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ABSTRACT

Bongard Problems (BPs) provide a challenging testbed for abstract visual reasoning
(AVR), requiring models to identify visual concepts fromjust a few examples
and describe them in natural language. Early BP benchmarks featured synthetic
black-and-white drawings, which might not fully capture the complexity of real-
world scenes. Subsequent BP datasets employed real-world images, albeit the
represented concepts are identifiable from high-level image features, reducing
the task complexity. Differently, the recently released Bongard-RWR dataset
aimed at representing abstract concepts formulated in the original BPs using
fine-grained real-world images. Its manual construction, however, limited the
dataset size to just 60 instances, constraining evaluation robustness. In this work,
we introduce Bongard-RWR+, a BP dataset composed of 5 400 instances that
represent original BP abstract concepts using real-world-like images generated via
a vision language model (VLM) pipeline. Building on Bongard-RWR, we employ
Pixtral-12B to describe manually curated images and generate new descriptions
aligned with the underlying concepts, use Flux.1-dev to synthesize images from
these descriptions, and manually verify that the generated images faithfully reflect
the intended concepts. We evaluate state-of-the-art VLMs across diverse BP
formulations, including binary and multiclass classification, as well as textual
answer generation. Our findings reveal that while VLMs can recognize coarse-
grained visual concepts, they consistently struggle with discerning fine-grained
concepts, highlighting limitations in their reasoning capabilities.

1 INTRODUCTION

Abstract visual reasoning (AVR) domain (Stabinger et al., 2021; van der Maas et al., 2021) refers
to visual tasks, solving which requires identifying and reasoning about abstract patterns expressed
through image-based analogies. Classical AVR tasks and associated benchmark problems include
Raven’s Progressive Matrices (RPMs) (Barrett et al., 2018; Zhang et al., 2019), visual analogy
problems (Hill et al., 2019; Webb et al., 2020), and more (Małkiński & Mańdziuk, 2023). These
tasks mainly focus on testing the ability of systematic reasoning and generalisation to new feature
distributions. Nevertheless, they typically require supervised training on large-scale datasets. This
stands in contrast to human intelligence assessments, which focus on rapid adaptation to novel,
potentially never-encountered problems based on prior knowledge.

A distinct alternative to conventional AVR benchmarks is offered by Bongard Problems (BPs),
originally proposed in 1970 (Bongard, 1970). Each BP consists of two sides, each containing six
images, separated according to an abstract rule. The solver’s task is to infer this underlying concept
and articulate it in natural language (see Fig. 1). An alternative BP formulation relies on classifying a
novel test image (or a pair of test images) to appropriate side(s). Despite its deceptively simple format,
the BP setting poses several unique challenges. First, it naturally constitutes a few-shot learning
problem (Fei-Fei et al., 2006; Wang et al., 2020b) – identifying the separating concept requires
generalization from just six examples per side. Second, the interpretation of images is inherently
contextual (Linhares, 2000). For instance, in Fig. 1a, a visual feature such as curvature may appear
salient on the left side, but only through comparison with the opposite side the true rule, a difference
in arrow directions, becomes evident. Third, solving BPs requires integrating visual perception with
text generation, demanding bi-modal reasoning capabilities.
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Early BPs were created manually, resulting in only a few hundred instances contributed by individuals
(Foundalis, 2006b). To scale beyond this limitation, Bongard-LOGO (Nie et al., 2020) introduced a
procedural generation method based on the action-oriented LOGO language, enabling creation of
a large set of problems. While this approach provided sufficient data for training deep models, the
resulting BPs were restricted to synthetic black-and-white drawings. Subsequent efforts have shifted
BPs into the real-world domain. Bongard HOI (Jiang et al., 2022) utilized natural images of human-
object interactions. Bongard-OpenWorld (Wu et al., 2024) employed an open-vocabulary of free-form
concepts to capture the complexity and ambiguity of real-world scenes. Most recently, Bongard-RWR
(Małkiński et al., 2025) linked synthetic and real-world domains by using real images to represent
abstract concepts found in synthetic BPs, facilitating direct comparison of model performance
across both domains. Bongard-RWR, which focuses on abstract concepts, poses a greater challenge
to contemporary models than Bongard HOI and Bongard-OpenWorld, which involve real-world
concepts, despite all three using real-world images (see Fig. 2 for an illustration). However, since
Bongard-RWR was constructed manually, its small scale limits the robustness and breadth of possible
evaluations, highlighting the need for a more scalable approach to dataset construction.

To overcome the scalability limitations of Bongard-RWR, we introduce Bongard-RWR+, a new
benchmark featuring real-world representations of selected synthetic BPs (see an overview in Table 1).
Unlike Bongard-RWR, which was constructed manually, our approach leverages recent advances in
vision language models (VLMs), including Image-to-Text (I2T) and Text-to-Image (T2I) models,
to automate dataset creation. For each BP in the original Bongard-RWR, we (1) use Pixtral-12B
(MistralAI, 2024) to describe each image, (2) generate new image descriptions aligned with the
matrix concept, (3) employ Flux.1-dev (Labs, 2024) to synthesize images from these descriptions,
and (4) manually verify that generated images reflect the intended concept (see Fig. 3). This pipeline
enables construction of a dataset comprising 5 400 BPs with the original abstract concepts preserved.

We conduct a comprehensive evaluation on Bongard-RWR+ to systematically assess the reasoning
capabilities of state-of-the-art VLMs across a range of problem setups. Specifically, we formulate:
(1) binary classification tasks, where the model assigns either a single test image or a pair of images
to the correct side(s) of the matrix; (2) a multiclass classification task, where the model selects the
concept that best matches the BP matrix from a set of candidates; and (3) a free-form text generation
task, in which the model articulates the underlying concept in natural language. Beyond these primary
tasks, we perform several ablations to investigate factors influencing model performance. These
include examining the effect of model size, comparing color vs. greyscale inputs, contrasting model
performance on BPs constructed with real vs. generated images, and varying the number of images
per matrix side. Our findings show that, while current VLMs exhibit some capacity to identify
high-level, coarse-grained concepts, they consistently struggle with discerning fine-grained concepts,
highlighting gaps in their visual reasoning capabilities.

Contributions. In summary, this paper makes the following contributions:

1) We develop a semi-automated pipeline to generate real-world-like images of abstract concepts.

2) We introduce Bongard-RWR+, a new BP benchmark of 5 400 matrices generated with this pipeline.

3) We conduct extensive evaluations on the proposed dataset, demonstrating that current VLMs
struggle to identify fine-grained visual concepts, revealing important limitations in their multi-image
AVR abilities.

2 RELATED WORK

Overview of AVR challenges. Analogy-making is a cornerstone of human cognition, closely tied to
fluid intelligence—the ability to generalize learned skills to novel situations (Lake et al., 2017). In the
visual domain, such tasks present demanding challenges for representation learning (Chalmers et al.,
1992) and highlight the need to integrate perception and cognition (Hofstadter, 1995), motivating
diverse AVR benchmarks. Among these, RPMs (Raven, 1936; Raven & Court, 1998) are an often
studied problem type (Hoshen & Werman, 2017; Małkiński & Mańdziuk, 2024b; 2025; Mańdziuk &
Żychowski, 2019), typically involving a small set of logic-based rules. Datasets like SVRT (Fleuret
et al., 2011) and those based on BPs (Jiang et al., 2022; Małkiński et al., 2025; Nie et al., 2020;
Wu et al., 2024) introduce more abstract and diverse rules expressed through visual analogies in a
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(a) Synthetic BP #52 (b) Bongard-RWR (c) Bongard-RWR+ (ours)

Figure 1: Bongard Problems. All matrices present the same abstract concept: Left side: Arrows
pointing in different directions. Right side: Arrows pointing in the same direction. (a) A manually-
designed synthetic BP (Bongard, 1970; Foundalis, 2006b). (b) A manually-designed real-world
representation from Bongard-RWR (Małkiński et al., 2025). (c) An automatically generated real-
world representation from Bongard-RWR+.

(a) Bongard-LOGO (b) Bongard HOI (c) Bongard-OpenWorld

Figure 2: Related BP datasets. (a) A synthetic BP from Bongard-LOGO (Nie et al., 2020); Left:
Shapes are the same. Right: Shapes are different. (b) A real-world BP from Bongard HOI (Jiang
et al., 2022); Left: A person driving a car. Right: Not a person driving a car. (c) A real-world BP
from Bongard-OpenWorld (Wu et al., 2024); Left: The top of a snow-covered mountain. Right:
Not the top of a snow-covered mountain. Unlike Bongard-LOGO, which involves synthetic images
unfamiliar to VLMs, or Bongard HOI and Bongard-OpenWorld, which focus on coarse-grained
concepts, Bongard-RWR+ is designed around abstract concepts expressed through realistic images
that require fine-grained visual reasoning.

few-shot learning framework. Another line of work has proposed generative challenges, such as
ARC (Chollet, 2019) and PQA (Qi et al., 2021). Several benchmarks (Bitton et al., 2023; Ichien et al.,
2021; Teney et al., 2020) construct AVR tasks using real-world images, enabling evaluation of models
pre-trained on large visual datasets. Our proposed dataset builds on this landscape by combining
few-shot learning with real-world-like images and supporting both classification and free-form text
generation tasks, offering a diverse and challenging testbed for evaluating AVR models.

BP solution methods. In response to the wide range of AVR challenges, various approaches have
been developed (Hernández-Orallo et al., 2016; Małkiński & Mańdziuk, 2024a; Mitchell, 2021).
Specifically, for BPs, methods include program synthesis and inductive logic programming (Saito
& Nakano, 1996; Sonwane et al., 2021), cognitive architectures (Foundalis, 2006a), Bayesian infer-
ence (Depeweg et al., 2018; 2024), convolutional networks (Kharagorgiev, 2018), and meta-learning
approaches such as prototypical networks (Snell et al., 2017), SNAIL (Mishra et al., 2018), or Meta-
Baseline (Chen et al., 2021). Recently, LLM-based solutions combine image captioning models with
LLMs for text descriptions (Wu et al., 2024) or leverage VLMs that handle both modalities (Małkiński
et al., 2025; Wüst et al., 2025). To establish strong baselines, we evaluate state-of-the-art VLMs.
Additionally, prior work has framed BPs in various settings, such as binary classification where
test images are assigned to matrix sides (Nie et al., 2020; Kharagorgiev, 2018), or free-form text
generation where the model articulates the underlying concept (Małkiński et al., 2025; Wu et al.,
2024). To systematically evaluate model capabilities, we cover diverse setups, including image (or
description) to side classification, a multiclass concept selection task, and free-form text generation.

3
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Table 1: BP datasets. Bongard-RWR+ offers a broad set of matrices that uniquely combine generated
real-world-like images with abstract concepts.

Dataset Images Concepts # Matrices # Concepts

Synthetic BPs (Bongard, 1970) Synthetic Abstract 394 388
Bongard-LOGO (Nie et al., 2020) Synthetic Abstract 12 000 627
Bongard HOI (Jiang et al., 2022) Real-world Real-world 53 000 242
Bongard-OpenWorld (Wu et al., 2024) Real-world Real-world 1 010 1 010
Bongard-RWR (Małkiński et al., 2025) Real-world Abstract 60 55
Bongard-RWR+ (ours) Generated Abstract 5 400 49

CL CR

I2T
L−

1

L+
1

T2T L+
1,1

...

L+
1,N

T2I

T2I

(CL, CR): (Large figures, Small figures)
L+

1 : A city view with tall buildings . . .
L+

1,1: A centered skyscrapper . . .
L+

1,N : A wind turbine . . .

BP Describe Augment Generate Review

Figure 3: Generative pipeline. Starting from a Bongard problem BP with concept (CL, CR), the
pipeline: (1) describes each image using an I2T model to produce paired positive/negative captionsL+

i

and L−
i ; (2) augments each positive caption with a T2T model into N diverse descriptions {L+

i,j}Nj=1
that preserve the underlying concept; (3) generates candidate images for each new description using a
T2I model; and (4) involves a human judge to review and filter the generated images. For readability,
the figure illustrates the processing flow for the first image from the left matrix side.

Data generation with T2I models. Generative T2I models have gained significant attention for
their broad application. Prior work has applied T2I models to generate synthetic data for supervised
learning (Fan et al., 2024; Ravuri & Vinyals, 2019; Sarıyıldız et al., 2023), contrastive representation
learning (Jahanian et al., 2022; Tian et al., 2024; 2023), and data augmentation (Trabucco et al., 2024).
In contrast, we employ a pre-trained T2I model to automatically generate real-world-like images
depicting predefined abstract concepts, enabling scalable construction of Bongard-RWR+ instances.

3 METHODS

To advance research on abstract reasoning, we introduce Bongard-RWR+, a dataset comprising 5 400
BPs in its main setting, with additional instances in ablation variants. The dataset supports a range
of task formulations, including binary and multiclass classification, and free-form text generation.
Each instance is defined as BP = (L,R, T, C), where L = {L1, . . . , LP } and R = {R1, . . . , RP }
denote the left and right panel sets (each with P = 6 images), T = {TL, TR} contains two test
images (one per side), and C = (CL, CR) specifies the underlying concept in natural language, with
CL/CR describing the concept shared by all images on the left / right side, resp.

3.1 BONGARD-RWR+

To generate Bongard-RWR+, we considered each BP from Bongard-RWR. For each image Li ∈ L
and Ri ∈ R, we generated paired positive and negative textual descriptions based on the side’s con-
cept: Describe(Li, CL) = (L+

i ,L
−
i ) and Describe(Ri, CR) = (R+

i ,R
−
i ), using Pixtral-12B (Mis-

tralAI, 2024). This I2T model was prompted to produce positive descriptions that faithfully captured
the image’s content and negative descriptions designed to steer the T2I model away from depicting
the opposite concept. Each positive description was augmented with a Text-to-Text (T2T) model
into N = 15 alternative descriptions reflecting the side’s concept: Augment(L+

i , CL) = {L+
i,j}Nj=1

and Augment(R+
i , CR) = {R+

i,j}Nj=1. Each generated alternative description, paired with its corre-
sponding negative prompt, was passed to the Flux.1-dev model (Labs, 2024) to render 512 × 512
candidate images: Render(L+

i,j ,L
−
i ) = Li,j and Render(R+

i,j ,R
−
i ) = Ri,j . Appendix F describes
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(b) Images-to-Sides (I2S)

T2TL3 L4

L1 L2

L5 L6

R1

R3

R5

R2

R4

R6

Ts

L/R

(c) Description-to-Side (D1S)

T2TL3 L4

L1 L2

L5 L6

R1

R3

R5

R2

R4

R6

TL TR

L/R L/R

(d) Descriptions-to-Sides (D2S)

VLM

. . .C1 CK

k̂

(e) Concept Selection (CS)

VLM

Ĉ

(f) Concept Generation (CG)

Figure 4: BP formulations. We define six tasks of variable complexity: (a; I1S) assign a single test
image to the left or right side; (b; I2S) assign a pair of test images to the respective sides; (c; D1S / d;
D2S) use descriptions from an I2T model and classify with a T2T model; (e; CS) select the correct
concept index k̂ such that Ck̂ = C∗; (f; CG) generate a natural language description of concept Ĉ.

the employed model prompts. All generated images were manually reviewed to ensure they accurately
reflected the intended concept (CL or CR) without introducing elements from the opposite side’s
concept. Images failing this criterion were discarded. Appendix E.2 presents further details.

From the candidate images {L+
i,j} and {R+

i,j}, we composed M = 10 left and right sides, denoted
{L′}Mm=1 and {R′}Mn=1, by iteratively selecting subsets that maximized intra-set visual diversity.
Each subset L′

m ⊂ {L+
i,j} and R′

n ⊂ {R+
i,j} contained 7 images (6 context images and 1 test image),

chosen iteratively to minimize total pairwise cosine similarity of ViT-L/14 embeddings (Dosovitskiy
et al., 2021). To cover more images and increase dataset diversity, in each iteration we selected a
random image from each subset and removed it from the overall image pool in the next iterations.
Finally, each left side L′

m was paired with each right side R′
n to construct M2 = 100 new BP

instances aligned with the original concept. Algorithm details are explained in Appendix B. Using
this pipeline, we constructed 5 400 BPs corresponding to 54 Bongard-RWR matrices (100 new
problems per source BP). The 6 remaining Bongard-RWR matrices were discarded due to difficulties
in generating a sufficient number of images faithfully depicting the underlying concepts.

We additionally introduce several dataset variants to support ablation studies. The first variant,
Bongard-RWR+/GS, consists of grayscale matrices. Since Bongard-RWR+ concepts are primarily
structural, as they originate from black-and-white synthetic BPs, this variant isolates the role of color,
which is expected to be non-essential for concept detection. The second variant, Bongard-RWR+/LP
(P = 2, . . . , 6), e.g., denoted Bongard-RWR+/L2 for P = 2, modifies the subset construction
method by omitting the image removal step. In effect, it contains fewer unique images (1 503 in
Bongard-RWR+/L6 vs. 4 157 in Bongard-RWR+), but exhibits lower average intra-side embedding
similarity. Lower similarity implies greater visual diversity within a matrix, meaning the same concept
is illustrated through more varied content—for example, the concept "Vertical" may be instantiated as
a tree, a building, or a standing figure—potentially making the concept easier to identify. In contrast,
high similarity may reflect repeated visual aspects (e.g., several images of trees), which may hint
at unrelated concepts like "Nature" or "Green", making the intended concept harder to capture. We
consider Bongard-RWR+/LP variants with varying numbers of images per side (P ), enabling analysis
of how the number of demonstrations influences model performance. All variants are derived from
the same image pool as the main dataset. Additional details are provided in Appendix B.

3.2 PROBLEM FORMULATIONS

We cast BP into several task formulations of increasing complexity, as illustrated in Fig. 4. We
begin with binary classification settings. In the Image-to-Side (I1S) task, the model classifies a
single test image (TL or TR) as belonging to either the left or right side. The Images-to-Sides
(I2S) variant extends this by requiring the model to assign a pair of test images (TL and TR), each

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

from a different class, to their respective sides. To assess the effect of an intermediate image
captioning step, we introduce Description-to-Side (D1S) and Descriptions-to-Sides (D2S). These
tasks first convert images into natural language descriptions using an I2T model: Describe(Li) = Li,
Describe(Ri) = Ri, Describe(Ts) = Ts, ∀i ∈ {1, . . . , P}, ∀s ∈ {L,R}. The resulting descriptions
are passed to a T2T model for a binary classification, either for a single test description (D1S) or a
pair (D2S). In practice, I2T and T2T models may be implemented by a single VLM that processes
both visual and textual inputs, though T2T can also be realized by text-only models (e.g., LLMs).

Beyond binary classification settings, we introduce the Concept Selection (CS) task, a multiclass
classification setup where the model selects the correct concept C∗ describing the matrix from a
candidate set of concepts {Ck}Kk=1 (C∗ ∈ {Ck}), with K controlling task difficulty. To construct
distractors ({Ck | Ck ̸= C∗}), we sample concepts from other matrices, ensuring that each candi-
date represents a distinct concept to avoid ambiguity. Finally, we consider the most challenging
formulation, Concept Generation (CG), where the model is required to generate a free-form textual
description of the concept underlying the BP matrix.

4 EXPERIMENTS

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16
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IVL2.5 78B Q2-VL 72B LLaVA 110B MiniCPM 8B

Figure 5: Concept Selection. Accuracy in the CS
task on Bongard-RWR+ for K ∈ {2, 4, 8, 16}.

We evaluate 4 state-of-the-art open-access
VLMs on Bongard-RWR+: InternVL2.5 78B
(IVL2.5) (Chen et al., 2024a;b), Qwen2-VL
72B-Instruct (Q2VL) (Bai et al., 2023; Wang
et al., 2024), LLaVA-Next 110B (LLaVA) (Jiang
et al., 2023; Liu et al., 2024a;b), and MiniCPM-
o 2.6 8B (MCPM) (Yao et al., 2025; Yu et al.,
2025). Main experiments use the largest avail-
able models, with smaller variants covered in
ablations. All models are evaluated at a fixed
decoding temperature of 0.5, using structured
JSON output format enforced via the Outlines decoding backend (Willard & Louf, 2023). Inference
was performed on an internal computing cluster equipped with NVIDIA DGX A100 and H100 nodes.
The largest models required up to 24 hours of inference per task using 4 H100 GPUs.

We developed a Similarity Classifier (SC) to serve as a non-parametric baseline. For image-based
setups (I1S and I2S), it computes ViT-L/14 embeddings (Dosovitskiy et al., 2021) for all matrix
images and the test image. For text-based tasks (D1S and D2S), embeddings of image descriptions
are obtained with fine-tuned MiniLM (HuggingFace, 2021; Wang et al., 2020a). Next, for each matrix
side, the embedding that is most distant from the test embedding (based on Euclidean distance) is
identified. The test input is then assigned to the side with the lower maximum distance (i.e., higher
similarity). Appendix C.7 explains the reasons of SC strong performance.

Concept Selection. We begin with the CS task, where the model selects the correct concept from
a candidate set of size K ∈ {2, 4, 8, 16}. Increasing K reduces accuracy, confirming the growing
difficulty of the task (Fig. 5). InternVL2.5 performs best across all variants, correctly identifying the
concept in 91% of cases for K = 2. However, its accuracy drops to 57% for K = 16, indicating
that even the strongest model struggles when faced with multiple distractors. Meanwhile, both
MiniCPM-o 2.6 and LLaVA-Next achieve only 19% for K = 16, underscoring their limited capacity
even in this discriminative setting, and highlighting the utility of the CS task as a benchmark for AVR.
Notably, MiniCPM-o 2.6 matches LLaVA-Next’s performance despite a much smaller parameter
count (8B vs. 110B), suggesting that size alone is insufficient to excel in the introduced challenge.

To better characterize model behavior, we categorized Bongard-RWR+ matrix concepts into 9
semantic groups reflecting the key factor behind each concept: Size, Position, Count, Branching,
Similarity, Contour, Shape, Rotation, and Angle. This grouping follows recent efforts advocating
for semantically grounded evaluations to isolate model strengths and weaknesses (Mitchell, 2021;
Odouard & Mitchell, 2022). The results are shown in Fig. 6. For K = 2, all models exhibit broadly
similar profiles across concept groups. However, for more challenging setups (K > 2), differences
emerge. For instance, InternVL2.5 retains high performance on Shape, Size, and Branching for
K = 16, with accuracy near 75%. These categories involve high-level visual attributes that VLMs

6
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Figure 6: Concept Selection. Accuracy in the CS task on Bongard-RWR+ for K ∈ {2, 4, 8, 16}.

appear to capture reliably. In contrast, InternVL2.5 accuracy drops below 50% for Contour, Rotation,
and Angle. These concepts often rely on subtle visual cues (Contour) or precise spatial relationships
(Rotation and Angle), which current models struggle to capture reliably. Overall, performance
patterns remain consistent across values of K, supporting the utility of such analysis as a diagnostic
tool for characterizing model capabilities.

Table 2: *-to-Side(s) classification.
Results with I1S, I2S, D1S, and
D2S on Bongard-RWR+. Captions
in D1S and D2S were produced
with InternVL2.5 78B.

I1S I2S D1S D2S

IVL2.5 0.50 0.39 0.57 0.49
Q2VL 0.49 0.44 0.58 0.42
LLaVA 0.50 0.50 0.54 0.43
MCPM 0.48 0.45 0.51 0.41
DS-R1 N/A N/A 0.57 0.56
SC 0.52 0.54 0.49 0.50

Image(s)-to-Side(s). Next, we consider the I1S and I2S tasks,
where models must assign one or two test images, resp., to the
correct matrix side. Notably, in I2S (and D2S), the model per-
forms two independent binary classifications; while the prompt
specifies that the test inputs belong to different classes (ma-
trix sides), this constraint is not enforced in the output format,
causing some models to incorrectly assign both inputs to the
same side. The results are shown in Table 2. For both tasks,
VLMs performed at or near chance, with several models falling
below random accuracy in I2S. Strikingly, the simple SC base-
line outperformed all VLMs, suggesting that the tested models
fail to robustly identify the underlying concept that separates
semantically the matrix sides. Compared to the CS task, where
models can rely on high-level heuristics to eliminate implausi-
ble options, I1S and I2S require a deeper understanding of the depicted concept to correctly classify
new inputs. These results highlight a fundamental limitation in current VLMs’ AVR capabilities.

IVL2.5
0.55

Q2VL
0.56

LLaVA
0.52

MCPM
0.50

DS-R1
0.55

IVL2.5
0.55

Q2VL
0.54

LLaVA
0.52

MCPM
0.53

0.57 0.58 0.54 0.51 0.57

0.56 0.57 0.53 0.50 0.55

0.54 0.54 0.50 0.50 0.52

0.55 0.55 0.51 0.50 0.54

Figure 7: Description-to-
Side. Accuracy in the D1S
task on Bongard-RWR+ for a
pair-wise combination of I2T
description models (row-wise)
and T2T prediction models
(column-wise).

Description(s)-to-Side(s). Given the difficulty of the introduced
dataset, we hypothesized that decomposing the problem via an in-
termediate captioning step may improve model performance. To test
this, we generated image descriptions using each of the 4 VLMs and
used these captions as input to the same set of models for solving
the side prediction task. Since the prediction task is purely text-
based, we also evaluated the DeepSeek-R1 70B (DS-R1) reasoning
model (Guo et al., 2025), which does not support visual input ("N/A"
for I1S and I2S in Table 2) but offers strong language understanding.
As shown in Fig. 7, final accuracy in the D1S task varies depend-
ing on both the captioning (rows) and prediction (columns) models.
Descriptions produced by InternVL2.5 yield the highest overall ac-
curacy, with Qwen2-VL also producing relatively strong captions.
Interestingly, captions from MiniCPM-o 2.6 lead to better results
than those from LLaVA-Next, despite MiniCPM-o 2.6 being much
smaller, highlighting its promising image-to-text capabilities. Among prediction models (columns),
Qwen2-VL achieves the best average performance, followed by InternVL2.5, indicating relatively
strong text-based reasoning abilities of both models. DeepSeek-R1, while known for strong perfor-
mance on standard benchmarks, ranks third, revealing potential limitations in reasoning over image
descriptions. Using captions generated by the best-performing model, InternVL2.5, we report D1S
and D2S task performance in Table 2. Compared to I1S and I2S, most models perform above chance
in these settings, confirming that the intermediate captioning step helps models better ground their
predictions.
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Figure 8: Concept Selection ablations. (a) Accuracy of models of varying sizes for K = 16. (b) The
impact of using grayscale images for K ∈ {2, 4, 8, 16}. Differences w.r.t. color images are shown
using lighter colors and are annotated in parentheses above the corresponding bars.
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Figure 9: Functional equivalence of generated images and real-world images. Performance trends
in the CS task (K ∈ {2, 4, 8, 16}) on Bongard-RWR and Bongard-RWR+/LP for P = 2, 3.

Does AVR performance scale with model size? Prior works have shown that VLM performance
tends to scale with model size (Hoffmann et al., 2022; Kaplan et al., 2020). To examine whether this
observation holds for AVR, we evaluated smaller model variants in the CS task on Bongard-RWR+.
Specifically, we tested 8B, 26B, and 34B variants of InternVL2.5, 7B, 32B, and 72B versions of
LLaVA-Next and 7B variant of Qwen2-VL. We excluded additional MiniCPM-o 2.6 variants, as the
8B model already showed weak performance and no larger variants are currently available. As shown
in Fig. 8a, accuracy generally increases with model size. Among the smallest configurations (7B/8B),
InternVL2.5 performs best, followed by Qwen2-VL, mirroring the relation observed for their largest
versions (70+B). Notably, both InternVL2.5 8B and Qwen2-VL 7B outperformed MiniCPM-o 2.6
8B, underscoring the generally stronger AVR capacity of these two model families.

Is image color necessary for concept recognition? To assess the role of color in abstract reasoning,
we evaluated all 4 VLMs on Bongard-RWR+/GS, using the CS task. As shown in Fig. 8b, model
performance remains comparable, or even improves, on grayscale images. For instance, LLaVA-Next
consistently achieves higher accuracy across all K (e.g. +5 p.p. for K = 2). This outcome aligns
with the dataset’s design – the underlying concepts are derived from structural properties of black-
and-white synthetic BPs, where color is not semantically relevant. In this context, color may act as a
visual distractor that adds additional complexity, especially for lower-performing models.

Are generated images as effective as real ones? Since Bongard-RWR+ relies on generated images,
a key question is whether such images are as effective as real ones for evaluating visual reasoning. To
investigate this, we compared model performance on the introduced dataset with that on Bongard-
RWR, which consists exclusively of real-world images. However, given that Bongard-RWR includes
only 60 instances, we constructed matrices based on smaller subsets of images per side to expand
the dataset. For each BP in Bongard-RWR, we considered all pairs of P -element subsets from both
matrix sides (analogously as described in Section 3.1), yielding

(
6
P

)2
new matrices per BP, i.e., 36,

225, 400, 225, 36 matrices for P = 1, . . . , 5, resp. We applied this method to 54 Bongard-RWR BPs
that were used to generate Bongard-RWR+, and then selected P = 2, 3 to ensure sufficient dataset
size, and capped the number of sampled matrices per source BP at 100, resulting in 5 400 matrices
per P . We evaluated all 4 VLMs in the CS task on these Bongard-RWR variants and compared the
results to those on Bongard-RWR+/LP, which uses analogous matrix construction approach but with
generated images. As shown in Fig. 9, model performance follows similar trends on both datasets –
accuracy decreases consistently as K increases, regardless of whether the images are real or generated.
This supports the validity of our generation-based approach for capturing the challenges of AVR.
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Table 3: I1S and D1S on Bongard-RWR+/LP. Results in I1S and D1S tasks with varying numbers
of images per side P . Image captions in the D1S task were produced with InternVL2.5 78B.

(a) Image-to-Side (I1S)

P IVL2.5 Q2VL LLaVA MCPM SC

2 0.51 0.51 0.49 0.50 0.54
3 0.54 0.54 0.51 0.50 0.59
4 0.54 0.54 0.51 0.51 0.59
5 0.54 0.55 0.51 0.52 0.58
6 0.55 0.57 0.51 0.51 0.59

(b) Description-to-Side (D1S)

P IVL2.5 Q2VL LLaVA MCPM DS-R1 SC

2 0.56 0.55 0.53 0.50 0.56 0.47
3 0.60 0.58 0.56 0.51 0.62 0.51
4 0.61 0.63 0.58 0.54 0.64 0.51
5 0.62 0.60 0.57 0.52 0.64 0.52
6 0.67 0.67 0.61 0.53 0.70 0.54

Do models learn from demonstrations? As P increases, models are presented with more demon-
strations of the underlying concept. While this could enhance concept identification, it also increases
the amount of visual information to process. Interestingly, Fig. 9 shows that InternVL2.5 and Qwen2-
VL benefit from larger P in the CS task, e.g., InternVL2.5’s accuracy improves by 2, 3, 6, 8 p.p. for
K = 2, . . . , 5, resp. when comparing the results on Bongard-RWR+/L2 with Bongard-RWR+/L3. In
contrast, the performance of LLaVA-Next and MiniCPM-o 2.6 shows no consistent improvement,
suggesting these models may struggle to leverage additional examples.

To explore this further, we evaluated models on Bongard-RWR+/LP with P = 2, . . . , 6 using I1S and
D1S tasks (Table 3). In I1S, InternVL2.5 and Qwen2-VL show a mild upward trend with increasing
P , with Qwen2-VL achieving the accuracy of 57% at P = 6, and InternVL2.5 close behind at
55%. In D1S, accuracy generally improves with P , showing that the models can effectively utilize
additional concept demonstrations in a text-based setting. Notably, DeepSeek-R1 outperforms others
for every P > 2 (and is on-par with InternVL2.5 for P = 2), demonstrating its strength in this setting.
Additionally, D1S scores are consistently higher than I1S scores, showing that the models benefit
from the explicit image captioning step. Nevertheless, performance remains modest on both tasks, in
I1S being clearly inferior to the SC baseline, pointing to a persistent AVR gap of the current models.

Finally, models’ accuracy on Bongard-RWR+/LP exceeds that on Bongard-RWR+ (e.g., InternVL2.5
scores 50% and 57% in I1S and D1S, resp. on Bongard-RWR+ (cf. Table 2), but reaches 55% and
67% on Bongard-RWR+/L6). This gap stems from the differences in dataset construction, which we
analyze in detail in Appendix C.

Concept Generation. We tested model ability to generate free-form concept descriptions in the CG
task. Models were prompted to describe the concept behind each matrix, using either raw image inputs
or InternVL2.5’s captions. Responses were evaluated using standard NLP metrics: BLEU (Papineni
et al., 2002), METEOR (Banerjee & Lavie, 2005), ROUGEL (Lin, 2004), CIDEr (Lin, 2004), and
BERTScore (Zhang* et al., 2020). The results, reported in Appendix C, show that the models
consistently achieved low scores on all metrics, with no clear best-performing model. Manual
inspection of selected outputs further confirmed that current models generally struggle to articulate
the BP concepts, highlighting this task as a particularly challenging direction for future research.

5 CONCLUSIONS

We introduced Bongard-RWR+, a large-scale dataset for evaluating AVR capabilities using generated
real-world-like images of abstract concepts from classical BPs. The dataset supports diverse BP task
formulations, including multiclass concept selection, binary side classification, and free-form text
generation. Our results show that while current VLMs demonstrate certain ability to identify coarse-
grained concepts, they consistently struggle with fine-grained concept recognition. Although explicit
image captioning and increased visual demonstrations can improve performance, even the strongest
models fall short in more demanding setups, notably unconstrained textual answer generation.

Limitations. Our dataset generation pipeline still requires human oversight to ensure adherence to
intended concepts; advancing generative modeling is needed to improve scalability. Our evaluation in-
cludes selected VLMs; broader community involvement is essential to benchmark additional methods
on Bongard-RWR+. We extend a discussion on limitations and their mitigation in Appendix D.
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Ethics statement. We note that images generated by the T2I model can reflect social, cultural, or
geographical biases. Although our data generation algorithm incorporates diversity safeguards, some
biases may still be present in the dataset. To address this, we conducted a limited-scale bias audit,
which we further discuss in Appendices D and E.1.

In addition, since our pipeline (Fig. 3) involves manual review, we recognize the potential for
annotation-related bias. A more detailed description of the review process and an annotator agreement
report, are provided in Appendix E.2.

All images in our dataset are generated with Flux.1-dev; none of them was taken from public image
databases or libraries. The dataset was released under the CC BY 4.0 License, as this licensing is
compatible with the terms of the T2I model used for image generation1. We imposed an additional
usage restriction by adding the following note: “While Bongard-RWR+ is released under the CC BY
4.0 License, it is explicitly not intended for use in high-stakes human assessment contexts, including
but not limited to standardized testing, educational admissions, employment screening, or cognitive
evaluation”.

Reproducibility. All datasets developed in this work are publicly available via the HuggingFace
Datasets platform2. Code for dataset generation and experimental evaluation is available on GitHub3

under the MIT License.
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A BROADER IMPACT

Our findings highlight that state-of-the-art VLMs continue to struggle with tasks that are relatively
straightforward for humans. As public discourse increasingly focuses on the capabilities and risks of
AI systems, benchmarks such as Bongard-RWR+ play a crucial role in dispelling misconceptions
about current model capabilities. Our release of code and datasets under an open license promotes
open research and lowers the barrier of entry for researchers to evaluate and improve their methods.
However, we also acknowledge potential risks. An effective AVR solver could potentially be misused
in online or remote IQ assessments, allowing individuals to inflate their scores. Such misuse may lead
to unfair advantages in job recruitment or other competitive settings where cognitive ability plays a
role. This underscores the importance of raising public awareness about both the capabilities and
potential applications of such tools.

Prior work in cognitive psychology shows that cultural background can indeed shape reasoning
strategies and outcomes (Helms-Lorenz et al., 2003), sometimes leading to qualitatively different
solution approaches (Nisbett et al., 2008). In particular, studies on RPMs discussed the variation
between ethnic groups within the United States (Raven, 2005). While little work has examined
BPs in this context, related studies in concept learning and categorization suggest that cross-cultural
differences can in fact influence how abstract visual concepts are formed (Rosch, 1973). Building
on this line of work, we believe that our Bongard-RWR+ dataset, which uses real-world images
rather than abstract patterns, can serve as a complementary resource for studying how multi-image
reasoning generalizes across different cultures.

B DATASET VARIANTS

Algorithm 1 The generation of Bongard-RWR+ images.

1: Input: A set of Bongard-RWR problems BPk ∈ RWR
2: Output: Generated images G = (GL, GR)

3: N ← 15
4:
5: for (Lk, Rk, Tk, Ck) ∈ RWR do
6: Lk ← Lk ∪ Tk,L

7: Rk ← Rk ∪ Tk,R

8: for Sk ∈ {Lk, Rk} do
9: for Sk,i ∈ Sk do

10: (S+k,i,S
−
k,i)← Describe(Sk,i, CSk

)

11: {S+k,i,j}Nj=1 ← Augment(S+k,i, CSk
)

12:
13: for j = 1, ..., N do
14: GSk,i,j ← Render(S+k,i,j ,S

−
k,i)

15: end for
16: end for
17: end for
18: end for

Image generation. Algorithm 1 outlines the process of generating Bongard-RWR+ images. Each
BPk (Lk, Rk, Tk, Ck) from Bongard-RWR is processed by iterating over both matrix sides, Lk and
Rk. Test images Tk are processed based on their corresponding side. For each image Sk,i on a given
side Sk (either Lk or Rk), a positive (S+k,i) and a negative (S−k,i) textual description are generated
based on the side’s concept CSk

(either CLk
or CRk

). The positive description is then augmented
N = 15 times to produce a diverse set of semantically consistent variations S+k,i,j , j = 1, . . . , N .
Each augmented description is paired with the corresponding negative description and passed to a
T2I model to generate a new image GSk,i,j (either GLk,i,j or GRk,i,j). All generated images were
reviewed manually by a human expert, and those that did not faithfully reflect the intended concept
were discarded.
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Algorithm 2 Bongard-RWR+ matrix construction.

1: Input: Generated images G = (GL,GR), Boolean image removal flag F , Number of images
per side P

2: Output: Set of generated matricesRWR+

3: M ← 10
4: RWR+ ← ∅
5:
6: for GLk, GRk ∈ G do
7: for GSk ∈ {GLk, GRk} do
8: Ek ← GetImageEmbedings(GSk)
9: GS∗

k ← ∅
10: {GSk,l,Ek,l} ← GetAllSubsets(GSk, Ek, P )
11: for m = 1, . . . ,M do
12: // Find the most diverse subset
13: ℓ← argminl=1,...,|Ek| max{Ek,l,i ·Ek,l,j | i, j = 1, . . . , P ∧ i ̸= j}
14: GS∗

k ← GS∗
k ∪GSk,ℓ

15:
16: if F then
17: // Find the most redundant image and remove it from the overall image pool
18: p← argmaxi=1,...,P {Ek,ℓ,i ·Ek,ℓ,j | j = 1, . . . , P ∧ i ̸= j}
19: GSk ← GSk − {GSk,ℓ,p}
20: Ek ← Ek − {Ek,ℓ,p}
21: {GSk,Ek} ← RemoveSubsetsContainingImage(GSk,Ek,GSk,ℓ,p)
22: // Exit early if there is not enough images to construct the next subset
23: if |GSk| < P then
24: break
25: end if
26: // Exit early if the images become too similar
27: s← Mean({ Ek,i·Ek,j

∥Ek,i∥∥Ek,j∥ | i, j = 1, . . . , |Ek| ∧ i ̸= j})
28: if s ≥ 0.85 then
29: break
30: end if
31: end if
32: end for
33: end for
34:
35: RWR+ ← RWR+ ∪ (GL∗

k ×GR∗
k)

36: end for
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Bongard-RWR+ construction. Algorithm 2 outlines the construction of Bongard-RWR+ matrices
from a pool of generated images G = (GL,GR). For each BPk, both sides GLk and GRk, denoted
as GSk, are processed independently, to construct M = 10 visually diverse subsets per side GS∗

k .
Each side’s image pool GSk is first embedded using ViT-L/14 (Dosovitskiy et al., 2021), producing
embeddings Ek. The algorithm arranges images into P -element subsets, denoted GSk,l, along with
their embeddings Ek,l. In each of the M iterations, the algorithm selects the most visually diverse
subset, defined as the subset whose maximum pairwise cosine similarity among its embeddings is
minimal. This selected subset GSk,ℓ is then added to GS∗

k . If the image removal flag F is enabled,
the algorithm identifies the most redundant image in the selected subset—i.e., the one with the highest
average similarity to the other images—and removes it from the overall image pool GSk. The loop
terminates early if either (1) the remaining pool contains fewer than P images or (2) the overall
average similarity among remaining images exceeds a threshold, indicating reduced diversity. Finally,
the cartesian product GL∗

k × GR∗
k is computed to generate all possible pairings and added to the

output setRWR+. Examples of resultant BPs are illustrated in Fig. 17.

Bongard-RWR+/GS construction. We constructed a grayscale variant of Bongard-RWR+, denoted
Bongard-RWR+/GS, by converting all images in the original set to grayscale. The overall matrix
construction procedure remained unchanged. Representative examples are shown in Fig. 18.

Bongard-RWR+/LP construction. We also constructed Bongard-RWR+/LP, a dataset variant in
which the image removal step is disabled (i.e., the flag F in Algorithm 2 is set to false). Without this
removal step, the greedy subset selection procedure for building GS∗

k often draws from a smaller
set of unique images within GSk. In effect, matrices in Bongard-RWR+/LP exhibit lower average
intra-side embedding similarity but are composed of fewer distinct images. The increased visual
diversity within each matrix can facilitate recognition by presenting concepts in a broader range
of views. However, because the same images are reused more frequently across matrices, there is
overall less image-level diversity compared to Bongard-RWR+. We constructed dataset variants
with P = 2, . . . , 6, denoted Bongard-RWR+/L2, Bongard-RWR+/L3, etc. Example BPs from
Bongard-RWR+/LP are shown in Figs. 19 – 23.

Construction of Bongard-RWR+/TVT and Bongard-RWR+/TVT-Large. We also developed
Bongard-RWR+/TVT, a dataset variant in which BPs are divided into train, validation, and test
splits (TVT), enabling the evaluation of supervised approaches. To construct these splits, we first
consider the six images on each side of a Bongard-RWR matrix, and the corresponding seventh
test image. Images 1 – 4, along with the side’s test image, are grouped into a shared pool used to
construct BP contexts for all three splits and to define test targets for the training split. Images 5 and
6 are exclusively allocated as test images for the validation and test splits, resp. This partitioning
strategy ensures relatively high image diversity in the training set while enabling evaluation on
out-of-distribution images in the validation and test splits. Bongard-RWR+/TVT comprises 12 150
matrices (7 290 / 1 215 / 3 645 in train / validation / test splits); we additionally provide an extended
variant, Bongard-RWR+/TVT-Large, consisting of 86 400 BPs (51 840 / 8 640 / 25 920 in train /
validation / test splits).

C EXTENDED RESULTS

C.1 IS IMAGE COLOR NECESSARY FOR CONCEPT RECOGNITION?

To extend the grayscale image analysis from the CS task, we evaluated model performance on
Bongard-RWR+/GS with the I1S and I2S tasks. As shown in Fig. 10, grayscale images led to
improved accuracy in certain cases, likely by encouraging the model to focus on structural cues.
Nevertheless, performance remained close to the random guess level across both tasks, reiterating
their inherent difficulty.

C.2 ARE GENERATED IMAGES AS EFFECTIVE AS REAL ONES?

We evaluated model performance on Bongard-RWR and Bongard-RWR+/LP in the I1S task for
P = 2, 3, 4. As shown in Fig. 11, results are comparable across both datasets, regardless of whether
the model processes real-world or generated images.
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Figure 10: Solving Bongard-RWR+/GS with I1S and I2S. The impact of using grayscale images
on accuracy in the I1S (left) and I2S (right) tasks.
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Figure 11: Functional equivalence of generated images and real-world images. Performance
trends in the I1S task on Bongard-RWR and Bongard-RWR+/LP for P = 2, 3, 4.

To further analyze the types of errors models make on real vs. generated images, we compared
per-concept performance on Bongard-RWR (real) and Bongard-RWR+/LP for P = 3. Across
the 54 concepts present in both datasets, performance was largely similar: in 40 concepts (74%)
the difference was ≤ 10 p.p., in 7 concepts (13%) differences were within 10 − 20 p.p., and for
7 concepts (13%) differences exceeded 20 p.p. Notably, in all larger-difference cases, models
performed better on average on Bongard-RWR+/LP than on Bongard-RWR. In the small-difference
cases, models performed better on Bongard-RWR for 5 concepts and on Bongard-RWR+/LP for
2 concepts. Overall, the results indicate that despite certain variation, the two datasets present a
comparable level of difficulty.

These findings are consistent with the experiment on the CS task presented in the main paper and
reinforces our claim that generated images are equally effective as real-world images for probing
visual reasoning capabilities of VLMs.

C.3 DO MODELS LEARN FROM DEMONSTRATIONS?

Table 4: Concept Selection on Bongard-
RWR+/LP for K = 16.

P IVL2.5 Q2-VL LLaVA MCPM

2 0.46 0.37 0.18 0.18
3 0.54 0.41 0.19 0.17
4 0.46 0.39 0.19 0.18
5 0.58 0.39 0.19 0.19
6 0.62 0.41 0.20 0.18

We analyzed how the number of images per side (P ), repre-
senting concept demonstrations, affects model performance.
Extending the I1S and D1S analysis in the main paper, we
evaluated model accuracy on Bongard-RWR+/LP using the
CS task across varying values of P . As shown in Table 4,
performance generally improves with more demonstrations,
particularly for stronger models such as InternVL2.5, which
achieves its best result at P = 6. However, not all mod-
els exhibit this trend – Qwen2-VL performs similarly for
P = 3 and P = 6, while MiniCPM-o 2.6 achieves its peak
performance for P = 5. These results suggest that while additional demonstrations can be beneficial,
some models may not be able to fully exploit them.
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Table 5: Concept Generation: Image-based on Bongard-RWR+.

BLEU1 BLEU2 METEOR ROUGEL CIDEr PBERT RBERT FBERT

InternVL2.5 78B 0.063 0.011 0.056 0.159 0.017 0.114 −0.049 0.027
Qwen2-VL 72B 0.048 0.004 0.043 0.121 0.007 0.066 −0.102 −0.025
LLaVA-Next 110B 0.071 0.008 0.061 0.174 0.006 0.128 −0.037 0.040
MiniCPM-o 2.6 8B 0.077 0.008 0.063 0.181 0.004 0.127 -0.035 0.041

Table 6: Concept Generation: Image-based on Bongard-RWR+/L6.

BLEU1 BLEU2 METEOR ROUGEL CIDEr PBERT RBERT FBERT

InternVL2.5 78B 0.060 0.011 0.053 0.149 0.021 0.111 −0.045 0.028
Qwen2-VL 72B 0.042 0.005 0.039 0.110 0.008 0.046 −0.118 −0.042
LLaVA-Next 110B 0.072 0.007 0.061 0.172 0.008 0.133 −0.031 0.045
MiniCPM-o 2.6 8B 0.076 0.009 0.064 0.182 0.005 0.144 -0.024 0.054

C.4 ADDITIONAL BASELINES

We evaluated the performance of supervised learning methods on the I1S and D1S tasks. The models
operated on embeddings produced by pre-trained models. For I1S, raw images were encoded using
ViT-L/14 (Dosovitskiy et al., 2021), while for D1S, image captions produced by InternVL2.5 were
embedded using fine-tuned MiniLM (HuggingFace, 2021; Wang et al., 2020a). We considered
an MLP with a single hidden layer applied to concatenated embeddings, Wild Relation Network
(WReN) (Barrett et al., 2018), which processes embedding pairs and aggregates them via summation,
and SNAIL (Mishra et al., 2018), an attention-based meta-learner. As shown in Table 11, all models
performed near the random guess level on both Bongard-RWR+/TVT and Bongard-RWR+/TVT-
Large, demonstrating that the proposed BPs present a significant challenge not only for VLMs but
also for standard supervised learning approaches.

C.5 PERFORMANCE ON CONCEPT GENERATION TASK

Tables 5 – 8 evaluate model performance on the CG task, where models are prompted to produce
free-form descriptions of the underlying concept for each matrix. Inputs were either raw images or
image captions produced by InternVL2.5. Experiments were conducted on both Bongard-RWR+ and
Bongard-RWR+/L6 datasets. We assess generated descriptions using standard NLP metrics: BLEU
(BLEU1 and BLEU2) (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), ROUGEL (Lin,
2004), CIDEr (Lin, 2004), and BERTScore (precision PBERT, recall RBERT, F1 FBERT) (Zhang* et al.,
2020). For BERTScore, we apply baseline rescaling4 and the DeBERTa5 model (He et al., 2021),
which has strong alignment with human evaluations. Higher scores indicate better performance across
all metrics.

MiniCPM-o 2.6 consistently performs best in image-based setups (Tables 5 – 6), ranking first in 5
of 8 metrics on Bongard-RWR+ and 6 of 8 on Bongard-RWR+/L6, though differences with other
models are small. In text-based setups (Tables 7 – 8), Qwen2-VL leads in 5 of 8 metrics on Bongard-
RWR+ and 4 of 8 on Bongard-RWR+/L6, again with relatively small gaps to competing models.
We further compare top-performing models on Bongard-RWR+ with the best results reported for
Bongard-OpenWorld (Wu et al., 2024, Appendix E, Table 4), as shown in Tables 9 and 10. Regardless
of input representation, models achieve significantly higher scores on Bongard-OpenWorld than on
Bongard-RWR+, indicating that the concepts in our dataset are more challenging to recognize even
for state-of-the-art models.

4https://github.com/Tiiiger/bert_score/blob/master/journal/rescale_
baseline.md

5https://huggingface.co/microsoft/deberta-xlarge-mnli
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Table 7: Concept Generation: Text-based on Bongard-RWR+.

BLEU1 BLEU2 METEOR ROUGEL CIDEr PBERT RBERT FBERT

InternVL2.5 78B 0.122 0.021 0.063 0.158 0.017 0.142 0.073 0.107
Qwen2-VL 72B 0.132 0.021 0.066 0.161 0.018 0.145 0.090 0.117
LLaVA-Next 110B 0.111 0.018 0.064 0.165 0.013 0.147 0.062 0.103
MiniCPM-o 2.6 8B 0.105 0.019 0.064 0.170 0.019 0.141 0.033 0.085
DeepSeek-R1 70B 0.129 0.013 0.060 0.138 0.015 0.069 0.050 0.060

Table 8: Concept Generation: Text-based on Bongard-RWR+/L6.

BLEU1 BLEU2 METEOR ROUGEL CIDEr PBERT RBERT FBERT

InternVL2.5 78B 0.123 0.023 0.065 0.162 0.019 0.154 0.087 0.120
Qwen2-VL 72B 0.132 0.023 0.066 0.160 0.018 0.153 0.095 0.124
LLaVA-Next 110B 0.114 0.020 0.064 0.164 0.012 0.149 0.070 0.108
MiniCPM-o 2.6 8B 0.110 0.024 0.066 0.169 0.022 0.146 0.046 0.094
DeepSeek-R1 70B 0.128 0.015 0.060 0.134 0.018 0.072 0.052 0.062

C.6 ASSESSING DIFFICULTY OF BONGARD-RWR+ VARIANTS

We compared model performance on a range of tasks using both Bongard-RWR+ and Bongard-
RWR+/L6, with the results shown in Table 12. Overall, the models consistently perform better
on Bongard-RWR+/L6 across both image- and text-based strategies. In particular, DeepSeek-R1
presents notable gains in text-based setups, achieving 70% accuracy with D1S and 72% using
D2S. We attribute these improvements to the greedy matrix construction strategy used in Bongard-
RWR+/L6, which prioritizes subsets that minimize intra-side embedding similarity. This encourages
the selection of more visually diverse images to represent a concept, making the underlying shared
aspects more distinguishable and thus easier to recognize for the models.

C.7 PERFORMANCE OF THE SIMILARITY CLASSIFIER

The Similarity Classifier achieves high results in I1S experiments, as it exploits a fundamental
property of BPs: a defining concept must hold for all images on a given side. This motivates the
use of a max-aggregation heuristic, which assigns the test input to the side for which the maximum
distance between individual image embeddings and the test image embedding (most outlying pair) is
smaller. Fig. 13 illustrates the strength of the underlying design concept of SC.

C.8 QUALITATIVE ANALYSIS

Tables 13 and 14 present the top 5 correctly recognized concepts per model for the I1S and D1S tasks,
resp. In the image-based setup, we observe a diverse distribution of top concepts across the models,
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Figure 12: Model performance on the CS, I1S and D1S tasks across concept groups on Bongard-
RWR+. The presented CS results are for K = 4.
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Table 9: Concept Generation: Image-based on Bongard-RWR+ vs. Bongard-OpenWorld.
Comparison of concept descriptions generated from images in Bongard-RWR+ (using MiniCPM-o
2.6 8B) and Bongard-OpenWorld (using GPT-4V (Wu et al., 2024, Appendix E, Table 4)).

BLEU1 BLEU2 METEOR ROUGEL CIDEr

Bongard-RWR+ 0.077 0.008 0.063 0.181 0.004
Bongard-OpenWorld 0.190 0.073 0.111 0.188 0.527

Table 10: Concept Generation: Text-based on Bongard-RWR+ vs. Bongard-OpenWorld.
Comparison of concept descriptions generated from image captions in Bongard-RWR+ (using
Qwen2-VL 72B for prediction and InternVL2.5 78B for captioning) and Bongard-OpenWorld (using
ChatGPT for prediction and BLIP-2 w/ Fine-tuning for captioning (Wu et al., 2024, Appendix E,
Table 4)).

BLEU1 BLEU2 METEOR ROUGEL CIDEr

Bongard-RWR+ 0.132 0.021 0.066 0.161 0.018
Bongard-OpenWorld 0.441 0.292 0.222 0.417 1.714

with little overlap. This variation suggests that each model relies on distinct reasoning strategies
when processing visual input. For example, InternVL2.5 shows some capacity for identifying rules
involving contour, similarity, and shape, whereas Qwen2-VL performs better on concepts related
to count and angle. In contrast, the text-based setup yields more consistent results across models.
Counting-related concepts dominate the top-performing examples, followed by shape and size.

The contrast between I1S and D1S results highlights modality-specific strengths, as the models tend
to prefer different concept groups depending on whether they are reasoning over images or text.
These trends are further illustrated in Fig. 12, which shows average accuracy per concept group. Most
models, InternVL2.5 and Qwen2-VL in particular, exhibit performance spikes in size, count, and
shape groups with the D1S task compared to I1S. This discrepancy indicates a weak connection
between visual and textual processing pathways in multimodal systems and suggests that improving
the integration between these modalities could further boost model performance via knowledge
transfer.

D LIMITATIONS

Our dataset generation pipeline requires manual verification to ensure that generated images accurately
reflect the intended concepts. During initial experiments, we identified limitations in the ability of T2I
models to reliably render certain abstract or fine-grained visual concepts. For instance, the concept
"there are (no) inside figures of the second order" from Bongard-RWR could not be accurately
represented by the T2I model, preventing us from including it in Bongard-RWR+. We believe future
advances in accurate representation of fine-grained concepts in generative models will be critical for
improving scalability of datasets like Bongard-RWR+.

Our main experiments evaluated the ability of VLMs to solve BPs, alongside selected supervised
learning baselines described in Appendix C.4. The results highlight clear limitations in the current
models’ capacity for abstract visual reasoning, especially when dealing with fine-grained concepts,
raising the need for more sophisticated approaches. In particular, multimodal reasoning models that
integrate visual and textual information may offer a promising direction, analogous to how reasoning
models like DeepSeek-R1 operate in the text domain. We envision the introduced datasets as valuable
benchmarks for tracking progress in AVR capabilities and, more broadly, in multi-image reasoning.

Multiple recent studies confirm the limitations of VLMs highlighted in our work. MindSet: Vi-
sion (Biscione et al., 2024) tests models on 30 psychological findings inspired by human visual
perception, revealing fundamental differences between human and machine vision. VCog-Bench (Cao
et al., 2025) evaluates models on abstract and commonsense visual reasoning as well as visual question
answering, showing that VLMs consistently struggle with multi-image reasoning tasks. Evaluations
on the WAIS-IV test indicate that VLMs underperform in perceptual reasoning tasks (Galatzer-Levy
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Table 11: Baseline performance. Test accuracy of supervised learning models on Bongard-
RWR+/TVT and Bongard-RWR+/TVT-Large, using image and text-based input representations.
Each experiment was repeated 10 times with different seeds; the table reports mean ± std.

Bongard-RWR+/TVT Bongard-RWR+/TVT-Large

Image Text Image Text

MLP 0.49± 0.00 0.49± 0.00 0.47± 0.01 0.49± 0.00
WReN 0.49± 0.01 0.48± 0.01 0.48± 0.01 0.48± 0.01
SNAIL 0.48± 0.01 0.51± 0.01 0.48± 0.01 0.48± 0.01

Table 12: Relative difficulty of Bongard-RWR+/L6 vs. Bongard-RWR+. Each entry reports
accuracy on Bongard-RWR+/L6, with the absolute change vs. Bongard-RWR+ shown in parentheses.

Image Text

CS, K = 16 I1S I2S D1S D2S

InternVL2.5 78B 0.62 (+0.05) 0.55 (+0.05) 0.48 (+0.09) 0.67 (+0.10) 0.64 (+0.15)
Qwen2-VL 72B 0.41 (+0.03) 0.57 (+0.08) 0.52 (+0.08) 0.67 (+0.09) 0.56 (+0.14)
LLaVA-Next 110B 0.20 (+0.01) 0.51 (+0.01) 0.49 (−0.01) 0.61 (+0.07) 0.52 (+0.09)
MiniCPM-o 2.6 8B 0.18 (−0.01) 0.51 (+0.03) 0.51 (+0.06) 0.53 (+0.02) 0.45 (+0.04)
DeepSeek-R1 70B N/A N/A N/A 0.70 (+0.13) 0.72 (+0.16)
Similarity Classifier N/A 0.59 (+0.07) 0.68 (+0.14) 0.54 (+0.05) 0.59 (+0.09)

et al., 2024). A systematic review of AVR performance across such benchmarks could provide a more
comprehensive understanding of current model capabilities and limitations.

Our evaluation of bias and fairness (Appendix E) reveals that, although Flux.1-dev offers certain
demographic variation, it disproportionately generates White figures and tends to produce racially
homogeneous crowds. These results are consistent with prior studies on demographic biases in
Text-to-Image models (Shukla et al., 2025), highlighting the need for further research on diversity
and fairness in Text-to-Image generation.

Although we consider the expansion of Bongard-RWR dataset (60 instances) to Bongard-RWR+
(5400 instances) a significant step forward, some Bongard-RWR matrices and many original Bongard
problems remain unrepresented in the extended Bongard-RWR+ dataset. As we note in Appendix E.2,
this is mainly due to the limited number of images passing review and the difficulty of fully capturing
complex synthetic concepts in the real-world images (e.g., "spiral curls clockwise/counterclockwise").
We believe that expanding Bongard-RWR+ to cover the missing concepts is a challenging yet
promissing research direction, and we encourage the community to contribute to this endeavor.

E BIAS AND FAIRNESS

E.1 DEMOGRAPHIC BIAS AND DIVERSITY

Our data generation pipeline includes several design choices aimed at promoting visual diversity and
thereby mitigating potential biases. First, augmentations made in Algorithm 1 introduce variation
in visual scenes, thus increasing conceptual and demographic diversity. For example, a description
originally referencing “A man standing with a surfboard” was augmented to “A woman standing with
a surfboard” (Fig. 14). Second, in Algorithm 2 we explicitly encourage visual diversity within BPs
representing the same concept. This is accomplished through iteratively selecting image subsets that
maximize intra-set visual diversity, as measured by the total pairwise cosine similarity of ViT-L/14
embeddings. Furthermore, after each matrix is constructed, we randomly exclude one image from the
selected subset from future sampling, thus increasing the total number of unique images used.

Despite these methodological safeguards, Bongard-RWR+ may still inherit biases from the underlying
models used in the generation pipeline, particularly Flux.1-dev for Text-to-Image generation. Since
these models are trained on large-scale web data, they may reflect social, cultural, or geographic
biases present in that data. To better understand these risks, we conducted a limited-scale bias
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Figure 13: An I1S example illustrating the strength of the Similarity Classifier. Left: Polygons.
Right: Curvilinear figures. The right side shows a test image, and the left side presents a plot of
distances from the test image to images on both sides in the ViT-L/14 embedding space. The ice
sculpture is farther from the brick wall in the Left side than from any image in the Right side, leading
to a higher probability of being classified as a curvilinear figure. In contrast, InternVL2.5 relies on
local features and doesn’t take into account all side images, resulting in an incorrect classification:
“The test image shows a symmetric ice sculpture, matching the symmetric patterns seen in the LEFT
class images. Conversely, the RIGHT class images feature more natural, organic, or architectural
elements that lack symmetry.”

Table 13: Top 5 correctly recognized concepts for each model using the I1S task on Bongard-RWR+.

Model Accuracy Concept Group Left-side Rule Right-side Rule

IVL2.5

0.64 Contour Shading thicker on the right side Shading thicker on the left side
0.61 Similarity Three identical elements Four identical elements
0.61 Shape A circle No circle
0.59 Count Three parts Five parts
0.58 Angle Acute angle No acute angle

Q2-VL

0.65 Count Empty picture Not empty picture
0.62 Angle A sharp projection No sharp projection
0.61 Angle Convex figures Nonconvex figures
0.59 Position Axes of symmetry No axes of symmetry
0.59 Branching The chain does not branch The chain branches

LLaVA

0.55 Angle A sharp projection No sharp projection
0.55 Rotation An acute angle directed inward No angle directed inward
0.55 Similarity All figures of the same color Figures of different colors
0.54 Position Points inside the figure outline

are on a straight line
Points inside the figure outline
are not on a straight line

0.54 Similarity Figures are similar Figures are not similar

MCPM

0.61 Similarity All figures of the same color Figures of different colors
0.60 Count One figure Two figures
0.58 Similarity Figures are similar Figures are not similar
0.53 Angle Convex figures Nonconvex figures
0.53 Branching There are no side branches of

the second order
There are side branches of the
second order

audit. Two expert annotators independently reviewed a subset of 800 images from Bongard-RWR+
depicting humans, and to each of them assigned labels related to Gender (Female, Male, Hard to tell),
Race (Asian, Black, White, Hard to tell), Age (Adult, Child, Hard to tell), and Image type (Single,
Pair, Crowd, Hands, Legs, Other). We assessed the annotators agreement computing Cohen’s κ for
each of the categories (Gender = 0.82, Race = 0.84 , Age = 0.78, Image type = 0.89).

The performed analysis (Fig. 15) revealed that Flux.1-dev produces a relatively balanced Gender
distribution (45.1% Female, 36.6% Male, 33.0% Hard to tell). However, the model shows racial
imbalance: 79.9% of generated humans were annotated as White, rising to 98.7% in images limited
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Table 14: Top 5 correctly recognized concepts for each model using the D1S task on Bongard-RWR+.

Model Accuracy Concept Group Left-side Rule Right-side Rule

IVL2.5

0.98 Count One figure Two figures
0.93 Count Three parts Four parts
0.86 Shape Triangles Circles
0.84 Size Large figures Small figures
0.78 Count Three parts Five parts

Q2-VL

0.96 Count Three parts Four parts
0.95 Count One figure Two figures
0.85 Shape Triangles Circles
0.83 Size Large figures Small figures
0.81 Shape Polygons Curvilinear figures

LLaVA

0.86 Count Three parts Four parts
0.85 Count One figure Two figures
0.81 Shape Polygons Curvilinear figures
0.78 Size Large figures Small figures
0.71 Count Three parts Five parts

MCPM

0.80 Count Three parts Four parts
0.73 Count One figure Two figures
0.59 Count Three parts Five parts
0.59 Similarity Three identical elements Four identical elements
0.57 Similarity All figures of the same color Figures of different colors

DS-R1

1.00 Count One figure Two figures
0.98 Count Three parts Four parts
0.85 Shape Polygons Curvilinear figures
0.84 Shape Triangles Circles
0.78 Size Large figures Small figures

to human hands. Adults were far more frequent (67.9%) than Children (12.8%). Crowd scenes were
largely racially homogeneous, with 82.2% appearing to consist of a single race.

E.2 ANNOTATION RELIABILITY AND BIAS

In our pipeline (Fig. 3), the human role is purely discriminative rather than generative and limited to
filtering generated images. This substantially reduces the manual burden compared to annotation-
heavy approaches such as object detection or image segmentation. Nevertheless, this dicriminative
step may potentially introduce some bias. To mitigate this risk, each image generated by Algorithm 1
was independently reviewed by two expert annotators, who assigned one of the 3 labels: Left, Right
or None. This way, each annotator verified whether an image (1) adhered to the concept of its side of
the matrix and (2) did not adhere to the concept of the opposing side. Images failing either criterion
were flagged for exclusion.

Inter-annotator agreement reached a Cohen’s κ of 0.64, indicating substantial consensus. Annotators
disagreed on side assignment (Left vs. Right) in 5.0% of the cases, disagreed between None vs. either
Left or Right in 17.7%, and agreed on the same label in 77.3%. Disagreements were resolved through
discussion. In case of the lack of an agreement, the image was discarded. Overall, 30.2% generated
images were discarded. This strict filtering also explains why some concepts (e.g., “spiral curls
clockwise/counterclockwise”) did not reach the target of 100 matrices, due to the limited number of
images passing review.

Additionally, we performed a more detailed per-concept analysis, focusing on the top five concepts
with the lowest and highest image dropout. Concepts requiring strong object recognition skills had
the lowest dropout (under 5%), such as: “A sharp projection vs. No sharp projection”, “Triangles vs.
Other figures”, “Three parts vs. Four parts”, “Vertical hatched lines vs. Horizontal hatched lines”,
and “Triangle inside of the circle vs. Circle inside of the triangle”. To understand why images were
rejected, annotators explained their decisions for the highest-dropout concepts. The main reasons for
rejection can be grouped into three categories: (1) the image did not satisfy the concept constraints,
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(a) “A man standing with a surfboard...” was aug-
mented to “A woman standing with a surfboard...”.

(b) “A woman wearing retro glasses with a pink out-
line...” was augmented to “A child wearing square
glasses with a yellow outline...”.

(c) “A hearty bowl of Italian minestrone soup...” was
augmented to “A bowl of Thai green curry with jas-
mine rice...”.

(d) “A herd of deer standing together in a dense
forest...” was augmented to “A group of kangaroos
hopping closely in a grassy plain...”.

Figure 14: Examples of (a) Gender, (b) Age, (c) Culture and (d) Geographic diversity augmenta-
tions used in Algorithm 1.
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Figure 15: Distribution of the four selected human categories in Bongard-RWR+ images
(Gender, Race, Age, Image type). The blue dashed line indicates the expected value under equal
group representation. H2T is used as an abbreviation for Hard to tell.
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(a) Left: Four parts.
Right: Five parts.

(b) Left: Ends of the curve
are parallel. Right: Ends
of the curve are perpendic-
ular.

(c) Left: One line. Right:
Two lines.

(d) Left: Convex figures.
Right: Nonconvex fig-
ures.

Figure 16: Examples of images dropped during review. (a) Depicts six petals, and therefore does
not fit either side of the problem. (b) The ends of the chain extend beyond the image, making the
concept ambiguous. (c) In front of the car there is a single white line, but in the background two
yellow lines are visible. (d) The blood vessel appears circular, which implies convexity; however,
when viewed in three dimensions, it is concave.

(2) the image was ambiguous (e.g., conflicting cues in the foreground and background), or (3) the
image did not provide enough information to judge the concept. For example, in “Ends of the curve
are parallel vs. Ends of the curve are perpendicular”, images were rejected mainly because at least
one end of the curve lay outside the frame, preventing clear recognition of the concept. Selected
examples are presented in Fig. 16.

F MODEL PROMPTS

Prompts 1, 2, and 3 correspond to the Describe, Augment, and Render steps in Algorithm 1, resp.
Prompts 4, 6, 7–8, 10, and 11–12 are used for the CS, I1S, D1S, I2S, and D2S tasks. Prompt 5
outlines the shared task introduction for both I1S and D1S, while Prompt 9 provides the common
introduction for I2S and D2S. Prompts include 2 illustrative examples to help models understand
the task format. Importantly, these examples use different class labels to avoid biasing the model
toward always selecting the same answer as in the examples. When applicable, models are instructed
to respond in a structured JSON format. The validity of these outputs is enforced using the Outlines
decoding backend (Willard & Louf, 2023).

G THE USE OF LARGE LANGUAGE MODELS

We used LLMs solely to assist with polishing the manuscript, limited to grammar correction and
stylistic refinement. No model contributed to research ideas, analysis, or conclusions. In our
experimental pipeline, however, VLMs, LLMs, and T2I models served as the primary tools for data
generation. Specifically, they were employed for (1) producing image descriptions, (2) augmenting
captions, and (3) generating synthetic images. In addition, we evaluated the AVR abilities of several
VLMs and LLMs.
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Prompt 1: Generate both positive and negative image descriptions.

You are given an image and a general concept. Your task is to refine
the concept into two concise, visually descriptive prompts: one
that aligns with the image (positive prompt) and one that contrasts
with it (negative prompt). Focus on making each prompt specific,
clearly grounded in the image, and reflective of the core idea. You
don’t need to match every detail--just convey the main visual
concept.

↪→
↪→
↪→
↪→
↪→
↪→

### Example:
Image: Human legs wearing socks with vertical lines
Concept: Vertical lines.
Positive prompt: Socks with vertical lines
Negative prompt: Socks with horizontal lines

Now, it's your turn:
Concept: {concept}

### Instructions:
1. Generate a positive and negative prompt based on the provided image

and concept.↪→
2. Answer using the following format:
Positive prompt:
Negative prompt:

Prompt 2: Augment a positive image description.

You are tasked with modifying a given prompt for a diffusion model.
Your primary objective is to preserve the specified **concept** while

altering unrelated details or environments.↪→
You are encouraged to create diverse, creative, and unique

augmentations that stay true to the concept but introduce variety
in interpretation.

↪→
↪→

### Example:
Prompt: "An empty white bowl with a thin black rim placed on a solid

blue background."↪→
Concept: "Empty picture"
Output Augmentations: [

"An empty red plate on a wooden table.",
"A clear glass cup sitting on a marble countertop.",
"A white ceramic vase on a patterned fabric."

]

Now, it's your turn:
Prompt: {prompt}
Concept: {concept}

### Instructions:
1. Generate **{n_augmentations} unique augmentations** for the provided

prompt.↪→
2. Output the results in the following JSON string array format:
[

"<augmented_prompt_1>",
"<augmented_prompt_2>",
...

]

Ensure that each augmentation aligns with the concept and introduces
creative variations in other details.↪→

Prompt 3: Positive prompt for rendering new images. Negative prompt was provided unchanged.

Sharp, high quality image of <positive prompt>.
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Prompt 4: Concept Selection (CS) task prompt.

You are a vision understanding module (an expert) designed to provide
short, clear and accurate answers. The goal in solving a Bongard
Problem is to identify a concept that differentiates the left and
right matrix sides. You will receive a list of concepts. Only one
of them correctly describes the image.

↪→
↪→
↪→
↪→

Select the concept that correctly describes the image. Respond in JSON
using the following format.↪→

EXAMPLE START
REQUEST
{

"concepts": [
{

"left": "Parallel lines",
"right": "Perpendicular lines",
"label": 1

},
{

"left": "Negative slope",
"right": "Positive slope",
"label": 2

}
]

}
RESPONSE
{

"explanation": "The image presents several lines that don't
intersect.",↪→

"label": 1
}
EXAMPLE END
EXAMPLE START
REQUEST
{

"concepts": [
{

"left": "Two shapes",
"right": "Six shapes",
"label": 1

},
{

"left": "A cycle",
"right": "No cycle",
"label": 2

},
{

"left": "Similar shapes",
"right": "Different shapes",
"label": 3

},
{

"left": "Small variance",
"right": "Large variance",
"label": 4

}
]

}
RESPONSE
{

"explanation": "All images on the left side feature circles of
similar size, while the images on the right side present
triangles, squares, and lines.",

↪→
↪→
"label": 3

}
EXAMPLE END
REQUEST
<request>
RESPONSE
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Prompt 5: Shared task introduction used in both I1S and D1S settings.

You are a vision understanding module (an expert) designed to provide
short, clear and accurate answers. The goal in solving a Bongard
Problem is to classify a test image to the corresponding class.
There are two classes: LEFT and RIGHT. All images belonging to the
LEFT class represent a common, shared concept which is not present
in any image from the RIGHT class, and vice versa - all images
belonging to the RIGHT class represent a common, shared concept
which is not present in any image from the LEFT class.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Prompt 6: Image-to-Side (I1S) task prompt.

Solve the provided Bongard Problem. Respond in json using the following
format.↪→

EXAMPLE START
RESPONSE
{

"concept": "small vs big",
"explanation": "The test image shows a small shape, similarly as

all images on the left side. Conversely, the images on the
right side feature big shapes.",

↪→
↪→
"answer": "LEFT"

}
EXAMPLE END
EXAMPLE START
RESPONSE
{

"concept": "two circles vs one circle",
"explanation": "The donut sits alone as the primary round element

in the scene, matching the RIGHT examples where a single
rounded object takes visual focus amid other details, like the
soup bowl or drum.",

↪→
↪→
↪→
"answer": "RIGHT"

}
EXAMPLE END
RESPONSE
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Prompt 7: Description-to-Side (D1S) task prompt. (1/2)

Use the descriptions below to solve the provided Bongard Problem.
Respond in JSON using the following format.↪→

EXAMPLE START
REQUEST
{

"left_descriptions": [
"A wired telephone with a coiled cord resting on a wooden

table",↪→
"Power lines stretching across a clear blue sky with birds

perched on them",↪→
"A clothes drying rack with colorful clothes hanging under the

sunlight",↪→
"A swing hanging from a tree branch in a park with a child

playing nearby",↪→
"A needle with thread passing through fabric, placed on a

sewing table",↪→
"A pair of shoes with neatly tied laces placed on a tiled

floor"↪→
],
"right_descriptions": [

"A smartphone with a cracked screen lying on a desk with
visible damage",↪→

"A bird flying freely in the sky with its wings spread wide",
"A pile of folded clothes neatly stacked on a shelf in a

wardrobe",↪→
"A park bench surrounded by fallen leaves in an autumn

setting",↪→
"A piece of fabric with intricate embroidery placed on a sewing

table",↪→
"A pair of slip-on sandals placed on a carpeted floor near a

doorway"↪→
],
"test_description": "A sailboat with its sails fully open gliding

across a calm lake under a clear sky"↪→
}
RESPONSE
{

"concept": "line is present vs no line is present",
"explanation": "The first test image presents a sailboat with ropes

hanging the sails. The ropes are lines, the same as items on
the LEFT, like the telephone cord, power lines, and
shoelaces.",

↪→
↪→
↪→
"answer": "LEFT"

}
EXAMPLE END
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Prompt 8: Description-to-Side (D1S) task prompt. (2/2)

EXAMPLE START
REQUEST
{

"left_descriptions": [
"Two bagels on a cutting board beside a knife",
"A pair of headphones resting on a desk with the earcups facing

up",↪→
"Two apples placed next to each other on a picnic blanket",
"A pair of camera lenses lined up on a shelf",
"A bicycle lying on the ground with both wheels visible",
"A snowman with two stacked parts, one above the other"

],
"right_descriptions": [

"Two forks placed on a plate",
"A dartboard mounted on a brick wall with scores written on two

papers beside it",↪→
"A spotlight shining onto a dark floor surrounded by cables",
"A pie baking in the oven next to a tray of gingers bread men",
"A record spinning on a turntable with a hand reaching toward

it",↪→
"A teacup seen from above with steam rising",

],
"test_description": "An octagonal dessert plate holding a single

donut with sprinkles"↪→
}
RESPONSE
{

"concept": "two circles vs one circle",
"explanation": "The donut sits alone as the primary round element

in the scene, matching the RIGHT examples where a single
rounded object takes visual focus amid other details, like the
soup bowl or drum.",

↪→
↪→
↪→
"answer": "RIGHT"

}
EXAMPLE END
REQUEST
<request>
RESPONSE

Prompt 9: Shared task introduction used in both I2S and D2S settings.

You are a vision understanding module (an expert) designed to provide
short, clear and accurate answers. The goal in solving a Bongard
Problem is to classify each of the two test images to the
corresponding class. There are two classes: LEFT and RIGHT. Each
image belongs to exactly one class (either LEFT or RIGHT). All
images belonging to the LEFT class represent a common, shared
concept which is not present in any image from the RIGHT class, and
vice versa - all images belonging to the RIGHT class represent a
common, shared concept which is not present in any image from the
LEFT class. The two test images belong to different classes.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
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Prompt 10: Images-to-Sides (I2S) task prompt.

Solve the provided Bongard Problem. Respond in json using the following
format.↪→

EXAMPLE START
RESPONSE
{

"concept": "small vs big",
"first": {

"explanation": "The test image shows a small shape, similarly
as all images on the left side. Conversely, the images on
the right side feature big shapes.",

↪→
↪→
"answer": "LEFT"

},
"second": {

"explanation": "The test image shows a big shape, similarly as
all images on the right. The images on the left, on the
other hand, feature small shapes.",

↪→
↪→
"answer": "RIGHT"

}
}
EXAMPLE END
EXAMPLE START
RESPONSE
{

"concept": "two circles vs one circle",
"first": {

"explanation": "The donut sits alone as the primary round
element in the scene, matching the RIGHT examples where a
single rounded object takes visual focus amid other details,
like the soup bowl or drum.",

↪→
↪→
↪→
"answer": "RIGHT"

},
"second": {

"explanation": "The tennis net and two balls represent two
circular elements in the scene, aligning with the LEFT
examples where pairs of circular objects are present, such
as the bagels, apples, or camera lenses.",

↪→
↪→
↪→
"answer": "LEFT"

}
}
EXAMPLE END
RESPONSE
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Prompt 11: Descriptions-to-Sides (D2S) task prompt. (1/2)

Use the image and the descriptions below to solve the provided Bongard
Problem. Respond in JSON using the following format.↪→

EXAMPLE START
REQUEST
{

"left_descriptions": [
"A wired telephone with a coiled cord resting on a wooden

table",↪→
"Power lines stretching across a clear blue sky with birds

perched on them",↪→
"A clothes drying rack with colorful clothes hanging under the

sunlight",↪→
"A swing hanging from a tree branch in a park with a child

playing nearby",↪→
"A needle with thread passing through fabric, placed on a

sewing table",↪→
"A pair of shoes with neatly tied laces placed on a tiled

floor"↪→
],
"right_descriptions": [

"A smartphone with a cracked screen lying on a desk with
visible damage",↪→

"A bird flying freely in the sky with its wings spread wide",
"A pile of folded clothes neatly stacked on a shelf in a

wardrobe",↪→
"A park bench surrounded by fallen leaves in an autumn

setting",↪→
"A piece of fabric with intricate embroidery placed on a sewing

table",↪→
"A pair of slip-on sandals placed on a carpeted floor near a

doorway"↪→
],
"first": "A sailboat with its sails fully open gliding across a

calm lake under a clear sky",↪→
"second": "A launch boat with an engine cruising through the water

leaving a trail of waves behind"↪→
}
RESPONSE
{

"concept": "line is present vs no line is present",
"first": {

"explanation": "The first test image presents a sailboat with
ropes hanging the sails. The ropes are lines, the same as
items on the LEFT, like the telephone cord, power lines,
and shoelaces.",

↪→
↪→
↪→
"answer": "LEFT"

},
"second": {

"explanation": "The second image shows a motorized launch boat,
which typically doesn’t have sails or ropes visible. This
aligns more with the RIGHT side examples where no lines are
present, like the smartphone, slip-on sandals, or park
bench.",

↪→
↪→
↪→
↪→
"answer": "RIGHT"

}
}
EXAMPLE END
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Prompt 12: Descriptions-to-Sides (D2S) task prompt. (2/2)

EXAMPLE START
REQUEST
{

"left_descriptions": [
"Two bagels on a cutting board beside a knife",
"A pair of headphones resting on a desk with the earcups facing

up",↪→
"Two apples placed next to each other on a picnic blanket",
"A pair of camera lenses lined up on a shelf",
"A bicycle lying on the ground with both wheels visible",
"A snowman with two stacked parts, one above the other"

],
"right_descriptions": [

"Two forks placed on a plate",
"A dartboard mounted on a brick wall with scores written on two

papers beside it",↪→
"A spotlight shining onto a dark floor surrounded by cables",
"A pie baking in the oven next to a tray of gingers bread men",
"A record spinning on a turntable with a hand reaching toward

it",↪→
"A teacup seen from above with steam rising",

],
"first": "An octagonal dessert plate holding a single donut with

sprinkles",↪→
"second": "A tennis net with two balls lying nearby"

}
RESPONSE
{

"concept": "two circles vs one circle",
"first": {

"explanation": "The donut sits alone as the primary round
element in the scene, matching the RIGHT examples where a
single rounded object takes visual focus amid other details,
like the soup bowl or drum.",

↪→
↪→
↪→
"answer": "RIGHT"

},
"second": {

"explanation": "The tennis net and two balls represent two
circular elements in the scene, aligning with the LEFT
examples where pairs of circular objects are present, such
as the bagels, apples, or camera lenses.",

↪→
↪→
↪→
"answer": "LEFT"

}
}
EXAMPLE END
REQUEST
<request>
RESPONSE
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(a) (b)

Figure 17: Bongard-RWR+. (a) Left: Figures elongated vertically. Right: Figures elongated
horizontally. (b) Left: Smooth contour figures. Right: Twisting contour figures.

(a) (b)

Figure 18: Bongard-RWR+/GS. (a) Left: Extensions of segments cross at one point. Right:
Extensions of segments do not cross at one point. (b) Left: Three parts. Right: Four parts.

(a) (b)

Figure 19: Bongard-RWR+/L2. (a) Left: Empty. Right: Not empty. (b) Left: Large figures. Right:
Small figures.
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(a) (b)

Figure 20: Bongard-RWR+/L3. (a) Left: Vertical hatched lines. Right: Horizontal hatched lines. (b)
Left: Triangles. Right: Quadrangles.

(a) (b)

Figure 21: Bongard-RWR+/L4. (a) Left: An acute angle directed inward. Right: No angle directed
inward. (b) Left: Neck horizontal. Right: Neck vertical.

(a) (b)

Figure 22: Bongard-RWR+/L5. (a) Left: One figure. Right: Two figures. (b) Left: More solid black
circles. Right: More outline circles.
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(a) (b)

Figure 23: Bongard-RWR+/L6. (a) Left: A large hole. Right: A small hole. (b) Left: Shading
thicker on the right side. Right: Shading thicker on the left side.
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