
plex tasks into subtasks that require generalizable skills to solve (Gulwani et al., 2017). By solving
these subtasks independently and integrating their solutions, systems can tackle complex problems
with greater scalability and efficiency. Moreover, the emphasis on developing general-purpose ca-
pabilities, rather than narrowly tailored solutions, aligns with the broader goal of fostering universal
reasoning abilities (Chollet, 2019).

ExeDec (Shi et al., 2023b) integrates program synthesis with task decomposition, combining trans-
ductive and inductive reasoning to enhance synthesis performance (Li et al., 2024). It consists of
two interconnected components: the Subgoal Model, which iteratively decomposes complex tasks
by predicting the next subgoal (high-level transductive reasoning), and the Synthesis Model, which
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Exemplary ExeDec decomposition
Task specification: x0 = [42,−48]→ y = [42, 42]
Ground Truth: x1 = Scanl1 (max) x0

Step 1:
• Predicted Subgoal: [−48, 42]
• Subprogram: x1 = Sort x0

• Execution: x1 = [−48, 42]

Step 2:
• Predicted Subgoal: [48, 42]
• Subprogram: x2 = Zip (max) x0
x1

• Execution: x2 = [42, 42]

Figure 1: ExeDec workflow illustrating the challenges posed by misleading subtasks. The task is
taken from the original test set and can be solved by computing the cumulative maximum of the
input list. The subgoals are those generated by ExeDec. The decomposition process is shown for a
single I/O pair, while the full workflow with all I/O pairs is available in Appendix A.

generates programs to solve these subtasks (low-level inductive reasoning). This structured ap-
proach enables the Subgoal Model to acquire broadly transferable skills for handling diverse and
complex tasks while allowing the Synthesis Model to focus on program generation. As a result,
ExeDec outperforms other approaches including large language models on two program synthesis
benchmarks Shi et al. (2023b). ExeDec compares its performance against a No-Subgoal Ablation, a
baseline where the Subgoal Model is excluded. Besides the difference in architecture, the key dis-
tinction lies in the training of the synthesis model: In ExeDec, the synthesis model focuses purely
on program generation, while in the No-Subgoal Ablation, it is tasked with both implicit task de-
composition and program generation. To distinguish both synthesis models, we refer to ExeDec’s
synthesis model as Synthesizer Model.

A detailed analysis of ExeDec’s internal mechanisms offers insights into refining program synthesis
approaches and optimizing task-solving strategies. Our analysis is driven by the hypothesis that
while the Subgoal Model contributes to ExeDec’s performance, its role is more nuanced than previ-
ously assumed. Instead, the primary factor enabling task completion is the repeated application of
the Synthesizer Model, rather than the Subgoal Model itself. Figure 1 illustrates this dynamic with a
single-step task, i.e., a task solvable by a single function and without decomposition. Here, the Sub-
goal Model generates a subtask prediction that differs from the ground truth causing the Synthesizer
Model to produce a subprogram deviating from the target program. In the next step, despite an-
other Subgoal Model inaccuracy, the Synthesizer Model corrects the error and ultimately solves the
task. This highlights the Synthesizer Model’s robustness in mitigating decomposition inaccuracies.
A key takeaway is that increasing the frequency of task decomposition—even when the predicted
decompositions are imperfect—can be advantageous, as it allows the Subgoal Model to leverage the
Synthesizer Model’s corrective capabilities. The workflow in Figure 1 is a real example generated
by ExeDec; additional examples are in Appendix A. The results of the ExeDec study quantitatively
support this hypothesis further: Even though, ExeDec achieves a small boost in performance be-
yond the No-Subgoal Ablation, the No-Subgoal Ablation brings the most significant performance
improvement (Shi et al., 2023b). This suggests that the explicit decomposition adds value but may
not be critical for all tasks and that the Synthesizer Model has a greater influence on overall task
success than previously assumed.

Building on these observations, this paper explores the interaction between task decomposition and
synthesis within ExeDec. Our key contributions are as follows:

1. We provide insights into the challenges of learning task decomposition across domains,
showing that learning is easier in domains with fewer decomposition possibilities.

2. We show that the Synthesizer Model plays a key role in boosting performance, even in the
absence of explicit and implicit decomposition guidance.

3. We reveal that the Synthesizer Model, in hindsight, decomposes tasks, even without being
trained to do so.

2



Published as a workshop paper at the DL4Code Workshop at ICLR 2025

2 BACKGROUND

2.1 PROGRAMMING-BY-EXAMPLE

Programming-by-Example (PBE) enables task specification without requiring programming knowl-
edge, hardware familiarity, or coding skills (Gulwani, 2011), making it accessible and versatile
across various domains. A PBE task is defined through I/O pairs that specify a desired behavior
(see Figure 1). Formally, the specification of a task is a set X = (I1, O1), . . . , (In, On), where each
pair (Ii, Oi) corresponds to an example of the desired behavior. To formalize the search space for
solutions, PBE operates within a Domain-Specific Language (DSL), which defines the set of pos-
sible programs P . The DSL encompasses functions, identifiers, constants, and variables, forming
the building blocks for program generation. The goal in PBE is to identify a program p ∈ P that
satisfies the specification. In other words, p must transform each input sample Ii into its respective
output Oi for all i ≤ n.

2.2 COMPOSITIONAL GENERALIZATION

Compositional generalization refers to a model’s capacity to systematically and predictably gener-
alize to novel combinations of known components, akin to how humans generalize language and
concepts (Wiedemer et al., 2024). To evaluate this ability in program synthesis, Shi et al. (2023b)
introduced specific task categories. Each task is designed to examine a distinct aspect of generaliza-
tion, ensuring a comprehensive and diverse evaluation.

Length Generalization Models are trained on tasks requiring n decomposition steps and tested on
tasks with m > n decomposition steps. This scenario examines the ability to handle increased
program complexity.

Compose Different Concepts This task evaluates whether the model can integrate distinct func-
tional concepts. DSL functions are divided into two concepts. Training tasks involve functions
either from Concept A or Concept B, while test tasks require the model to combine both concepts.

Switch Concept Order This scenario explores whether models can generalize to new sequences of
operations. Again using a categorization of DSL functions into two categories, training tasks always
begin with Concept A and end with Concept B. Test tasks reverse this order, starting with Concept
B and ending with Concept A.

Compose New Operations The goal here is to determine if a model can integrate a previously
isolated function into larger compositions. During training, the function is either used alone or
excluded, while testing combines it with other functions. A relevant scenario involves synthesizing
code that integrates a newly introduced function into a broader workflow, based solely on isolated
training examples.

Add Operation Functionality This task evaluates whether a model can infer and apply new
functionalities for an operation. Training tasks limit an operation to specific functionalities (e.g.,
Scanl1 with min), while testing introduces variations (e.g., Scanl1 with max, or *).

3 METHODS & EVALUATION

3.1 EXEDEC

ExeDec (Shi et al., 2023b) is an approach designed to decompose complex tasks into manageable
subtasks and solve them effectively. Figure 2 displays the framework which comprises two pri-
mary modules: The Subgoal Model, responsible for decomposing the task into subtasks, and the
Synthesizer Model for generating subprograms, i.e., programs solving the subtasks. The generated
subprogram is subsequently executed, and its output values are utilized to update the task spec-
ification. Both modules are Transformer models which are trained on decomposed data using a
teacher-forcing approach. For each subprogram in the ground-truth solution, the training data in-
cludes: the updated specification derived from executing the preceding ground-truth subprogram,
the execution results of the subprogram on all examples, and the subprogram itself. The Subgoal
Model is trained to predict the subprogram’s execution result based on the updated specification.
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Subgoal Model

Synthesizer 
Model

Task

Inputs
x0 = [5,-2-1], x1 = 2
x0 = [8,-4,-1], x1 = 3

Outputs
y = [3, 5]
y = [3, 4]

x2 = Scanl1 (+) x0

Subtask

Inputs
x0 = [5,-2-1], x1 = 2
x0 = [8,-4,-1], x1 = 3

Subgoal
y = [5,3,4]
y = [8,4,3]

Figure 2: ExeDec Workflow: First, the Subgoal Model predicts the next subgoal based on the current
task specifications. Next, the Synthesizer Model generates a program using the subtask specifica-
tions, aiming to solve the subtask. Finally, the generated program is executed, and its output is used
to update the task specifications.

Given the ground truth subtask specifications, the Synthesizer Model is trained to predict the sub-
program solving the subtask. The model used in the No-Subgoal Ablation matches the Synthesizer
Model architecture. Yet, it is trained to predict the subprogram of the next subtask based on the
updated task specifications.

3.2 REGISM

To further investigate the role of ExeDec’s Subgoal Model, we developed Repeated Execution-
Guided Invoking of Synthesis Model (REGISM), a modified version of the ExeDec framework that
excludes the Subgoal Model. REGISM invokes the Synthesizer Model to generate a single-step
program, i.e., a program consisting of one function only, executes this program, and updates the task
specifications using the execution output. At a high level, REGISM shares the same architectural
setup and workflow as ExeDec’s No-Subgoal Ablation. The key distinction lies in the training
paradigm and the role of the synthesis model.

In both REGISM and the No-Subgoal Ablation, the synthesis model generates a single-step program,
executes it, and updates the task specification using the execution results. This iterative process cre-
ates new subtask inputs for subsequent steps. The primary difference between the two settings lies
in how the models are trained. The No-Subgoal Ablation model is trained to predict subprograms
using the ground truth subtask inputs and the task outputs. This forces the model to implicitly infer
both decomposition strategies and program generation, making the learning process more entan-
gled. In contrast, the Synthesizer Model used in REGISM is trained to predict subprograms using
ground truth subtask inputs and subtask outputs, as it is originally designed for use with ExeDec’s
decomposition model. Consequently, the Synthesizer Model is trained to focus purely on program
generation without the added complexity of decomposition. During testing, when subtask outputs
are unknown, both models receive subtask inputs and task outputs as input. This distinction in train-
ing objectives enables us to assess the impact of explicitly supervising decomposition strategies, as
done in ExeDec, compared to relying purely on program synthesis, as in REGISM.

3.3 EVALUATION

3.3.1 DOMAINS

String Manipulation The RobustFill domain, introduced by Devlin et al. (2017), focuses on syn-
thesizing sequences of string manipulation operations. Given I/O string pairs, the goal is to generate
programs that transform inputs into corresponding outputs using a DSL (Appendix B). The DSL in-
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cludes functions for extracting substrings, modifying strings, and composing operations by applying
modifications to prior results. It also supports constant string characters. RobustFill programs are
structured as concatenations of largely independent expressions, except for the Compose operation,
which applies a function to another’s result. This weak interdependence among subtasks reduces
the combinatorial space, simplifying task decomposition learning. However, it also limits error
correction during synthesis, making precise decomposition and implementation critical for correct
program generation.

List Manipulation The Deepcoder domain (Balog et al., 2016) addresses tasks involving integer list
manipulations. Its DSL includes both first-order and higher-order operations. Details can be found
in Appendix B. Tasks in this domain can have multiple inputs, and the outputs are defined as either
a list of integer values, an integer, or a boolean value. Programs follow a line-by-line structure,
where each expression relies on an input variable and/or the result of a previous expression as its
input. Such a framework mirrors the way humans typically construct programs. The domain’s line-
by-line style enables error correction yielding an expansive combinatorial space and various task
decomposition strategies contributing to its inherent complexity.

3.3.2 EXPERIMENTAL SETUP

For a fair comparison with ExeDec, REGISM invokes the Synthesizer Model the same number of
times as ExeDec’s Subgoal Model decomposes the task, with all approaches using a beam size of
ten. Furthermore, we used the same 1,000 test tasks, the pretrained models, and DSLs from the
original ExeDec study (Shi et al., 2023b)1. Details on the creation of the test tasks can be found
in Appendix C. Five different initalizations were used per task category. Results are displayed as
averages across those initializations, and error bars denote the 95% confidence interval

In addition to ExeDec and REGISM, we evaluate the Synthesizer Model itself to assess the effect
of step-by-step as opposed to single-step generation. In summary, we compare ExeDec against
these approaches: First, in the No-Subgoal Ablation setting, the synthesis model is trained to predict
the subprogram using the subtask inputs and the task output. This setup requires the model to
simultaneously learn both decomposition strategies and general-purpose problem-solving abilities.
Second, in REGISM, the Synthesizer Model is trained to predict the subprogram using the in- and
outputs of the subtask. This approach focuses exclusively on enabling the model to generate a
program based on the provided specifications. Third, we evaluate the Synthesizer Model itself by
invoking it only once per task.

4 RESULTS & DISCUSSION

Our analysis is motivated by the hypothesis that the Subgoal Model plays a nuanced role in boosting
ExeDec’s performance. Specifically, we hypothesize that the repeated invocation of the Synthesizer
Model is the major driving factor behind task completion, rather than the Subgoal Model itself.

4.1 DOMAIN DIFFERENCES AND QUALITY OF THE SUBGOAL MODEL

To evaluate ExeDec’s ability to learn task decompositions, we analyze its performance relative to
the ground truth. Figure 3 presents a density plot illustrating the distribution of solved tasks. The
x-axis represents the subtask accuracy per task, measured as the overlap between predicted sub-
tasks and ground truth subtasks. The y-axis indicates subprogram accuracy, defined as the overlap
between predicted programs and the ground truth solutions. Each task’s position in the plot re-
flects its accuracy: for a task requiring four decomposition steps, if ExeDec correctly predicts two
subtask specifications and solves three subtasks with ground-truth-matching programs, it appears
at (x = 50%, y = 75%). Consequently, the density plot highlights distinct solution patterns. In the
top-right quadrant, both subtasks and subprograms closely align with the ground truth. The bottom-
right region represents cases where subtasks mostly match the ground truth, but subprograms differ
due to alternative syntactic implementations. The bottom-left quadrant contains instances where
both subtasks and subprograms deviate from the ground truth. Finally, in the top-left region, sub-

1https://github.com/google-deepmind/exedec
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Figure 3: Tasks solved by ExeDec, clustered based on subtask and subprogram accuracy. The x-axis
represents subtask accuracy per task (overlap between predicted and ground truth subtasks), while
the y-axis indicates subprogram accuracy (overlap between predicted programs and ground truth
solutions). Values are averaged across compositional generalization categories, based on 8,900+
solved tasks in DeepCoder and 26,000+ in RobustFill.

programs align closely with the ground truth while subtasks differ. This visualization provides
insight into the semantic and syntactic accuracy of ExeDec’s solutions.

Ambiguous Performance of the Subgoal Model In the Robustfill domain, the majority of tasks
is clustered in the bottom and top right quadrant, i.e., subtasks are predicted as intended by the
ground truth but the implementation differs, showcasing the Subgoal Model’s accuracy in learning
decompositions. A smaller portion of task solutions stretches along the main diagonal. These tasks
are solved using - at least partially - alternative decompositions. In the Deepcoder domain, a small
cluster exists in the top-right corner, indicating tasks solved as intended by the ground truth. Yet,
the majority of tasks is solved by using alternative decompositions and implementations (bottom-
left corner). In the ExeDec study, the authors hypothesize that the low subgoal accuracy is caused
by slight deviations in the predicted subgoals that the Synthesizer Model compensates for (top-left
quadrant). However, as most subtasks are also solved using alternative programs, our results indicate
a solution strategy deviating from the ground truth. Although the tasks are ultimately solved, these
results question whether the Subgoal Model plays a crucial role in achieving this. Plots displaying
each compositional generalization category separately can be found in Appendix D.

More Frequent Invocation of the Synthesizer Model The nuanced role of ExeDec’s Subgoal
Model is further supported by its tendency to decompose tasks into a greater number of subtasks
than those specified by the ground truth in the Deepcoder domain (Figure 4). This increased number

Figure 4: Comparison of the number of decompositions of task solution in the DeepCoder domain
using ExeDec.
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of decompositions leads to more frequent invocation of the Synthesizer Model, which seems to be
the primary factor driving the observed performance improvements.

Domain differences In contrast, in the Robustfill domain, the number of decompositions closely
aligns with the ground truth (Figure 13b). This distinct difference can be attributed to the varying
difficulty of learning decomposition across the two domains. Given that the Deepcoder domain bet-
ter aligns with how humans approach coding and the Subgoal Model performs significantly worse in
this domain, we focus on the Deepcoder domain in the subsequent experiments to better understand
the reasons behind its performance.

4.2 REGISM AS A DRIVING FORCE IN BOOSTING PERFORMANCE

REGISM performs close to ExeDec on average To assess the impact of repeated Synthesizer
Model invocation, we evaluate REGISM on the same tasks as ExeDec. As shown in Figure 5,
REGISM outperforms the standalone Synthesizer Model, highlighting the benefits of execution
guidance and repeated invocation. ExeDec achieves higher accuracy on the training distribution and
in tasks requiring the composition of different concepts. REGISM struggles with length generaliza-
tion, likely due to its single-step training paradigm, which makes deriving correct subprograms for
multi-step tasks more challenging. However, when excluding length generalization tasks, REGISM
performs only slightly worse than ExeDec, suggesting that repeated invocation is a key factor in
solving tasks. While ExeDec’s decomposition strategies improve performance in some categories,
they offer limited or no advantage in others and can even hinder performance in certain cases. The
comparable performance of REGISM and ExeDec indicates that task-solving effectiveness primarily
stems from repeated invocation, independent of explicit or implicit decomposition guidance.

REGISM solves tasks closer to the ground truth To gain a better understanding of how REGISM
solves tasks, we again perform a qualitative analysis of the task solutions. As shown in Figure 6,
REGISM closely approximates the ground truth number of decompositions. Comparing REGISM’s
results to ExeDec (Figure 4), the tasks solved by REGISM proof to be of similar difficulty to those
solved by ExeDec because the number of ground truth decompositions is comparable. Moreover,
REGISM solves tasks in about as many iterations as decompositions are intended by the ground
truth, i.e., in significantly fewer steps than ExeDec. This indicates that REGISM solves tasks closer

Figure 5: Compositional generalization results using a beam size of 10. End-to-end test accuracy
resembles the relative number of solved test tasks.
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Figure 6: Frequency of invoking the Synthesizer Model in REGISM relative to the number of ground
truth decompositions in the Deepcoder domain.

to the ground truth solution thus raising the hypothesis that REGISM’s inherent decompositions are
closer to the ground truth decomposition than the explicit ones of ExeDec. To investigate this, Fig-
ure 7 depicts the subprogram accuracy against the overlap with the ground truth decomposition after
executing the subprograms generated by REGISM. This analysis is further split by tasks solved
by both approaches or exclusively by either approach. Our findings reveal several notable patterns:
REGISM’s task solutions tend to spread along the main diagonal. There is one prominent cluster
at the right edge of each plot, where all subtasks align with the ground truth decomposition. To a
similar but lesser extent than in ExeDec, REGISM’s largest cluster is located in the bottom-left quad-
rant. However, REGISM’s solutions exhibit a more uniform distribution along the x-axis compared
to ExeDec, whose distribution is distinctly shifted toward lower subtask accuracies. This effect is
slightly more pronounced for tasks solved exclusively by REGISM than for those solved by both
approaches. These findings indicate that the Synthesizer Model within REGISM generates solutions
closer to the ground truth than ExeDec despite not being explicitly or implicitly trained for this
purpose. However, for both approaches, the quality of decompositions does not differ significantly
between tasks solved exclusively and those solved by both methods. This finding leaves open the
question of why ExeDec solves certain tasks that REGISM does not, especially when the predicted
subgoals in those tasks are not more precise than in tasks solved by REGISM, and vice versa.

Figure 7: Average densities of ExeDec and REGISM across all compositional generalization cate-
gories and initializations. No clear differences between exclusively and non-exclusively solved tasks
can be seen.
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4.3 LIMITATIONS

While our findings highlight REGISM as a key component of ExeDec, two limitations warrant
consideration. First, our evaluation is restricted to a single domain, which limits the generalizability
of the results. Second, only one decomposition approach was tested, leaving open the question of
how alternative methods might influence performance.

5 RELATED WORK

Programming-by-Example Neural networks play a crucial role in guiding program synthesis for
PBE (Balog et al., 2016; Yin & Neubig, 2017; Lee et al., 2018). Many approaches divide synthesis
into multiple steps, enabling iterative refinement or task planning. Search-based methods include
top-down approaches that recursively expand partial solutions (Nye et al., 2019) and bottom-up
methods that solve smaller subproblems before combining them into complete programs (Shi et al.,
2022; 2023a; Odena et al., 2020). Planning-based techniques first generate abstract program struc-
tures, which are later refined into executable code (Murali et al., 2017; Nye et al., 2019; Chen et al.,
2020; Hong et al., 2021; Klinger et al., 2023; Prasad et al., 2023; Zhang et al., 2023; Cano et al.,
2023). Execution-guided approaches iteratively refine programs using intermediate feedback, such
as partial executions or state traces (Ellis et al., 2019; Chen et al., 2018; Shrivastava et al., 2021).
Recent advances in Large Language Models have further improved program synthesis by leveraging
pre-training on large-scale corpora of code and natural language (Li & Ellis, 2024; Li et al., 2024;
Tang et al., 2024). These models enhance synthesis frameworks by capturing semantic and structural
patterns of code, aiding in both program generation and refinement.

Decomposition-based Program Synthesis Multi-step synthesis methods inherently break tasks into
subtasks as part of their iterative process. In contrast, decomposition approaches explicitly partition
a task before leveraging this structure to improve synthesis. Some methods model relationships
between subprograms, enabling relational reasoning to identify dependencies and shared structures
across subtasks (Hocquette & Cropper, 2023; Hocquette et al., 2024; Hocquette & Cropper, 2024).
Similarly, hierarchical composition techniques systematically construct programs by progressively
assembling higher-level abstractions from lower-level components (Liu et al., 2023).

6 CONCLUSION

Our results highlight ExeDec’s strong performance in the Robustfill domain, where learning decom-
positions is more straightforward. At the same time, we demonstrate that the Synthesizer Model
plays a critical role in enhancing program synthesis performance in the Deepcoder domain, even
in the absence of both explicit and implicit decomposition guidance. Our findings further reveal
that the Synthesizer Model inherently decomposes tasks, despite not being explicitly trained for this
purpose. Thus, traditional performance metrics, such as the number of solved tasks, are insufficient
for isolating the contributions of the decomposition model from those of the synthesis model. To
more effectively attribute performance gains to each component, our work proposes using REGISM
as an ablation method.

Hybrid approaches that integrate transductive and inductive strategies have shown promise in im-
proving program synthesis (Li et al., 2024). ExeDec exemplifies such a hybrid model, where the
Subgoal Model represents the transductive component and the Synthesizer Model embodies the in-
ductive aspect, working together to enable compositional generalization. Our results show that both
REGISM and ExeDec successfully solve a diverse range of tasks, suggesting potential benefits of
framing ExeDec as a hybrid approach. However, identifying the specific conditions under which
this combination is most effective remains an open question for future research.
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APPENDIX A FURTHER EXEDEC EXAMPLES

Task specification: {x0 = [42,−48] → y = [42, 42], x0 = [−35,−21] → y = [−35,−21],
x0 = [39, 32]→ y = [39, 39]}
Ground Truth: y = Scanl1 (max) x0

Step 1:
• Predicted Subgoals: [−48, 42], [−35,−21], [32, 29]
• Subprogram: x1 = Sort x0

• Update: x1 = [−48,−42], x1 = [−35,−21], x1 = [32, 39]
Step 2:

• Predicted Subgoal: [48, 42], [−35,−21], [39, 39]
• Subprogram: x2 = Zip (max) x0 x1

• Execution: x2 = [42, 42], x2 = [−35,−21], x2 = [39, 39]

(a) Task 1

Task specification: {x0 = 1|x1 = [−2,−25, 1]→ y = [−2,−2, 1], x0 = 5|x1 = −4→ y = −4,
x0 = 2|x1 = [−28,−15]→ y = [−28,−15]}
Ground Truth: y = Scanl1 (max) x0

Step 1:
• Predicted Subgoals: [−25,−2, 1], −4, [−28,−19]
• Subprogram: x2 = Sort x1

• Update: x2 = [−25,−2, 1], x2 = −4, x2 = [−28,−19]
Step 2:

• Predicted Subgoal: [−25,−23,−24], −4, [−28,−13]
• Subprogram: x3 = Scanl1 (-) x2

• Execution: x3 = [−25,−23,−24], x2 = −4, x2 = [−28,−13]
Step 3:

• Predicted Subgoal: [−25,−2, 22], −4, [−28,−15]
• Subprogram: x4 = Scanl1 (-) x3

• Execution: x4 = [−25,−2, 22], x2 = −4, x2 = [−28,−15]
Step 4:

• Predicted Subgoal: [−25,−25, 1], −4, [−28,−15]
• Subprogram: x5 = Zip (min) x1 x4

• Execution: x5 = [−25,−25, 1], x2 = −4, x2 = [−28,−15]
Step 5:

• Predicted Subgoal: [−2,−25, 1], −4, [−28,−15]
• Subprogram: x6 = Zip (max) x1 x5

• Execution: x6 = [−2,−25, 1], x6 = −4, x6 = [−28,−15]
Step 6:

• Predicted Subgoal: [−2,−2, 1], −4, [−28,−15]
• Subprogram: x7 = Zip (max) x2 x6

• Execution: x7 = [−2,−2, 1], x7 = −4, x7 = [−28,−15]
(b) Task 2

Figure 8: Examples from the Deepcoder domain displaying the struggles of misleading subtasks.
Both tasks can be solved with a single-step function that computes the cumulative maximum from
the input list.
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APPENDIX B ROBUSTFILL AND DEEPCODER DSLS

Both DSLs were taken from the original ExeDec study (Shi et al., 2023b).

Program P := Concat(e1, e2, . . .)
Expression e := s | m | o | ConstStr(c)

Compose o := m1(m2) | m(s)
Substring s := SubStr(k1, k2) | GetSpan(r1, i1, b1, r2, i2, b2)

| GetUpto(r, i) | GetFrom(r, i) | GetToken(r, i)
Modification m := ToCase(a) | Replace(c1, c2) | Trim()

| GetFirst(r, i) | GetAll(r)
| Substitute(r, i, c) | SubstituteAll(r, c)
| Remove(r, i) | RemoveAll(r)

Regex r := NUMBER | WORD | ALPHANUM | ALL CAPS | PROPER CASE
| LOWER | DIGIT | CHAR | δ

Case a := ALL CAPS | PROPER CASE | LOWER
Position k := −100 | − 99 | . . . | − 1 | 0 | 1 | 2 | . . . | 100

Index i := −5 | − 4 | . . . | − 1 | 1 | 2 | . . . | 5
Boundary b := START | END
Character c := A | . . . | Z | a | . . . | z | 0 | . . . | 9 | δ
Delimiter δ := & , . ? ! @ () [] % # $ " ´

Figure 9: String manipulation functions that can be used to solve tasks from the Robustfill domain.

Program P := i1; i2; . . . ; a1; a2; . . .

Initialization i := v ← INPUT

Assignment a := v ← f | v ← h

First-Order Operation f := Head(l) | Last(l) | Access(n, l) | Minimum(l) | Maximum(l)
| Sum(l) | Take(n, l) | Drop(n, l) | Reverse(l) | Sort(l)

Higher-Order Operation h := Map(λ, l) | Filter(β, l) | Count(β, l) | Zip(Σ, l, l)
| Scanl1(Σ, l)

int→ int Lambda λ := (+1) | (−1) | (∗2) | (/2) | (∗(−1)) | (∗ ∗ 2) | (∗3) | (/3) | (∗4) | (/4)

int→ bool Lambda β := (> 0) | (< 0) | (%2 == 0) | (%2 == 1)

(int, int)→ int Lambda Σ := (+) | (−) | (∗) | (min) | (max)

Integer Variable n := v

List Variable l := v

Variable Name v := x1 | x2 | . . .

Figure 10: First and Higher-Order Functions contained in the DSL for the Deepcoder domain.

APPENDIX C BENCHMARK CREATION

Shi et al. (2023b) define tasks based on compositional generalization categories by structuring pro-
grams according to their length and the concepts they employ.

13



Published as a workshop paper at the DL4Code Workshop at ICLR 2025

C.1 ROBUSTFILL

In the Robustfill domain, each program is composed of concatenated subprograms, and program
length is determined by the number of these subprograms.

• Length Generalization: Training tasks consist of programs with lengths ranging from 1 to
6, while testing tasks feature longer programs with lengths between 7 and 10.

• Compose Different Concepts: The operations are categorized into two concepts: substring-
related operations form the “substring concept,” while modification operations and constant
strings belong to the “non-substring concept” (excluding the Compose operation). Both
training and testing programs have lengths between 2 and 6.

• Switch Concept Order: Training tasks enforce a structure where the first half of the sub-
programs belong to the substring concept, and the latter half to the non-substring concept.
In testing tasks, this order is reversed. Program lengths remain between 2 and 6.

• Compose-New-Operation: A quarter of the training tasks are single-subprogram programs
that exclusively contain the Compose operation. The remaining training tasks consist of
programs of length 2-6 without Compose. Testing tasks include length 2-6 programs that
incorporate the Compose operation.

• Add Operation Functionality: Training tasks consist of programs of length 1-6 where sub-
string operations are never used within the Compose operation. Testing tasks maintain the
same length range but include cases where substring operations appear within Compose.

C.2 DEEPCODER

In the Deepcoder domain, programs are line-by-line and task length is defined as the number of
non-input lines in the program.

• Length Generalization: Training tasks consist of programs with lengths between 1 and 4,
while testing tasks feature programs of length 5.

• Compose Different Concepts: Operations are divided into two categories: the first concept
includes all first-order operations and the Map operation, while the second concept consists
of all higher-order operations. Both training and testing programs have lengths between 1
and 4.

• Switch Concept Order: Training tasks follow a structure where the first half of the sub-
programs belong to the first-order operations and Map concept, while the latter half use
higher-order operations. In testing tasks, this order is reversed. Program lengths remain
between 1 and 4.

• Compose New Operation: A quarter of the training tasks consist of length 1 programs that
exclusively contain the Scanl1 operation. The remaining training tasks include length
2-4 programs that do not use Scanl1. Testing tasks include length 2-4 programs that
incorporate the Scanl1 operation.

• Add Operation Functionality: Training tasks consist of programs of length 1-4, where
Scanl1 is only applied with the lambda functions (-) and (min). In testing tasks,
Scanl1 is used with additional lambda functions (+), (*), and (max).

APPENDIX D COMPOSITIONAL GENERALIZATION ANALYSIS

In the Robustfill domain, the majority of tasks is concentrated along x = 100%, representing tasks
where subtasks are predicted as intended by the ground truth but the implementation differs, show-
casing the Subgoal Model’s accuracy in learning decompositions (Figure 11). The densities de-
crease as you move towards the bottom-left corner, indicating fewer cases that deviate semantically
and syntactically from the ground truth. Yet, these tasks are solved using - at least partially - alter-
native decompositions. Interestingly, the densities do not differ clearly between the compositional
generalization tasks, even though the performance varies significantly.

In the Deepcoder domain (Figure 12), four distinct clusters can be observed. While small clusters
exist in the top-right corner, indicating tasks solved as intended by the ground truth, most tasks are
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(a) Test on training distribution (b) Length generalization (c) Compose different concepts

(d) Switch concept order (e) Compose new operation (f) Add operation functionality

Figure 11: Tasks solved in the Robustfill domain, clustered across subtask and subprogram accuracy.

solved by using alternative decompositions and implementations (bottom-left corner). Again, no
clear differences between the compositional generalization tasks exist. Yet, the subgoal accuracy
distribution is more uniform when tested on the training distribution. This indicates that the Subgoal
Model can learn and apply decomposition patterns in this task category more easily.

The differences between the Robustfill and Deepcoder domains are evident in the decomposition
process. This becomes again clear when comparing the number of decompositions to the ground
truth. In the Robustfill domain, the number of predicted decompositions aligns closely with the
ground truth, where the predicted solutions almost exactly match the number of decompositions
required by the target solution (Figure 13b). This suggests that the solutions closely match the
target program, likely due to the relatively straightforward nature of decomposition learning in the
Robustfill domain. In contrast, ExeDec’s Subgoal Model in the Deepcoder domain decomposes
tasks into significantly more subtasks than specified by the ground truth (Figure 4). This leads
to more frequent invocations of the Synthesizer Model, which appears to be a key driver of the
observed performance improvements. The increased number of decompositions reflects the greater
challenge of learning decomposition in the Deepcoder domain, where tasks often require a more
nuanced understanding and finer granularity of subgoal generation.

Furthermore, the simpler structure of the Robustfill domain, where intermediate states remain con-
stant, contrasts with Deepcoder’s dynamic intermediate states and complex task structures. This
dynamic nature better mirrors how humans approach coding tasks. However, the Subgoal Model
performs significantly worse in the Deepcoder domain, highlighting challenges in capturing this
human-like reasoning. Due to the ambiguous performance of the Subgoal Model in the Deepcoder
domain, we focused on this domain in subsequent experiments to better understand the factors in-
fluencing its behavior and to explore potential enhancements.
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(a) Test on training distribution (b) Length generalization (c) Compose different concepts

(d) Switch concept order (e) Compose new operation (f) Add operation functionality

Figure 12: Tasks successfully solved in the Deepcoder domain, clustered according to subtask- and
subprogram-level accuracy.

(a) Deepcoder Domain

(b) Robustfill Domain

Figure 13: Comparison of the number of decompositions performed by ExeDec across different
domains.
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