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Abstract

This paper proposes a novel loss function called Tube Loss, developed for the
simultaneous estimation of the lower and upper bounds of a Prediction Interval
(PI) in regression problems, including probabilistic forecasting in autoregressive
frameworks. The PIs obtained through empirical risk minimization using Tube Loss
exhibit superior performance compared to those derived from existing approaches. A
theoretical analysis confirms that the estimated PIs asymptotically attain a user-
specified confidence level 1 − α.
A distinctive feature of Tube Loss is its ability to shift the PI along the support
of the response distribution through a tunable parameter, allowing the intervals to
better align with high-density regions of the distribution. This is especially valuable
for generating tighter intervals when the response distribution is skewed. Moreover,
the method allows further narrowing of PIs through recalibration.
Unlike several prior techniques, the empirical risk associated with Tube Loss can be
efficiently optimized via gradient descent. Extensive experiments demonstrate the
robustness and accuracy of the proposed method in delivering high-quality PIs across
a range of models, including kernel machines, neural networks, and probabilistic
forecasting frameworks.

1 Introduction

In a regression framework, machine learning (ML) models aim to predict the value of a real-valued
random variable y, commonly referred to as the dependent variable, given the value of a vector of
input variables x, known as the independent variable. However, providing only a point prediction
of y without an uncertainty quantification may not be useful for applications. Uncertainty
quantification (UQ) becomes particularly critical when the stakes of prediction errors are high.
Consider, for instance, the scheduling of a replacement for a vital component in a nuclear reactor,
where failure could be catastrophic. Merely reporting that the expected remaining lifespan is 2.5
years offers limited utility for planning preventive maintenance. On the other hand, stating that
the component’s lifespan is expected to lie between 2 and 3 years with 99% confidence conveys
significantly more actionable information. Such ranges for the predicted values of y are termed
prediction intervals (PIs), and are associated with a specified confidence level (e.g., 99% in this
case).

Suppose we are given n training samples {(xi, yi) : i = 1, 2, . . . , n}, and we must now predict the
unknown value of yn+1 at a test point x = xn+1. We assume {(xi, yi) : i = 1, 2, . . . , n + 1} are i.i.d.
from an arbitrary joint distribution p(x, y) of the random vector (x, y), with feature vector x ∈ Rp
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typically being a vector-valued input, and response variable y ∈ R. For the sake of notational
convenience, we use (x, y) to denote both the random vector as well as their specific values, whenever
the distinction is evident from the context.

Given an algorithm A and a training set {(xi, yi) : i = 1, 2, . . . , n}, a regression model is fitted to
the training set to generate µ̂(x), the predicted value of y at x obtained by minimizing the empirical
risk

arg min
µ

n∑
i=1

ρ(yi, µ(xi)), (1)

where, ρ(y, µ(x)) is a suitably chosen loss function representing deviation of µ(x) from y.

In conventional regression set up, typically µ̂(x) is an estimate of the conditional expectation E(y | x)
and ρ(y, µ(x)) = (y − µ(x))2. Often, a quantile of the conditional distribution y|x, specifically the
median instead of the mean, may be preferred as the predictor of y, especially when the conditional
distribution is heavy-tailed.

In general, for quantifying the uncertainty associated with a predictor µ̂(x) of yn+1, a widely used
measure is the prediction interval [µ̂1(xn+1), µ̂2(xn+1)] with a specified confidence level 1 − α, which
is defined as

P
[
µ̂1(xn+1) ≤ yn+1 ≤ µ̂2(xn+1)

]
≥ 1 − α. (2)

Equation (3) is formulated for any joint distribution p(x, y) and for any sample size n. The probability
involved in this expression is marginal, taken over all samples {(xi, yi) : i = 1, 2, . . . , n + 1}. A
procedure aimed at constructing high-quality (HQ) prediction intervals must satisfy two essential
criteria.

First, it should achieve the desired confidence level 1 − α without imposing strong distributional
assumptions. Second, the resulting intervals should be as narrow as possible across the input space,
thereby ensuring that the predictions remain maximally informative.

The quality of a prediction interval is typically evaluated using two metrics: the Prediction
Interval Coverage Probability (PICP) and the Mean Prediction Interval Width (MPIW),
both computed on the test set {(xi, yi) : i = n + 1, n + 2, . . . , n + m}. These measures are formally
defined as

PICP = m−1 ∑
i=n+1,2,...,n+m

ki, (3)

where,

ki =
{

1, if yi ∈ [µ̂1(x), µ̂2(x)],
0, Otherwise,

(4)

and
MPIW = m−1 ∑

i=n+1,n+2,...,n+m

[µ̂2(xi) − µ̂1(xi)]], (5)

respectively. A High Quality (HQ) prediction interval is expected to minimize the MPIW while
ensuring that the PICP remains greater than or equal to 1 − α, the desired confidence level.
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To address the problem of uncertainty quantification in regression tasks, various methods for
constructing prediction intervals (PIs) have been proposed in the literature. Traditional approaches
such as the delta method (Hwang & Ding (1997); Chryssolouris et al. (1996)), the Mean-Variance
Estimation (MVE) technique (Nix & Weigend (1994)), and Bayesian inference-based models
(MacKay (1992)) typically assume that the observational noise follows an independent Gaussian
distribution. However, the performance of these approaches tends to deteriorate significantly when
the underlying data distribution is highly skewed or exhibits heavy tails. To overcome these
limitations, several alternative strategies have been proposed (e.g., Chung et al. (2021), Cui et al.
(2020)), which involve first estimating the conditional mean E(y | x), and subsequently modeling
the distribution of the residuals or their moments.

A more direct and model-agnostic strategy for constructing a PI with confidence level of 1 − α is to
estimate [Fq(x), Fq+1−α(x)] where, Fq(x) is the q ∈ (0, 1)-th quantile of the conditional distribution
of y given x defined by P (y ≤ Fq(x)|x) = q. In quantile regression, an estimate of Fq(x), say, F̂q(x),
is obtained by replacing ρ(y, µ(x)) in (1) with the pinball loss function (Koenker & Bassett Jr
(1978), Koenker & Hallock (2001)), given by

ρq(y, µ(x)) =
{

q(y − µ(x)), if y ≥ µ(x),
(q − 1)(y − µ(x)), otherwise.

(6)

It is noteworthy that obtaining the lower and upper bounds of this interval involves solving two
distinct optimization problems to estimate F̂q(x) and F̂q+1−α(x). Furthermore, to ensure that the
resulting interval qualifies as a HQ PI, one must select an optimal value of q (within the feasible
range satisfying q + 1 − α ∈ (0, 1)) that minimizes the MPIW in the test set:

MPIW = 1
m

∑
i=n+1,n+2,...,n+m

[
F̂q+1−α(xi) − F̂q(xi)

]
.

Determining the optimal value of q necessitates repeatedly solving two separate optimization
problems over a grid of candidate q values, which renders the overall procedure for estimating the
prediction interval computationally demanding.

A few questions arise naturally at this point: can the lower and upper bounds of a PI be estimated
simultaneously through a single optimization problem? In other words, is it possible to obtain PI as
a direct output of a single optimization process? Furthermore, if such a formulation is feasible, the
quality of the resulting interval would evidently depend on the choice of the underlying loss function.
Hence, the central question becomes: what kind of loss function can yield good-quality PIs?

To address these issues, this paper introduces a novel loss function that produces good-quality PIs,
referred to as the Tube Loss function. It may be viewed as a two-dimensional generalization of the
pinball loss function, endowed with distinctive properties that enable the simultaneous estimation
of both the lower and upper bounds of a PI. The intervals derived using the Tube Loss are shown,
both theoretically and empirically, to asymptotically achieve the nominal coverage level. A formal
proof of this result is provided.
Moreover, by tuning a hyperparameter of the loss function, the resulting interval can be shifted
along the support of the response distribution y, thereby allowing it to better capture regions of high
data density. As demonstrated in the experimental analysis, this feature proves particularly effective
in reducing the MPIW, especially when the response distribution is asymmetric. Additionally,
further reduction in MPIW on the test set can be achieved by incorporating a penalty term in
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the loss function with a user-defined parameter, particularly when the PICP on the validation set
substantially exceeds the nominal coverage level 1 − α.
In the experimental results presented in Section 4, the proposed Tube Loss is employed to generate
PIs across various regression frameworks, including Kernel Machines, Neural Networks, and Proba-
bilistic Forecasting using deep neural networks. The PIs derived from the Tube Loss are observed
to outperform those obtained using existing loss functions.

The rest of the paper is structured as follows. Section 2 provides a review of existing approaches
for PI estimation in regression frameworks. Section 3 presents the proposed Tube Loss function,
describing its fundamental properties, its implementation within kernel machines and neural networks
for PI estimation, and its extension to probabilistic forecasting. Section 4 discusses the results of
extensive numerical evaluations. Finally, Section 5 concludes the paper by summarizing the main
findings and outlining possible directions for future research.

2 Related Work

In this section, we present a brief review of existing methodologies that generate prediction intervals
directly as the outcome of a single optimization problem, bypassing the intermediate step of quantile
estimation. This line of research has evolved independently from the traditional quantile regression
framework. However, most existing approaches primarily focus on uncertainty quantification
(UQ) of neural network (NN) outputs. In contrast, the Tube Loss-based methodology proposed in
this work extends the applicability of such direct PI estimation to Kernel Machines and Probabilistic
Forecasting, in addition to NNs.

2.1 Interval Regression (IR)

In a distribution-free framework, Khosravi et al. (2011) were the first to propose estimating prediction
intervals directly by minimizing the empirical risk associated with the following loss function:

LLUBE = NMPIW
(
1 + γ(PICP)e−η(PICP−(1−α))

)
, (7)

where NMPIW = MPIW
R , and R = max(yi) − min(yi) denotes the range of the response values yi.

Note that in(7), NMPIW and PICP are computed based on the training set. The parameter η is
a user-defined constant that amplifies small deviations between PICP and 1 − α. The indicator
function γ(PICP) is defined as 0 if PICP ≥ (1 − α), and 1 otherwise. Here, LUBE stands for
“Lower and Upper Bound Estimation.”

LUBE has been extensively used by the researchers in various NN-based application settings,
such as energy load predictions (Pinson and Kariniotakis, 2013; Quan et al., 2014), wind speed
forecasting (Wang et al., 2017; Ak et al.,2013), prediction of landslide displacement (Lian et al.,
2016), gas flow (Sun et al., 2017), and solar energy (Galvan et al., 2017).

A major drawback of LLUBE is that it’s a function of PICP, a step function, and its gradient is zero
almost everywhere (with respect to Lebesgue measure). Thus, the gradient descent (GD) method
could not be used for the minimization of empirical risk. This is inconvenient considering that GD
is now the standard method for training NNs. Instead, they propose simulated annealing (SA), a
non-gradient-based method for optimization. Later, various other non-gradient-based methods are
used, including Genetic Algorithms (AK et al., 2013), Gravitational Search Algorithms (Lian et al.,
2016), PSO (Galvan et al., 2017), and Artificial Bee Colony Algorithms (Shen et al, 2018).
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Pearce et al. (2018), building on the work of Khosravi et al. (2011), propose the Quality Driven
(QD) loss function, given by

LQD = MPIWcapt. + λ
n

α(1 − α)LP ICP (8)

where MPIWcapt. =
∑

i=1,2,...,n
(µ̂2(xi)−µ̂1(xi)).ki∑

i=1,2,...,n
ki

, ki is as defined in (4), λ is the user-defined trade-off

parameter and LP ICP = max
(
0, (1−α−PICP )

)2. Notice that in contrast to MPIW, MPIWcapt.

captures the average width for those points lying inside the PI. As discussed in Pearce et al. (2018)
(Section 3.3.1), like LUBE, LQD involves PICP, and thus, GD method cannot be used. For
enabling the use of GD method, they propose approximating PICP by the product of two sigmoid
functions, a technique used earlier by Yan et al. (2004). They also propose using an ensemble of
NN models instead of a single NN. It is found to yield PIs with shorter average widths.

Salem et al. (2020) modified LQD by adding two more penalty terms, one (LMSE) for generating a
good point prediction and the other (LP ) for enforcing the integrity of the results, i.e., avoiding
crossing of PI bounds and point prediction out of PI bounds.

They named it LQD+ . It is defined as

LQD+ = (1 − λ1)(1 − λ2)MPIWcapt. + λ1(1 − λ2)LPICP + λ2LMSE + ξLP , (9)
where,

LMSE = n−1 ∑
i=1,2,...,n

(µ̂(xi) − yi)2, (10)

and
LP = n−1 ∑

i=1,2,...,n

[max(0, µ̂1(xi) − µ̂(xi)) + max(0, µ̂(xi) − µ̂2(xi))]. (11)

Finally, they proposed a novel method for aggregating the outputs received from the ensemble
using a loss function, assuming that the posterior predictive distribution from a single model is split
normal.

2.2 Simultaneous Quantile Regression (SQR)

Tagasovska and Lopez-Paz (2019) propose simultaneous estimation of a large number of quantiles
by minimizing the empirical risk (cf. (1)) of standard quantile regression with a pinball loss function
(cf. (6)). The minimization is carried out by using a stochastic gradient descent algorithm, sampling
fresh random quantile levels q ∼ U(0, 1) for each training sample and mini-batch during training.
Thus, SQR provides an estimate of the entire conditional distribution of y given x and thus, it
enables them to “model non-gaussian, skewed, asymmetric, multimodal, and heteroscedastic" noise.

Given all possible quantiles, to generate a PI, any pair that satisfies the coverage constraint may
be chosen. Because it estimates a large number of quantiles rather than the two bounds of PI, it
faces significantly more challenges in learning during training. In spite of its added flexibility, its
performance in terms of attaining nominal coverage is found to be inferior to that of the standard
interval regression methods, such as those based on LQD (cf. Pouplin et al. (2024)).

2.3 Relaxed Quantile Regression (RQR)

As an alternative to SQR, Pouplin et al. (2024) propose a novel loss function that directly outputs
the bounds of PI with a target coverage 1 − α without requiring the intermediate step of estimating
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quantiles. This approach they called Relaxed Quantile Regression (RQR). The proposed loss function
is a kind of extension of the Pinball Loss function and is given by,

LRQR
1−α =

{
(1 − α)κ, if κ ≥ 0,

−ακ, if κ < 0,
(12)

where, κ = (y − µ1)(y − µ2). Notice that, for κ < 0, y will be inside PI and for κ ≥ 0, it is on or
outside PI, but LRQR

1−α remains positive in both cases. However, for smaller values of α (such as
0.01, 0.05, 0.1), the value of LRQR

1−α is much smaller for κ < 0 than for κ ≥ 0. The multipliers of κ
are so chosen as to satisfy the coverage constraint.

PI generated by solving the optimization problem arg minµ1,µ2{EY (LRQR
1−α (µ1(x), µ2(x), Y ))} possess

some good theoretical properties, such as, it attains coverage, and it is unbiased and consistent.

Notice that the loss function (12) is the product of two errors, the deviations of the true value from
the bounds of the PI, and thus, it provides asymmetric penalization. However, being a quadratic
function of errors, PI bounds obtained by this method may be sensitive to the presence of outliers,
similar to the case of expectiles. Furthermore, the presence of outliers is more likely to trigger the
crossing of bounds, and thus, it may affect the conditional coverage of the PI near the crossings.
Our experimental results in Section 4 support this claim.

3 Interval Estimation Using Tube Loss Function

In this section, we present the Tube Loss function, which offers several advantages over the loss
functions discussed earlier. First, unlike equation (12) used in RQR, the Tube Loss is a linear
function of the errors, making the estimated bounds less sensitive to outliers. Second, in contrast to
the intervals obtained through RQR, the bounds of the Tube Loss-based interval never intersect.
Third, unlike the loss functions employed in the QD and QD+ approaches, the Tube Loss allows
direct optimization of the empirical risk using the GD method. In the latter methods, LQD and
LQD+ must be approximated by smooth functions to enable gradient-based optimization, and the
quality of the resulting intervals depends heavily on the quality of these approximations. The
experimental results presented in Section 4 vindicate this claim.

Fourth, a distinctive feature of the Tube Loss is that its output intervals can be shifted along the
support of y by tuning a hyperparameter r. This flexibility allows the interval to better capture
dense regions of the response distribution, thereby helping produce tight intervals, particularly
when the conditional distribution of y given x is asymmetric. Fifth, by introducing a user-defined
regularization parameter δ into the minimization problem, the Tube Loss enables an effective
trade-off between PICP and MPIW, leading to narrower intervals in practice—especially when
the PICP obtained on the validation set significantly exceeds the nominal coverage level 1 − α.

Finally, we demonstrate that the intervals derived from the Tube Loss function asymptotically
attain the nominal coverage. In other words, as the training sample size n → ∞, the empirical
coverage converges to the nominal confidence level. A theoretical proof of this result is provided.
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3.1 Tube Loss Function

Let us define the prediction errors u1(= y − µ1) and u2(= y − µ2) (cf. (12)). For a given nominal
coverage (1 − α) and u2 ≤ u1 (µ2 ≥ µ1), we define the Tube loss function as

Lr
(1−α)(u1, u2) =


(1 − α)u2, if u2 > 0,

−αu2, if u2 ≤ 0, u1 ≥ 0 and ru2 + (1 − r)u1 ≥ 0,

αu1, if u2 ≤ 0, u1 ≥ 0 and ru2 + (1 − r)u1 < 0,

−(1 − α)u1, if u1 < 0,

(13)

(a) t=0.9 (b) t=0.8

Figure 1: Tube loss function

where, 0 < r < 1 is a user-defined parameter. In the following, we discuss a few properties of the
Tube loss function.

First, in Figure 1, plots of the Tube loss are given for the default choice r = 0.5. Evidently,
L0.5

(1−α)(u1, u2) is a symmetric continuous function around the line u1 + u2 = 0. Additionally, it is
differentiable almost everywhere (with respect to the Lebesgue measure) and has non-zero gradients,
thus enabling the direct application of the GD method.

The default choice of r outputs centered PIs. However, by adjusting the value of r, the PI bounds
can be shifted up or down, allowing the interval to capture the denser regions of the data cloud while
maintaining coverage. It helps in reducing MPIW significantly, especially when the conditional
distribution of y given x is asymmetric. The experimental results presented in Section 4 support
this claim.

3.2 Asymptotic properties of the Tube loss function

Let y1, y2, ...., yn be iid following the distribution of a continuous random variable Y and α ∈ (0, 1).
Let us define the following subsets of R: ℜ1(µ1, µ2) = {y : y > µ2}, ℜ2(µ1, µ2) = {y : µ1 < y <
µ2, y > rµ2 + (1 − r)µ1}, ℜ3(µ1, µ2) = {y : µ1 < y < µ2, y < rµ2 + (1 − r)µ1} and ℜ4(µ1, µ2) = {y :
y < µ1}. Notice that the sets ℜi(µ1, µ2), i = 1, 2, 3, 4 are so defined that they do not include the
points on the boundaries. Suppose (µ∗

1, µ∗
2) is the minimizer of 1

n

∑n
i=1 Lr

1−α(yi, µ1, µ2) with respect
to (µ1, µ2), and nk denotes the number of data points in ℜk(µ∗

1, µ∗
2) . Then we have the following

lemma.
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Lemma 1 As n → ∞, with probability 1 the following results hold: (i) n1
n2

→ α
1−α , (ii) n4

n3
→ α

1−α ,
and (iii) n1+n4

n2+n3
→ α

1−α .

The proof of the lemma is given in Appendix A.

We now consider the regression setup with training set T = {(xi, yi), i = 1, 2, . . . , n} where (xi, yi),
i = 1, 2, . . . , n are iid following a density p(x, y) . Let us rewrite (13) as

Lr
(1−α)(y, µ1(x), µ2(x)) =


(1 − α)(y − µ2(x)), if y > µ2(x),
−α(y − µ2(x)), if y ≤ µ2(x), y ≥ µ1(x) and r(y − µ2(x)) + (1 − r)(y − µ1(x)) ≥ 0,

α(y − µ1(x)), if y ≤ µ2(x), y ≥ µ1(x), and r(y − µ2(x)) + (1 − r)(y − µ1(x)) < 0,

−(1 − α)(y − µ1(x)), if y < µ1(x).

(14)

For the training set T , let (µ̂r
1(x), µ̂r

2(x)) be the minimizer of the empirical risk 1
n

n∑
i=1

Lr
1−α(yi, µ1(xi), µ2(xi)), where µ1(x) and µ2(x) belong to an appropriately chosen class of func-

tions. With some abuse of notation, we let nr
k denote the cardinality of the set ℜk(= ℜk(µ̂r

1(x), µ̂r
2(x)))

(k = 1, 2, 3, 4) inducing a partition of the feature space (as shown in Figure 2). We then have the
following proposition.

Figure 2: PI tube loss, red line represents the convex combination of µ1(x) and µ2(x), i,e.,
rµ1(x) + (1 − r)µ2(x), 0 < r < 1. Blue dots represent data points (xi, yi), i = 1, 2, , .., n.

Proposition 1 For α ∈ (0, 1) as n → ∞ the following results hold with probability 1,
(i) nr

1
nr

2
→ α

1−α , (ii) nr
4

nr
3

→ α
1−α (iii) nr

1+nr
4

nr
2+nr

3
→ α

1−α , provided (xi, yi), i = 1, 2, ..., n are iid following a
distribution p(x, y) with p(y|x) continuous and the expectation of the modulus of absolute continuity
of its density 1 satisfies limδ→0 E[ϵ(δ)] = 0.

Proof: The proof follows from the proof of the Lemma stated above and Lemma 3 of Takeuchi et al.
(2006).

1The modulus of absolute continuity of a function f is defined as the function ϵ(δ) = Sup
∑

i
|f(bi) − f(ai)|, where

the supremum is taken over all disjoint intervals (ai, bi) with ai < bi satisfying
∑

i
(bi − ai) < δ. Loosely speaking, the

conditional density p(y|x) is absolutely continuous on average. This ensures that the probability of a point lying on
the boundaries of PI vanishes.
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3.3 Parameter r and movement of the PI bounds

Now, we show that how the PI bounds can be moved up and down by choosing r appropriately.
Consider two values of r, say r1 and r2 such that 0 < r1 < r2 < 1. Let us denote the cardinality of
the set ℜk(µ̂ri

1 (x), µ̂ri
2 (x)) by nri

k (k = 1, 2, 3, 4, i = 1, 2.)

Now, Proposition 1 (iii) entails that asymptotically 1 − α fraction of y values should lie inside each
of the intervals [µ̂r1

1 (x), µ̂r1
2 (x)] and [µ̂r2

1 (x), µ̂r2
2 (x)]. Since r1 < r2, (i) and (ii) of Proposition 1

entail n
r1
2

n
r1
3

>
n

r2
2

n
r2
3

, which in turn implies n
r1
1

n
r1
4

>
n

r2
1

n
r2
4

for large n. Thus, changing the value of r from r1

to r2 moves the tube down and vice versa.

In Section 4, we demonstrate that, in several experiments, selecting an appropriate value of r results
in a significant reduction of MPIW. Notice that, Mr

1−α(u1, u2) is discontinuous at the separating
plane {(u1, u2) : ru2 + (1 − r)u1 = 0} when r ≠ 0.5. However, while running the experiments, we
observe that it has not caused any problem for the implementation of the GD method.

3.4 Recalibrating Prediction Intervals to Balance MPIW and PICP

After choosing an appropriate value of r, if the attained coverage (PICP) of the output interval in
the validation set exceeds the nominal coverage 1 − α, then we go for re-calibration, which helps in
further minimization of MPIW, and thus, enhances the quality of the interval, keeping the attained
coverage more than equal to 1 − α. For re-calibration, we employ the following loss function,

LW
r
(1−α)(y, µ1(x), µ2(x)) = Lr

(1−α)(y, µ1(x), µ2(x)) + δ|µ2(x) − µ1(x)|. (15)

The default choice of δ is zero, unless there is room for recalibration, i.e, if PICP is more than
1 − α in the validation data set. Notice that in contrast to RQR, the penalty term in our case uses
a linear function of the errors, thus making it less sensitive to outliers. In Section 4, we employ
recalibration in some experiments to enhance the quality of the interval.

4 Experiments

In this section, we present the experimental results on generating prediction intervals in three different
regression settings: kernel machines, neural networks, and probabilistic forecasting, employing the
Tube loss and comparing with existing losses in the literature. The experimental results clearly
demonstrate the superiority of the Tube loss compared to its competitors in outputting better
quality intervals.

In general, to compare two PI estimation methods, say M1 and M2, we adopt the following rule
in this paper: method M1 is considered superior to method M2 if either PICP(M1) ≥ 1 − α
and PICP(M2) < 1 − α, or if min{PICP(M1), PICP(M2)} ≥ 1 − α and MPIW(M1) <
MPIW(M2).

Furthermore, in experiments conducted with synthetic data—where samples are generated from a
known distribution—the true conditional quantiles of y given x are known for all x. Consequently,
the corresponding true PI, denoted by [µ1(x), µ2(x)], is available. In such settings, the accuracy of
an estimated PI, [µ̂1(x), µ̂2(x)], is assessed using the Sum of Mean Squared Errors (SMSE), in the
test set defined as

1
m

m∑
i=1

(
µ̂1(xi) − µ1(xi)

)2 + 1
m

m∑
i=1

(
µ̂2(xi) − µ2(xi)

)2
.
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4.1 Tube loss in kernel machines

In kernel machines, the PI bounds are a pair of functions

µ1(x) :=
n∑

i=1
k(xi, x)αi + α0 and µ2(x) :=

n∑
i=1

k(xi, x)βi + β0, (16)

where k(x, y) is positive definite kernel(Mercer (1909)). Using matrix notation, we rewrite µ1(x)
and µ2(x) as

µ1(x) := K(AT , x)α + α0 and µ2(x) := K(AT , x)β + β0, (17)

where A is an n × p data matrix containing n training points in Rp, α =


α1
α2
..

αn

, β =


β1
β2
..
βn

 and

K(AT , x) =
[
k(x1, x), k(x2, x), .., k(xn, x)

]
. The Tube loss-based kernel machines consider the

following optimization problem for outputting the PI:

min
(α,β,α0,β0)

λ

2 (αT α + βT β) +
n∑

i=1
Lr

(1−α)
(
yi,

(
K(AT , xi)α + α0

)
,
(
K(AT , xi)β + β0

) )
+ δ

n∑
i=1

∣∣(K(AT , xi)(α − β) + (α0 − β0)
∣∣. (18)

The Gradient descent solution to the above optimization problem is derived in Appendix B.

For obtaining high-quality PIs, the parameters r and δ must be appropriately tuned using the
validation dataset. The default settings r = 0.5 and δ = 0, typically yield good performance when
the conditional distribution of y given x is symmetric, since in that case a centered prediction
interval is optimal. However, if the distribution is positively (negatively) skewed, selecting an r
value smaller (larger) than 0.5 shifts the bounds downward (upward), thereby minimizing MPIW
while maintaining PICP at the desired level. Once an appropriate r has been determined, if the
resulting PICP exceeds the target confidence level 1 − α, recalibrating through δ can further reduce
MPIW without compromising the intended coverage.

4.1.1 Experimental Results

1. Choice of r

We first show, in the context of kernel-based models, that the choice of the parameter r is crucial for
achieving narrow PI bounds, especially when the underlying data distribution exhibits asymmetry.

To illustrate this, we construct two synthetic datasets, denoted by D1 and D2. Each dataset consists
of observations {(xi, yi) : i = 1, 2, . . . , 1500}, where xi is sampled from the uniform distribution on
the interval [0, 1], i.e., xi ∼ U(0, 1), and the response variable yi is generated according to

yi = sin xi

xi
+ ϵi, (19)

where ϵi represents a random noise component. For dataset D1, ϵi follows a symmetric normal
distribution N (0, 0.8), while for dataset D1, ϵi follows a positively skewed distribution given by
χ2(3) − 3.
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Figure 3: Tube loss-based SVPI estimation for (a)1 − α = 0.8 and (b) 1 − α = 0.8.

(a) r= 0.8 (b) r = 0.5 (c) r= 0.3 (d) r= 0.1

Figure 4: Location of PI tube changes with r values in Tube loss based kernel machine.

The model is trained on 500 data points, with the remaining samples reserved for testing. For
constructing linear PI tubes, a linear kernel is employed. For nonlinear PI estimation, we adopt the
radial basis function (RBF) kernel defined as

k(x1, x2) = e−γ∥x1−x2∥2
,

where γ is a suitably chosen hyperparameter.

For dataset D1, the Tube Loss function is applied with a linear kernel to construct PIs at nominal
confidence levels of 1 − α = 0.8 and 1 − α = 0.9, using the default parameter settings r = 0.5 and
δ = 0. The obtained PICP and MPIW values for the test dataset corresponding to 1 − α = 0.8
(0.9) are 0.799 (0.909) and 2.10 (2.78), respectively. Figure 3 illustrates the estimated PIs on the
test data for both target confidence levels, 1 − α = 0.8 and 1 − α = 0.9.

(a) (b) (c) (d)

Figure 5: Plot of (a) r against MPIW ,(b) PCIP, UQ and LQ for dataset B. Plot of (c) δ against
PICP,(d) δ against MPIW on the Servo dataset.
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Model (q+1-α,q)/(r,δ) PICP MPIW Time (s)
D1 Q Ker M (0.95,0.15) 0.78 ± 0.017 2.088 ± 0.109 219.38

Q Ker M (0.90,0.10) 0.78 ± 0.019 2.002 ± 0.068 221.72
Q Ker M (0.85,0.05) 0.79 ± 0.025 2.151 ± 0.078 217.38
T Ker M (0.6,0) 0.80 ± 0.012 2.165 ± 0.068 56.93
T Ker M (0.5,0) 0.80 ± 0.018 2.156 ± 0.069 61.50

D2 Q Ker M (0.90,30) 0.59 ± 0.032 4.6609 ± 0.153 138.05
Q Kerl M (0.95,0.35) 0.58 ± 0.023 5.5369 ± 0.272 146.60
Q Ker M (0.80,20) 0.59 ± 0.027 3.6196 ± 0.143 146.41
T Ker M (0.3,0) 0.60 ± 0.032 3.495 ± 0.168 39.07
T Ker M (0.2,0) 0.601 ± 0.028 3.174 ± 0.165 41.55

Table 1: Quantile-based Kernel Machine (Q ker M) and Tube loss-based kernel Machine (T ker M)
on dataset D1 and D2. Q ker M involves parameters (q+1-α,q) and T ker M involves (r, δ).

For dataset D2, we construct the PI corresponding to 1 − α = 0.8 using the RBF kernel. The
Tube Loss-based kernel machine with r = 0.5 and δ = 0 produces a centered interval, as shown
in Figure 4(b), yielding PICP and MPIW values of 0.79 and 6.47, respectively. Owing to the
positively skewed nature of the data distribution, such a centered interval is expected to produce a
relatively wider PI (i.e., higher MPIW) compared to a HQ PI. To effectively capture the denser
regions of the data, the PI bounds therefore need to be shifted downward.

Figures 4(a), 4(c), and 4(d) depict the PIs obtained from the Tube Loss-based kernel machines for
r = 0.8, 0.3, and 0.1, respectively. It is evident that as r decreases, the estimated PI bounds move
downward, covering the denser portions of the data and thereby reducing the MPIW.

Figure 5(a) presents the variation of MPIW with respect to r, clearly showing that smaller values
of r lead to lower MPIW, as expected. Figure 5(b) displays the plots of PICP, lower quantile
(LQ), and upper quantile (UQ) against r, where LQ and UQ denote the proportions of yi values
falling below the upper and lower bounds of the estimated PI tube, respectively. The plots indicate
that changing r affects both LQ and UQ but leaves PICP largely unchanged. Notably, reducing r
from 0.5 to 0.1 results in a significant improvement in MPIW by approximately 21.80%, without
compromising the desired coverage.

It is important to note that for dataset D1, where the noise terms are drawn from a symmetric
distribution, the default choice of r = 0.5 yields a HQ PI. In contrast, for dataset D2, characterized
by a positively skewed distribution, obtaining a good quality PI requires reducing the value of r
from its default setting of 0.5.

Finally, we compare the performance of PIs obtained using the Tube Loss with those based on
the pinball loss, where the latter estimates the two bounds F̂q(x) and F̂q+(1−α)(x) separately. We
generate 10 independent replicates each of datasets D1 and D2. For every replicate, we compute the
PICP and MPIW of the PIs derived from both methods at nominal confidence levels of 1−α = 0.8
and 0.6, respectively.

It is worth noting that for quantile-based PI estimation, the choice of the parameter q, and for
Tube Loss-based estimation, the choice of the parameter r, are both critical for producing HQ
intervals. Table 1 summarizes the comparative results. The Tube Loss-based method not only offers
a significant reduction in overall training complexity, thereby decreasing training time, but also
consistently achieves the desired nominal confidence level across both datasets.

For dataset D1, the centered interval corresponding to q = 0.1 under the pinball loss framework is
expected to perform best. Although its PICP falls marginally short of the target value of 0.8, it
yields a slightly narrower interval compared to the Tube Loss-based PI with r = 0.5. As expected
for symmetric noise distributions, the Tube Loss with (r = 0.5, δ = 0) provides the most reliable PI
for dataset D1.
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For dataset D2, however, the MPIW values of the estimated PIs can be substantially improved
by reducing the value of r, which aligns with expectations since the noise component follows a
positively skewed distribution.

2. Choice of δ

As discussed earlier, we now demonstrate how an appropriate choice of the recalibration parameter
δ (cf. Equation (18)) can further reduce the MPIW on the test data. To illustrate this, we consider
the well-known Servo dataset ( Karl Ulrich (2016)), which contains 167 observations across five
variables. A randomly selected subset comprising 10% of the data points is used as the test set,
while the remaining data are utilized for training with a 10-fold cross-validation procedure to obtain
a Tube Loss-based PI (using the linear kernel) at a nominal confidence level of 0.8, with default
settings of r and δ. The mean PICP observed on the validation set is 0.82. Since the empirical
PICP exceeds the target level of 0.8, there exists an opportunity to reduce the MPIW on the test
set by selecting a positive value of δ. We incrementally increase δ until the validation PICP reaches
the target level of 0.8, as depicted in Figure 5(c). This adjustment results in approximately a 44%
reduction in MPIW on the test set, as shown in Figure 5 (d), while preserving the desired coverage.

4.2 Tube Loss in Neural Network (NN)

The Tube Loss-based PI estimation model within the NN framework aims to solve the following
optimization problem using the training set T = {(xi, yi) : i = 1, 2, . . . , n}:

min
(µ1,µ2)

[
n∑

i=1
Lr

(1−α)
(
yi, µ1(xi), µ2(xi)

)
+ δ

n∑
i=1

∣∣µ2(xi) − µ1(xi)
∣∣], (20)

where µ1(x) and µ2(x) represent the two output neurons of the dense network corresponding to
the lower and upper bounds of the PI, respectively. The weights of both the hidden and output
layers are iteratively updated through gradient-based optimization using backpropagation of the
loss function.

4.2.1 Comparison with QD Loss

Within the NN framework, Pearce et al. (2018) demonstrated that PIs obtained using the QD loss
yield slightly superior performance compared to those derived from the LUBE approach proposed
by Khosravi et al. (2011). Furthermore, they observed that the QD method also outperforms the
mean-variance estimation (MVE) approach of Nix & Weigend (1994) on several benchmark datasets.

In this study, we conduct a simple experiment to show that the Tube Loss-based PI provides better
performance than the QD-based PI in terms of the sum of mean squared errors (SMSE)—a local
measure of smoothness and tightness introduced earlier in Section 4. To this end, we generate 1000
data points (xi, yi) according to the following model:

yi = sin(xi)
xi

+ ϵi, (21)

where xi ∼ U(−2π, 2π) and ϵi ∼ U(−1, 1).

Both the Tube Loss-based and QD Loss-based NN models are trained to obtain PIs at a nominal
confidence level of 0.95. After hyperparameter tuning, the NN architecture is fixed with 100
ReLU-activated hidden neurons and two output neurons. The Adam optimizer is employed for
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(a) QD loss-based NN (b) Tube loss-based NN

Figure 6: Comparison between Tube Loss and QD Loss function-based neural networks.

Figure 7: Tube Loss-based NN approximates the true PI more closely than the QD loss-based NN.

model training. Figure 6(a) presents the PI estimated using the QD loss, while Figure 6(b) displays
the PI obtained via the Tube Loss with r = 0.5 δ = 0, alongside the true PI. It is evident that
the PI generated by the Tube Loss is smoother and more compact compared to that produced
by the QD loss. The true PI is computed from the 97.5% and 2.5% quantiles of the conditional
distribution of y|x for various values of x.

The observed (PICP, MPIW) values for the PIs obtained using the Tube loss and QD loss
are (0.95, 1.78) and (0.98, 2.17), respectively. For the QD loss, proper adjustment of the softening
parameter s—which governs the approximation of the step function via the product of sigmoid
functions—is crucial but often cumbersome. Through the tuning process, the optimal parameters
for the QD loss were identified as s = 200 and λ = 0.1.

Subsequently, we computed the SMSEs of the resulting PIs. Figure 7 illustrates the comparison of
SMSE values between the Tube loss and QD loss for various choices of the softening parameter
s. It is evident that the performance of the QD loss-based PI is highly sensitive to the selection
of s, and consequently, to the fidelity of the step function approximation achieved by the sigmoid
functions.

4.2.2 Comparison with RQR loss

We write the RQR loss function introduced in (13) as follows,
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Figure 8: RQR loss function for t=0.9

(a) RQR loss based NN (b) Tube loss based NN

Figure 9: Comparison of RQR loss and Tube loss function based NNs

LRQR
1−α =

{
(1 − α)κ, if κ ≥ 0,

−ακ, if κ < 0,
(22)

where, κ = (y − µ1)(y − µ2) = u1u2.

Figure 8 shows a plot of the RQR loss function for 1 − α = 0.9. The RQR loss function is
continuous but non-convex function of u1 = (y − µ1) and u2 = (y − µ1). As stated before, the
RQR PI bounds are sensitive to outliers. The presence of outliers may trigger the crossing of
the two bounds, thus adversely affecting the conditional coverage of the PI near the crossing. We
perform a simple experiment to show the impact of outliers on RQR based PI as stated above. It is
worth mentioning in this context that for comparison with Tube loss, we consider the RQR-Width
Minimizing (RQR-W) method. We generate an artificial data set {(xi, yi), i = 1, 2, ....3000} using
the relation.

yi = sin(xi)
xi

+ ϵi, (23)

where xi is U(−2π, 2π) and ϵi is from U(−1, 1). Next, we contaminate the dataset by adding 60
(2%) data points {(xi, 10yi), i = 3001, 3002, ....3060}, where {(xi, yi), i = 3001, 3002, ....3060} are
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generated randomly. The Tube Loss and RQR Loss-based NNs were trained using a single-layer
NN with 100 hidden neurons, ReLU activation, a batch size of 100, 1200 epochs, and the Adam
optimizer for a target confidence level of 0.8. For both loss functions, the penalty parameters
δ in Tube Loss and λ in RQR were set to zero. Figure 9 presents the results of RQR- and
Tube Loss–based NNs with r = 0.3. In 9(a), the RQR-based PI deviates considerably from
the true PI (black dotted line), and the PI bounds cross each other near x = 4. In contrast, the
Tube Loss-based PI almost overlaps with the true PI, effectively handling the asymmetric noise
introduced by the outliers. This example clearly supports our apprehension stated above.

Dataset TUBE RQR-W QR SQR-C SQR-N QD loss
miami 89.34 (0.45) 88.89 (0.32) 90.50 (0.57) 87.36 (0.46) 85.97 (0.48) 90.26 (0.49)

0.49 (0.02) 0.51 (0.01) 0.51 (0.01) 1.90 (0.05) 1.52 (0.03) 1.74 (0.12)
wine 91.21 (0.37) 90.16 (0.37) 89.97 (0.36) 91.94 (0.67) 88.19 (0.97) 88.03 (0.92)

0.26 (0.017) 0.33 (0.01) 0.28 (0.00) 0.49 (0.03) 0.48 (0.03) 1.18 (0.12)
power 90.31 (0.54) 89.34 (0.55) 89.92 (0.54) 91.81 (1.34) 89.11 (1.40) 62.47 (13.63)

0.04 (0.009) 0.07 (0.01) 0.06 (0.01) 0.15 (0.03) 0.15 (0.03) 1.14 (0.23)
yacht 89.32 (0.41) 90.32 (0.42) 91.45 (1.23) 85.97 (1.18) 84.68 (1.69) 90.32 (0.96)

0.16 (0.019) 0.33 (0.02) 0.32 (0.02) 3.56 (0.38) 2.91 (0.26) 1.66 (0.29)
kin8nm 89.00 (0.32) 89.27 (0.40) 91.89 (0.27) 87.16 (0.49) 85.53 (0.53) 89.52 (0.46)

0.42 (0.01) 0.42 (0.01) 0.50 (0.01) 1.14 (0.01) 1.10 (0.01) 1.61 (0.12)
protein 92.16 (0.29) 88.47 (0.30) 90.40 (0.23) 89.01 (0.20) 86.01 (0.32) 90.38 (0.30)

1.68 (0.02) 1.50 (0.01) 1.61 (0.01) 2.19 (0.02) 2.05 (0.01) 1.96 (0.09)
boston 91.58 (0.48) 88.14 (0.66) 86.67 (1.06) 82.55 (1.48) 81.18 (1.58) 90.29 (0.77)

0.44 (0.025) 0.40 (0.02) 0.38 (0.01) 1.09 (0.03) 1.01 (0.02) 1.41 (0.15)
energy 90.08 (0.42) 89.68 (0.70) 93.05 (0.88) 89.42 (0.99) 86.30 (0.99) 89.42 (0.76)

0.23 (0.016) 0.23 (0.01) 0.29 (0.01) 1.31 (0.01) 1.23 (0.01) 1.39 (0.17)
sulfur 92.00 (0.36) 88.87 (0.20) 88.30 (0.34) 87.83 (0.47) 87.40 (0.50) 89.41 (0.53)

1.06 (0.027) 1.02 (0.01) 1.05 (0.01) 1.09 (0.03) 1.02 (0.02) 1.36 (0.07)
cpu_act 91.03 (0.35) 89.14 (0.37) 88.94 (0.48) 90.85 (0.75) 86.73 (1.10) 90.32 (0.62)

0.44 (0.014) 0.44 (0.00) 0.41 (0.01) 0.78 (0.01) 0.76 (0.02) N/A* (N/A*)
concrete 91.12 (0.52) 88.74 (0.66) 87.77 (1.09) 86.02 (1.29) 85.29 (1.39) 89.37 (0.68)

0.46 (0.026) 0.47 (0.03) 0.44 (0.01) 1.39 (0.03) 1.33 (0.02) 1.28 (0.16)
naval 91.01 (0.34) 88.81 (0.22) 88.34 (0.25) 90.70 (1.68) 88.86 (1.77) 91.16 (0.35)

0.02 (0.008) 0.03 (0.00) 0.02 (0.00) 0.26 (0.04) 0.26 (0.04) 2.93 (0.18)

Table 2: Comparisons of Tube loss based intervals against that of based on RQR-W and other
existing baseline NN methods on 12 datasets for a PI estimation task with target 1 − α =0.90. The
first row reports the PICP, while the second row reports MPIW. All results represent the test set
mean over 10 runs (± standard error). Best results are in bold; the best PI method attains average
confidence level at least 0.90 with the lowest MPIW. Tunned parameters are listed in Appendix C.

4.2.3 Comparison With Baseline Methods Using Benchmark Datasets

Next, we assess the performance of the Tube Loss-based PI in comparison with the baseline
approaches discussed in Section 2, using twelve benchmark datasets. In particular, we examine the
prediction intervals generated by RQR-W (Pouplin et al. (2024)), QRNN (Quantile Regression
Neural Network), SQR-C (centered intervals) (Tagasovska & Lopez-Paz (2019)), SQR-N (poten-
tially non-centered and typically the narrowest) (Tagasovska & Lopez-Paz (2019)), and QD (Pearce
et al. (2018)). The numerical results summarized in Table 2 are produced under the experimental
setup described in (Pouplin et al. (2024)). Details regarding the selection of the tuning parameters
r and δ are presented in Appendix C.

Among the twelve datasets considered, the Tube loss-based intervals exhibit superior performance in
nine cases, whereas the QR-based intervals perform best in the remaining three. These results clearly
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demonstrate the advantage of Tube loss-based intervals over existing approaches in generating
high-quality prediction intervals (PIs) within the NN framework.

4.3 Tube Loss Based deep Probabilistic Forecasting

Further, we use the Tube loss function in Long Short Term Memory (LSTM) Network (Hochre-
iter & Schmidhuber (1997)) for obtaining the probabilistic forecast upon popular benchmark
time-series datasets namely Electric (BP & Ember. (2016)), Sunspots (SIDC & Quandl.), SWH
(NDBC),Temperature (machinelearningmastery.com) , Female Birth (datamarket.com) and Beer
Production (Australian (1996)). Also, we compare the Tube loss based LSTM (T-LSTM) with
Quantile based LSTM (Q-LSTM) on these datasets. The 70% initial data points were considered for
training and rest of them were test set. Out of training sets, last 10% of observations were used as
validation set. For each dataset, we tuned the LSTM architecture, dropout, and window size based

Dataset PICP MPIW Training Time (SEC) Improvement
Q-LSTM T- LSTM Q-LSTM T-LSTM Q-LSTM T-LSTM in Time(s) Better

Electric 0.95 0.95 18.23 17.02 145 58 60 %
√

Sunspots 0.93 0.95 121.09 113.98 839 442 47 %
√

SWH 0.96 0.96 0.52 0.35 5119 2733 46 %
√

Temperature 0.95 0.94 24.82 15.56 1135 447 60 %
Female Birth 0.95 0.96 28.20 28.09 118 43 63 %

√

Beer Production 0.94 0.95 134.8 42.91 132.8 89.6 33 %
√

Table 3: Comparison of Quantile based LSTM (Q-LSTM) and Tube loss based LSTM (T-LSTM) on
real-world time-series datasets with target coverage t = 0.95. Tunned parameters and plots obtained
by the T-LSTM are listed in Appendix C.

on prior literature, then applied Tube Loss and the quantile approach separately to target a 0.95
PI. The T-LSTM model obtains better performance on five cases out of 6 datasets. It also tends
to obtain lower MPIW than Q-LSTM model, as the δ parameter facilitates the re-calibration for
capturing the narrower PI in T-LSTM model. But, main advantages of T-LSTM over the Q-LSTM
is the significant improvement in training time . It is because that the Q-LSTM needs to be trained
twice where as T-LSTM requires only single cycle of training.

In a distribution-free setting, quantile-based deep learning models are the most popular choice
for probabilistic forecasting. However, we also need to compare the performance of the Tube loss
based probabilistic forecasting with that of the deep learning models trained with the QD loss
function (Pearce et al. (2018)) . A significant practical challenge in training deep learning models
with the QD loss function (Pearce et al. (2018)) is the frequent occurrence of NaN losses during
computation. However, the extended Quality Driven (QD+) loss function (Salem et al. (2020))
solves this problem up to some extent. Consequently, we have implemented the QD+ loss function
based deep forecasting models for obtaining the probabilistic forecast. We tune the parameter
values of QD+ loss function based LSTM well and compare its performance with the Tube loss
based LSTM model on time-series benchmark dataset at Table 4. Unlike, the Quantile and Tube
loss based LSTM models, the QD+ loss function based LSTM model fails to obtain the consistent
performance. Out of six datasets, it fails to obtain the target coverage on three datasets. In case
of Sunspots and Temperature datasets, the QD+ loss function based LSTM obtains very poor
performance. Additionally, across all datasets, the Tube loss LSTM models outperform the QD+
loss LSTM models.
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Dataset PICP MPIW Improvement
QD+-LSTM T- LSTM QD+-LSTM T-LSTM in MPIW Better

Electric 0.96 0.95 54.63 17.02 68.84 %
√

Sunspots 0.43 0.95 24.06 113.98 NA
√

SWH 0.96 0.96 0.36 0.35 2.78%
√

Female Birth 0.94 0.96 38.98 28.09 27.94%
√

Temperature 0.79 0.95 5.94 15.56 73.13 %
√

Beer Production 0.96 0.95 159.71 42.91 NA
√

Table 4: Comparison of Extended Quality Driven loss based LSTM (QD+ LSTM) and Tube loss
based LSTM (T-LSTM) on real-world time-series datasets

For numerical results presented in the Table 3, the tuned parameters are detail in the Table 7. Also,
the plot obtained by the Tube loss based LSTM for benchmark datasets reported in Table 3, are
shown in the 11.

Application to wind probabilistic forecasting

We have also employed the Tube loss function in LSTM, GRU and TCN for probabilistic forecasting
of wind speed. Table 5 lists the performance of the Tube loss base deep learning models along with
the recent benchmark models used for probabilistic forecasting in energy domain on San Francisco
wind dataset containing 26,304 hourly observations.The last 30% of observations were used as the
test set, while the final 10% of the training data was reserved for validation.

Rank Model PICP MPIW MPIW/PICP
1 TCN + Tube 0.9543 4.560 4.78
2 LSTM + Tube 0.9561 4.627 4.84
3 GRU + Tube 0.9507 4.857 5.11
4 GRU + Quantile 0.951 4.955 5.21
5 LSTM + Quantile 0.9594 5.407 5.64
6 TCN + QD+ 0.9505 5.490 5.78
7 LSTM + QD+ 0.9734 6.043 6.21
8 Deep AR 0.9855 6.2023 6.29
9 GRU + QD+ 0.9724 6.309 6.49
10 MDN 0.949 4.620 4.87
11 TCN + Quantile 0.9428 4.908 5.21
12 TimeGPT 0.9357 11.235 12.00

Table 5: Ranking of different deep probabilistic forecasting methods including Deep AR (Salinas et al.
(2020)), Mixed Density Network (MDN) (Bishop (1994)), QD + based deep learning models (Salem et al.
(2020)) and Time GPT (Garza et al. (2023)) on San Francisco Dataset with target coverage t = 0.95. DeepAR
(Salinas et al. (2020)) has recently gained traction in probabilistic forecasting, including wind power prediction
(Arora et al. (2022)), while studies (Yang et al. (2021), Zhang et al. (2020), Men et al. (2016)) highlight the
effectiveness of Mixture Density Networks (MDN) for wind forecasting.

Table 5 presents the performance of the Tube-loss–based deep forecasting models alongside several
recent baseline models commonly used in the wind-energy literature for probabilistic forecasting.
The Tube-loss–based deep learning models consistently achieve the best overall performance among
all compared baselines. We do not include Adaptive Conformal Inference (ACI) (Gibbs & Candes
(2021)) and related conformal methods as baselines because they follow a fundamentally different
conformal framework rather than a prediction PI based approach. Moreover, these methods are
computationally expensive and require retraining from scratch to generate forecasts at each future
time step.
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5 Future Work

The Tube loss function evidently offers a superior method for PI estimation in kernel ma-
chines and NN. In future work, we are planning to explore its potential applications in
producing high-quality PIs in other important regression settings, such as conformal regression
and adaptive conformal inference under distribution shift. It would also be worthwhile to
implement the proposed methodology for probabilistic forecasting across a range of neural
architectures employed in diverse application domains, including solar irradiance, cryptocurrency
valuation, exchange rate prediction, stock market trends, ocean wave modeling, pollution
estimation, and weather forecasting. In many text processing applications, the target variable
is inherently multidimensional. A compelling direction for future work would be to extend the
proposed prediction interval estimation methodology to accommodate such multidimensional targets.
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A Proof of the Lemma 1

Let us assume that #{yi|yi = µ∗
2} = k1, #{yi|yi = rµ∗

2 + (1 − r)µ∗
1} = k2, and #{yi|yi = µ∗

1} = k3,
where # represents the cardinality of a set. In other words, k1, k2 and k3 represent the number of
points on the boundary sets.

Thus, we obtain n1 + k1 + n2 + k2 + n3 + k3 + n4 = n.

Let us choose, δ∗
1 ∈ [0, ϵ1), δ∗

2 ∈ [0, ϵ2), where ϵ1 and ϵ2 are positive real numbers, such that ϵ1 <
min

yi<µ∗
1
(|µ∗

1 − yi|), ϵ2 < min
yi>µ∗

2
|(yi − µ∗

2)|, and rϵ2 + (1 − r)ϵ1 < min
µ∗

1<yi<µ∗
2

|yi − (rµ∗
2 + (1 − r)µ∗

1)|, which

entails

#{yi : µ∗
2 < yi ≤ µ∗

2 + δ∗
2} = 0, #{yi : µ∗

2 < yi ≤ µ∗
2 − δ∗

2} = 0, #{yi : µ∗
1 < yi ≤ µ∗

1 + δ∗
1} = 0,

#{yi : µ∗
1 < yi ≤ µ∗

1 − δ∗
1} = 0, #{rµ∗

2 + (1 − r)µ∗
1 < yi ≤ r(µ∗

2 + δ∗
2) + (1 − r)(µ∗

1 + δ∗
1)} = 0,

#{rµ∗
2 + (1 − r)µ∗

1 < yi ≤ r(µ∗
2 − δ∗

2) + (1 − r)(µ∗
1 − δ∗

1)} = 0.

Figure 10

Given that (µ∗
1, µ∗

2) is an optimal solution, we have
∑n

i=1 Lr
1−α(yi, µ∗

1 + δ∗
1 , µ∗

2 + δ∗
2) −∑n

i=1 Lr
1−α(yi, µ∗

1, µ∗
2) ≥ 0. We now evaluate the difference of the sums for each of the fol-

lowing ten sets inducing a partition of R.

R1 = {yi : yi > µ∗
2 + δ∗

2}, R2 = {yi : µ∗
2 < yi ≤ µ∗

2 + δ∗
2}, R3 = {yi : yi = µ∗

2},
R4 = {yi : r(µ∗

2 + δ∗
2) + (1 − r)(µ∗

1 + δ∗
1) < yi < µ∗

2}, R5 = {yi : rµ∗
2 + (1 − r)µ∗

1 < yi ≤
r(µ∗

2+δ∗
2)+(1−r)(µ∗

1+δ∗
1)}, R6 = {yi : yi = rµ∗

2+(1−r)µ∗
1}, R7 = {yi : µ∗

1+δ∗
1 < yi < rµ∗

2+(1−r)µ∗
1},

R8 = {yi : µ∗
1 < yi ≤ µ∗

1 + δ∗
1} R9 = {yi : yi = µ∗

1}, R10 = {yi : yi < µ∗
1}.

Denote the difference
∑

yi∈Ri
Lr

1−α(yi, µ∗
1 + δ∗

1 , µ∗
2 + δ∗

2) −
∑

yi∈Ri
Lr

1−α(yi, µ∗
1, µ∗

2) by ∆i. The
simple calculation leads to the following values of ∆i, i = 1, 2, ..., 10: ∆1 = −tn1δ∗

2 , ∆2 =
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0, ∆3 = (1 − t)k1δ∗
2 , ∆4 = (1 − t)n2δ∗

2 , ∆5 = 0, ∆6 = k2(1 − t)(δ∗
1 + (2 − r)µ∗

1 − (1 − r)µ∗
2), ∆7 =

−(1 − t)n3δ∗
1 , ∆8 = 0, ∆9 = tk3δ∗

1 , ∆10 = tn4δ∗
1 .

Thus, we obtain
n∑

i=1
Lr

1−α(yi, µ∗
1 + δ∗

1 , µ∗
2 + δ∗

2) −
n∑

i=1
Lr

1−α(yi, µ∗
1, µ∗

2) = −tn1δ∗
2 + (1 − t)k1δ∗

2 + (1 − t)n2δ∗
2 + (1 − t)k2(δ∗

1

+(2 − r)µ∗
1 − (1 − r)µ∗

2) − (1 − t)n3δ∗
1 + tk3δ∗

1 + tn4δ∗
1 ≥ 0. (24)

If we assume δ∗
1 = 0 and δ∗

2 > 0, the above inequality entails

1 − t

t
≥ n1δ∗

2
n2δ∗

2 + k1δ∗
2 + k2((2 − r)µ∗

1 − (1 − r)µ∗
2) .

Given that yi’s are the realizations of a continuous random variable with no discrete probability
mass, k1/m, k2/m → 0 with probability 1 as m → ∞. Thus, as m → ∞, with probability 1,

n1
n2

≤ 1 − t

t
. (25)

.

Arguing on a similar line, if we consider δ∗
2 = 0 and δ∗

1 > 0 in 24, then we have the following
inequality

(k3 + n4)δ∗
1

n3δ∗
1 − k2(δ∗

1 + (2 − r)µ∗
1 − (1 − r)µ∗

2) ≥ 1 − t

t

As m → ∞, we can state that the following inequality holds with probability 1,

n4
n3

≥ 1 − t

t
. (26)

Again, starting with (µ∗
1, µ∗

2) as an optimal solution, we have
∑m

i=1 Lr
1−α(yi, µ∗

1 − δ∗
1 , µ∗

2 − δ∗
2) −∑m

i=1 Lr
1−α(yi, µ∗

1, µ∗
2) ≥ 0. For computing this, let us evaluate the difference of the sums for each of

the following ten sets inducing a partition of R.

R′
1 = {yi : yi > µ∗

2}, R′
2 = {yi : yi = µ∗

2}, R′
3 = {yi : µ∗

2 −
δ∗

2 ≤ yi < µ∗
2}, R′

4 = {yi : rµ∗
2 + (1 − r)µ∗

1 < yi < µ∗
2 − δ∗

2}, R′
5 =

{yi : yi = r(µ∗
2) + (1 − r)µ∗

1}, R′
6 = {yi : r(µ∗

2 − δ∗
2) + (1 − r)(µ∗

1 − δ∗
1) ≤ yi < rµ∗

2 + (1 − r)µ∗
1},

R′
7 = {µ∗

1 < yi < r(µ∗
2 − δ∗

2) + (1 − r)(µ∗
1 − δ∗

1)}, R′
8 = {yi : yi = µ∗

1} , R′
9 = {yi : µ∗

1 < yi ≤ µ∗
1 −δ∗

1},
R′

10 = {yi : yi < µ∗
1 − δ∗

1}.

Denoting
∑

yi∈Ri
Lr

1−α(yi, µ∗
1 − δ∗

1 , µ∗
2 − δ∗

2) −
∑

yi∈Ri
Lr

1−α(yi, µ∗
1, µ∗

2) by ∆′
i we obtain the following

values of ∆′
i, i = 1, 2, ..., 10: ∆′

1 = tn1δ∗
2 , ∆′

2 = −(1 − t)k1δ∗
2 , ∆′

3 = 0 , ∆′
4 = −(1 − t)n2δ∗

2 , ∆′
5 =

−(1 − t)k2δ∗
2 , ∆′

6 = 0 , ∆′
7 = (1 − t)n3δ∗

1 , ∆′
8 = (1 − t)k3δ∗

1 , ∆′
9 = 0 , ∆′

10 = −tn4δ∗
1 .

Thus, we obtain
n∑

i=1
Lr

1−α(yi, µ∗
1 + δ∗

1 , µ∗
2 + δ∗

2) −
n∑

i=1
Lr

1−α(yi, µ∗
1, µ∗

2) = tn1δ∗
2 − (1 − t)k1δ∗

2 − (1 − t)n2δ∗
2 − (1 − t)k2δ∗

2

+(1 − t)n3δ∗
1 + (1 − t)k3δ∗

1 − tn4δ∗
1 ≥ 0. (27)

23



Under review as submission to TMLR

Now, if we assume δ∗
1 = 0 and δ∗

2 > 0 in (27), then we obtain,

n1
k1 + n2 + k2

≥ 1 − t

t
,

which entails
n1
n2

≥ 1 − t

t
, (28)

as n → ∞ with probability 1.

Similarly, considering δ∗
2 = 0 and δ∗

1 > 0 in (27), we obtain as n → ∞,

n4
n3

≤ 1 − t

t
, (29)

holds with probability 1.

Thus, (25) and (28) imply that as n → ∞

n1
n2

= 1 − t

t
(30)

holds with probability 1.

Similarly, combining (26) and (28), we obtain as n → ∞,

n4
n3

= 1 − t

t
(31)

holds with probability 1.

Thus, combining 30 and 31, we obtain, as m → ∞,

n1 + n4
n2 + n3

= 1 − t

t
(32)

holds with probability 1.

B Gradient Descent method for Tube loss-based kernel machines

The Tube loss-based kernel machine estimates a pair of functions

µ2(x) :=
n∑

i=1
k(xi, x)αi + b1 and µ1(x) :=

n∑
i=1

k(xi, x)βi + b2. (33)

where k(x, y) is positive definite kernel. For the sake of simplicity, we rewrite µ1(x) and µ2(x) in
vector form

µ1(x) := K(AT , x)α + b1 and µ2(x) := K(AT , x)β + b2. (34)
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where A is the n × p data matrix containing n training points in Rp, K(AT , x) =

[
k(x1, x), k(x2, x), .., k(xn, x)

]
, α =


α1
α2
..

αn

 and β


β1
β2
..
βn

. The Tube loss-based kernel machines consid-

ers the problem

min
(α,β,b1,b2)

J2(α, β, b1, b2) = λ

2 (αT α + βT β) +
n∑

i=1
Lr

1−α

(
yi,

(
K(AT , xi)α + b1

)
,
(
K(AT , xi)β + b2

) )
+δ

n∑
i=1

∣∣(K(AT , xi)(α − β) + (b1 − b2)
∣∣, (35)

where Lr
1−α is the Tube loss function as given in (14) with the parameter r.

For a given point (xi, yi), let us compute the gradient of Lr
1−α

(
yi,

(
K(AT , xi)α + b1

)
,
(
K(AT , xi)β + b2

) )
first. For

this, we compute

∂Lr
1−α

(
yi,

(
K(AT ,xi)α+b1

)
,

(
K(AT ,xi)β+b2

) )
∂α

=
(1 − t)K(A, xi), if (K(AT , xi)β + b2) < yi < (K(AT , xi)α + b1) and yi > (K(AT , xi)(rα + (1 − r)β) + (rb1 + (1 − r)b2).
0, if (K(AT , xi)β + b2) < yi < (K(AT , xi)α + b1) and yi < (K(AT , xi)(rα + (1 − r)β) + (rb1 + (1 − r)b2).
0, if K(AT , xi)β + b2 > y.

−tK(AT , xi), if K(AT , xi)α + b1 < y.

∂Lr
1−α

(
yi,

(
K(AT ,xi)α+b1

)
,

(
K(AT ,xi)β+b2

) )
∂b1

=
(1 − t), if (K(AT , xi)β + b2) < yi < (K(AT , xi)α + b1) and yi > (K(AT , xi)(rα + (1 − r)β) + (rb1 + (1 − r)b2).
0, if (K(AT , xi)β + b2) < yi < (K(AT , xi)α + b1) and yi < (K(AT , xi)(rα + (1 − r)β) + (rb1 + (1 − r)b2).
0, if K(AT , xi)β + b2 > y.

−t, if K(AT , xi)α + b1 < y.

∂Lr
1−α

(
yi,

(
K(AT ,xi)α+b1

)
,

(
K(AT ,xi)β+b2

) )
∂β

=
0, if (K(AT , xi)β + b2) < yi < (K(AT , xi)α + b1) and yi > (K(AT , xi)(rα + (1 − r)β) + (rb1 + (1 − r)b2).
−(1 − t)K(A, xi), if (K(AT , xi)β + b2) < yi < (K(AT , xi)α + b1) and yi < (K(AT , xi)(rα + (1 − r)β) + (rb1 + (1 − r)b2).
tK(A, xi), if K(AT , xi)β + b2 > y.

0, if K(AT , xi)α + b1 < y.

∂Lr
1−α

(
yi,

(
K(AT ,xi)α+b1

)
,

(
K(AT ,xi)β+b2

) )
∂b2

=
0, if (K(AT , xi)β + b2) < yi < (K(AT , xi)α + b1) and yi > (K(AT , xi)(rα + (1 − r)β) + (rb1 + (1 − r)b2).
−(1 − t), if (K(AT , xi)β + b2) < yi < (K(AT , xi)α + b1) and yi < (K(AT , xi)(rα + (1 − r)β) + (rb1 + (1 − r)b2).
t, if K(AT , xi)β + b2 > y.

0, if K(AT , xi)α + b1 < y.

(36)

For data point (xk, yk) such that yk = K(AT , xk)α + b1, or K(AT , xk)β + b2, the unique gradient
for Tube loss does not exist and any sub-gradient can be considered for computation. The data
point (xk, yk) lying exactly upon the surface r((K(AT , xk)α) + b1) + (1 − r)(K(AT , xk)β + b2) can
be ignored.
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Now, for given data point (xi, yi), we consider the width of PI tube δ
∣∣(K(AT , xi, yi)(α−β)+(b1 −b2)

∣∣
and denote it as J(α, β, b1, b2, xi, yi) and compute

∂J(α, β, b1, b2, xi)
∂α

= sign((K(AT , xi)(α − β) + (b1 − b2))K(AT , xi) if (K(AT , xi)(α − β) + (b1 − b2) ̸= 0

∂J(α, β, b1, b2, xi)
∂b1

= sign((K(AT , xi)(α − β) + (b1 − b2)) if (K(AT , xi)(α − β) + (b1 − b2) ̸= 0

∂J(α, β, b1, b2, xi)
∂β

= −sign((K(AT , xi)(α − β) + (b1 − b2))K(AT , xi) if (K(AT , xi)(α − β) + (b1 − b2) ̸= 0

∂J(α, β, b1, b2, xi)
∂b2

= −sign((K(AT , xi)(α − β) + (b1 − b2)) if (K(AT , xi)(α − β) + (b1 − b2) ̸= 0

For data point (xi, yi) satisfying (K(AT , xi)(α − β) + (b1 − b2) = 0, a unique gradient of
J(α, β, b1, b2, xi, yi) does not exist, and any subgradient can be considered for computation.

Now, we state gradient descent algorithm for the Tube loss based kernel machine problem.
Algorithm 2:-

Input:- Training Set T = {(xi, yi) : xi ∈ Rp, yi ∈ R, i = 1, 2, ...n}, confidence t ∈ (0, 1) r,δ,η and
tol.
Initialize:- α0,β0 ∈ Rn and b0

1,b0
2 ∈ R.

Repeat

β(k+1) = β(k) −ηk

(
λβ(k) +

∑n
i=1

∂Lr
1−α

(
yi,

(
K(AT ,xi)α+b1

)
,
(

K(AT ,xi)β+b2
) )

∂β(k) + δ
n∑

i=1

∂J(α,β,b1,b2,xi,yi)
∂β(k)

)
b

(k+1)
2 = b

(k)
2 − ηk

( ∑n
i=1

∂Lr
1−α

(
yi,

(
K(AT ,xi)α+b1

)
,
(

K(AT ,xi)β+b2
) )

∂b
(k)
2

+ δ
n∑

i=1

∂J(α,β,b1,b2,xi,yi)
∂b

(k)
2

)
α(k+1) = α(k) −ηk

(
λα(k) +

∑n
i=1

∂Lr
1−α

(
yi,

(
K(AT ,xi)α+b1

)
,
(

K(AT ,xi)β+b2
) )

∂α(k) +δ
n∑

i=1

∂J(α,β,b1,b2,xi,yi)
∂α(k)

)
b

(k+1)
1 = b

(k)
1 − ηk

( ∑n
i=1

∂Lr
1−α

(
yi,

(
K(AT ,xi)α+b1

)
,
(

K(AT ,xi)β+b2
) )

∂b
(k)
1

+ δ
n∑

i=1

∂J(α,β,b1,b2,xi,yi)
∂bk

1

)

Until
∣∣|


α(k+1) − α(k)

b
(k+1)
1 − b

(k)
1

β(k+1) − β(k)

b
(k+1)
2 − b

(k)
2

 ∣∣| ≥ tol.

In our implementation 1, the gradient descent algorithm for the Tube loss kernel machine initially
utilizes only the gradient of the Tube loss function. After a certain number of iterations, once
we confirm that the upper bound of the PI, K(AT xi)α + b1, has moved above the lower bound,
K(AT xi)α + b2, of PI, we incorporate the gradient of the PI tube width into the training of the
Tube loss kernel machine.

C Additional Experimental Details

Tuning r parameter:- Ideally, the tuning of the r parameter in the tube loss function should
align with the skewness of the distribution y|x. However, real-world datasets often exist in high
dimensions. Consequently, for a specific value of x, there may be only a few of yi values in the

1A MATLAB implementation of gradient descent with Tube loss is provided in supplementary material code.
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training dataset, leading to potential inaccuracies in estimating the skewness of the distribution y|x.
In practical benchmark experiments, we have tuned the r values for the tube loss machine from the
set {0.1, 0.2, ..., 0.9}.

Tuning δ parameter:- Initially, we initialize δ to zero in the Tube loss-based machine for benchmark
dataset experiments and aim to achieve the narrowest PI by adjusting the r parameter, either
moving the PI tube upwards or downwards. Once the r parameter is set and if the Tube loss-based
machine achieves a coverage higher than the target t on the validation set, we gradually fine-tune the
δ parameter from the set {0.001, 0.005, 0.1, 0.15, 0.2} to minimize the tube width while maintaining
the desired target coverage t.

For the numerical results in Table 2, the tuned parameters for the Tube Loss are summarized in
Table 6.

dataset r (tube_r) delta (penalty) lr batch dropout epochs
boston 0.5 0.03 0.05 10000 0.2 400
concrete 0.25 0.05 0.015 64 0.25 150
cpu_act 0.5 0.03 0.05 10000 0.2 400
energy 0.9 0.01 0.05 10000 0.2 400
kin8nm 0.1 0.01 0.05 10000 0.2 400
miami 0.3 0.05 0.05 10000 0.2 400
naval 0.3 0.05 0.05 10000 0.2 400
power 0.3 0.1 0.05 10000 0.2 400
protein 0.1 0.01 0.05 10000 0.2 400
sulfur 0.1 0.01 0.05 10000 0.2 400
wine 0.5 0.05 0.05 10000 0.2 400
yacht 0.5 0.03 0.01 10000 0.1 400

Table 6: Best Hyperparameters for Tube Loss based NN for results generated in Table 2.

Dataset (Size) LSTM Structure Batch Size Up,Low r,δ Window Size Learning Rate
Q- LSTM T-LSTM Q- LSTM T-LSTM Q-LSTM T-LSTM

Sunspots (3265) [256(0.3) ,128(0.2)] 128 128 0.98,0.03 0.5,0 16 0.001 0.001
Electric Production (397) [64] 32 16 0.98,0.03 0.5,0.01 12 0.01 0.001
Daily Female Birth (365) [100] 64 128 0.98,0.03 0.5,0.01 12 0.01 0.005

SWH (2170) [128(0.4),64(0.3),32(0.2)] 300 300 0.98, 0.03 0.5, 0.01 100 0.001 0.001
Temperature (3651) [16,8] 300 300 0.98, 0.03 0.5, 0.01 100 0.001 0.0001

Beer Production (464) [64,32] 64 64 0.98, 0.03 0.1, 0.01 12 0.001 0.0001

Table 7: Tuned parameter values for Q-LSTM and T-LSTM model for considered benchmark
datasets in Table 3. The LSTM architecture [128(0.4),64(0.3),32(0.2)] means that three hidden
layers with neurons 128, 64 and 32 respectively and each hidden layer is followed by a drop out
layer which are 0.4,0.3 and 0.2 respectively.
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Figure 11: Probabilistic forecast of LSTM with proposed Tube loss function.28


