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Abstract

Parallel LLM inference scaling involves sampling a set of N > 1 responses for
a single input prompt. However, these N parallel responses tend to be generated
independently from each other, partitioning compute resources and leaving poten-
tially useful information in one generation untapped by others. This is in contrast
to response length scaling where past computation is used in all future steps. For
higher quality responses and response sets, we propose Bridge to generate interde-
pendent responses in parallel by rethinking batched LLM hidden states as holistic
tensors rather than independent slices. With only a small amount (2.8%-5.1%)
of new parameters, Bridge improves the relative mean accuracy gains from rein-
forcement learning with verifiable rewards by up to 50% and boosts consistency
of correct responses. Trained once, Bridge scales to any generation width, all
with greater performance than independent generations, unlocking a more general
mode of parallel scaling that effectively leverages information between sequences,
compatible with any post-generation aggregation technique.

1 Introduction

Scaling inference-time compute has given large
language models (LLMs) substantial leaps in per- Prompt Generation

formance on difficult tasks. Many scaling methods Hidden States AL S 02
concentrate resources to generate a single high- We noed 10 find all values of et 8|2
quality response such as with chains-of-thought K
(CoTs) [Wei et al.l 2022] and decompositions of oFfTr?e ‘:‘:;Imfg First, we add 3 to both sides... N5
a problem into parallel substeps [Rodionov et al., | auadratic..” | Ao . eatic has the form... S
2025, |Yang et al.,2025b]]. However, there are also : ((efé“)‘\o@'b
instances where a high-quality set of responses for L o T ((Q,eb
each input is needed, such as in the case of output Tokens .

synthesis, best-of-V selection, and synthetic data Attention ”

generation. Scaling this in a parallel manner is Figure 1: LLM hidden states are 3-D tensors
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ations. Consequently, each generation is ignorant jtjy transfer information between tokens and fea-
of the other rollouts, despite answering the same g reg. respectively. By instead treating parallel
prompt. Independent generations for the same  gcqling generations as a single tensor rather than
prompt leave potentially usefglllnforma.tl.on de- independent slices, our method, Bridge, oper-
rived from other responses unutilized, limiting the ;e along the batch axis, so that tokens from all
performance ceiling. In contrast, sequentially scal- sequences that share the same prompt can share

ing CoTs ensures each sampled token can play a  jpformation throughout generation.
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of shared information across parallel generations stemming from the same prompt, we aim to leverage
these interactions to enhance and generalize parallel inference scaling.

There has been progress in integrating some form of parallel dependence for inference. A line of
work explores breaking down reasoning steps into parallel paths with great success [Rodionov et al.,
2025} Hsu et al., 2025| [Pan et al.,|2025} Jin et al., [2025} |Yang et al., |2025b]]. In these cases, parallel
computation is funneled into a single output, useful for generating one high-quality response but not
a high-quality set of responses. Even so, they highlight the potential of mid-generation interactions
between sequences. We seek to extend parallel scaling with interdependence, which allows all N
output sequences for one prompt to use all the compute and information available, not just a single
isolated partition. Thus, the challenge is finding a totally parallel method that uses N simultaneous
threads to generate N responses with interdependence without extensive post-training.

Looking at the operations on LLM hidden states reveals a clue to overcome these challenges (Figure[I).
For batch size B, sequence length .S, and hidden dimension D, the hidden states per forward pass has
3-D shape B x S x D. Attention and feedforward blocks blend information throughout each S x D
slice with the batch dimension kept independent. Even minor inter-sample interactions like Batch
Normalizations [loffe and Szegedy, [2015]] were substituted with Layer Normalizations [Ba et al.|
2016]. While this is natural for highly heterogeneous batches where samples with wildly different
inputs can be fed together in the same forward pass without interference, parallel scaling, which
draws many responses from a single input, exhibits uniquely homogeneous structure since each output
stems from the same input. Hence, there is the potential for useful information transfer during the
generation process which we exploit.

We introduce Bridge (Batch reasoning with interdependent generations), a method that shares
information across tokens that stem from the same prompt in a batch for parallel scaling with
interdependent generations. With a minor architectural change to LLMs, each token generated in a
batch can depend on tokens in other generation threads with the same prompt. In turn, our method
improves reasoning performance evaluated both at the individual response level (accuracy) and
response set level (G-Pass@Fk.- [Liu et al., | 2025]]). Furthermore, our method focuses on generation,
so any post-generation aggregation technique can be used. We push the following advancements
towards parallel scaling:

1. Parallelism with Dependence: Instead of generating in isolated silos, Bridge allows
information to flow between sequences while maintaining complete generation parallelism.
Thus, inference compute is pooled together for all tokens, rather than being partitioned. We
show Bridge significantly increases the final performance after reinforcement learning with
verifiable rewards (RLVR) on 7 math benchmarks using multiple reasoning models.

2. Low Cost: By adding only 2.8% to 5.1% additional parameters, and warming up on a small
supervised fine tuning (SFT) dataset (e.g. GSMS8K [Cobbe et al.| 2021]]), Bridge already
significantly improves the effectiveness of RLVR.

3. Versatility: Bridge has no restriction on the width of parallelism and is robust to train-time
and test-time width discrepancies. Trained once, all tested widths outperform independent
generations in terms of accuracy, coverage, and consistency. Furthermore, Bridge does not
rely on any heuristics or interventions at any point in the generation process.

Our extensive experiments on multiple models and tasks show that Bridge effectively shares infor-
mation across multiple generations for the same input. For example, our method improves the relative
benefit of RLVR on DeepSeek-R1-Distill-Qwen-7B by 50% averaged over 7 tasks, compared to the
next best method. With the same model, Bridge also increases the rate at which all responses to a
single competition math problem are correct from 15.3% to 18.1%.

Paper Organization. In the next section (Section [2)), we cover relevant background on test-time
scaling with an emphasis on parallel scaling. Then, we introduce Bridge in Section |3} detailing
the algorithm, the training pipeline, and its implications. We demonstrate Bridge’s efficacy on a
variety of math reasoning datasets, evaluated both on sample-wise accuracy and on global response
set quality in Section[d] We go further and provide a thorough investigation of our method including
varying the generation width, sequence length extrapolation, and learned features in Section



2 Background & Related Works

Test-time Scaling. In part due to the success of scaling LLM training [Kaplan et al.}[2020, Hoffmann
et al.,|2022], there has been a growing interest in quantifying how far scaling LLM inference-time
compute can push performance, especially on difficult reasoning tasks. The main axes of inference
scaling are generation length and the number of generations. To scale generation length, LLMs are
encouraged to produce long CoTs before arriving at a final answer [|Guo et al.| [2025] [Yang et al.,
2025al [ Muennighoff et al.| 2025] which is usually of higher quality than shorter CoTs. In the case of
extreme generation lengths, there appears to be diminishing or even negative returns, suggesting a
limitation of current models to scale along this axis [Gema et al., 2025]]. To scale along the number
of generations axis, LLMs can output multiple responses for a single query, increasing the probability
of a high quality response being generated [Brown et al.| 2024, |Snell et al., 2024] Wu et al., 2024,
Manvi et al., 2024} Sun et al., [2024, |Dong et al., [2025]]. However, independent generations divide
computational resources among themselves, oblivious to each other’s progress, which leads to less
significant performance gain with additional compute than length scaling [Mirtaheri et al., [2025]. To
promote parallel exploration during training, training with a Pass@#k objective has shown promise
which could be an interesting extension to our method [[Chen et al.| | 2025b].

Post-generation Synthesis. Instead of selecting one response from a pool of candidate responses,
some works investigate ways to synthesize multiple responses together. One way is to take an
unweighted or weighted majority vote across responses [Wang et al.| [2022} [Uesato et al., 2022
Lightman et al.,[2023| |Li et al.,|2023]], but this is geared mainly for discrete answers, and an effective
synthesis of reasoning traces remains unclear. There are also approaches where multiple responses
are concatenated and fed into an LLM to extract or combine information [Chen et al., 2023} |Q1
et al., 2025, Zhao et al.l 2025]]. Our work’s focus is on the generation phase, so many of these
post-generation aggregation techniques can be seamlessly integrated.

Mid-generation Synthesis/Pruning. There has also been some work in developing techniques
to share information across outputs mid-generation. For instance, Hogwild! Inference [Rodionov
et al.,[2025]] and Group Think [Hsu et al.l 2025] share key-value caches across generation runs to
collaborate and decompose tasks into subtasks. Similarly, some methods concatenate outputs of
parallel processes to aid in the main decoding thread [Pan et al., 2025 Jin et al.| 2025, Yang et al.,
2025b, Mactarlane et al.,[2025]]. Training from scratch, ParScale [Chen et al.| 2025al] fans outs an
input into multiple paths within the model architecture then aggregates them to predict the next token.
Whereas these previous methods funnel resources of IV parallel processes to produce one output,
our method uses N parallel processes to simultaneously generate N high quality outputs. This way,
our design integrates inter-output dependency mid-generation while producing different responses
simultaneously, flexibly suitable for post-generation synthesis, RLVR training, and synthetic data
generation. Another line of work involves stopping unpromising outputs mid-generation to devote
more resources to other parallel generations [Fu et al 2025/ Sun et al.| 2024]. These works show
excellent reductions in compute, and composing them with our method is of interest for future work.

3 Bridge: Connecting Generation Paths

Sharing information between samples mid-generation in the latent space gives rise to a couple
technical challenges. One is finding an effective and efficient way to achieve this. Attention and
feedforward blocks already pose serious static and dynamic memory bottlenecks, which we want
to avoid accentuating while still improving accuracy. Second, we also need versatility to allow for
any number of parallel generations at test-time. Bridge overcomes these challenges with small
attention-like blocks that fit into any LLM. We begin with a description of Bridge, its connections,
and its implications in Section [3.1] followed by SFT (Section[3.2) and RLVR (Section [3.3)) details.

3.1 Bridge Architecture

We introduce Bridge, a new transformer [Vaswani et al., [2017]] block that introduces dependence
between samples in a batch. At a high level, Bridge performs attention between tokens, which share
the same prompt and do not come from completed generations, in a batch at each timestep. We
summarize our method in Figure 2] and Algorithm
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Figure 2: Our method design. (Left) A Bridge block and input normalization layer are added after
each feedforward block. (Right) A timestep’s tokens stemming from the same input prompt attend
to each other in Bridge blocks, denoted by the arrows. Dotted arrows illustrate all the locations
of information transfer to different sequences in a Markovian fashion (token features only at the
current timestep are shared to predict the next timestep’s tokens). Attention is masked for tokens
from different prompts and from completed generations. White squares are masked cells.

We first describe self-attention layers. Define hidden states X € RZ*S*D for batch size B, sequence
length S, and hidden dimension D. Let [X]; . . and [X]. ;. be the b-th and s-th 2-D slices along the

batch and sequence axes, respectively. Self-attention, parameterized by Wayn,g, Waunx € RD*Dox
and Wayn,v, WATMO € RP*Dvo_ig calculated independently for each sample b:

QAtm,b = [X]b,~,-WAttn,Q7 KAlln,b = [X]b,-,-WAlln,Ka VAttn,b = [X]b,‘,-WAttn,Va

[Attn(X)]b,~,- = SOftmaX(MaSkAtm(QAnn,bK;tm,b)) VAnn,bWAttn,O~ €))

cRSXS

Bridge blocks are similar, but attention between samples is calculated independently for each token
index s. Letting Wariage,0, Whridge,K € RDP*Dak and Weridge.vs WBIidge,o € RP*Dvo,

QBridge,s = [X]-,s,-WBridge,Qa KBridge,s = [X]-,s,-WBridge,Ka ‘/Bridge,s = [X]-,s,-WBridge,Vv

[Bl’idge (X)] 8, SOftmaX (MaSkBridge (QBridge,s KBTridge73 )) %ridgeﬂs WBridge,O . (2)

cRBxB

There are 3 key differences between usual self-attention and Bridge beyond a transposition of X'

* Instead of a decoder mask, Bridge applies an attention mask that omits attention to tokens
from sequences stemming from different prompts and sequences that have completed
generation. See Figure [2]for an example.

* No positional encoding is used to preserve sample position invariance.

* Without attention to previous tokens, Bridge’s Markovian design does not maintain a
key-value cache.

We place a Bridge block after each feedforward block with a residual stream and input normalization
layer that mimics existing blocks, shown in Figure[2] Bridge is active during the prefill stage too,
but since all hidden states for the same input are identical, Bridge blocks act as linear layers.

Connection to Efficient Attention for Tensors. Bridge unlocks the ability for an LLM to treat
a batch of LLLM hidden states as a 3-D (B x S x D) structure rather than a stack of independent
2-D slices. In this way, the inputs are analogous to images, and the decoding process is like
autoregressively generating additional columns. With this interpretation, Bridge applying attention
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Figure 3: Warm up procedure. The original LLM generates candidate traces which are filtered by
correctness and compiled into a dataset. SFT on this generated dataset only updates new parameters.
The P-Match baseline substitutes Bridge blocks with MLPs matched in parameter count.

SFT Prompt 1

Attention Generate

operations on different axes of an input is similar to axial attention [Ho et al.l [2019] which was
introduced first in computer vision to accelerate encoder attention but has since seen wide success in
various applications such as in medicine [[Azad et al.| 2024], materials science [Dong et al.| 2023]],
and algorithm discovery [Fawzi et al., [2022].

Generation Interdependence. For B independent rollouts we sample the next token oy, 541 from

P(0b,5+1q; 0b,1:5)

for sample b, timestep s, input prompt g, and previously generated tokens 0 1.s. With Bridge, the
next token distribution becomes

(06,5411, {0b 1:s }pr=1)

for each sample b. Conditioned on past tokens, Bridge preserves independence between tokens at
the same timestep, which allows next token sampling to still be performed in parallel:

(0b1,3+1 u Obz,s+1)|{0b/,1:s}5=1 for by # by.

3.2 SFT Warm up

While RLVR can be immediately applied with Bridge since these new blocks are initialized to have
no contribution, we can also optionally warm them up with SFT for more sufficient training and
better downstream performance. A desirable SFT dataset would include many reasoning traces to
one prompt. To stay close to the original LLM’s generation distribution, we create SFT datasets by
first responding to prompts from an existing math dataset. Then, traces are filtered for correctness.
During training, these correct traces are fed together in the same batch to warm up Bridge blocks
with SFT. All other parameters are frozen. Figure [3|illustrates the warm up procedure, and Table 3]
explores more in-depth on the benefits of warm up.

3.3 RLVR Objective

We train LLMs with Bridge using GRPO [Shao et al.| 2024]]. We use a variant specified by |Yu et al.
[2025]] which performs token-level normalization to reduce length bias. Letting the group size be

G, the advantage of the i-th output o, to input ¢ with reward r; is A; = % Then, for

clipping threshold ¢, hyperparameter /3, and policy my parameterized by 6, the objective is

G o]
1 . A .
J0) = ——>% {mm [Ri7s(9)Ai,cl1p(Ri7s(0), 1—e,1+e)A;| - 5DKL(779\|%)},
Y loil = =
3)
where
_ ﬂ-@(o’i,SMa {Oj,l:sfl}szl)
RLS(G) = o
T4 (Oi,8|qv {Oj,lzsfl}j=1)
T0,¢\ 04,514y 105,1:5— G_ 70,05 5|4y 105 1:5— G_
DKL(T(@”W@,ef) _ 9rex( ) |q { 7,1z 1}3_1> —10g am( , |q { 7.1 1}]_1) L

q, {Oj,lzsfl}]c':zl)

The key differences from the GRPO objective (and its variants) and our objective are not formulaic but
rather inherently induced from the architecture of Bridge. Namely, the ratio and KL divergence terms

770(0i,s|Q7 {Oj,lzsfl}?zl) '/TG(Oi,s



now contain inter-sample dependence between relevant samples, breaking the original assumption of
independent trajectories. By linking the advantages and logits in a group, the loss and gradients per
output are intertwined with other outputs’ that share the same prompt. In other words, gradients from
all sequences, containing both positive and negative advantages, are backpropagated through each
sequence because of Bridge blocks. Further considerations are discussed in Appendix [C|

4 Experiments

We now showcase the benefit of Bridge across multiple models and math reasoning benchmarks.
After describing our setup in Section .1} we first show that applying RLVR with Bridge blocks
improves accuracy more than other methods. For instance, DeepSeek-R1-Distill-Qwen-7B with
Bridge blocks observes a relative 50% further improvement with RLVR than the next best method
(Section.2.T). Then, in Section[4.2.2] we demonstrate that Bridge also improves the output set
quality across several metrics in terms of coverage and correctness consistency. Finally, in Section[d.3]
we highlight some important characteristics of our method including the versatility of generation
width, length extrapolation, benefit of warm up, and feature contributions.

4.1 Experimental Settings

Models and Baselines. We test Bridge on DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-
Qwen-7B, and DeepSeek-R1-Distill-Llama-8B, which we abbreviate to DS-Qwen-1.5B, DS-Qwen-
7B, and DS-Llama-8B, respectively [[Dubey et al., 2024, Yang et al., [2024} |Guo et al., [2025]]. We
use 4 query and key-value attention heads for Bridge, each with the same dimension as the original
model’s head dimension. This only adds 5.1%, 2.8%, and 3.4% extra parameters on top of the original
DS-Qwen-1.5B, DS-Qwen-7B, and DS-Llama-8B models, respectively. Table [B]in Appendix [B|lists
the exact parameter counts. Our parameter-matched baseline which we call “P-Match” adds 2-layer
MLPs of the same size in the same positions as Bridge blocks which serves to show the limited
effect of just adding parameters. Matched in parameter count, P-Match and Bridge are also trained
with the same warm up and RLVR pipeline. Both methods are initialized to have zero contribution.

Training. For the SFT warm up stage, we first use the original LLM to generate 8 response for
each GSMB8K [Cobbe et al.l|2021]] problem and then filter out incorrect responses and problems with
one or fewer correct responses. We train only the additional parameters with Bridge and P-Match
on this custom dataset for 5 epochs and keeping the best checkpoint according to the perplexity on
500 validation problems (and their corresponding set of correct reasoning traces). This checkpoint
is inserted in the model for RLVR where we train the full model on DeepScaleR-Preview-Dataset
[Luo et al.,|2025]] for 1000 gradient steps. DS-Qwen-1.5B is trained with generation width 8 while
the others were trained with 4. The only reward is correctness of the generation. Our training
hyperparameters are listed in Appendix [A]

Evaluation. We evaluate Bridge on 7 math benchmarks: MATH-500 [Hendrycks et al., 2021}
Lightman et al., 2023]], AIME24, AIME25 [AIME, 2025], AMC23 [AMC, [2023]], BRUMO25
[BRUMOL 2025]], CMIMC25 [CMIMC, [2025]], and HMMT_FEB25 [HMMT, 2025]|. Evaluating
MATH-500 on every 100 training steps, the checkpoint with the highest validation accuracy is used to
test on the remaining 6 benchmarks. We evaluate across 4 responses per MATH-500 sample and 16
responses per sample from the other math benchmarks. Sampling temperature and top-p are set to 0.6
and 0.95, respectively. We set the generation width of Bridge to 8 for all tasks except MATH-500,
which we set to 4 since we only evaluate on 4 responses per sample. We adapt our evaluations from
the Lighteval framework [Habib et al.,|[2023]].

4.2 Reasoning Performance

Here, we show the performance improvements of our method Bridge which leverages inter-sample in-
formation sharing for high quality generations. We evaluate performance both on per-output accuracy
(Section[4.2.T)) and macroscopically, on the set of outputs generated per prompt (Section 4.2.2).



Table 1: Accuracy comparison across math benchmarks. In each section, the 4 rows from top to
bottom are the performance of the original model, RLVR applied on the original model, P-Match
(extra MLPs) with SFT warm up and RLVR, and Bridge with SFT warm up and RLVR. The 2
rightmost columns show the average across all benchmarks and the average improvement over the
original model. MATH-500, AMC23, BRUMO25, CMIMC25, and HMMT _ FEB25 are abbreviated
to MATH, AMC, BRU, CMI, and HMMT, respectively.

Model MATH AIME24/25 AMC BRU CMI HMMT Avg TA
DS-Qwen-1.5B  73.65 14.58/13.775 5047 18.12 4.53 8.33 26.20 0.00
RLVR only 7875 16.04/17.71 60.78 1854  3.75 7.50 29.01 2.81
P-Match 78.65 18.33/18.33 61.25 20.83 5.47 7.71 30.08 3.88
Bridge 81.30 20.00/19.38 61.25 21.67 5.63 9.38 31.23 5.03
DS-Owen-7B 82.15 23.96/2250 67.35 2396 594 12.92 3411 0.00
RLVR only 88.15 30.00/23.13 74.07 2833 7.81 13.96 3792 381
P-Match 86.80 29.58/24.79 70.00 27.08 6.25 11.25  36.54 2.43
Bridge 88.15 33.75/25.63 7797 30.21 10.00 13.13 39.83 5.72
DS-Llama-8B 7340 15.21/13.54 57.50 1625 2.66 8.33 26.70  0.00
RLVR only 76.70  17.92/20.00 6234 1646 6.09 1021 2996 3.26
P-Match 78.00 22.08/20.83 6234 1854 4.84 12.08 31.24 454
Bridge 80.15 25.76/18.44 6544 19.06 5.01 12.19 3229 5.59

4.2.1 Accuracy

Beginning with standard accuracy (Pass@1), we compare the performance of the original model,
original model with RLVR, P-Match with SFT and RLVR, and Bridge with SFT and RLVR on
several math benchmarks. Results in Table[l|show that in nearly all cases and on average, Bridge
obtains the highest accuracy compared to all other methods. In particular, the average performance
improvements of our method on the original model is 30%, 50%, and 23% relatively more than that
of the next best method on DS-Qwen-1.5B, DS-Qwen-7B, and DS-Llama-8B models, respectively.
P-Match with parameter counts pegged to Bridge improves accuracy from just pure RLVR most of
the time but is much more inconsistent, such as in the case of DS-Qwen-7B. This indicates that the
superior performance of Bridge is not solely attributed to additional parameters. Furthermore, even
though DS-Qwen-7B and DS-Llama-8B were trained with generation width 4, the evaluation results
with width 8 are still stronger than the other independent sampling methods, showing the robustness
of Bridge. In addition, the improvement by Bridge is greater for larger models, and scaling up to
even larger ones remains of interest for future work.

4.2.2 Set Evaluations

Zooming out, we show Bridge also improves the consistency and coverage across multiple generation
attempts. To evaluate the set of responses to a single input, we use the G-Pass@Fk, metric [Liu
et al.| |2025[], which paints a more holistic picture of model potential (coverage) and consistency.
Whereas Pass@F is the probability of a correct output in k responses, G-Pass@F is the probability
of 0 < 7 < 1 fraction of k responses being correct. More formally, for n responses and ¢ correct
responses,

Pass@k = E

1- (";C)] , G-Pass@k, = E EC: w

) RN

As 7 — 0, G-Pass@F. is simply the coverage. On the other extreme, G-Pass@Fk; is the probability
that all k responses are correct.

From Figure 4] Bridge achieves higher G-Pass @8 values for nearly all values of 7 and models.
This demonstrates that Bridge can achieve greater coverage without spreading out its responses to
many incorrect answers. In other words, not only do Bridge blocks increase the probability of a
correct response in the response set more than the other methods, they also increase the frequency
at which they occur. Again, we note that Qwen-7B and DS-Llama-8B were trained with generation
width 4 yet they generalize well to evaluation width 8.
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Figure 5: G-Pass@8.. improvement upon the original DS-Qwen-7B model averaged across AIME24,
AIME25, AMC23, BRUMO25, CMIMC25, and HMMT_FEB25 with relation to the evaluation
generation width w of Bridge. The x-axis (7 - k) indicates the number of responses out of &k = 8
that must be correct.

4.3 Ablations and Analysis

Generation Width. The design of Bridge allows complete flexibility in the number of parallel
generations, or generation width w, due to the removal of positional encoding. Here, we show its
generalizability to other widths on DS-Qwen-7B which was trained on a width of 4 with RLVR.
In Table [2} in all cases where w > 1, Bridge outperforms P-Match in terms of task-wise and
global average accuracy. We also investigate the effect of w on set quality in Figure 5] Again,
we generally see a vast improvement upon the original model and P-Match with w > 1 for all
G-Pass @8, settings. These results show not only the benefit of sharing information via Bridge but
also the generalizability to widths wider and thinner than its training width. At the extreme of w = 1,
equivalent to independent generations, results in average accuracy that falls between RLVR only and
P-Match, indicating that Bridge blocks do not harm independent reasoning.

Table 2: Accuracy across 16 samples of varying Bridge generation widths, w, with DS-Qwen-
7B which was trained at width 4 with RLVR. A Bridge width of 1 is equivalent to independent
generation. Tasks are abbreviated as described in Tablem

Method AIME24 AIME25 AMC BRU CMI HMMT Avg TA
DS-Qwen-7B 23.96 22.50 67.35 2396 594 1292 26.11 0.00
RLVR only 30.00 23.13 74.07 28.33 7.81 13.96 2955 3.44
P-Match 29.58 24.79 70.00 27.08 6.25 11.25 2816 2.05

Bridge (w =1) 28.54 25.21 73775 2729 844 11.04  29.05 294
Bridge (w = 4) 30.21 25.63 77.19 29.58 9.38 13.13  30.85 4.74
Bridge (w = 8) 33.75 25.63 7797 3021 10.00 13.13 31.78 5.67
Bridge (w = 16) 33.13 25.00 76.09 30.63 7.97 13.75  31.09 4.98

Generation Length. Bridge also shows strong generalizability along the length axis. We demon-
strate its performance as we extrapolate beyond its training length of 4096, again measuring both
individual and set performance. From Figure[6] our method scales smoothly and better than the other
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Figure 6: From left to right, DS-Qwen-1.5B MATH-500 accuracy, coverage, G-Pass@4, 5, and
G-Pass@4; as generation length increases. We generate 4 responses per input.

baselines in most cases. At the individual response level, our method achieves the highest accuracy
across all generation lengths. At the set level, Bridge blocks increase the number of sets that only
had correct answers by 6.0% compared to the next best at 16K generation length, illustrating our
method’s consistency to generate correct answers.

Cold Start vs. Warm up. Warming up Bridge blocks with SFT prior to RLVR outlined in
Section [3.2]leads to improvements in performance, shown in Table[3] The slight improvement implies
that although it is prefered to warm up these new layers, it is not catastrophic if RLVR is applied
directly from initialization.

Table 3: Accuracy comparison between cold start RLVR and RLVR with SFT warmed up Bridge
blocks in DS-Qwen-7B. Tasks are abbreviated as described in Tablem

MATH AIME24/25 AMC BRU CMI HMMT Avg

Cold Start 88.70  33.13/26.67 77.19 2980 7.04 12.09  39.23
Warmedup  88.15 33.75/25.63 7797 30.21 10.00 13.13 39.83

Feature Contribution. Having shown the improved performance brought by Bridge, we now
briefly peer into the effect that it has on LLM hidden states. We measure this by finding the ratio
between the output norm of each block with the corresponding residual norm of each token, with
lower values suggesting relatively little effect on the residual features (Figure[7). Surprisingly, we find
Bridge blocks contribute little compared to its counterpart in P-Match, despite having a significant
impact on the performance.

P-Match Bridge

—e— Attention
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—— Added MLP

—e— Attention
—=— Feedforward
=— Bridge

10!

Norm Ratio (Output / Residual)

Norm Ratio (Output / Residual)
=
)

1072
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Figure 7: Ratio between feature norms of the block output and residual of every DS-Qwen-7B layer.

5 Conclusion

To generalize and enhance parallel inference scaling for LLMs, we introduce Bridge, a novel
and inexpensive architectural addition to LLMs that allows parallel generations for the same input
to share information with each other throughout the decoding process. We demonstrate that our
method improves both single sample accuracy and set-wise quality across multiple models and
several reasoning tasks. We achieve this by rethinking hidden states in parallel scaling as higher
order tensors rather than disjoint slices. With this interpretation, this also plants the seeds for many
exciting future directions such as observing the the effect of Bridge blocks during pretraining or
mid-training, post-training with a Pass@¥k or another global objective, and quantifying the benefit on
other modalities. Such directions will push parallel scaling as a much more effective axis of LLM
inference scaling.
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A Training Hyperparameters

Table ] lists the hyperparameters used for RLVR and SFT.

Table 4: Training hyperparameters.

Hyperparameter RLVR  SFT & Warmup Data Generation
Mixed precision BF16 BF16
Optimizer AdamW AdamW
KL penalty le-3 N/A
Learning rate le-6 2e-5
LR scheduler constant linear
LR warmup 10% 10%
Training steps 1000 varies
Batch size (rollouts x samples) 448 32
Rollouts per sample 8 [2,8]
Total samples 7000 varies
Max length 4096 2048
Steps per rollout 8 N/A
Temperature 0.6 0.6
Heads 4 4
Generation width 4or8 [2,4]

B Parameter Count Breakdown

Bridge has a low memory cost, adding relatively very few parameters (2.8% to 5.1%) to LLMs.
Table [5] shows the exact parameter counts for each model.

Table 5: Distribution of parameters (B) across embedding/head, attention (Attn), feedforward (FF),
and Bridge blocks.

Model Embed & Head Attn FF Bridge Orig. Total New Total
DS-Qwen-1.5B 0.47 0.15 1.16 0.09 1.78 1.86
DS-Qwen-7B 1.09 0.82 5.70 0.21 7.62 7.82
DS-Llama-8B 1.05 1.34 5.64 0.27 8.03 8.30

C Further GRPO Considerations

While our method inserts dependence between sequence and therefore their corresponding rewards,
the sample permutation invariance of Bridge blocks means the unconditional rewards are still
identically distributed. This implies

ST RUY (it DD N Gt LA B

(4:) = std(ry,...,7q) | \std(ri,...,rq))
preserving unbiasedness of the advantage. To preserve some notion of independence between rollouts
for GRPO, one can generate multiple groups per prompt with Bridge and compute advantages

between groups. Though this deserves exploration in future work, we do not do this here as it would
be computationally expensive, and our single group setup is already empirically performative.

D Bridge Placement

Here, we examine in the architectural placement of Bridge blocks. In Table 6] we compare the
resulting MATHS500 accuracy after applying RLVR on DS-Qwen-1.5B with Bridge blocks added
after attention blocks or after feedforward blocks, our chosen architecture for the experiments. Since
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there is not a significant difference, this implies flexibility in placement, though we choose to stick
with the one with the higher warmed up performance for our experiments.

Table 6: Effect on MATH-500 accuracy when inserting Bridge blocks after attention blocks vs. after
feedforward blocks (chosen architecture) in DS-Qwen-1.5B.

Placement Cold Start  Warmed up
After Attention 80.20 80.20
After Feedforward 80.15 81.30

E Bridge Pseudocode

Algorithm|I]sketches the pseudocode for Bridge blocks, following (2)). Like normal self-attention,
this can easily be extended to multiple heads.

Algorithm 1 Bridge Block

Input: X € RBxSxD
Parameters: Wq, Wy € RP*Pox; Wy W € RP*Dvo
Output: Y € RBExSxD
Q, + [X]., Wofors=1,...,8
K, «+ [X]., Wxfors=1,...,8
Vs« [X]. s Wyfors=1,...,5
Construct mask M, € RB*B fors =1,...,5:
[M]p, b, = 0 if generations by, bo have the same prompt and are incomplete at token s.

[M]p, b, = —o0 otherwise.
[Y]..s,. < Softmax (?/g + Ms) ViWofors=1,...,8
QK
Return: y
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