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Abstract

Constrained non-convex optimization is fundamentally challenging, as global
solutions are generally intractable and constraint qualifications may not hold.
However, in many applications, including safe policy optimization in control and
reinforcement learning, such problems possess hidden convexity, meaning they
can be reformulated as convex programs via a nonlinear invertible transformation.
Typically such transformations are implicit or unknown, making the direct link
with the convex program impossible. On the other hand, (sub)-gradients with
respect to the original variables are often accessible or can be easily estimated,
which motivates algorithms that operate directly in the original (non-convex)
problem space using a standard (sub)-gradient oracle. In this work, we develop the
first algorithms that provably solve such non-convex problems to global minima.
Surprisingly, despite non-convexity, our methodology does not require constraint
qualifications and achieves complexities matching those for unconstrained hidden
convex optimization.

1 Introduction

Non-convex constrained optimization problems (with possibly non-smooth objectives and constraints)
arise frequently in many modern applications. In this work, we study a sub-class of non-convex
problems of the form

min
x∈X

F1(x), s.t. F2(x) ≤ 0, (1)

where X ⊂ Rd is a closed convex set, and F1, F2 are possibly non-convex with respect to variable x.
A central running assumption in this work is that problem (1) admits a convex reformulation

min
u∈U

H1(u), s.t. H2(u) ≤ 0 (2)

via variable change: u = c(x),
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(a) Non-Convex Formulation. Level sets of F1 and
the feasible set {F2 ≤ 0} in the X -domain.

(b) Convex Reformulation. Level sets of H1 and the
feasible set {H2 ≤ 0} in the U-domain.

Figure 1: Constrained Geometric Programming problem [Eck80; BKV+07; Xia20] with F1(x) :=
x1 ·x2+

4
x1

+ 1
x2

constrained to the set {F2 ≤ 0} := {x ∈ X | F2(x) ≤ 0} with F2(x) := x1 ·x2−1

is an example of a smooth hidden convex problem under the transformation c(x) := (log x1, log x2)
⊤.

We use the notation x∗
global to denote the global optimum of minx F1(x) without constraints and x∗

to denote the minimizer under constraints, with u∗
global and u∗ respectively in U . The gray region

denotes the feasible set and the objective value of F1 is illustrated in color.

where H1, H2 are convex functions defined over a closed convex set U ⊂ Rd, and c : X → U
is an invertible map (with c−1 denoting its inverse). This property, often referred to as hidden
convexity, appears in diverse applications, including policy optimization in optimal control [SF21;
ADL+19; FP21; ZPT23; WZ25] and reinforcement learning [ZKB+20; BFH23; YGL+24], variational
inference [WG24; SFH25], generative models [KPB21], supply chain and revenue management
[FS18; CHH+25], geometric programming [Xia20], neural network training [Bac17; WLP22], and
non-monotone games [VFP21; MSG+22; SVM+23; DVL+25], to name a few. A simple instance of
a hidden convex constrained problem is illustrated in Figure 1, while Appendix A provides further
details on a key motivating example in the context of constrained reinforcement learning.

In this work, we analyze the Proximal Point Method (PPM) for hidden convex problems under
hidden convex constraints, establishing a last iterate convergence rate of Õ

(
ε−1

)
proximal point

evaluations to achieve (ε, ε)-approximate global minima, i.e., F1(x
(N))− F ∗

1 ≤ ε, F2(x
(N)) ≤ ε.

Next, we carefully approximate the PPM using existing algorithms for strongly convex constrained
optimization. In particular, in non-smooth setting, we use switching sub-gradient method as inner
solver to derive Õ

(
ε−3

)
oracle complexity without any constraint qualification assumptions (CQs).

In smooth setting, we use accelerated constrained gradient method to further improve the above result
to Õ

(
ε−2

)
(and Õ

(
θ−1ε−1

)
) oracle complexity without any CQs (and with θ-Slater condition). In

addition, in the non-smooth setting our gradient complexity improves the previously known ones for
simpler unconstrained hidden convex problems from Õ

(
ε−6

)
to Õ

(
ε−3

)
using a different algorithm.

See Table 1 for a summary.

Contribution. Constrained proximal point method (PPM) analysis with last iterate
convergence results without requiring any constraint qualification assumptions.

2 Notation, assumption and problem formulation

A map c : X → U is invertible if there exists c−1 : U → X such that c−1(c(x)) = x and
c(c−1(u)) = u for all x ∈ X , u ∈ U . A function Fi : X → R is ρ-weakly convex (ρ-WC) if
for all y ∈ X , the function Fi,ρ(x, y) := Fi(x) +

ρ
2∥x − y∥2 is convex in x ∈ X . The (Fréchet)

subdifferential at x ∈ X is ∂Fi(x) := {gi ∈ Rd | Fi(y) ≥ Fi(x)+⟨gi, y−x⟩+o(∥y−x∥),∀y ∈ Rd},
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Smoothness Setting Method Complexity

Non-smooth
F2(·) ≡ 0 Sub-gradient Method (SM) Õ

(
ε−6

)
[FHH24]

F2(·) ≡ 0 PP + SM Õ
(
ε−3

)
F2(·) ̸≡ 0 PP + Switching Sub-gradient Õ

(
ε−3

)
L-smooth

F2(·) ≡ 0 Gradient Descent Õ
(
ε−1

)
[ZKB+20; FHH24]

F2(·) ̸≡ 0 PP + ACGD Õ
(
ε−2

)
or Õ

(
θ−1ε−1

)
(θ is Slater’s gap)

Table 1: Summary of total (sub-)gradient and function evaluation complexities under hidden
convexity. The “Setting” column distinguishes between unconstrained (F2(·) ≡ 0) and constrained
(F2(·) ̸≡ 0) problems. The third column reports the number of (sub-)gradient (and function, when
F2( · ) ̸≡ 0) evaluations to find a point x(N) such that F1(x

(N)) − F ∗
1 ≤ ε, F2(x

(N)) ≤ ε. The
complexity of SM in [FHH24] is stated in terms of the Moreau envelope and suffers a loss in
complexity when translated to the original objective in the non-smooth setting, see the discussion
after Corollary 1 therein. “PP” stands for Proximal Point method, Algorithm 1, “ACGD” refers to
Accelerated Constrained Gradient Descent.

and its elements gi ∈ ∂Fi(x) are called subgradients. A differentiable function Fi is L-smooth on
X ⊂ Rd if its gradient is L-Lipschitz, i.e., ∥∇Fi(x)−∇Fi(y)∥ ≤ L∥x− y∥, for all x, y ∈ X .
Assumption 1. We first make the following (standard) assumptions:

1. The functions F1, F2 are ρ-weakly convex.

2. The functions F1, F2 satisfy for all x ∈ X that ∂F1(x) ̸= ∅, ∂F2(x) ̸= ∅ on X , and the
norms of the subgradients are uniformly bounded by ∥g1∥ ≤ GF1 , ∥g2∥ ≤ GF2 for all
x ∈ X , g1 ∈ ∂F1(x) and g2 ∈ ∂F2(x) respectively. We define G := max{GF1 , GF2}.

3. The domain U has bounded diameter DU > 0.

Definition 1 (Hidden Convexity). The problem (1) is called hidden convex with modulus µc > 0, if
its components satisfy the following underlying conditions.

1. The domain U = c(X ) is convex, the functions H1, H2 : U → R are convex, i.e. satisfy for
i = 1, 2 and for all u, v ∈ U and λ ∈ [0, 1]

Hi((1− λ)u+ λv) ≤ (1− λ)Hi(u) + λHi(v). (HC-1)

Additionally, we assume (1) admits a solution u∗ ∈ U with its corresponding objective
function value F ∗

1 := H1(u
∗) = F1(c

−1(u∗)).

2. The map c : X → U is invertible and there exists a µc > 0 such that for all x, y ∈ X it
holds

∥c(x)− c(y)∥ ≥ µc∥x− y∥. (HC-2)

Note that the condition (HC-2) along with Assumption 1 (Item 3) imply that the domain X has
bounded diameter DX ≤ 1

µc
DU .

3 Proximal Point Method (PPM) under Hidden Convexity

We want to analyze the inexact Proximal Point Method (IPPM), which solves in each iteration
k ∈ [N ] the following (strongly convex) problem

x(k+1) ≈ x̂(k+1) := argmin
x∈X

φ
(k)
1 (x) := F1(x) +

ρ̂

2
∥x− x(k)∥2,

s.t. φ(k)
2 (x) := F2(x) +

ρ̂

2
∥x− x(k)∥2 ≤ τ.

(HC-IPPM)
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Here, x̂(k+1) denotes the exact solution to the subproblem, and x(k+1) is an approximate solution.

Algorithm 1 IPPM(F1, F2, x
(0), ε, τ,N, ρ̂)

Inexact Proximal Point Method for (1)

1: Input: Objective F1, constraint F2, initial point x(0) ∈ X ∩{F2( · ) ≤ τ}, accuracy ε, constraint
violation budget τ , outer loops N , inner (feasible) algorithm A, regularization parameter ρ̂ > ρ

2: for iteration k = 0, 1, . . . , N − 1 do
3: Define

φ
(k)
i (x) := Fi(x) +

ρ̂

2
∥x− x(k)∥2, i = 1, 2, x ∈ X

4: Find x(k+1) ← Aεin(φ
(k)
1 , φ

(k)
2 , x(k), Tin, τ) as an approximate solution to (HC-IPPM)

5: end for
6: Return: x(N)

Suppose the algorithm Aεin solves (HC-IPPM) (εin, 0)-optimally for any target precision εin > 0,
i.e.

φ
(k)
1 (x(k+1))− φ

(k)
1 (x̂(k+1)) ≤ εin,

φ
(k)
2 (x(k+1))− τ ≤ 0.

(IPPM-Feas)

Theorem 1 (Inexact PPM). Assume that (1) is hidden convex and Assumption 1 holds. Let x(0) be
τ–feasible for (1) and algorithm Aεin initialized with a feasible point x(k) outputs a point x(k+1)

satisfying (IPPM-Feas) after Tin = Tin(εin) (sub)-gradient and function evaluations. Given a lifting
parameter ρ̂ > ρ and a desired tolerance ε > 0 for the optimality gap, assume that ε ≤ 3ρ̂D2

U
2µ2

c
and

τ ≤ ρ̂D2
U

2µ2
c

hold. Then setting ρ̂ := 2ρ and εin ≤ (α ε)/3, the last iterate of Algorithm 1 satisfies

F1(x
(N))− F ∗

1 ≤ ε, F2(x
(N)) ≤ τ (IPPM-Opt)

after N ≥ max
{

3ρD2
U

µ2
cε

,
2ρD2

U
µ2
cτ

}
· log

(
3∆0

ε

)
iterations, where ∆0 := F1(x

(0))−F ∗
1 . The total oracle

complexity is given by

Ttot ≥ N · Tin(εin) = max

{
3ρD2

U
µ2
cε

,
2ρD2

U
µ2
cτ

}
· log

(
3∆0

ε

)
· Tin(εin).

We compute the total oracle complexity bounds, including the complexity Tin(εin) to solve the inner
IPPM subproblem, in Table 1. We use Switching Sub-gradient [Pol67; LZ20; JG25] and Accelerated
Constrained Gradient Descent [ZL22] methods for inner solvers.

Proof sketch:

1. Initialization. Assume x(0) is τ -feasible for (1), i.e., F2(x
(0)) ≤ τ . If not, a simple gradient

method on F2 finds such a point in Õ(1/τ) gradient evaluations in the smooth case or
Õ
(
1/τ3

)
in the non-smooth case; this does not change the overall complexity.

2. Feasibility preservation. If x(k) is τ -feasible for (1), it is (trivially) feasible for (HC-IPPM).
Running a feasible inner method on (HC-IPPM) from x(k) yields φ(k)

2 (x(k)) ≤ τ and hence
F2(x

(k)) ≤ τ . Thus all outer iterates remain τ -feasible for (1).

3. Slater points for subproblems. Define x(k)
α := c−1

(
(1−α)c(x(k))+αc(x⋆)

)
. For sufficiently

small α (relative to τ ), the point x(k)
α is strictly feasible for (HC-IPPM). This proves the

Slater condition for (HC-IPPM) at each iteration k ≥ 0 and allows us to apply a feasible
method to solve this subproblem.

4. Optimality Improvement. It remains to build a PPM recursion similar to analysis in [FHH24]
to guarantee the improvement in F1, up to errors from inexact inner solvers.
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Constructing the Slater points in step 3. of the above analysis is the key ingredient allowing conver-
gence of IPPM in Theorem 1. Now we formalize our “HC–Slater lemma”, which verifies the PPM
subproblems (HC-IPPM) satisfy the Slater condition under a suitable reference point x(k).

Lemma 1 (HC–Slater lemma). Assume that (1) is hidden convex, Assumption 1.3 holds and x(k) is
τ–feasible for (1). Then

1. (HC-IPPM) satisfies ατ
2 –Slater condition with α ≤ min

{
1,

µ2
cτ

ρ̂D2
U

}
.

2. If, additionally, (1) satisfies θ–Slater condition, then (HC-IPPM) satisfies βθ
2 –Slater condi-

tion with β ≤ min
{
1,

µ2
cθ

ρ̂D2
U

}
.

Lemma 1 says that regardless whether (1) satisfies Slater condition, the Slater point for PPM sub-
problem (HC-IPPM) always exists. The proof of this result is deferred to Appendix B.2.
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A Detailed Motivating Example: Convex Constrained Markov Decision
Process (CCMPD) [ZKB+20]

Convex reinforcement learning (RL) under convex constraints generalizes the classical (constrained)
RL setting. Based on a discounted constrained Markov Decision Process (CMDP) of the form
M(S,A,P, µ0, γ, r, c), where S and A denote the (finite) state and action spaces respectively,
P : S × A → ∆(S) represents the state-action transition probability kernel, µ0 is the initial state
distribution and γ ∈ (0, 1) is the discount factor. Based on the reward r : S × A → R and the
penalty cost c : S × A → R classical RL is formulated in finding an optimal stationary policy
π : ∆(A)|S| → ∆(A) by maximizing the reward function while satisfying the constraint on the cost
function, i.e. formally

min
π∈Π

F1(π) := −Es0∼µ0,π

[ ∞∑
h=0

γhr(sh, ah)

]
,

s.t. F2(π) := Es0∼µ0,π

[ ∞∑
h=0

γhc(sh, ah)

]
≤ 0,

(CMDP)

where Π := ∆(A)|S| is the set of all stationary policies. This set is the product of simplices, which
admits an efficient projection.

Given a policy π, at each time h ∈ N, the agent is in a state sh and chooses an action ah ∼ π( · |sh),
resulting in a transition sh+1 ∼ P( · |sh, ah). With Pµ0,π we denote the induced probability distribu-
tion of the Markov chain (sh, ah)h∈N with an initial state distribution µ0. Under a transformation via
the state-action occupancy measure [SB18], defined by

λπ : S ×A → (0, 1), λπ(s, a) :=

∞∑
h=0

γhPµ0,π(sh = s, ah = a), (3)

the classical constrained RL problem becomes linear in the objective and the constraint, i.e. (CMDP)
is equivalent to minλ∈U ⟨r, λπ⟩ s.t. ⟨c, λπ⟩ ≤ 0, where U := {λπ | π ∈ Π}. Convex constrained RL
generalizes this optimization problem to

min
π∈Π

F1(π) := H1(λ
π),

s.t. F2(π) := H2(λ
π) ≤ 0,

(CCMDP)

where the utility functions H1, H2 : U → R are convex functions in λπ , but the resulting optimization
problem over the policy space Π is non-convex. Beyond the standard (CMDP), popular examples
of (CCMDP) encompass safe exploration, i.e. H1 is the negative entropy, under safety constraints,
e.g. staying close to an experts trajectory H2(λ

π) := ∥λπ − λπexp∥. Other instances include safe
apprenticeship learning and safe learning, see e.g., [GPL+21; MDD+22; ZOD+21] for details.

The problem (CCMDP) is hidden convex by construction with X = Π and c(x) := λπ , (with x = π).
As shown in [ZKB+20], the constant µc can be estimated under mild assumptions on the initial
distribution µ0. Note that in convex RL, we can control λπ only implicitly by changing the policy π,
i.e. via the policy gradient theorem, and thus, the exact computation of the transformation map and
its inverse would require the knowledge of the state-action transition probability kernel and can be
either computationally expensive or even intractable.

B Missing Proofs

B.1 Key inequalities for analysis under hidden convexity

Proposition 1 ([FHH24] Prop. 3). Let Fi( · ), i = 1, 2, be hidden convex with µc > 0. For any
α ∈ [0, 1] and x, y ∈ X , define xα := c−1((1− α)c(x) + αc(y)), then, for i = 1, 2, the following
functional inequality

Fi(xα) ≤ (1− α)Fi(x) + αFi(y), (HC-FI)
and norm inequality

∥xα − x∥ ≤ α

µc
∥c(x)− c(y)∥. (HC-NI)

hold.

8



B.2 Proof of HC–Slater Lemma

Proof. Part 1. Fix an iteration index k ∈ [N ], and for any α ∈ [0, 1] define

x(k)
α := c−1

(
(1− α)c(x(k)) + αc(x∗)

)
.

We will show that x(k)
α is a Slater point for subproblem (HC-IPPM). Indeed,

F2(x
(k)
α )+

ρ̂

2
∥x(k)

α − x(k)∥2 − τ

(i)

≤(1− α)F2(x
(k)) + αF2(x

∗) +
ρ̂

2
∥x(k)

α − x(k)∥2 − τ

(ii)

≤ (1− α)τ + α · 0 + ρ̂

2
∥x(k)

α − x(k)∥2 − τ

= −ατ +
ρ̂

2
∥c−1

(
(1− α)c(x(k)) + αc(x∗)

)
− c−1(c(x(k)))∥2

(iii)

≤ − ατ +
ρ̂

2

α2

µ2
c

∥c(x(k))− c(x∗)∥2

(iv)

≤ − ατ +
ρ̂

2
D2

U
α2

µ2
c

≤− α τ

2
< 0, (4)

where we used (HC-FI) for F2 in (i), τ -feasibility of x(k) in (ii), (HC-NI) in (iii), as well as the
boundedness of U domain in (iv). The last inequality follows by the choice of α.

Part 2. Let ȳ ∈ X be a θ–Slater point of (1), and for any k ∈ [N ], β ∈ [0, 1] define

ȳ
(k)
β := c−1

(
(1− β)c(x(k)) + βc(ȳ)

)
.

We will show that ȳ(k)β is a Slater point for subproblem (HC-IPPM). Indeed,

F2(ȳ
(k)
β ) +

ρ̂

2
∥ȳ(k)β − x(k)∥2 − τ

(i)

≤(1− β)F2(x
(k)) + βF2(ȳ) +

ρ̂

2
∥ȳ(k)β − x(k)∥2 − τ

(ii)

≤ (1− β)τ − β · θ + ρ̂

2
∥ȳ(k)β − x(k)∥2 − τ

(iii)

≤ − βθ +
ρ̂

2
∥c−1

(
(1− β)c(x(k)) + βc(ȳ)

)
− c−1(c(x(k)))∥2

(iv)

≤ − βθ +
ρ̂

2

β2

µ2
c

∥c(x(k))− c(ȳ)∥2

(v)

≤ − βθ +
ρ̂

2
D2

U
β2

µ2
c

≤− β θ

2
< 0, (5)

where we used (HC-FI) for F2 in (i), θ–Slater point in (ii), (1 − β)τ ≤ τ since β ≤ 1 in (iii),
(HC-NI) in (iv), as well as the boundedness of U domain in (v). The last inequality follows by the
choice of β.
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