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Abstract

As artificial intelligence continues to advance rapidly in the
healthcare sector, automated medical image analysis is in-
creasingly used to enhance diagnostic accuracy. Large Vision
Language Models (VLMs) show promise in understanding
medical imagery, but their reliance on static training data of-
ten leads to outdated or inaccurate information. Current ap-
proaches to medical image classification lack the specialized
understanding required for complex medical diagnostics, re-
lying on either text-based retrieval or general-purpose image
encoders. We address these limitations by developing a novel
training-free retrieval-augmented classification approach that
combines a specialized medical image encoder with few-shot
learning across multiple imaging modalities (X-ray, CT, and
MRI). Our experiments across three diverse medical imaging
datasets demonstrate substantial improvements in classifica-
tion performance, with F1 score gains up to 142% for state-
of-the-art VLMs and 250% for smaller deployable models
while requiring only 3-5 retrieved reference images, level-
ing the playing field for on-premise clinical applications of
smaller VLMs.

Introduction

Recent advances in large language models (LLMs) have
demonstrated remarkable potential across medical applica-
tions, from patient communication to clinical documenta-
tion and diagnostic support (Yang et al. 2024b), (Silverman
et al. 2024), (Nakaura et al. 2024). However, their reliance
on static training data often leads to outdated or inaccurate
information in rapidly evolving medical fields (Omiye et al.
2024), (Sacoransky, Kwan, and Soboleski 2024). More-
over, LLMs trained on unfiltered internet data can repro-
duce and amplify both factual and problematic content with-
out discrimination, leading to inconsistent outputs that range
from truthful and creative to dangerously misleading (Har-
rer 2023). Retrieval augmented generation (RAG) (Lewis
et al. 2020) has emerged as a promising solution to this
limitation by dynamically incorporating external knowledge
sources into the generation process. RAG architectures typ-
ically combine two key components: a retrieval mechanism
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that identifies relevant information from a corpus of litera-
ture or data, and a generation component that synthesizes
this information into coherent, contextually appropriate re-
sponses. The application of RAG in medical imaging analy-
sis presents unique challenges and opportunities (Gao et al.
2023). RAG systems face a delicate balance where too lit-
tle context retrieval may miss crucial information while too
much can introduce noise and errors, potentially degrading
even originally correct model responses (Xia et al. 2024b).
In clinical radiology settings, RAG systems offer particu-
larly compelling advantages through their ability to leverage
internal hospital databases (Adejumo et al. 2024) and his-
torical patient records (Alkhalaf et al. 2024), as well as re-
search paper archives (Jin et al. 2023) and textbooks (Wang,
Ma, and Chen 2024). By retrieving similar cases, prior diag-
noses, and relevant radiology reports from a hospital’s own
data repository, RAG-enhanced LLMs can provide context-
aware assistance that reflects local patient populations and
clinical practices (Wang et al. 2024). This approach not only
improves diagnostic accuracy but also enables more person-
alized clinical decision support by incorporating institution-
specific protocols, historical case outcomes or even reflect-
ing the style of a specific radiologist (Yan et al. 2023).

While traditional LLMs excel at natural language under-
standing and generation, Vision Language Models (VLMs)
are specifically designed to interpret and reason about vi-
sual information alongside text. There are several published
research that presented VLMs tailored to the medical lan-
guage and imaging (Hartsock and Rasool 2024). VLMs
with RAG are particularly suitable for radiology use cases.
For example, when generating radiology report impressions,
RAG systems can reference similar cases from the hospital’s
database to ensure consistency in reporting style and termi-
nology while maintaining high clinical efficacy metrics.

Our research extends these findings by developing a novel
RAG-based approach for few-shot medical image classifi-
cation. Unlike previous text-centric approaches, we imple-
ment an image-based retrieval system using the MedIm-
agelnsight (Codella et al. 2024) encoder to create specialized
vector databases. Our framework retrieves visually similar
medical images as few-shot examples, which are then pro-
vided to state-of-the-art VLMs including Claude 3.5 Son-
net, GPT4o0, Gemini 1.5 Pro, and Qwen, as shown in Figure
1. We evaluate this approach across three diverse medical
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Figure 1: In the RAD-SRAC system, we first created the database of labeled images embedded with an image encoder. Then,
when the user wants to use the system, similar images are retrieved from the database and appended to the user prompt. Lastly,
VLM performs classification and chooses the correct label for the image.

imaging datasets: KITS23 for kidney tumors, Coronahack
for chest X-rays, and Brain Tumor Classification data. This
methodology requires no additional training and leverages
existing datasets and models, including small LLMs, mak-
ing it particularly practical for clinical applications.

The primary contributions of this study are:

1. A systematic evaluation of visual RAG’s impact on med-
ical image classification from 3 imaging modalities’ per-
formance using multiple state-of-the-art VLMs.

2. Usage of a dedicated medical image encoder, not a gen-
eral purpose, unlike previous work.

3. Introduction of a simple method that does not require
training and leverages available models and datasets.

Our methodology employs vector databases constructed
using the medical imaging-specific encoder — MedImageln-
sight and general domain text decoder, facilitating efficient
retrieval of relevant image features and associated metadata
for augmenting LLM performance.

Code — https://github.com/TheLion-ai/RAD-SRAC

The entire code and a list of data files used for the experi-
ments are available at the attached link. All image encoding
models and datasets used to create this work are available as
open source. The details of our implementation can be found
in the GitHub repository.

Related Work

Recent studies have demonstrated both the potential and
current limitations of LLMs in medical imaging applica-
tions (Sacoransky, Kwan, and Soboleski 2024). While LLMs
show promise in understanding medical concepts and termi-
nology, their performance varies significantly across tasks —
performing better on text-based medical knowledge (80.0%)

than image interpretation (45.4%) (Payne et al. 2024). Re-
search across multiple specialties indicates that LLMs’ ac-
curacy can be enhanced through structured prompting strate-
gies and domain-specific knowledge integration (Adams
et al. 2023; Mago and Sharma 2023; Lee, Lee, and Kwon
2023; Rau et al. 2023).

Retrieval-augmented generation (RAG) has emerged as a
crucial technique for reducing hallucinations (Shuster et al.
2021; Lewis et al. 2020) and enhancing LLM performance in
medical imaging through various approaches. Recent work
developed FactMM-RAG (Sun et al. 2024), which enhances
radiology report generation through fact-aware retrieval aug-
mentation. Their system extracts structured knowledge from
radiology reports using RadGraph (Jain et al. 2021) and en-
codes images with MARVEL (Zhou et al. 2023) to compare
with historical image-text pairs. While achieving significant
improvements in both F1CheXbert (6.5%) and F1RadGraph
(2%) metrics, FactMM-RAG’s effectiveness is constrained
by its reliance on detailed radiology reports and structured
knowledge graphs.

RadioRAG (Arasteh et al. 2024) introduced a dynamic
retrieval-augmented generation system for radiology diag-
nostics. Their approach uses GPT-3.5-turbo to extract key
medical phrases from radiological questions for retrieving
relevant articles from Radiopaedia.org. The system con-
sistently enhanced diagnostic accuracy across all LLMs
(improvements ranging from 2% to 54%), demonstrating
RAG’s potential in grounding responses in domain-specific
knowledge. However, it was limited to text-only queries
without direct image processing capabilities.

MMed-RAG (Xia et al. 2024a) addresses cross-domain
challenges through a sophisticated architecture incorpo-
rating domain-aware retrieval mechanisms and adaptive
context selection. Their experiments on the Harvard-



FairVLMed dataset revealed that naive RAG implementa-
tion can sometimes impair performance, with 43.31% of
previously correct answers becoming incorrect due to re-
trieval interference. Their adaptive approach significantly
improved the model’s ability to utilize retrieved information
while maintaining ground truth alignment.

Recent innovations in report generation include a novel
three-component architecture (Liu et al. 2024) based on
MiniGPT-4, combining visual encoding, in-domain in-
stance induction, and coarse-to-fine decoding. Their sys-
tem achieved state-of-the-art performance on IU X-RAY
(Demner-Fushman et al. 2016) and MIMIC-CXR (Johnson
et al. 2019) datasets through hierarchical refinement, though
without using RAG during inference.

Vector databases have transformed medical image stor-
age and retrieval, serving as specialized systems organiz-
ing data based on mathematical representations in multi-
dimensional space (Pan, Wang, and Li 2024). Initial RAG
implementations in medical imaging either utilized text-only
vector databases (Sun et al. 2024; Arasteh et al. 2024), re-
lied on general-purpose image encoders (Xia et al. 2024a),
or trained task-specific VLMs (Liu et al. 2024).

The challenge of cross-domain knowledge transfer in
medical imaging has been extensively studied (Huang et al.
2024; Tayebi Arasteh et al. 2024), particularly regarding
knowledge transfer between general and specific medi-
cal domains (Mei et al. 2022). One significant advance is
MedImagelnsight, which demonstrated substantial improve-
ments over general-purpose encoders in capturing domain-
specific patterns and maintaining clinically relevant features.

Our research extends these findings in several key ways.
We introduce a novel combination of image-based retrieval
and few-shot learning for medical image classification. Un-
like previous approaches that focus on single modalities,
we demonstrate effectiveness across X-ray, CT, and MRI.
We provide empirical evidence for the impact of domain-
specific medical image retrieval on classification perfor-
mance.

Table 1: The datasets used in this study.

Dataset Modality| Classes Count
KITS23 CT angiomyolipoma, | 424
chromo-

phobe _rcc,

clear_cell_rcc,
oncocytoma,
papillary _rcc
Normal, Pneu- | 5908
monia Bacteria,
Pneumonia Virus

Coronahack| X-ray

Brain Tu- | MRI no_tumor, 3264
mor Clas- glioma_tumor,
sification menin-

gioma_tumor,
pituitary_tumor

Methods

This study used 3 open-source medical imaging datasets ac-
cessed through UMIE dataset pipelines (thelion.ai 2024):
KITS23 (Heller 2024), Coronahack (Gobi 2020) (which ag-
gregates (Cohen, Morrison, and Dao 2020) and (Kermany
et al. 2018)), and Brain Tumor Classification (Bhuvaji et al.
2020) as shown in Table 1. The datasets organized patient
studies differently. We decided to select a single image from
each study. For KITS23, which contained multiple images
per study, we selected a single representative image from
each study based on the maximum tumor area visible in
available segmentation masks. Coronahack and Brain Tu-
mor classification datasets lacked study identifiers, necessi-
tating the treatment of each image as an independent study.
We extracted from each dataset 100 examples to form test
sets while maintaining the original class distribution through
stratification. The remaining samples were designated as
database splits.

We constructed vector databases using Qdrant (Qdrant
2020) for each dataset’s database split. The number of seg-
ments was set to 8§ and the number of shards to 1. Im-
age embeddings were generated utilizing the MedIlmageln-
sight encoder, creating a structured repository of image fea-
tures that enabled subsequent retrieval operations. This vec-
tor database architecture formed the foundation for our sim-
ple retrieval-augmented classification (SRAC) experiments.

Our experimental design employed a structured three-part
prompting protocol to systematically evaluate VLM classi-
fication performance:

System Context The system message established the
model’s baseline role:

You are a medical expert.

Analyze the {modality} image and classify
if there is a tumor present. Select the
appropriate class from {labels}.

Few-Shot Examples Retrieved cases were presented us-
ing one of two formats:

1. Labeled Format:

Examples:
class: [specific_label]
[image]

2. Unlabeled Format:

Examples of
[image]

similar images:

In the retrieval-augmented condition, these examples
were dynamically selected from our vector database using
embedding similarity metrics.

Classification Request The target case was presented
with a standardized instruction:

Now, please analyze the new image and
provide your classification.

You always need to classify.

Return only the result in JSON format:
{



Table 2: The precision, recall, and F1 scores of state-of-the-art VLMs with SRAC prompt enhancement with similar images
with labels and without (raw).

Claude-3-5-sonnet GPT-40 Gemini 1.5 Pro Qwen2-VL 72B Instruct
P R F1 P R F1 P R F1 P R F1
Raw 0.55 0.52 0.53 0.54 0.6 0.57 0.60 0.42 0.48 0.54 0.39 0.45
KITS SRAC 0.57 0.67 0.61 0.62 0.64 0.63 0.57 0.60 0.59 0.58 0.6 0.59
Gain 3%  129% 115% | 115% 17%  110% | 1-4% 143%  124% | 110% 154%  131%
Raw 0.47 0.47 0.46 0.41 0.42 0.41 0.39 0.33 0.28 0.49 0.3 0.35
Coronahack ~ SRAC  0.78 0.76 0.76 0.76 0.76 0.76 0.72 0.68 0.67 0.6 0.5 0.5
Gain  166% 162% 166% | 187% 181% 185% | 184% 1106% 1142% | 122% 167%  144%
Raw 0.60 0.56 0.56 0.65 0.58 0.59 0.73 0.51 0.44 0486 0.3 0.35
Brain Tumor SRAC 0.92 0.91 091 0.94 0.94 0.94 0.92 0.91 0.91 0.698 0.6 0.61
Gain 152% 163% 162% | 146% 162% 159% | 126% 178%  T107% | 144% 1100% 176%
"yv_pred’: predicted_class, enhancement. While GPT-4 maintained competitive perfor-

"explanation’: brief_explanation

}

This prompting framework was consistently applied across
all evaluated VLMs to ensure a fair comparison, with the
only variation being the presence or absence of a second
prompt for SRAC versus baseline conditions. The structured
output format enabled systematic evaluation of model pre-
dictions while capturing the reasoning process through brief
explanations, providing both quantitative classification re-
sults and qualitative insight into the model’s diagnostic ap-
proach.

Experiments and Results

In the first experiment, we evaluated the impact of SRAC
on the image classification performance of the state-of-the-
art VLMs (according to the OpenVLM leaderboard (Duan
et al. 2024)) through a controlled comparison. The control
condition involved the direct presentation of test split images
to Claude 3.5 Sonnet (Anthropic 2024), GPT40 (Hurst et al.
2024), Gemini 1.5 Pro (Team et al. 2024) and Qwen2-VL
72B (Yang et al. 2024a) VLMs for classification in Table 2.
For each of the models, temperature was set to 1.

In the SRAC implementation, we enhanced this process
by first retrieving the five images with the smallest dot
product distance from the corresponding dataset’s vector
database. These retrieved images and associated labels were
provided as few-shot examples to the LLMs during the clas-
sification task. For each of the experiments, if the VLM’s
response contained errors, e.g., not following structured in-
put, we rerun the experiment for this image up to 5 times.

For the “raw” experiments, without few-shot examples,
we used only prompts 1 and 3, while for the "SRAC” ex-
periments we used all of the prompt messages and supplied
the model with 5 images with labels, before asking to clas-
sify a new image. The experiments demonstrate substantial
improvements across all three leading VLMs when enhanc-
ing prompts with similar images. The most significant gains
were observed in the Coronahack dataset, where SRAC en-
hancement led to performance improvements ranging from
66% to 142% across all metrics. Claude-3-5-sonnet showed
the most consistent performance, achieving balanced preci-
sion and recall improvements, particularly in the Brain Tu-
mor dataset where both metrics exceeded 0.90 after SRAC

mance, achieving the highest F1 score of 0.94 on the Brain
Tumor dataset, Gemini 1.5 Pro exhibited the most variable
results, showing the largest gains in recall but sometimes
at the cost of precision, as evidenced by the 4% precision
decrease in the KITS dataset. Notably, all models demon-
strated more modest improvements on the KITS23 dataset
compared to other tasks.

We also tested the impact of showing labeled examples
to the model vs. presenting the most similar examples with-
out the labels to the model. For this purpose, we used the
same models as in the previous experiment in Table 3. The
experimental results reveal varying performance across the
three VLMs on different medical imaging datasets. Unla-
beled few-shot prompting had varied effects on the per-
formance. Claude’s performance decreased for CoronaHack
and Brain Tumor Classification compared with the "raw” ex-
periment, while for KITS-23 it remained relatively the same.
For GPT 4o, the performance on KITS-23 decreased, while
for the other 2 datasets, it has significantly improved. Gem-
ini’s performance improved on all 3 datasets.

Due to stringent healthcare data protection regulations,
patient data often cannot be transmitted beyond hospital
internal networks, which precludes the use of commercial
LLMs such as Claude or OpenAl’s offerings that require
data processing on external company servers. To address
this common constraint in healthcare settings, we evaluated
our solution using smaller models that could be deployed
on-premise within hospital infrastructure, thereby maintain-
ing data privacy by processing sensitive patient information
exclusively within the institution’s secure environment. For
this purpose, we evaluated the “raw” vs “RAG” performance
of Gemini 1.5 Flash-8B and Pixtral-12B (Agrawal et al.
2024) with only 8 and 12 billion parameters respectively in
Table 4. Although Gemini 1.5 Flash is not open source, it is
a small model and, therefore, a good indicator of the perfor-
mance of smaller LLMs.

The results demonstrate that SRAC significantly improves
the performance of both smaller models, with particularly
striking improvements for the Pixtral-12B model. Most no-
tably, Pixtral-12B showed remarkable gains on the Coron-
ahack dataset, with a 250% improvement in F1 score, and
similarly impressive gains on the Brain Tumor dataset with
increases of 194% in precision and 162% in recall. The



Table 3: The precision, recall, and F1 scores of state-of-the-art VLMs with SRAC prompt enhancement — images without labels.

Claude-3-5-sonnet

GPT 40

Gemini 1.5 Pro Qwen2-VL 72B Instruct

P R F1 P R F1 P R F1 P R F1
KITS SRAC unlabelled | 0.57 050 0.53 | 0.57 052 0.54 | 056 047 051 | 0.54 043 048
Coronahack ~ SRAC unlabelled | 0.37 0.37 037 | 043 046 042 | 046 038 038 | 034 03 0.3
Brain Tumor SRAC unlabelled | 0.60 046 045 | 0.65 060 0.60 | 0.73 0.63 0.60 | 041 04 0.39

Table 4: The precision, recall, and F1 scores of small state-
of-the-art VLMs with SRAC prompt enhancement with sim-
ilar images with labels and without (raw).

Gemini 1.5 Flash-8B Pixtral-12B
P R Fl p R Fl
Raw | 0.54 04 045 | 051 038 043
KITS SRAC| 056 0.72 063 | 051 054 052
Gain | 13% 180% 140% | 1% 142% 121%
Corona. R&W | 034 046 039 [022 026 017
SRAC| 047 051 043 | 057 060 058
hack  Gain | 138% 110% 19% | 1163% 1131% 1240%
~ Raw | 072 051 044 | 025 026 0.23
Brain —gpacl 072 068 066 | 072 068 066
Tumor
Gain | 0%  133% 151% | 1194% 1162% 184%

Gemini 1.5 Flash-8B model exhibited more modest but still
significant improvements, with its most substantial gain be-
ing an 80% increase in recall on the KITS dataset. Interest-
ingly, both models achieved identical final performance on
the Brain Tumor dataset after SRAC enhancement, reach-
ing a precision of 0.72 and recall of 0.68, despite Pixtral-
12b starting from a much lower baseline. This suggests that
SRAC can potentially level the playing field between models
of different sizes, particularly for specialized medical imag-
ing tasks.

We also tested the optimal number of examples to show
to VLM before classification. The results shown in Table 2
reveal that increasing the number of reference images does
not linearly correlate with improved performance across the
tested models on the KITS23 dataset. Claude-3-5-Sonnet
demonstrates the most stable performance pattern, reach-
ing its peak F1 score of 0.61 with just 3 reference images
and maintaining consistent performance even up to 10 im-
ages. GPT-4o0 shows significant improvement from 1 to 3
images, achieving its optimal performance of 0.628 with 3
images, but experiences a decline in performance with ad-
ditional images beyond that point. Gemini 1.5 Pro exhibits
more variable behavior, with performance fluctuating across
different image counts and reaching its peak F1 score of
0.59 at 5 images. Notably, all models show substantial im-
provement when moving from 1 to 3 reference images, sug-
gesting that even a minimal SRAC enhancement provides
meaningful benefits. This finding has practical implications
for real-world applications, as it suggests that using 3-5 ref-

erence images may be optimal for balancing performance
gains with computational efficiency.

== Claude-3-5-sonnet == GPT 40 Gemini 1.5 Pro
0.80
0.60 1
0.40 /
0.20
0.00
2 4 6 8 10

Figure 2: F1 scores of VLMs across different numbers of
reference images (1-10), showing optimal performance at 3-
5 images.

Discussion

The substantial variation in SRAC’s effectiveness across dif-
ferent datasets and models provides important insights into
the method’s strengths and limitations. The dramatic im-
provements observed in Coronahack (66-142% gain) and
Brain Tumor Classification (62-107% gain) datasets con-
trast sharply with the more modest gains in KITS23 (10-
22% gain). This disparity stems from the relative complexity
of the classification problems. Brain Tumor Classification is
the simplest problem since the 3 possible tumor classes oc-
cur in different brain regions (Osborn, Hedlund, and Salz-
man 2017). Coronahack presents the more difficult problem
of pneumonia classification, which is also toughened by the
fact that the X-rays present children. Radiologists do not di-
agnose pneumonia causative organisms since it is believed
that generally, CXR shadows do not allow distinguishing
between viral and bacterial pneumonia (De Lacey, Morley,
and Berman 2012). However, it is a popular applied deep
learning problem with many successful approaches (Sharma
and Guleria 2024) achieving accuracies up to 99.61% on this
dataset (Gour and Jain 2022). KITS-23’s kidney tumor clas-
sification is a significantly more challenging problem, that
poses a real diagnostic challenge, with small benign tumors
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Figure 3: T-sne visualization of the image embeddings for each dataset: a) KITS, b) Coronahack, c¢) Brain Tumor

often misdiagnosed as malignant and found to be benign
only after postoperative histopathology examination (Kay
and Pedrosa 2016).

The difficulty of the problems was also visible in the t-
SNE visualizations of the datasets (shown in Figure 3.) The
visualizations for Coronahack and Brain Tumor Classifica-
tion show a clear separation between the classes, forming
clusters. For KITS-23 the classes are scattered and the over-
balance of clear cell renal carcinoma samples is evident.
This is in line with the clinical practice, where it is the most
commonly occurring tumor. The effectiveness of our SRAC
approach is fundamentally tied to the quality of the Med-
Imagelnsight encoder’s representations. The more modest
improvements in KITS23 classification suggest that the en-
coder may not fully capture the subtle distinctions between
different types of kidney tumors. This limitation points to a
crucial area for future development: the need for more so-
phisticated medical image encoders that can better capture
fine-grained pathological features.

Our investigation into the optimal number of reference
images revealed a consistent pattern across all tested mod-
els: the relationship between the number of reference im-
ages and classification performance follows a clear dimin-
ishing returns curve. The finding that 3-5 reference images
typically yield optimal performance has significant practi-
cal implications. This ”sweet spot” suggests that models can
effectively learn from a small set of well-chosen examples
without requiring extensive computational resources or suf-
fering from information overload.

The strong performance improvements observed in
smaller models like Pixtral-12B (up to 250% F1 score im-
provement) have important implications for clinical deploy-
ment. These results suggest that SRAC can enable on-
premise deployments that meet both performance require-
ments and privacy constraints. The ability to achieve com-
petitive performance with smaller models addresses a cru-
cial barrier to adoption in healthcare settings where data
cannot be transmitted to external servers. Implementation
considerations must account for computational resources re-
quired for maintaining and querying vector databases, inte-
gration with existing PACS (Picture Archiving and Commu-
nication Systems) and clinical workflows, real-time perfor-
mance requirements for clinical decision support, and data
privacy and security compliance.

Several limitations of our current approach suggest di-
rections for future research. The current MedImagelnsight
encoder’s performance on complex cases like KITS23 in-
dicates the need for more sophisticated medical imaging-

specific encoders, which capture subtle pathological fea-
tures better. While our study covered three different imaging
modalities, expanding to a broader range of pathologies and
modalities would provide a more comprehensive validation
of the approach. Investigation of cross-domain knowledge
transfer through alternative vector database contents could
reveal opportunities for leveraging broader medical imaging
knowledge bases.

Our findings suggest that SRAC has the potential to sig-
nificantly impact medical imaging workflows by improv-
ing the accuracy of automated image classification, particu-
larly for smaller deployable models. The ability to leverage
existing image databases for improved classification could
help institutions better utilize their historical data for cur-
rent diagnostic challenges. Furthermore, the approach could
serve as a valuable educational tool, automatically provid-
ing relevant reference cases during training and continuing
education. The demonstrated effectiveness of smaller mod-
els with SRAC enhancement suggests a path toward more
widespread deployment of Al assistance in medical imag-
ing, even in resource-constrained settings. The results of
SRAC-enhanced small LLMs almost matched the results of
raw LLMs, suggesting that the performance of small LLMs
can be significantly boosted to match the performance of
larger models with SRAC. Small LLMs are key for health-
care implementations since such models can be deployed lo-
cally without the need to share the data with the external
provider.

Conclusions

This study demonstrates the significant potential of
Retrieval-Augmented Classification in enhancing medical
image classification across multiple imaging modalities. Our
experiments revealed substantial improvements in classifi-
cation performance when augmenting VLMs with retrieved
similar cases, with gains ranging from 10% to 250% in
F1 scores across different datasets and models. The find-
ing that optimal performance can be achieved with just 3-
5 reference images, combined with the strong performance
of smaller, deployable models, indicates the practical viabil-
ity of this approach in clinical settings where data privacy is
paramount.
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