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ABSTRACT

As more practical and scalable quantum computers emerge, much attention has
been focused on realizing quantum supremacy in machine learning. Existing
quantum ML methods either (1) embed a classical model into a target Hamil-
tonian to enable quantum optimization or (2) represent a quantum model using
variational quantum circuits and apply classical gradient-based optimization. The
former method leverages the power of quantum optimization but only supports
simple ML models, while the latter provides flexibility in model design but re-
lies on gradient calculation, resulting in barren plateau (i.e., gradient vanishing)
and frequent classical-quantum interactions. To address the limitations of exist-
ing quantum ML methods, we introduce Quark, a gradient-free quantum learn-
ing framework that optimizes quantum ML models using quantum optimization.
Quark does not rely on gradient computation and therefore avoids barren plateau
and frequent classical-quantum interactions. In addition, Quark can support more
general ML models than prior quantum ML methods and achieves a dataset-size-
independent optimization complexity. Theoretically, we prove that Quark can out-
perform classical gradient-based methods by reducing model query complexity for
highly non-convex problems; empirically, evaluations on the Edge Detection and
Tiny-MNIST tasks show that Quark can support complex ML models and signif-
icantly reduce the number of measurements needed for discovering near-optimal
weights for these tasks.

1 INTRODUCTION

Quantum computing provides a new computational paradigm to achieve exponential speedups
over classical counterparts for various tasks, such as cryptography (Shor, 1994), scientific simu-
lation (Tazhigulov et al., 2022), and data analytics (Arute et al., 2019). A key advantage of quantum
computing is its ability to entangle multiple quantum bits, called qubits, allowing n qubits to encode
a 2n-dimensional vector, while encoding this vector in classical computing requires 2n bits.

Inspired by this potential, recent work (Jaderberg et al., 2022; Macaluso et al., 2020b; Torta et al.,
2021; Kapoor et al., 2016; Bauer et al., 2020; Farhi & Neven, 2018a; Schuld et al., 2014; Cong et al.,
2019b) has focused on realizing quantum speedups over classical algorithms in the field of super-
vised learning. Existing quantum ML work can be divided into two categories: classical model with
quantum optimization (CMQO) and quantum model with classical optimization (QMCO). First,
CMQO methods embed a classical ML model jointly with the optimization problem into a tar-
get Hamiltonian and optimize the model using quantum adiabatic evolution (QAE) (Finnila et al.,
1994) or quantum approximate optimization algorithm (QAOA) (Farhi et al., 2014; Torta et al.,
2021). As the transition between a classical model and the target Hamiltonian only applies to low-
order polynomial activations (see Figure 2), CMQO methods do not support ML models with non-
linear activations that cannot be represented in low-order polynomial (e.g., ReLU). Second, QMCO
methods optimize variational quantum models 1 by iteratively performing gradient descent using
classical optimizers. QMCO methods are fundamentally limited by barren plateau (i.e., gradient
vanishing (McClean et al., 2018)) and the high cost of frequent quantum-classical interactions.

To address the limitations of existing quantum ML methods, we introduce Quark, a gradient-free
quantum learning framework for classification tasks that optimizes quantum models with quantum

1They are also known as variational quantum circuits (VQC)-based models in the quantum literature.
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Figure 1: An overview of the Quark optimization framework. Each horizontal line indicates a
qubit, and each box on these lines represents one or multiple quantum gates applied on these
qubits. Quark’s optimization pipeline includes three stages: (1) Ψ0 preparation, which initializes
RW , RD, RO and performs model’s forward processing UM , (2) amplitude amplification using a
Grover-based algorithm, and (3) weights measurement. Quark uses K-parallel datasets (KPD) to
maximize the probability of observing highly accurate weights in each measurement. Darker bars
in the probability plots denote weights with higher accuracies.

optimization (QMQO). Figure 1 shows an overview of Quark. A key idea behind Quark is entangling
the weight 2 of an ML model (i.e., the RW register in Figure 1) and the encoded dataset (i.e., the
RD register in Figure 1) in a quantum state, where model weights that achieve optimal classification
accuracy on the training dataset can be observed with the highest probabilities in a measurement.
Therefore, users can obtain highly accurate model weights by directly measuring the updated RW

weight register. To maximize the probability of observing optimal weights, we introduce two key
techniques.

Amplitude amplification. Quark uses a Grover-based mechanism to iteratively update the prob-
ability distribution of weights based on their training accuracies. As a result, the probability of
observing weights with higher accuracy increases after each Grover iteration, as shown in Figure 1.

K-parallel datasets (KPD). Applying amplitude amplification on one dataset results in a linear
amplification scenario where the measuring probability of each weight is proportional to its training
accuracy J(wi). We further introduce K-parallel datasets, a technique to enable exponential am-
plification. Specifically, by entangling k identical training datasets with model weights in parallel
(using k × RD, as shown in Figure 1), the probability of observing weight wi in a measurement is
proportional to J(wi)

k. Therefore, as k increases, the optimized probability distribution of weights
gradually converges to the optimal weights.

Compared with CMQO methods, Quark provides more flexibility in model design by composing
models directly on quantum circuits and therefore supports a broader range of ML models. Com-
pared with QMCO methods, Quark does not require gradient calculation and therefore does not
suffer from barren plateau. Quark avoids frequent classical-quantum interactions by realizing both
model design and optimization fully on quantum. Besides, by using basis encoding for the train-
ing dataset, Quark supports non-linear operations (e.g., ReLU) in its model architecture, and the
optimization complexity is independent of the training dataset size.

Theoretically, we compare model query complexity3 between Quark and gradient-based methods on
a balanced C-way classification task, and prove that Quark can outperform gradient-based methods
by reducing model query complexity for highly non-convex problems. In addition, we prove that
using K-parallel datasets can further reduce model query complexity under certain circumstances.

Simulations on two tasks (i.e., Edge Detection and Tiny-MNIST) show that Quark supports complex
ML models, which can include quantum convolution, pooling, fully connected, and ReLU layers.

2Throughout the paper, we use the term weight to refer to the set of all trainable parameters of a model.
3Number of model forward being called
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Figure 2: Comparison between CMQO, QMCO, and Quark (QMQO).

In addition, Quark can significantly reduce the number of measurements needed for discovering a
near-optimal weight by applying amplitude amplification and KPD.

Contributions. This paper makes the following contributions:

• We propose Quark, a gradient-free quantum learning framework for classification tasks that
optimizes quantum ML models with quantum optimization. Quark avoids barren plateau
and frequent classical-quantum interactions, supports more general models than prior quan-
tum ML frameworks, and achieves a dataset-size-independent optimization complexity.

• Theoretically, we prove that Quark can outperform gradient-based methods by reducing
model query complexity for highly non-convex problems and that using KPD can further
reduce model query complexity.

• Empirically, we show that Quark can support complex ML models and significantly reduce
the number of measurements needed for discovering a near-optimal weight for the Edge
Detection and Tiny-MNIST tasks.

2 RELATED WORK

Figure 2 compares Quark with existing quantum ML approaches.

2.1 CLASSICAL MODEL WITH QUANTUM OPTIMIZATION

Existing CMQO methods aim at solving classical ML problems with quantum optimization tech-
niques by leveraging the advantage of quantum parallelism (Nielsen & Chuang, 2002). Based on
the well-established algorithmic foundation in quantum annealing (Finnila et al., 1994; Kadowaki
& Nishimori, 1998; Brooke et al., 1999; Santoro et al., 2002; Santoro & Tosatti, 2006) and adiabatic
quantum computing (Farhi et al., 2001; Albash & Lidar, 2018), prior work (Denil & De Freitas,
2011; Dumoulin et al., 2014; Adachi & Henderson, 2015) attempts for the quantum restricted Boltz-
mann machine (RBM) by formulating RBM as an Ising model (Cipra, 1987). Inspired by the quan-
tum approximate optimization algorithm (QAOA) (Farhi et al., 2014), Torta et al. (2021) embeds
a single binary perceptron layer into a target Hamiltonian to search for optimal weights. However,
CMQO methods are limited by the locality restriction of the target Hamiltonian and can only embed
models with low-order polynomial activations (e.g., square). This limitation prevents CMQO meth-
ods from supporting practical deep learning architectures, which generally contain non-polynomial
activations such as ReLU and sigmoid.

Similar to Quark, Kapoor et al. (2016) also uses Grover’s algorithm to find a hyperplane that can
perfectly separate the training dataset. However, this method only applies to an idealistic setup
where a hyperplane with perfect classification exists in its search space. Besides, the method cannot
adapt to generic model architectures other than single-layer perceptrons.
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2.2 QUANTUM MODEL WITH CLASSICAL OPTIMIZATION

Motivated by the recent advances in variational quantum algorithms (VQAs) (Cerezo et al., 2021),
QMCO methods use variational quantum circuits (VQC) (Benedetti et al., 2019) to represent the
trainable parameters of an ML model. Havlı́ček et al. (2019); Schuld & Killoran (2019) use VQC
as a variational feature map to reproduce linear support vector machines (SVM) and kernel methods
on quantum circuits, which can outperform classical counterparts under certain circumstances (Liu
et al., 2021).

Besides conventional ML methods, recent work has also explored the feasibility of classical neu-
ral networks on quantum circuits (Massoli et al., 2022). Farhi & Neven (2018b); Macaluso et al.
(2020a); Killoran et al. (2019) use VQC as building blocks for their quantum perceptron models
with a classical gradient-based optimizer. Quantum dissipative neural network (Beer et al., 2020)
(QDNN) and quantum convolutional neural network (Cong et al., 2019a) (QCNN), on the other
hand, move a step forward towards more complicated neural architectures. QDNN enlarges its
model space by applying unitary operators on both the input and output qubits, while QCNN uses a
measurement-controlled operation to enable non-linear operations. However, McClean et al. (2018)
shows that the barren plateau phenomenon commonly exists in VQC-based methods, where gradi-
ents vanish exponentially with the model size. Though Beer et al. (2020) claims to design a VQC
model immune to barren plateau, Sharma et al. (2022) contradicts such claim with analytical proof.
Though Du et al. (2021) uses a Grover algorithm as part of their method, they still require VQC as
their model building blocks that require gradients update.

Besides, due to amplitude-based data encoding, VQC-based methods in general suffer from a linear
dependency with respect to dataset size in terms of model query complexity during training. Another
drawback for amplitude encoding is that due to the unitary constraint of quantum transformations,
non-linear operations are hard to implement for VQC-based methods. In contrast, our method uses
basis encoding that concerns only qubits state transformation rather than amplitude transformation,
which enables more efficient model query complexity and more general non-linear transformations.

3 PRELIMINARIES

3.1 NOTATIONS

Let D = {(xi, yi)}i∈N denote a training dataset, where xi ∈ {0, 1}dx is the binarized fea-
ture vector associated with the i-th sample, and yi ∈ {0, 1}dy is its label. Let ŷ = f(w, x̂) :
{0, 1}dw × {0, 1}dx → {0, 1}dy denote our model parameterized by w ∈ {0, 1}dw . Given an
objective l(ŷ, y), our goal is to find a near-optimal w∗ that minimizes/maximizes the overall objec-
tive J(w) = 1

N

∑
(xi,yi)∈D l(f(w, xi), yi). We focus on classification tasks and use the objective

l(ŷ, y) = 1(ŷ = y). We use | · | to denote the cardinality of a set and absolute value of a scalar,
and use ∥ · ∥2 and ∥ · ∥∞ to denote the L2-norm and infinity norm of a vector. Finally, we use ⊗ to
denote tensor product, and use ¬, ⊕, ∧, and ∨ to denote NEGATE, XOR, AND, and OR in logical
expressions, respectively.

3.2 QUANTUM BASICS

A bit in the quantum regime, called a qubit, is represented by a super-position of |0⟩ and |1⟩, which
is formally defined as |z⟩ = α|0⟩ + eiϕβ|1⟩, where α and β are the amplitudes, and eiϕ is the
relative phase. Furthermore, the rule also enforces ⟨z|z⟩ = 1 where ⟨z| is the conjugate transpose
of |z⟩. In an n-qubit system, a quantum state is represented as a superposition of 2n basis states.
For computational simplicity, we will be using the basis states that are spanned by {|0⟩, |1⟩}n and
denote the superposition of a n-qubits state as |Ψ⟩ =

∑2n−1
i=0

1√
2n

|i⟩ where |i⟩ is the corresponding
computational basis. We thus use |wi⟩ ∈ {|0⟩, |1⟩}dw to denote weight basis state, |xj , yj⟩ for the
entangled data basis state where |xj⟩ ∈ {|0⟩, |1⟩}dx is the feature and |yj⟩ ∈ {|0⟩, |1⟩}dy the label.

As a comparison, in the classical computing regime, each operation can only be applied to one state.

4 METHODOLOGY

To realize quantum supremacy, we circumvent the overhead induced by frequent classical-quantum
interactions and the gradient calculation step in the VQC-based methods, which may result in barren
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Figure 3: Toy illustration of Quark’s insight, where the dataset {(x0 = 0, y0 = 0), (x1 = 1, y1 =
1)} is constructed by oracle function g(x) = 0⊕ x. We define our learner model as o = f(x,w) =
w ⊕ x. The colored qubit strings stands for the states activated by model forward (cyan for |w⟩ = 0
and yellow for |w⟩ = 1). violet bars stand for solution states measuring probability, gray stands for
non-solution states measuring probability.

plateau as the circuit depth increases. In addition, as VQC-based methods use the amplitude encod-
ing scheme for data encoding, non-linear operations are hard to implement, while their training time
can linearly depend on the training dataset size.

To this end, we designed Quark in a QMQO fashion, which (1) achieves gradients-free optimization
over the entire weight distribution, (2) uses basis encoding to achieve potential speedup as sample
size scales up, and (3) enables a flexible quantum model design that can easily incorporate non-
linearities. Figure 1 shows an overview of the quantum circuit design in Quark.

As we are using basis encoding over the entire data distribution, we initialize the data register RD

as |D⟩ =
∑

(xi,yi)∈D
1√
|D|

|xi, yi⟩. To initialize a model’s weights register RW , we construct a

uniform state by applying the Hadamard gate on each weight qubit: |W ⟩ =
∑2dw−1

i=0
1√
2dw

|wi⟩.
In addition, Quark includes an auxiliary register RO for storing intermediate results and model’s
output, which is initialized as |O⟩ = |0⟩do . Therefore, the initial state is represented as |W ⟩⊗ |D⟩⊗
|O⟩. By encoding the quantum model architecture as a unitary matrix UM , the model’s forward
processing is defined as:

UM (|W ⟩ ⊗ |D⟩ ⊗ |O⟩) =
∑
i

1

2
dw
2

|wi⟩
∑
j

1√
|D|

|xj , yj⟩|f(wi, xj)⟩ (1)

where f(wi, xj) is the model’s output for weight wi and sample xj
4. Given the above expression

for the model forward processing, the key insight for Quark is to update the probability of observing
weight w in a measurement based on its training objective J(w). This is achieved through Grover’s
algorithm by defining the solution state space S = {|wi⟩|xj , yj⟩|f(wi, xj)⟩ | yj = f(wi, xj)}.
Appendix A.1 includes an introduction to the original Grover’s algorithm. After amplitude amplifi-
cation, we observe a model weight by measuring the weight register RW .

To further illustrate our insight, Figure 3 shows a toy example, where the underline oracle function
that generates the training data is g(x) = 0 ⊕ x. Using one qubit for x, the training dataset is
constructed as {(x0 = 0, y0 = 0), (x1 = 1, y1 = 1)}. By defining the learner model as o =
f(x,w) = w⊕ x, where w is the trainable parameter, Quark includes four qubits (i.e., |w⟩, |x⟩, |y⟩,
and |o⟩). For initial state preparation, we simply go through the model forward circuit with a uniform
weight initialization that result in an uniform amplitude state, as shown on the left of Figure 3. As
no optimization happens at this stage, the probabilities for observing |w⟩ = |0⟩ and |w⟩ = |1⟩ in a
measurement are equivalent. After amplitude amplification, Quark reaches an optimized amplitude
state (shown on the right of Figure 3), where the probability of observing the optimal weight |w⟩ =
|0⟩ in a measurement is much higher.

For the rest of this section, Section 4.1 introduces Quark’s on-circuit model design philosophy, Sec-
tion 4.2 describes the Grover-based method for amplitude amplification, and Section 4.3 introduce

4We omit the model’s intermediate results |O⟩ for simplicity.
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Figure 4: Logical gates illustration of quantum module design. (a) Convolution: for a 1 × 3 Conv
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K-Parallel Dataset (KPD), a technique that enables exponential amplification to further improve the
optimization algorithm.

4.1 MODEL DESIGN

The model circuit UM can be designed through arbitrary combinations of base gates (CNOT, Rota-
tional gates, Hadamard gate, etc.), which can then entangle |W ⟩, |D⟩ to get a trainable model.

Leveraging the flexibility of basis encoding, Quark is capable of realizing modules used in classical
deep models. Figure 4 illustrates two Quark modules (Conv, MaxPool) used in our experiments.
Besides Convolution and MaxPooling, Quark can support more diverse operations given enough
qubits. We include the demonstration of the Fully Connective and ReLU modules in Appendix A.4.

During training, we encode the entire data distribution through basis encoding so we can apply
model forward simultaneously for all data samples. During inference, we encode each sample as a
single state |x̂⟩. Prediction can be obtained by measurements over the output register after the model
forward step UM |w∗⟩|x̂, 0⟩|0⟩ = |w∗⟩|x̂, 0⟩|f(w∗, x̂)⟩, where w∗ is the measured optimal weight.

4.2 AMPLITUDE AMPLIFICATION

To increase the probability of measuring the weights with the highest classification accuracy, we
use Grover’s algorithm to amplify the amplitude for any state |wi⟩|xj , yj⟩|f(wi, xj)⟩ ∈ S , thus
the measuring probability of optimal weights would be amplified the most. In this section, we
will formally define the unitary operators we need for Grover’s update, followed by the complexity
analysis of the optimization algorithm.

For conventional Grover’s algorithm, we need two reflection unitaries, namely Us⊤ , UΨ0
, where

Us⊤ is the reflection against the non-solution sub-space and UΨ0
is the reflection against the initial

state. In our case, by defining solution state

|s⟩ =
∑

|wi⟩|xj ,yj⟩|f(wi,xj)⟩∈S

1√
|S|

|wi⟩|xj , yj⟩|f(wi, xj)⟩

and initial state
Ψ0 =

∑
i,j

1√
2dw |D|

|wi⟩|xj , yj⟩|f(wi, xj)⟩

, the Grover operator can be easily built from Ucomb = UΨ0
Us⊤ where Us⊤ = I − 2|s⟩⟨s|, UΨ0

=
2|Ψ0⟩⟨Ψ0| − I.

Now that we have the Grover operator well-defined, we can formally do analysis on the algorithm
in terms of model query complexity.

Theorem 1 By defining α =

∫
wi∈Wϵ

J(wi)dδ∫
wi∈W J(wi)dδ

as the probability to measure an ϵ-optimal solution

after the Grover’s update, the model query complexity for getting an ϵ-optimal solution wi ∈ Wϵ on
a balanced C-way classification task is O(

√
C
α ).
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J(wi) is the objective value (accuracy) for weights wi, W is the complete weight space, and Wϵ is
the ϵ-optimal weight subspace. The proof of Theorem 1 is included in Appendix A.3.1, it follows

from the analysis that we need O(
√
C) Grover iterations per measurement and O(

∫
wi∈W J(wi)dδ∫
wi∈Wϵ

J(wi)dδ
)

measurements in expectation for sampling an ϵ-optimal weight.

Notice that the complexity of our method does not depend on sample size N . As we are sampling
solutions from an optimized distribution for a general non-convex problem, our method does depend

on an O(

∫
wi∈W J(wi)dδ∫
wi∈Wϵ

J(wi)dδ
) term. However, to achieve an ϵ-optimal solution on a general non-convex

problem, the worst case scenario for VQC-based methods with gradient-based optimizers needs

O(

∫
wi∈W dδ∫
wi∈Wϵ

dδ
) iterations to sample initial points lie within convex regions that contain ϵ-optimal so-

lutions. With per iteration gradient evaluation cost that is in the order of O(N), this gives an overall

complexity of O(

∫
wi∈W dδ∫
wi∈Wϵ

dδ
N) for VQC-based methods. Since O(

∫
wi∈W J(wi)dδ∫
wi∈Wϵ

J(wi)dδ
) < O(

∫
wi∈W dδ∫
wi∈Wϵ

dδ
)

and
√
C ≪ N in practice. Our method provides a speed-up for finding an ϵ-optimal solution in the

general non-convex setup.

In addition, as Quark does not require gradients calculation, it will not suffer from the notorious
problem of barren plateau. For more idealistic case of convex problems, Garg et al. (2020) has given
a proof of no quantum speed-ups can be obtained in this case with no exception of our method.

4.3 K-PARALLEL DATASETS (KPD)

A naive implementation can only achieve p(wi) ∝ J(wi), which requires more measurements for
sampling ϵ-optimal solution. To this end, we further extend our method to achieve p(wi) ∝ J(wi)

k

through K-Parallel Dataset (KPD), as shown in Figure 1 when k > 1. The intuition is similar to
simulated annealing, by updating weights distribution proportional to J(wi)

k, the probability mass
would gradually converge to the global optimal solutions.

We do so by concatenating the same dataset K times for increasing solution states in the order of K
as:

UM

(
|W ⟩

K−1⊗
k=0

(|Dk⟩ ⊗ |Ok⟩)

)
=
∑
i

1

2
dw
2

|wi⟩
K−1∏
k=0

∑
j

1√
|Dk|

|xj , yj⟩|f(wi, xj)⟩


the solution set is now defined as:

SK : {|wi⟩
K−1⊗
k=0

|xjk , yjk⟩|f(wi, xjk)⟩ |
K−1∧
k=0

(yjk = f(wi, xjk))}

We then update |s⟩, |Ψ0⟩, Ucomb accordingly as in Appendix A.2. Now the ratio of solution states
between different weights can grow exponentially in terms of K.

Theorem 2 By defining β =

∫
wi∈Wϵ

dδ∫
wi∈W/Wϵ

dδ
as the volume ratio between ϵ-optimal weight subspace

|Wϵ| and non-ϵ-optimal weight subspace |W − Wϵ|, the model query complexity for getting an
ϵ-optimal solution wi ∈ Wϵ on a balanced C-way classification task with k-parallel dataset is
O((1 + βk−1( 1

α − 1)k)kC
k
2 ).

The proof of Theorem 2 is included in Appendix A.3.2. Here, the trade-off is that the number
of Grover iterations needed per measurement grows to O

(
C

k
2

)
. As we also need to apply the

model forward for each dataset, the KPD Grover complexity in terms of model query complexity
is now O(kC

k
2 ). On the other hand, as we are converging to the global solution, the number of

measurements needed can be reduced from O( 1
α ) to O(1 + βk−1( 1

α − 1)k) as β < α. Thus the
optimal value for k depends on the specification of α, β, C.

Theorem 3 Given α, β, C, the optimal value of k is k∗ = ⌊logα
β

1
α⌋ + 1 if α

β ≥ m
1

m−1

√
C where

m = ⌊logα
β

1
α⌋+ 1 else k∗ = 1.
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Figure 5: Amplitude ampl. + KPD on Edge Detection. normalized accuracy: Ĵ(wi) =

J(wi)∑
i J(wi)

.

Thus for cases where m
1

m−1

√
C ≤ α

β ≪ 1
α , we have our optimal k > 1 which proves the effective-

ness of KPD under certain circumstances. We include the proof of Theorem 3 in Appendix A.3.3.

5 EXPERIMENTS

In this section, we empirically verify the effectiveness of Quark on two tasks, namely Edge Detec-
tion and Tiny-MNIST. Algorithm 1 formally states the pipeline of Quark5. Instead of leveraging
the approximated iteration number from theoretical derivations for Grover’s update, we use a more
precise but efficient estimation in practice to achieve a more accurate amplitude amplification effect.
We include the detail of Grover iteration number estimation in Appendix A.5.1. Notice that most
of the simulation results are obtained numerically since we have no access to large scale quantum
devices that fit our setup. However, we do use Qiskit Aer (Anis & et al., 2021) to verify the re-
producibility of our numerical simulation results on models that are applicable, results are included
in Appendix A.6.

Algorithm 1: Quark’s optimization pipeline.
Input: Data Oracle: UD; Model Oracle: UM ; Objective Oracle: UL; Number of parallel

dataset: k; Measurement budget: m; Weights buffer: B
Output: Optimized Model Weight: w∗

g, Ucomb, |Ψ0⟩ = Preprocessing(UD, UM , UL, k) ; // get Grover iteration g,
Grover operator Ucomb and initial state |Ψ0⟩

for i = 0; i < m; ++i do
for j = 0; j < g; ++j do

|Ψj+1⟩ = Ucomb|Ψj⟩ ; // Grover update

wi = Measure(|Ψg⟩) ; // Weights measurement on RW

B.add(wi);
return argmaxw∈B(Evaluate(w))

5.1 EDGE DETECTION

For Edge Detection, our goal is to identify if a 3×3 binary matrix has 1) both vertical and horizontal
lines 2) vertical lines only 3) horizontal lines only 4) no lines, where a line is defined by three
consecutive ’1’s in a row or column. Thus the task is a 4-way classification task with 512 instances.
We split the 512 samples into a training set with 400 randomly selected instances and a test set
with the rest. We use a Quantum Convolutional Model that consists of several 1 × 3 convolution
kernels with Maxpooling modules as described in Figure 4 for this task. Results are demonstrated
in Figure 5 (normalized accuracy: Ĵ(wi) = J(wi)∑

i J(wi)
), from which we can clearly see a linear

relationship between model accuracy and optimized weights distribution using 1-PD. For 4-PD, we
can observe that weights distribution further concentrates on the global optimal solutions.

Indeed, as we concatenate more training datasets, the probability mass will gradually converge to
the optimal solutions, thus reducing the number of measurements we need significantly. We include
the results for 2-PD and 3-PD in Appendix A.5.3.

5Preprocessing() and Evaluate() are included in Appendix A.5.1

8



Under review as a conference paper at ICLR 2023

0 8192 16384 24576 32768
Weight

0.00

0.25

0.50

0.75

1.00

M
ea

su
ri

ng
 P

ro
ba

bi
lit

y

1e 4

normalized accuracy

(a) Initial Distribution

0 8192 16384 24576 32768
Weight

0.00

0.25

0.50

0.75

1.00

M
ea

su
ri

ng
 P

ro
ba

bi
lit

y

1e 4

normalized accuracy

(b) Amplitude ampl. w/ 1-PD

0 8192 16384 24576 32768
Weight

0

2

4

M
ea

su
ri

ng
 P

ro
ba

bi
lit

y

1e 4

normalized accuracy

(c) Amplitude ampl. w/ 4-PD
Figure 6: Amplitude ampl. + KPD on Tiny-MNIST. normalized accuracy: Ĵ(wi) =

J(wi)∑
i J(wi)

.

5.2 TINY-MNIST

For Tiny-MNIST, we down-sample original 28 × 28 images from MNIST to 3 × 3 and remove
duplicated samples. Due to device limitation, we only consider classes 1, 2, 7, which makes this task
a 3-way classification task. We use Weighted Mask modules (details are included in Appendix A.4)
with MaxPooling modules to compose our model, which can achieve 86.08% training accuracy and
82.61% testing accuracy by the best model in the search space. Whereas a well-optimized classical
single layer perceptron model can achieve 85% in training accuracy and 80% test accuracy.

Similarly, as shown in Figure 6 (normalized accuracy: Ĵ(wi) = J(wi)∑
i J(wi)

), a linear relationship
between model accuracy and optimized weights distribution can be observed using 1-PD, while 4-
PD can further increase the probability for sampling optimal solutions. We also include the results
of 2-PD and 3-PD on Tiny-MNIST in Appendix A.5.4.

Besides distribution evolution, we also statistically demonstrate the relationship between measured
top-1 model’s test accuracy and measurements budget using uniform random sampling, 1-PD, and
4-PD respectively in Figure 7. In order to achieve equally well-performed model, 4-PD only requires
∼ 30 shots on Edge Detection task for a mean test accuracy > 98% while uniform random sampling
needs ∼ 900 (∼ 30× more) shots with much higher variance. Similar trend can be observed on
Tiny-MNIST where 4-PD only requires ∼ 1000 shots for a mean test accuracy > 76.5% while
uniform random sampling needs ∼ 20000 (∼ 20× more) shots with higher variance. We include
the training ones in Appendix A.5.5.
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(b) Tiny-MNIST
Figure 7: The mean ± std of the test accuracy of the best discovered model with different measure-
ment budget (in shots). URS shows the result where the weights are uniformly random sampled.

6 CONCLUSION

In this paper, we propose a new quantum learning framework Quark that does not involve gradients
calculation and operates in a fully-quantum fashion. Acknowledging the notorious problem of bar-
ren plateaus from VQC based methods, Quark shed some lights on circumventing this phenomenon
through a gradient-free optimization pipeline. Quark also enables a more general set of module de-
sign due to basis encoding, so that non-linear operations can be easily implemented. Theoretically,
we present some evidences in terms of model query complexity for Quark to demonstrate trade-offs
between VQC based methods and Quark. Empirically, we have verified the effectiveness of Quark
through numerical simulations on Edge Detection and Tiny-MNIST.
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A APPENDIX

A.1 GROVER’S ALGORITHM

A well-known algorithm for amplitude amplification is Grover’s algorithm. The original Grover’s
algorithm is trying to search specific states that satisfy some properties which are called solution
states. Instead of enumerating over all possible states to find the solution states that lie in the solu-
tion set S, Grover’s algorithm tries to amplify the solution states’ amplitudes using two reflection
unitary matrices Us⊤ , UΨ0 . Let |Ψ0⟩ denote the initial state of all qubits and |s⟩ =

∑
si∈S

1√
|S|

|si⟩
represent the basis state spanned by all solution states. Us⊤ and UΨ0

are constructed as follows:

Us⊤ = I− 2|s⟩⟨s| (2)
UΨ0

= 2|Ψ0⟩⟨Ψ0| − I (3)

Geometrically, Us⊤ is the reflection operator over |s⊤⟩ =
∑

si /∈S
1√

|{|0⟩,|1⟩}n\S|
|si⟩, which is an

state orthogonal to the solution space. Similarly, UΨ0
is the reflection operator over |Ψ0⟩. Given

θ = arcsin (⟨Ψ0|s⊤⟩), |Ψ0⟩ can be expressed as:

|Ψ0⟩ = cos θ|s⊤⟩+ sin θ|s⟩
The combination of the two reflection unitary matrices Ucomb = UΨ0

Us⊤ is equivalent to a rotation
of 2θ on the plane spanned by |s⊤⟩ and |Ψ0⟩. Therefore, applying the combination of the two
reflection matrices k times gives:

|Ψk⟩ =

(
k∏

i=1

Ucomb

)
|Ψ0⟩ (4)

= cos ((2k + 1)θ)|s⊤⟩+ sin ((2k + 1)θ)|s⟩ (5)

As for most practical setups the solutions are always sparse and existed, we have 0 < θ ≪ π
3 . To

maximize the amplitude for |s⟩, k should be in the order of O( 1θ ).

A.2 DEFINITION

The |s⟩, |Ψ0⟩ in KPD are updated as:

|s⟩ =
∑

|wi⟩
⊗K−1

k=0 |xjk
,yjk

⟩|f(wi,xjk
)⟩∈SK

1√
|SK |

|wi⟩
K−1⊗
k=0

|xjk , yjk⟩|f(wi, xjk)⟩

and

Ψ0 =
∑

i,j0,··· ,jK−1

1√
2dw |D|K

|wi⟩
K−1⊗
k=0

|xjk , yjk⟩|f(wi, xjk)⟩

,again the Grover operator can be easily built from Ucomb = Us⊤UΨ0 where Us⊤ = I −
2|s⟩⟨s|, UΨ0 = 2|Ψ0⟩⟨Ψ0| − I.
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A.3 PROOF

A.3.1 THEOREM 1

Given the probability for sampling a solution state is p, then the Grover iterations to achieve the
maximum amplitude amplification effect is

√
1
p . As in our case, the probability for sampling a

solution state is given by
∫
wi∈W J(wi)dδ∫

wi∈W dδ
, then suppose we are doing a balanced C-way classification

task the Grover iterations we need is:

√ ∫
wi∈W dδ∫

wi∈W J(wi)dδ
=

√
1

Ewi∼W [J(wi)]
(6)

=

√
1
1
C

(7)

=
√
C (8)

(9) → (10) is due to for a balanced C-way classification, we should expect the accuracy for a
random model to be the same as a random guess 1

C

As we have defined α =

∫
wi∈Wϵ

J(wi)dδ∫
wi∈W J(wi)dδ

as the probability to measure a ϵ-optimal solution, thus

in order to sample a ϵ-optimal solution by measurements, it takes O( 1
α ) trials. Which gives us an

overall complexity of O(
√
C
α )

A.3.2 THEOREM 2

Given we are doing a balanced C-way classification task for k parallel dataset, the probability for

sampling a solution state is now
∫
wi∈W J(wi)

kdδ∫
wi∈W 1kdδ

= Ewi∼W [J(wi)
k]. Since the objective function

we defined is non-negative J(wi) ≥ 0, thus we have J(wi)
k to be a convex function in J(wi). As

expectation operator preserve convexity we have E[J(wi)
k] ≥ E[J(wi)]

k, we have:

√ ∫
wi∈W 1kdδ∫

wi∈W J(wi)kdδ
=

√
1

Ewi∼W [J(wi)k]
(9)

≤

√
1

Ewi∼W [J(wi)]k
(10)

=
√
Ck (11)

Thus the Grover iteration needed is upper bounded by C
k
2
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For measurement, the expected iterations we need is
∫
wi∈W J(wi)

kdδ∫
wi∈Wϵ

J(wi)kdδ
which can be approximated

as: ∫
wi∈W J(wi)

kdδ∫
wi∈Wϵ

J(wi)kdδ
=

∫
wi∈Wϵ

J(wi)
kdδ +

∫
wi∈W/Wϵ

J(wi)
kdδ∫

wi∈Wϵ
J(wi)kdδ

(12)

= 1 +

∫
wi∈W/Wϵ

J(wi)
kdδ∫

wi∈Wϵ
J(wi)kdδ

(13)

= 1 +

∫
wi∈W/Wϵ

J(wi)
kdδ∫

wi∈Wϵ
J(wi)kdδ

∫
wi∈Wϵ

1kdδ∫
wi∈W/Wϵ

1kdδ

∫
wi∈W/Wϵ

1kdδ∫
wi∈Wϵ

1kdδ
(14)

= 1 +

∫
wi∈W/Wϵ

J(wi)
kdδ∫

wi∈W/Wϵ
1kdδ∫

wi∈Wϵ
J(wi)kdδ∫

wi∈Wϵ
1kdδ

1

β
(15)

= 1 +
Ewi∈W/Wϵ

[J(wi)
k]

Ewi∈Wϵ
[J(wi)k]

1

β
(16)

≈ 1 +
Ewi∈W/Wϵ

[J(wi)]
k

Ewi∈Wϵ
[J(wi)]k

1

β
(17)

= 1 + (
Ewi∈W/Wϵ

[J(wi)]

Ewi∈Wϵ [J(wi)]
)k

1

β
(18)

= 1 + (

∫
wi∈W/Wϵ

J(wi)dδ∫
wi∈W/Wϵ

1dδ∫
wi∈Wϵ

J(wi)dδ∫
wi∈Wϵ

1dδ

)k
1

β
(19)

= 1 + (

∫
wi∈Wϵ

1dδ∫
wi∈W/Wϵ

1dδ

∫
wi∈W/Wϵ

J(wi)dδ∫
wi∈Wϵ

J(wi)dδ
)k

1

β
(20)

= 1 + (β

∫
wi∈W J(wi)dδ −

∫
wi∈Wϵ

J(wi)dδ∫
wi∈Wϵ

J(wi)dδ
)k

1

β
(21)

= 1 + (β(
1

α
− 1))k

1

β
(22)

= 1 + βk−1(
1

α
− 1)k (23)

(18) → (19) is assuming Ewi∈W/Wϵ
[J(wi)] > Varwi∈W/Wϵ

[J(wi)]
1
2 which is usually the case in

practice since J(wi) itself is upper bounded by [0, 1 − O(ϵ)] within the non-ϵ optimal region and
J(wi) can be assumed to be near-uniformly distributed within W/Wϵ across range [0, 1 − O(ϵ)],

which is a general assumption. Thus
Ewi∈W/Wϵ [J(wi)

k]

Ewi∈Wϵ [J(wi)k]
can be dominated by

Ewi∈W/Wϵ [J(wi)]
k

Ewi∈Wϵ [J(wi)k]
≤

Ewi∈W/Wϵ [J(wi)]
k

Ewi∈Wϵ [J(wi)]k
.

A.3.3 THEOREM 3

As the trade-off is between measurements needed versus Grover iterations per measurement, we can
list their rate of change to make the comparison. For k-parallel dataset, Grover iterations is increased

by kC
k−1
2 = kC

k
2

C
1
2

. For measurements needed, the exact ratio should be
1
α

1+βk−1( 1
α−1)k

, however we

can further approximate this ratio as
1
α

β
α

k−1 1
α

= (αβ )
k−1 given βk−1( 1

α−1)k > 1 which is equivalent

to k ≤ ⌊logα
β

1
α⌋+1. Thus the optimal k should satisfy α

β ≥ k
1

k−1C
1
2 as well as k ≤ ⌊logα

β

1
α⌋+1.

As k
1

k−1C
1
2 , k ≥ 2 is monotonically decreasing with respect to k thus as long as α

β ≥ m
1

m−1C
1
2

for m = ⌊logα
β

1
α⌋+ 1 we could have our optimal k = m = ⌊logα

β

1
α⌋+ 1, otherwise k = 1.
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A.4 MODULE DESIGN DETAILS
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(a) Fully connected layer
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(b) ReLU
Figure 8: Representing a fully connected layer and ReLU activation as quantum circuits in the
Quark optimization framework. (a) Fully connective layer: for a 2 × 3 FC layer with weights Wij

and input X = [X1, X2, X3], the output is given by Oi = (Wi1 ∧X1)+ (Wi2 ∧X2)+ (Wi3 ∧X3).
(b) ReLU: for an input Xi = [S,X1, X2] where S is the sign qubit, the ReLU output is given by
X ′ = (X ⊕X) ∨ (¬S ∧X).

In addition to the convolution and maxpooling layers shown in Figure 4a and Figure 4b, Quark
can also incorporate other commonly used tensor algebra operators. Figure 8 demonstrates how to
represent a fully connected and a ReLU layer as quantum circuits in Quark.

Due to the limitation of the number of qubits, our parameterization can be viewed as a binary model
over a bounded weight space W . In our experiments, we make a little modification to Quantum
Learning modules introduced before. For Edge Detection task,

O0 = (

2∨
i=0

(

2∧
j=0

W0,j ⊕Xi,j))⊕W0,3 (24)

O1 = (

2∨
i=0

(

2∧
j=0

W1,j ⊕Xj,i))⊕W1,3 (25)

We use |O0O1⟩ = |00⟩, |01⟩, |10⟩, |11⟩ to express the 4 different predictions respectively.
For Tiny MNIST task,

Ok = (

2∨
i=0

(

2∨
j=0

Wk,3i+jXi,j))⊕Wk,9 k = 0, 1 (26)

We use |O0O1⟩ = |10⟩, |11⟩ to express the prediction of Number 1 and use |O0O1⟩ = |01⟩, |00⟩ to
express the prediction of Number 2 and Number 7 respectively.

A.5 EXPERIMENTS

A.5.1 QUARK PROCESS
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(a) QCA
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(b) QCB
Figure 9: QCA is the quantum circuit for calculating the average accuracy for different parameters,
which is used in computing the number of Grover iterations as shown in Algorithm 2. QCB shows
the quantum circuit for computing the accuracy of a specific weight, which is used in Algorithm 3.
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Algorithm 2: Get Grover Iterations Number
Input: Data Encoder Oracle: UD; Model Forward Oracle: UM ; Objective Function Oracle:

UL; number of parallel dataset: k; Shots to estimate accuracy: s
Output: Grover Iterations Number: g

Initialize Obj = 0;
QC = QCA(UD, UM , UL, k) ; // Construct the quantum circuit shown in
Figure 9(a)

for i = 0; i < s; ++i do
Obj = Obj + QC.measure(RO[−1])

Obj = Obj/S;
θ = arcsin(Obj);
g = [

mπ+π
2 −θ

2θ ], m ∈ N ;
return g;

Algorithm 3: Evaluate
Input: Data Encoder Oracle: UD; Model Forward Oracle: UM ; Loss Function Oracle: UL;

number of parallel dataset: k; Shots to estimate accuracy: s; Weight: w
Output: J(w)
Initialize J = 0;
QC = QCB(UD, UM , UL, k, w) ; // Construct the quantum circuit shown in
Figure 9(b)

for i = 0; i < s; ++i do
J = J + QC.measure(RO[−1])

J = J/s;
return J ;

We use Preprocessing() to:

• Calculate number of Grover iterations we need (The procedure is illustrated in Figure 9(a)
and Algorithm 2).

• Construct Grover Operator Ucomb.

• Uniformly initialize RW with Hadamard gates.

• Initialize k ×RD with UDs to encode k identical training dataset in parallel.

In Algorithm 2, we may find that θ is close to π
4 , making G extremely large or non-existent. How-

ever, we can introduce extra samples to dataset to resolve the issue. These auxiliary samples are
identified by an additional qubit, that automatically being classified into non-solution space.

In function Evaluate(), we evaluate the objective value of a specific weight w. The procedure is
illustrated in Figure 9(b) and Algorithm 3.

A.5.2 TINY-MNIST EXPERIMENTAL SETUP

To construct Tiny-MNIST dataset, we select images with label 1, 2, 7 form the original MNIST
training set and downsample them to 3x3 images with binarization applied to form D1. As samples
with same representations in D1 cannot share different labels, we use majority voting to decide
labels for duplicate samples within D1 to form our final dataset. We apply same procedure for both
training and testing datasets. This gives us a Tiny-MNIST dataset with 79 instances for training and
46 instances for testing. We use Tiny-MNIST for evaluating both classical methods and Quark. The
settings of classical methods are shown in Table 1.
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Architecture 9× 3 FC + Softmax
Loss Function CrossEntropyLosss

Optimizer Adadelta
learning rate 1.0

batch size 8
epochs 100

seed 0,1,2,3,4,5,6,7,8,9
Table 1: Basic Settings of Classical Method

A.5.3 EDGE DETECTION RESULTS
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Figure 10: The effect of amplitude amplification for Edge Detection.

A.5.4 TINY-MNIST RESULTS
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Figure 11: The effect of amplitude amplification for Tiny-MNIST.
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A.5.5 SHOTS & TRAINING ACCURACY
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Figure 12: mean ± std of the best model’s training accuracy measured within a given measurement
budget.

A.6 QUANTUM SIMULATION

To further verify our framework, we use Qiskit Aer (Anis & et al., 2021) to simulate the process of
solving a simplified Edge Detection task with Quark. The goal is to identify whether a 3×3 binary
matrix has horizontal lines. The task is a binary classification task with 512 instances. We randomly
select 400 of them as the training set and the rest as the test set. The result of simulation is shown in
Table 2. Each data point is acquired with 20 runs. The corresponding result of numerical simulation
is shown in Table 3.

shots 1 2 4 8 16 32 64 128
train 59.14% 67.9% 68.36% 75.33% 85.04% 85.79% 91.93% 94.14%
std 12.21% 10.34% 9.05% 11.26% 9.27% 9.01% 6.18% 4.30%
test 58.17% 65.04% 65.54% 75.63% 84.69% 84.55% 90.18% 92.41%
std 13.54% 10.35% 9.60% 11.32% 10.09% 10.59% 7.33% 5.77%
Table 2: Relationships between training & test accuracy and shots. (Qiskit Simulation)

shots 1 2 4 8 16 32 64 128
train 60.74% 66.20% 71.52% 77.49% 83.82% 89.59% 93.93% 96.88%
std 10.72% 10.26% 10.96% 11.12% 10.09% 7.87% 5.53% 3.86%
test 60.03% 64.99% 70.11% 76.18% 82.83% 88.90% 93.22% 95.96%
std 11.17% 11.07% 11.97% 12.28% 11.23% 8.72% 6.11% 4.95%

Table 3: Relationships between training & test accuracy and shots. (Numerical Simulation)
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Figure 13: The quantum circuit for simplified edge detection.
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