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ABSTRACT

Open-vocabulary multi-object tracking (OVMOT) represents a critical new chal-
lenge involving the detection and tracking of diverse object categories in videos,
encompassing both seen categories (base classes) and unseen categories (novel
classes). This issue amalgamates the complexities of open-vocabulary object de-
tection (OVD) and multi-object tracking (MOT). Existing approaches to OVMOT
often merge OVD and MOT methodologies as separate modules, predominantly
focusing on the problem through an image-centric lens. In this paper, we pro-
pose VOVTrack, a novel method that integrates object states relevant to MOT and
video-centric training to address this challenge from a video object tracking stand-
point. First, we consider the tracking-related state of the objects during tracking
and propose a new prompt-guided attention mechanism for more accurate local-
ization and classification (detection) of the time-varying objects. Subsequently,
we leverage raw video data without annotations for training by formulating a
self-supervised object similarity learning technique to facilitate temporal object
association (tracking). Experimental results underscore that VOVTrack outper-
forms existing methods, establishing itself as a state-of-the-art solution for open-
vocabulary tracking task. We have included the source code in the supplementary
material.

1 INTRODUCTION

Multi-Object Tracking (MOT) is a fundamental task in computer vision and artificial intelligence,
which is widely used for video surveillance, media understanding, etc. In the past years, plenty of
datasets, e.g., MOT-20 (Dendorfer et al., 2020), DanceTrack (Sun et al., 2022), KITTI (Geiger et al.,
2012), as well as the algorithms, e.g., SORT (Wojke et al., 2017), Tracktor (Sridhar et al., 2019),
FairMOT (Zhang et al., 2021), have been proposed for MOT problem. However, most previous
works focus on the tracking of simple object categories, i.e., humans and vehicles. Actually, it is
important for the perception of various categories of objects in many real-world applications. Some
recent works have begun to study the tracking of generic objects. TAO (Dave et al., 2020) is the first
large dataset for the generic MOT, which includes 2,907 videos and 833 object categories. The later
GMOT-40 (Bai et al., 2021) includes 10 categories and 40 videos with dense objects in each video.

With the development of Artificial General Intelligence (AGI) and multi-modal foundation models,
open-world object perception has become a popular topic. Open-vocabulary object detection (OVD)
is a new and promising task because of its generic settings. It aims to identify the various categories
of objects from an image, including both the categories that have been seen during training (namely
base classes) and not seen (namely novel classes). Although OVD has been studied in a series of
works (Dhamija et al., 2020; Joseph et al., 2021; Doan et al., 2024), the literature on open-vocabulary
(multi-) object tracking is rare. The nearly sole work (Li et al., 2023) builds a benchmark for
open-vocabulary multi-object tracking (OVMOT) based on TAO (Dave et al., 2020). The authors
also develop a simple framework for this problem consisting of a detection head and a tracking
head. The detection head is directly taken from an existing OVD algorithm, i.e., DetPro (Du et al.,
2022), which is used to detect the open-vocabulary categories of objects in each frame without
considering any tracking-related factors. Then the tracking head is used to learn the similarities
among the detected objects in different frames. Since the lack of video data with open-vocabulary
tracking annotations, the approach in Li et al. (2023) uses a data hallucination strategy to generate the
image pairs for training the tracking head. However, the generated image pairs ignore the adjacent
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continuity and temporal variability of the objects in a video sequence. As discussed above, the
existing method for open-vocabulary tracking simply combines the approaches of OVD and MOT
in series as independent modules. It does not consider the object states during tracking, e.g., mutual
occlusion, motion blur, etc., and does not make use of the sequential information in the videos.
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Figure 1: Comparison between prior (Li et al., 2023) and
our methods.

Therefore, in this work, we aim to han-
dle the open-vocabulary object track-
ing from the standpoint of continuous
videos. The comparison between our
method and that in Li et al. (2023)
can be intuitively seen from Figure 1.
Specifically, we first consider the var-
ious states of the objects during track-
ing. Our basic idea is the damaged ob-
jects (e.g., with occlusion, motion blur,
etc.) should be weakened for fore-
ground object feature learning. This
way, we model these states as the
prompts, which are used to calculate the
attention weights of each generated de-
tection proposal during training the ob-
ject detection network. This methodol-
ogy can provide more accurate detec-
tion (localization and classification) re-
sults of the time-varying objects during
tracking. Second, to fully utilize the raw
videos without open-vocabulary track-
ing annotations, we formulate the temporal association (tracking) task as a constraint optimization
problem. The basic idea is that each object should maintain consistency across different frames,
allowing us to leverage object consistency to effectively learn the object appearance similarity fea-
tures for temporal association. Specifically, we formulate the object appearance self-consistency as
the intra-consistency, and the spatial-appearance mutual-consistency as the inter-consistency learn-
ing problem, in which we also consider the object category consistency. These consistencies work
together to learn the object appearance similarity features for the temporal association (tracking)
sub-task, thus enhancing the overall performance of OVMOT. Notably, the existing OVMOT dataset
TAO provides 534.1K (frames) of unlabeled video data. Compared to the 18.1K annotated samples,
the unlabeled ones have a huge potentiality to be explored for training. Our self-supervised train-
ing method obtains significant performance improvements only using the raw data thus effectively
alleviating the burden of annotations for OVMOT. The main contributions of this work are:

• We propose a new tracking-related prompt-guided attention for the localization and clas-
sification (detection) in the open-vocabulary tracking problem. This method takes notice
of the states of the time-varying objects during tracking, which is different from the open-
vocabulary object detection from a single image.

• We develop a self-supervised object similarity learning strategy for the temporal association
(tracking) in the OVMOT problem. This strategy, for the first time, makes full use of the
raw video data without annotation for OVMOT training, thus addressing the problem of
training data shortage and eliminating the heavy burden of annotation of OVMOT.

• Experimental results on the public benchmark demonstrate that the proposed VOVTrack
achieves the best performance with the same training dataset (annotations), and comparable
performance with the methods using a large dataset (CC3M) for training.

2 RELATED WORK

Multiple object tracking. The prevailing paradigm in MOT is the tracking-by-detection frame-
work (Andriluka et al., 2008), which involves detecting objects in each frame first, and then associat-
ing objects across different frames using various cues such as object appearance features (Bergmann
et al., 2019; Fischer et al., 2023; Leal-Taixé et al., 2016; Milan et al., 2017; Pang et al., 2021;
Sadeghian et al., 2017; Wojke et al., 2017; Cai et al., 2022), 2D motion features (Zhou et al., 2020;
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Saleh et al., 2021; Xiao et al., 2018; Qin et al., 2023; Du et al., 2023), or 3D motion features (Huang
et al., 2023; Luiten et al., 2020; Wang et al., 2023; Krejčı́ et al., 2024; Ošep et al., 2018; Sharma
et al., 2018b). Some methods leverage graph neural networks (Bochinski et al., 2017; Ding et al.,
2023) or transformers (Meinhardt et al., 2022; Sun et al., 2020; Zeng et al., 2022; Zhou et al., 2022d)
to learn the association relationships between objects, thereby enhancing tracking performance. To
broaden the object categories of the MOT task, the TAO benchmark (Dave et al., 2020) has been
proposed for studying MOT under the long-tail distribution of object categories. On this bench-
mark, relevant methods include AOA (Du et al., 2021), GTR (Zhou et al., 2022d), TET (Li et al.,
2022), QDTrack (Fischer et al., 2023), etc. While these methods perform well, they are still lim-
ited to pre-defined object categories, which makes them unsuitable for diverse open-world scenarios.
Differently, this work handles OVMOT problem, which contains categories not seen during training.

Open-world/vocabulary object detection. Unlike traditional object detection with closed-set cate-
gories that appear at the training time. The task of open-world object detection aims to detect salient
objects in an image without considering their specific categories (Dhamija et al., 2020; Joseph et al.,
2021; Doan et al., 2024). This allows the method to detect objects of categories beyond those present
in the training set. However, such methods do not classify objects into specific categories and only
regard the object classification task as a clustering task (Joseph et al., 2021), achieving classification
by calculating the similarity between objects and different class clusters. Consistent with the ob-
jective of open-world detection, open-vocabulary object detection requires the identification of cat-
egories not seen in the training set. However, unlike open-world detection, open-vocabulary object
detection needs to predict the specific object categories (Zareian et al., 2021). To achieve this, some
works (Bansal et al., 2018; Rahman et al., 2020) train the detector with text embeddings. Recently,
pre-trained vision-language models ,e.g., CLIP (Radford et al., 2021) connect visual concepts with
textual descriptions, which has a strong open-vocabulary classification ability to classify an image
with arbitrary categories described by language. Based on this, many works (Gu et al., 2022; Zhou
et al., 2022c; Wu et al., 2023) utilize pre-trained vision-language models to achieve open-vocabulary
object detection and few-shot object detection. In addition, some studies (Du et al., 2022; Zhou et al.,
2022a;b) further enhance the effectiveness of prompt embeddings of class descriptions using prompt
learning methods, thereby improving the results of open-vocabulary detection. Different from the
above detection methods developed for single image, in this work, we propose a prompt-guided
training method designed for open-vocabulary detection in continues videos, which can effectively
enhance the detection performance for the video tracking task.

Open-world/vocabulary object tracking. There are relatively few works addressing the task of
open-world tracking. Related approaches aim to segment or track all the moved objects in the
video (Mitzel & Leibe, 2012; Dave et al., 2019) or handle the generic object tracking (Ošep et al.,
2016; 2018; 2020) using a class-agnostic detector. Recently, the TAO-OW benchmark (Liu et al.,
2022) is proposed to study open-world tracking problems, but its limitation lies in evaluating only
class-agnostic tracking metrics without assessing class-related metrics. To make the setting more
practical, OVTrack (Li et al., 2023) first brings the setting of open vocabulary into the tracking task,
which also develops a baseline method and benchmark based on the TAO dataset. However, the
method in Li et al. (2023) directly uses an existing OVD algorithm for detection, and its training
process only utilizes static image pairs and ignores the information from video sequences. Differ-
ently, we consider the tracking-related object states for detection, and also propose a self-supervised
video-based training method designed for open-vocabulary tracking, making full use of video-level
information to enhance the performance of open-vocabulary tracking.

3 PROPOSED METHOD

3.1 OVERVIEW AND VOVTRACK FRAMEWORK

OVMOT requires localizing, tracking, and recognizing the objects in a video, whose problem formu-
lation is provided in Appendix 1. We first describe the framework of our VOVTrack, which mainly
includes the object localization, object classification, and temporal association modules, as shown
in Figure 2. For improving the localization and classification, in Section 3.2, we design a tracking-
state-aware prompt-guided attention mechanism, which can help the network learn more effective
object detection features. For learning the temporal association similarity, in Section 3.3, we pro-
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pose a video-based self-supervised method to train the association network, which considers the
appearance intra-/inter-consistency and category consistency, to enhance the tracking performance.
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Figure 2: Training framework consists of three parts: first is the localization head used to localize
objects of all categories in the video as region candidates; the second is the CLIP distilled classifica-
tion head consisting of image and text branches, which uses tracking-sate-aware prompts to guide the
model in focusing on object states while learning classification features, thereby better distinguish-
ing the OV categories; and the third part is the association head that utilizes intra/inter-consistency
between the same objects in different frames to learn association features in a self-supervised way.

Localization: We employ the class-agnostic object proposal generation approach in Faster R-
CNN (Ren et al., 2015) to localize objects for both base and novel categories C in the video. As
supported by prior researches (Dave et al., 2019; Gu et al., 2022; Zhou et al., 2022c; Li et al., 2023),
the localization strategy has shown robust generalization capabilities towards the novel object class
Cnovel. During the training phase, we leverage the above-mentioned generated RPN proposals as the
initial object candidates P . The localization result of each candidate r ∈ P is the bounding box
b ∈ R4. For each b, we also obtain a confidence pc ∈ R derived from the classification head. To re-
fine the localization candidates, besides the classical non-maximum suppression (NMS), we also use
this confidence pc. For a more effective pc ∈ R in the classification head, we use a prompt-guided
attention strategy, which will be discussed in later Section 3.2.

Classification: Existing closed-set MOT trackers only track several specific categories of objects,
which do not need to provide the class of each tracked object. This way, classification is a new sub-
task of the OVMOT. To enable the framework to classify open-vocabulary object classes, following
the OV detection algorithms (Gu et al., 2022; Zhou et al., 2022c; Wu et al., 2023), we leverage
the knowledge from the pre-trained model, i.e., CLIP (Radford et al., 2021), to help the network
recognize objects belonging to the novel classes Cnovel . We distill the classification head using the
CLIP model to empower the network’s classification head to recognize new objects. Specifically,
as shown in Figure 2, after obtaining the RoI feature embeddings fr from the localization head, we
design the classification head with a text branch and an image branch to generate embeddings f textr
and f img

r for each fr. The supervisions of these heads are generated by the CLIP text and image
embeddings. We use the method in Du et al. (2022) for CLIP encoder pre-training.

First, we align the text branch with the CLIP text encoder. For ∀c ∈ Cbase , the class text embedding
tc of class c can be generated by the CLIP text encoder T (·) as tc = T (c). We compute the affinity
between the predicted text embeddings f textr and their CLIP counterpart tc as

z(r) =
[
cos

(
f textr , tbg

)
, cos

(
f textr , t1

)
, · · · , cos

(
f textr , t|Cbase |

)]
,

Ltext =
1

|P |
∑
r∈P

wrLCE

(
softmax(

z(r)

λ
), cr

)
,

(1)

where tbg is a background prompt learned by treating the background candidates as a new class, wr

is the tracking-related prompt-guided attention weight (described in Section 3.2), λ is a temperature
parameter, LCE is the cross-entropy loss and cr is the class label of r.

Then, we align each image branch embedding f img
r with the CLIP image encoder I(·). For each

candidate object r, we input the corresponding cropped image to I(·) and get the CLIP image
embedding ir. We minimize the distance between the corresponding f img

r and ir as

Limage =
1

|P |
∑
r∈P

∥∥f img
r − ir

∥∥ . (2)
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In the testing stage, with the embeddings f textr and f img
r derived from the text branch and image

branch, respectively, we can obtain the corresponding classification probabilities ptext
c and pimg

c of
each r belonging to the class c, using the z(r) and softmax operation in Eq. (1). After that, we use
the fusion strategy in Gu et al. (2022) to calculate the final classification probability pc.

Association: The association head is to associate the detected objects with the same identification
across frames, the main purpose of which is to learn the object features for similarity measurement.

In the training stage, given the detected objects from the localization head, we use the appearance
embedding to extract the features for association. For training the appearance embedding model,
a straightforward method is to select an object as the anchor, and its positive/negative samples for
learning the object similarity. This method requires object identification (ID) annotations for posi-
tive/negative sample selection. However, as an emerging problem, OVMOT does not have enough
available training video datasets with tracking ID labels. Previous work (Li et al., 2023) uses data
augmentation to generate the image pairs for training the association head, which, however, ignores
the temporal information in the videos. In this work, we propose to leverage the unlabeled videos to
train the association network in a self-supervised strategy, which will be discussed in Section 3.3.

In the inference stage, we use appearance feature similarity to associate history tracks with the ob-
jects in the current frame. As in Li et al. (2023), we evaluate the similarity between history tracks
and detected objects using both bi-directional softmax (Fischer et al., 2023) and cosine similarity
metrics. Following the classical MOT approaches, if the similarity score exceeds a matching thresh-
old, we assign the object to the track. If the object doesn’t correspond to any existing track, a new
track is initiated if its detection confidence score surpasses a threshold, otherwise, it is disregarded.

3.2 TRACKING-STATE-AWARE PROMPT GUIDED ATTENTION

Tracking-state-aware prompt. In the classification head of existing open-vocabulary detection
methods, when selecting region candidates for calculating classification loss, they only consider
whether the maximal IOU between the candidates and ground-truth box exceeds a threshold. For
this tracking problem, we further consider whether the states of the candidates are appropriate for
training the detection network.

As is well known, the objects present many specific states during tracking, such as occlusion/out-
of-view/motion blur, etc, which are more frequent than the object detection in static images. So, it
is important to identify such object states to achieve more accurate detection and tracking results.
However, these states have often been overlooked in past methods because the labels of these states
are difficult to obtain, not to mention incorporating them into the network training.

Prompt, as a burgeoning concept, can be used to bridge the gap between the vision and language
data based on the cross-modal pre-trained models. We consider using specially designed prompts
to perceive the tracking states of the objects and integrate such states into the model training. We
refer to such prompts as ‘tracking-state-aware prompts’. We specifically employ pairs of adjectives
with opposite meanings to describe the object states during tracking. For example, ‘unoccluded and
occluded’. As shown in classification head of Figure 2, we add M pairs of tracking-state-aware
prompt pairs, denoted as {pmpos, p

m
neg}Mm=1, into our framework model. Next, we present how to use

these promotes during training.

Prompt-guided attention. To utilize these tracking-state-aware prompts guiding model train-
ing, we encode these prompts through the CLIP text encoder T (·) to obtain state embeddings
{tmpos, tmneg}Mm=1, and calculate the prompt-guided attention weight wr as

z(r,m) =
[
cos

(
f textr , tmpos

)
, cos

(
f textr , tmneg

)]
, wr =

1

|M |

M∑
m=1

(
softmax

z(r,m)

λ

)
1

, (3)

where f textr is the text embedding of a region candidate r, and ()1 represents using the probability of
the positive state as the attention for this pair. Note that, in our definition, the positive states always
denote that the object state is beneficial to the object feature learning, e.g., unoccluded, unobscured.
From the above analysis, we know that the attention obtained from the tracking-state-aware prompts
evaluates the various object states, resulting in prompt-guided attention values wr ⊆ [0, 1].
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Piecewise weighting strategy. Next, we use this prompt-guided attention to help the model better
utilize high-quality candidates for training and filter out the low-quality noisy candidates. Specif-
ically, we divide the wr into three levels: low (dlow), medium and high (dhigh). For embedding
features f textr with wr < dlow, we regard such features as low-quality state, and filter them out
during training, by assigning wr to 0. For dlow ≤ wr ≤ dhigh, we regard that even if these fea-
tures are not of high quality, they still contribute to training, and retain their original weights wr.
For wr > dhigh, we regard the features of these regions as particularly suitable ones for the model
to learn tracking-related features, so we assign wr to 1 as an award. After that, we apply the re-
assigned wr to Eq. (1), thereby integrating the object tracking-related state into the model training,
which enables the network to better learn the object representations specifically for the tracking task.

3.3 SELF-SUPERVISED OBJECT ASSOCIATION WITH RAW VIDEO DATA

Considering the lack of annotated videos for OVMOT, we develop a self-supervised approach to
train the association network by leveraging the consistency among the same objects during a video.

3.3.1 FORMULATION

Objective function. To learn the object appearance feature, we consider two aspects. The first one
is intra factor, i.e., the self-consistency of appearance for the same object at different times. The
second one is inter factor, i.e., the mutual-consistency between the appearance and motion cues
during tracking. This way, we formulate the optimized objective function as

max S = Sintra(ti, tj) + α · Sinter(ti, tj), s.t. ∀ti, tj ∈ Tc, ∀c ∈ C, (4)

where S represents the overall consistency objective to be maximized, Sintra and Sinter denote the
intra and inter consistency measures respectively, while α is a weight to balance them. Besides,
considering the diversity of object categories in the OVMOT problem, we add the object category
consistency constraint for the consistency learning. Specifically, we construct the intervals, e.g., Tc,
which contain several frames only with the same object category c, in which we select ti, tj . This is
because we aim to learn the feature in a self-supervised manner without ID annotation, the objects
with various categories may bring about interference.

Long-short-interval sampling. First, we consider the interval splitting of Tc in Eq. (4). We split
the original videos into several segments of length L and randomly sample the shorter sub-segments
with various lengths from each segment. These short-term sub-segments are then concatenated to
form the training sequence. Such training sequences include long-short-term intervals. Specifically,
we select the adjacent frames from the same sub-segment, which allow the association head to learn
the consistency objectives under minor object differences. We also select the long-interval video
frames from different sub-segments, which allow the association head to learn the similarity and
variation of objects under large differences.

Category-consistency constraint. Then we consider the category consistency constraint in Tc.
After obtaining the sampled training sequences as discussed above, we utilize the localization head
to extract object bounding boxes from each frame in the sequence. Since we only use unlabeled
raw videos for training, we cannot directly obtain the object categories. To address this issue, we
employ a clustering approach to group the bounding boxes based on their classification features.
Specifically, we utilize the classification head to obtain the category features for the candidate objects
from all frames. Then we cluster the candidate objects’ category features as different clusters. After
clustering the candidate objects’ category features into distinct groups, we can treat each cluster as a
separate category. As illustrated in Figure 2, we proceed to conduct self-supervised learning on the
objects that belong to the same category cluster and are sourced from different frames.

3.3.2 SELF-SUPERVISED LOSS CONSTRUCTION

We next model the consistency learning problem in Eq. (4) as a self-supervised learning task.

Intra-consistency loss. After getting the training samples (object bounding boxes in different
frames of the sample training sequence within the category clustering), we first use the CNN network
to extract the appearance feature from the association head for all objects in frame ti to construct the
feature matrix Fi. The main idea of the intra-consistency loss is to leverage the self-consistency of
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the same objects at different times (frames). We utilize the following two types of similarity transfer
relationships, i.e., pair-wise symmetry and triple-wise cyclicity.

• Consistent learning from the symmetry: For a pair of frames ti and tj in the video, we can get the
object similarity matrix between them as

Mij = Fi · (Fj)
T
. (5)

We then compute the normalized similarity matrix Sij ∈ [0, 1] based on the above similarity matrix
Mij by temperature-adaptive row softmax as

S(r, c) = fr,c(M) =
exp(τM(r, c))∑C

c=1 exp (τM (r, c))
(6)

where r, c represent the indices of row and column in M, respectively. Here C is the number of
columns for M, and τ is the adaptive temperature adjustable parameter.

The normalized similarity matrix Sij can be regarded as a mapping (object association relation) from
frame ti to frame tj (Sij : ti → tj). In other words, we can select the maximum value of each row
of S as the matched objects between frames ti and tj . Similarly, we get the reversed mapping from
tj to ti as Sji : tj → ti. We calculate the pair-wise symmetric-similarity matrix as Epair = Sij ·Sji,
where Epair can be regarded as a symmetric mapping: ti ⇄ tj , i.e., from ti and return ti. If the
objects in frames ti and tj are the same, the result Epair should be an identity matrix, which can
be used to construct the self-supervision loss. However, due to the object differences in different
frames, this condition may not be always satisfied. Therefore, we need to supervise it deliberately,
which will be discussed later.

• Consistent learning from the cyclicity: Besides the pair-wise symmetric similarity, we further
consider the triple-wise circularly consistent similarity. Specifically, given the similarity matrix Sij

between two frames ti and tj , as well as Sjk between frames tj and tk, we aim to build the consistent
similarity relation among this triplet, i.e., frames ti, tj and tk. To do this, we first calculate the third-
order similarity matrix as

Mik = Mij ·Mjk, (i ̸= j ̸= k), (7)

where Mik represents the similarity between the objects in frames ti and tk, through the frame tj .
We then compute the normalized similarity matrix using Eq. (6) as

Sik = f (Mik) , Ski = f
(
(Mik)

T
)
, (8)

where Sik represents the mapping ti → tj → tk while Ski represents the mapping along tk →
tj → ti. Then, we calculate the transitive-similarity matrix: Etrip = Sik · Ski, where Etri can be
regarded as the mapping: ti ⇄ tj ⇄ tk (from ti and return ti).

For convenience, we note the matrices Epair and Etrip as E, which should have the property that
their diagonal elements are either 1 or 0, while all other elements are 0, in an ideal case. This
means that the diagonal elements of E must be greater than or equal to the other elements. Based
on this consideration, following Wang et al. (2020); Feng et al. (2024), we use the following loss
L(E) =

∑
r relu (maxc̸=r E(r, c)−E(r, r) +m) , where r, c denote the indices of row and column

in E. This loss denotes that we penalize the cases where the max non-diagonal element E(r, c)
(c ̸= r) in a row r, exceeds the corresponding diagonal elements E(r, r) with a margin m. The
margin m ≥ 0 is a parameter used to control the punishment scope between E(r, c) and E(r, r).
This loss helps E approach the identity matrix while addressing cases where there are unmatched
targets in a row through a margin m. Finally, we define our self-supervised consistency learning loss
(intra) as Lintra = L (Epair) + L (Etrip) .

Inter-consistency loss. The inter-consistency loss makes use of the consistency between the spatial
position continuity and the appearance similarity of the objects at different times. Given a bounding
box list Bi and Bj of adjacent frames i and j in the video, we compute the Intersection over Union
(IoU) matrix Mij between bounding boxes Bi and Bj , which quantifies the overlap between them.
Based on a specified threshold IoUthres, we create an assignment matrix Aij such that

Aij =

{
1 if Mij > IoUthres

0 otherwise
, (9)
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This assignment matrix Aij indicates whether pairs of objects are considered similar, facilitating
the optimization of the spatial consistency objective. Furthermore, we utilize the previously ob-
tained normalized similarity matrix Sij to establish the inter-consistency loss, using the binary cross-
entropy loss function LBCE, as Linter = LBCE(Sij ,Aij). This formulation allows us to measure the
discrepancy between the normalized similarity matrix Sij and the assignment matrix Aij , thereby
enforcing spatial consistency across the detected objects in frames ti and tj .

Finally, we have transformed the optimization problem in Eq. (4) into a self-supervised loss as L =
Lintra + α · Linter, where α is a weighting coefficient. This formulation incorporates both the intra-
and inter-consistencies, as well as category consistency, among the frames with different intervals,
thereby effectively exploring the potentiality of videos to enhance the association for OVMOT.

3.4 IMPLEMENTATION DETAILS

In Section 3.1, we use ResNet50 with FPN for localizing candidate regions. We set λ in Eq. (1) as
0.007. In Section 3.2, we select four pairs of typical tracking state aware prompts, i.e., ‘complete
and incomplete’, ‘unoccluded and occluded’, ‘unobscured and obscured’, and ‘recognizable and
unrecognizable’. We set dlow as 0.3, dhigh as 0.6. In Section 3.3, the segment length L is set as 24.
We use the clustering algorithm of K-means. We set the margin m as 0.5 and the IoUthres as 0.9 . For
N frames in each sampled video sequence, we select C2

N and C3
N groups of frames to calculate the

matrices in Eqs. (5) and (7). We also select C2
N groups of frames to calculate the inter-consistency

loss. The weighting coefficients α is 0.9.

In the training stage, we first train the two-stage detector on the base classes of LVIS dataset (Gupta
et al., 2019) referenced from Du et al. (2022), for 20 epochs, and use prompt-guided attention
proposed in Section 3.2 to fine-tune the model’s classification head for 6 epochs. Then we train
the association head using static image pairs generated from Li et al. (2023) for 6 epochs and self-
supervise the association head with TAO training dataset (Dave et al., 2020) without annotation for
14 epochs. In the inference stage, we select object candidates P by NMS with IoU threshold 0.5.
Additionally, we set the similarity score threshold as 0.35 and maintain a track memory of 10 frames.

4 EXPERIMENTS

4.1 DATASET AND METRICS

We follow Li et al. (2023) to select the dataset and metrics for evaluation. We leverage the com-
prehensive and extensive vocabulary MOT dataset TAO (Dave et al., 2020) as our benchmark for
OVMOT. TAO is structured similarly to the LVIS (Gupta et al., 2019) taxonomy, categorizing object
classes based on their frequency of appearance into frequent, common, and rare groups. We use
the rare classes defined in LVIS as Cnovel and others as Cbase. We evaluate the performance with the
comprehensive metric tracking-every-thing accuracy (TETA), which consists of the accuracies of
localization (LocA), classification (ClsA), and association (AssocA).

4.2 COMPARATIVE RESULTS

We compare our method with the latest trackers, TETer (Li et al., 2022) and QDTrack (Fischer
et al., 2023), which are trained on both Cbase and Cnovel . We include the classical trackers like
DeepSORT (Wojke et al., 2017) and Tracktor++ (Bergmann et al., 2019) trained only on Cbase and
enhanced by OVD method ViLD (Gu et al., 2022) to achieve open-vocabulary tracking, as baselines.
We also compare our method with the state-of-the-art OVMOT method, OVTrack (Li et al., 2023).
Besides, following Li et al. (2023), we compare with the existing trackers (DeepSORT, Tracktor++,
OVTrack) equipped with the powerful OVD method, i.e., RegionCLIP (Zhong et al., 2022) trained
on the extensive CC3M (Sharma et al., 2018a) dataset.

As shown in Table 1, we present the OVMOT evaluation results on the TAO validation and test sets,
divided into base classes Cbase and novel classes Cnovel . We can see that our method outperforms
all closed-set and open-vocabulary methods on both the validation and test sets. Even though QD-
Track (Fischer et al., 2023) and TETer (Li et al., 2022) have seen novel classes during training on
TAO, our method significantly outperforms them in all metrics on both base and novel classes.
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Table 1: Result comparison. We evaluate our method against closed-set and open-vocabulary track-
ers on TAO validation and test sets. Here ‘✓’ denotes using the corresponding dataset with annota-
tions, and ‘†’ represents only using the raw video without any annotation.

Method Classes Data Base Novel
Validation set Base Novel CC3M LVIS TAO TETA LocA AssocA ClsA TETA LocA AssocA ClsA
QDTrack (Fischer et al., 2023) ✓ ✓ - ✓ ✓ 27.1 45.6 24.7 11.0 22.5 42.7 24.4 0.4
TETer (Li et al., 2022) ✓ ✓ - ✓ ✓ 30.3 47.4 31.6 12.1 25.7 45.9 31.1 0.2
DeepSORT (ViLD) (Wojke et al., 2017) ✓ - - ✓ ✓ 26.9 47.1 15.8 17.7 21.1 46.4 14.7 2.3
Tracktor++ (ViLD) (Bergmann et al., 2019) ✓ - - ✓ ✓ 28.3 47.4 20.5 17.0 22.7 46.7 19.3 2.2
DeepSORT + RegionCLIP∗ ✓ - ✓ ✓ ✓ 28.4 52.5 15.6 17.0 24.5 49.2 15.3 9.0
Tracktor++ + RegionCLIP∗ ✓ - ✓ ✓ ✓ 29.6 52.4 19.6 16.9 25.7 50.1 18.9 8.1
OVTrack (Li et al., 2023) ✓ - - ✓ - 35.5 49.3 36.9 20.2 27.8 48.8 33.6 1.5
OVTrack + RegionCLIP∗ ✓ - ✓ ✓ - 36.3 53.9 36.3 18.7 32.0 51.4 33.2 11.4
VOVTrack (Ours) ✓ - - ✓ † 38.1 58.1 38.8 17.5 34.4 57.9 39.2 6.0

Test set Base Novel CC3M LVIS TAO TETA LocA AssocA ClsA TETA LocA AssocA ClsA
QDTrack (Fischer et al., 2023) ✓ ✓ - ✓ ✓ 25.8 43.2 23.5 10.6 20.2 39.7 20.9 0.2
TETer (Li et al., 2022) ✓ ✓ - ✓ ✓ 29.2 44.0 30.4 10.7 21.7 39.1 25.9 0.0
DeepSORT (ViLD) (Wojke et al., 2017) ✓ - - ✓ ✓ 24.5 43.8 14.6 15.2 17.2 38.4 11.6 1.7
Tracktor++ (ViLD) (Bergmann et al., 2019) ✓ - - ✓ ✓ 26.0 44.1 19.0 14.8 18.0 39.0 13.4 1.7
DeepSORT + RegionCLIP∗ ✓ - ✓ ✓ ✓ 27.0 49.8 15.1 16.1 18.7 41.8 9.1 5.2
Tracktor++ + RegionCLIP∗ ✓ - ✓ ✓ ✓ 28.0 49.4 18.8 15.7 20.0 42.4 12.0 5.7
OVTrack (Li et al., 2023) ✓ - - ✓ - 32.6 45.6 35.4 16.9 24.1 41.8 28.7 1.8
OVTrack + RegionCLIP∗ ✓ - ✓ ✓ - 34.8 51.1 36.1 17.3 25.7 44.8 26.2 6.1
VOVTrack (Ours) ✓ - - ✓ † 37.0 56.1 39.3 15.5 29.4 52.4 31.2 4.5

∗Note that, except the RegionCLIP (Zhong et al., 2022), all other methods (including ‘Ours’) use ResNet50 as backbone.

Additionally, DeepSORT and Tracktor++ with the open-vocabulary detector ViLD (Gu et al., 2022)
are also trained in a supervised manner on TAO, while our method, trained in a self-supervised
manner on TAO, surpasses them by a large margin. Although the results of OVTrack, the most
competitive method, are better than other comparison methods, our method outperforms it in almost
all metrics significantly on both base and novel classes.

Particularly, compared to our baseline method OVTrack, our method achieves improvements of
2.6% and 6.6% in base and novel TETA, respectively, and a 4.5% increase in novel ClsA. In the test
set, base and novel TETA also show improvements of 4.4% and 5.3%, respectively. It is worth noting
that even though RegionCLIP-related methods use an additional 3 million image data in CC3M for
training, our method outperforms them in almost all metrics, with only ClsA slightly lower. This
demonstrates the effectiveness of the proposed approach, which is very promising for the OVMOT
task. We provide more analysis from the standpoint of data quantity for training in Appendix 2.

4.3 ABLATION STUDY

Table 2: Ablation studies on modules of prompt-guided attention and self-supervised association.
Module Ablation Methods Base Novel

TETA LocA AssocA ClsA TETA LocA AssocA ClsA

Prompt-guided attention w/o prompt-guided attention 35.7 52.7 37.2 17.3 29.8 52.8 34.9 1.7
w/o piecewise weight strategy 36.3 53.9 37.5 17.4 31.7 53.8 36.8 4.5

Self-supervised association

w/o self-supervised learning 36.3 55.5 36.4 17.1 31.3 55.1 34.7 4.0
w/o short-long-sampling 37.3 57.2 36.9 17.7 33.1 56.9 37.2 5.1
w/o category consistency 37.1 57.6 37.4 16.3 32.2 56.0 37.0 3.7
w/o intra-consistency 37.0 57.0 36.7 17.4 32.3 56.1 36.0 4.9
w/o inter-consistency 37.2 56.8 37.2 17.6 33.0 56.6 36.8 5.5
VOVTrack (Ours) 38.1 58.1 38.8 17.5 34.4 57.9 39.2 6.0

In this section, we conduct the ablation studies on all components proposed in our method, including
the ablation of prompt-guided attention, and the self-supervised learning related modules as:
• w/o prompt-guided attention (wr): Removing the prompt-guided attention in Section 3.2.
• w/o piecewise weight strategy (dlow and dhigh): Removing the piecewise weighting strategy pro-
posed in Section 3.2, by directly using the wr calculated by Eq. (3).
• w/o self-supervised learning: Removing the whole self-supervised learning strategy in Section 3.3.
• w/o short-long-sampling: Removing the short-long-interval sampling strategy in Section 3.3.
• w/o category consistency: Removing the category-aware object clustering in Section 3.3.
• w/o intra-consistency: Removing the intra-consistency consistency loss.
• w/o inter-consistency: Removing the inter-consistency loss in Section 3.3.

Effectiveness of the state-aware prompt guided attention. As shown in the first unit of Table 2,
we can see that using prompt-guided attention as a weight coefficient during the training stage can
effectively improve all metrics for both base and novel classes. The piecewise weighting strategy is
also very effective, especially in improving the classification accuracy of novel classes.
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Effectiveness of the self-supervised consistent learning. As shown in the second unit of Table 2,
we can see that using self-supervised loss can effectively improve all metrics for both base and novel
classes. Either the intra-consistency or the inter-consistency for appearance learning is effective for
the association task, i.e., ‘AssocA’. Also, the interval sampling strategy allows samples to have a
more diverse range of long and short cycles, improving the association-related metric. The cate-
gory clustering strategy tries to gather the objects with the same category in a cluster, which is also
helpful. To our surprise, the above strategies, in most cases, also effectively help improve classifi-
cation (‘ClsA’) and localization (‘LocA’) accuracies. This is because the better association results
can indirectly help to other two sub-tasks in OVMOT. We provide the discussion and analysis of the
complementarity among different tasks in Appendix 3.

4.4 QUALITATIVE ANALYSIS

We conduct some qualitative analysis to more intuitively show the effect of our prompt-guided
attention and the visualized comparison results of our method with the state-of-the-art algorithm.

Illustrations of the proposed prompt-guided attention. Figure 3 (a) shows cases of high prompt-
guided attention, where we can see that the regions often have very distinctive category features, with
no occlusion, and the image quality of the region is very high. In contrast, Figure 3 (b) presents cases
of low prompt-guided attention, where we can observe that these regions often have issues such as
heavy blurriness, occlusion, unclear visibility, and difficulty in identification. Such samples are very
unsuitable for training the object localization and classification features, which are appropriately
weakened through state-aware prompt-guided attention.

Unrecognizable Incomplete Occluded

(b) (a) 

0.289 0.265 0.288

0.262
0.282

0.245

0.911

0.917

0.904 0.9250.92

0.905

Figure 3: Illustration of regions with high (a) or low (b) prompt-guided attention, respectively.

Comparison result visualization. We show several visualization results in Figure 4. We can see
that the proposed method provides better results than OVTrack (Li et al., 2023). In the first case
of Figure 4 (a), our method provides an accurate object localization result and identifies the correct
category. In the second case of Figure 4 (b), the tracking of a drone provided by the comparison
method is wrong (different box colors denote different tracking IDs), also the classification is not
correct. Our method can track it continuously. We also show some failure cases in Appendix 4.

army_tank

train

army_tank

train

better localization

Ours

OVTrack

army_tank

train

better classification

control control control
drone drone drone

camera camera camera
airplane bird airplane

Ours

OVTrack

better association better association

(b) (a) 

� �

Figure 4: Compared OVMOT results of ours and OVTrack on some cases with novel classes.

5 CONCLUSION

In this work, we have developed a new method namely VOVTrack to handle the OVMOT problem
from the perspective of video object tracking. For this purpose, we first consider the object state
during tracking and propose tracking-state-aware prompt-guided attention, which improves the ac-
curacy of object localization and classification (detection). Second, we develop an object similarity
learning strategy for the temporal association (tracking) using only the raw video data without an-
notation, which unveils the power of self-supervised learning for open-vocabulary tracking tasks.
Experimental results demonstrate the effectiveness of the proposed method and each component for
open-vocabulary tracking.
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twenty-thousand classes using image-level supervision. In European Conference on Computer
Vision, pp. 350–368. Springer, 2022c.

Xingyi Zhou, Tianwei Yin, Vladlen Koltun, and Philipp Krähenbühl. Global tracking transformers.
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A APPENDIX

APPENDIX 1. OVMOT PROBLEM

OVMOT requires the tracker to be capable of tracking objects from the open-vocabulary categories
of objects. We first present the problem formulation of this task from the training and testing stages.

At training stage, the training data is
{
Xtrain ,Atrain

}
that contains video sequences Xtrain and their

respective annotations Atrain of the objects. Given one frame in the video, each annotation α ∈ Atrain

consists of a 2D bonding box b = [x, y, w, h], a unified ID d over the whole video, and a category
label c, where (x, y) is the center pixel coordinates and (w, h) is the width and height of the box,
the category belongs to the base class set, i.e., c ∈ Cbase .

At the testing stage, the inputs consist of video sequences Xtest and the set of all object classes
C = Cbase ∪ Cnovel , where Cnovel denotes the novel categories not appearing in the training set, i.e.,
Cnovel ∩Cbase = ∅. OVMOT aims to obtain the trajectories of all objects in Xtest belonging to classes
C. Each trajectory τ consists of a series of tracked objects τt at frame t, and each τt is composed
of a 2D bounding box b, and its object category c. Note that, during the testing stage, we need to
evaluate not only the results on the base class Cbase , but also on the novel class Cnovel . The results on
Cnovel can validate the tracker’s capability when facing objects from the open-vocabulary categories.

APPENDIX 2. TRAINING DATA ANALYSIS

As discussed above, we use the training dataset in TAO for association module training. Next, we
will analyze our experimental results from the perspective of the data quantity used for training.

TAO dataset. As shown in the first row of Table 3, we can see that the original TAO dataset has very
few annotated frames, with only 18.1k frames, and limited box annotations of 54.7k. This is because
the annotations in TAO were made at 1 FPS, resulting in a very limited number of supervised frames
and available annotations for training a robust tracker.

As shown in the next row, in our self-supervised method, we use all the raw video frames without
requiring any annotations. We can see that the usable frame quantity has increased to 30 times com-
pared to the original training set (with annotations). Also, the quantity of available object bounding
boxes for self-supervised training has reached 399.9k, which is 7.5 times the original number of an-
notated ones. Moreover, by integrating the long-short-term sampling strategies, we can fully utilize
all the long-short-term frames within in the TAO raw videos through our self-supervised method,
thereby achieving better results.

Table 3: The number of frames and annotations can be used to train in LVIS, annotated TAO, TAO
in our self-supervised paradigm and CC3M.

Datasets Frames Annotations (detections)
TAO (Original training set) 18.1k 54.7k
TAO (Our self-supervision) 534.1k 399.9k

Datasets Frames Annotations (detections)

LVIS base novel base novel
99.3k 1.5k 1264.9k 5.3k

Datasets Frames Annotations (captions)
CC3M 3318.3k 3318.3k

We further discuss the results using the training datasets of LVIS and CC3M.

LVIS dataset. As shown in Table 1 in the main paper, the comparison methods QDTrack (Fischer
et al., 2023) and TETer (Li et al., 2022) trained on the LVIS dataset with both base and novel classes,
still yield poor results in TAO validation and test sets. This may be due to the imbalance in the data
quantity of base and novel categories. Specifically, as seen in Table 3, although the LVIS dataset has
a large number of frames and annotations for its base classes, the data for its novel classes is very
limited, with the number of frames being 1

66 and the number of annotations even less, at 1
239 .
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CC3M dataset. We also list the data quantity of CC3M (Sharma et al., 2018a) in the last row of
Table 3 to explain why our classification accuracy is slightly lower than the methods trained CC3M.
We can see that the CC3M dataset is significantly larger, nearly 33 times the size of LVIS and 184
times that of TAO. In it, each frame caption also provides an average of about 10 words for training.
The scenes and categories in the CC3M dataset are far more diverse than those in LVIS and TAO,
which enables it to encounter a wider range of categories and achieve higher classification accuracy.
However, it is noteworthy that, despite this, our method surpasses the results of the methods us-
ing CC3M in most metrics except classification, effectively demonstrating the effectiveness of our
method.

APPENDIX 3. MODULE COMPLEMENTARITY ANALYSIS

When designing the entire framework, we also consider the complementarity of the localization,
association, and association modules, enabling them to assist each other.

Improving classification via association. Following the baseline (Li et al., 2023), we use the most
frequently occurring category within a trajectory as the category for all objects in that trajectory.
This approach indirectly improves classification results through better associations. Such assistance
explains the reason that category clustering operations in our self-supervised object association train-
ing effectively increase classification accuracy, as shown in Table 2 in the main paper.

Improving localization via association. Additionally, during the association process, some candi-
dates from the localization module with low detection confidence scores are retained because their
association similarity surpasses the threshold. This association similarity priority strategy ensures
that valid targets are retained, which improves the accuracy of localization.

Similarly, better localization and classification results also help achieve improved association results,
making our entire framework a cohesive entirety with multiple modules working collaboratively.

APPENDIX 4. FAILURE CASE ANALYSIS

fig4 - tracking results- fail case 1

cooler
mower mower mower

Figure 5: Failure case illustration.

We provide some failure cases in Figure 5. The first case illustrates a classification mistake due to
significant occlusion. The second case shows the tracking errors caused by the distraction of object
similarity and variability. We find that the OVMOT combined with the localization, classification,
and tracking tasks has a significant challenge, yet it holds large research potential.

APPENDIX 5. MORE DETAILS IN THE PROPOSED METHOD

Details during training. As mentioned in the main paper regarding the experimental procedure,
compared to using the existing Open-Vocabulary Detection (OVD) method (Du et al., 2022) directly
for localization and classification in OVTrack (Li et al., 2023), we train the OVD process using the
base classes of the LVIS dataset and incorporate tracking-related states into the training process (Sec-
tion 3.2). This significantly enhanced the localization and classification results in open-vocabulary
object tracking.

Additionally, in the training of the association module, different from our baseline method (Li et al.,
2023) using the generated image pairs constructed by LVIS, we further introduce a self-supervised
method for object similarity learning (Section 3.3). Specifically, we utilize all the video frames in
the TAO (Dave et al., 2020) training dataset for self-supervised training, which makes full use of the
consistency among the objects in a video sequence and greatly improves the association task results.
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Long-Short-Interval Sampling Strategy. We consider the interval splitting of Tc in Eq. (4). As
shown in Figure 6, we split the original videos into several segments of length L and randomly
sample the shorter sub-segments with various lengths from each segment. These short-term sub-
segments are then concatenated to form the training sequence. Such training sequences include long-
short-term intervals. Specifically, we select the adjacent frames from the same sub-segment, which
allow the association head to learn the consistency objectives under minor object differences. We
also select the long-interval video frames from different sub-segments, which allow the association
head to learn the similarity and variation of objects under large differences.

Video segments Sampled Videos

...

long term
long term

short term
short term

short term

...
Original Videos

#1

#45

#78

...
...

#128

#157

...

...

segment#1

...

segment#8 ...
...

#1

#2

#46

...
segment#n

...
...

Split

#45

#46

#47

#128

#129

...

#1

#2

...

...

#45

#46

#47

#128

#129

Sample

Sample

Sample

Figure 6: An illustration of interval sampling strategy.

Metrics. First, the localization accuracy (LocA) is determined through the alignment of all
labeled boxes α with the predicted boxes of T without considering classification: LocA =

| TPL |
| TPL |+| FPL |+| FNL | · Next, classification accuracy (ClsA) is calculated using all accurately localized
TPL instances, by comparing the predicted semantic classes with the corresponding ground truth
classes ClsA = |TPC|

|TPC|+|FPC|+|FNC| . Finally, association accuracy (AssocA) is determined using
a comparable approach, by matching the identities of associated ground truth instances with ac-
curately localized predictions AssocA = 1

|TPL|
∑

b∈TPL
|TPA(b)|

|TPA(b)|+|FPA(b)|+|FNA(b)| . The TETA
score is computed as the mean value of the above three scores TETA = LocA+ClsA+AssocA

3 .

APPENDIX 6. MORE VISUALIZATION CASES OF THE PROPOSED PROMPT-GUIDED ATTENTION.

To demonstrate the effectiveness of prompt-guided attention in target state perception and illustrate
the necessity of filtering out low-quality objects, we present additional examples of low prompt-
guided attention in Figure 7. The targets shown in the figure exhibit severe occlusion, incomplete-
ness, or poor recognizability, which aligns with our initial design considerations for the prompts.
These damaged targets can lead to network training issues where learning ambiguous target features
limits the network’s Open-Vocabulary (OV) generalization capability. Our proposed prompt-guided
attention mechanism effectively suppresses this critical issue in OV settings, thereby significantly
enhancing the perception of novel targets.
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Figure 7: More visualization cases of the low prompt-guided attention targets.
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