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ABSTRACT

Nearest neighbor search on context representation vectors is a formidable task due
to challenges posed by high dimensionality, scalability issues, and potential noise
within query vectors. Our novel approach leverages normalizing flow within a
self-supervised learning framework to effectively tackle these challenges, specifi-
cally in the context of audio fingerprinting tasks. Audio fingerprinting systems
incorporate two key components: audio encoding and indexing. The existing
systems consider these components independently, resulting in suboptimal per-
formance. Our approach optimizes the interplay between these components, fa-
cilitating the adaptation of vectors to the indexing structure. Additionally, we
distribute vectors in the latent RK space using normalizing flow, resulting in bal-
anced K-bit hash codes. This allows indexing vectors using a balanced hash table,
where vectors are uniformly distributed across all possible 2K hash buckets. This
significantly accelerates retrieval, achieving speedups of up to 3× compared to the
Locality-Sensitive Hashing (LSH). We empirically demonstrate that our system is
scalable, highly effective, and efficient in identifying short audio queries (≤2s),
particularly at high noise and reverberation levels.

1 INTRODUCTION

In the ever-expanding landscape of multimedia content, vector search has become increasingly cru-
cial for efficiently retrieving similar items based on content representations, often represented as
vectors in high-dimensional spaces. While extensive research has been devoted to content-based
retrieval in the image domain (Luo et al., 2023), the domain of audio retrieval, particularly for the
audio fingerprinting tasks, still needs to be explored. Audio fingerprinting generates a content-based
compact summary of an audio signal, facilitating efficient storage and retrieval of the audio content.
This technique finds applications across various scenarios, such as music recognition (Wang et al.,
2003), duplicate detection (Burges et al., 2005), copyright enforcement (Saadatpanah et al., 2020)
and second-screen services (Lohmüller & Wolff, 2019).

The existing audio fingerprinting methods rely on efficient indexing algorithms (Jegou et al., 2010;
Gong et al., 2012; Gionis et al., 1999). In particular, Locality-Sensitive Hashing (LSH) (Gionis et al.,
1999) implicitly divides the space into lattices, such that similar points are grouped into the same
hash bucket. During retrieval, LSH evaluates the similarity between the query and points in the same
hash bucket. However, when applied to real-world data characterized by non-uniform distributions,
LSH faces challenges. This includes the issue of unbalanced hashing (Gao et al., 2014), where
some buckets remain empty while others become overfilled, leading to reduced retrieval accuracy
and unexpected delays. Furthermore, LSH, being an unsupervised method, requires multiple bucket
probes and hash table constructions to achieve satisfactory performance.

In contrast to conventional approaches that consider representation learning and indexing separate
processes, Singh et al. (2023) introduced an approach combining both aspects. Their approach
simultaneously learns robust representations and balanced hash codes. This approach achieves bal-
anced hash buckets by solving a balanced clustering objective, utilizing the optimal transport (OT)
formulation (Villani et al., 2009). However, when dealing with a large number of cluster centroids,
this requires a very large transportation matrix. Consequently, the Sinkhorn-Knopp (SK) algorithm
(Cuturi, 2013), used to solve regularized transport problems, exhibits slow convergence and intro-
duces substantial overhead during training. Also, this approach defines cluster centroids as normal-
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ized binary vectors on a hypersphere. However, these non-orthogonal centroids lead to overlapping
or closely situated clusters, resulting in hash buckets lacking distinct separation. Consequently, it
causes data points near bucket boundaries and their perturbations to be assigned to different hash
buckets, thereby compromising retrieval performance.

While numerous prior studies (Zheng et al., 2020; Yang et al., 2017; Hoe et al., 2021) have explored
the generation of balanced hash codes in the context of image retrieval, none of these algorithms
addresses the utilization of all possible hash buckets for a given bit length while maintaining a
balanced distribution across hash buckets.

Similar to Singh et al. (2023), we adopt a joint representation learning and indexing approach in this
paper. In contrast to Singh et al. (2023), we use a novel method for learning balanced hash codes,
namely normalizing flow (NF). NF is a generative model that transforms complex distributions into
tractable ones through a series of invertible and differentiable mappings. Our approach employs the
RealNVP (Dinh et al., 2016) normalizing flow model to transform pre-trained audio representations
within an RK space to assign each dimension to a bimodal Gaussian mixture distribution. The result
is an overall distribution comprising 2K balanced modes, where each mode effectively corresponds
to a representative hash bucket. This methodology aligns with the balanced clustering objective,
with cluster centroids being vertices of a K-dimensional hypercube to ensure distinct cluster sepa-
ration. Furthermore, we introduce a cross-entropy-based loss as a regularization term, enhancing the
likelihood of data points and their perturbations being assigned to the same hash bucket. Our model,
named FlowHash, presents two noteworthy advantages: firstly, it provides a scalable and optimal
solution to achieve balanced hash buckets as often required in hash-based indexing. Secondly, it
facilitates efficient database indexing using a classical hash table, which diverges from the prevalent
method of constructing multiple hash tables in LSH. As a result, our approach enhances both the
effectiveness and efficiency of the retrieval process. Overall, the main contributions of our work are
as follows:

• We introduce a novel application of NF in hash-based indexing, leveraging it to obtain scalable
balanced hash codes that ensure uniform distribution across all possible hash buckets for a given
bit length.

• We introduce a regularization loss term to enhance the robustness of the hash codes.
• We present an audio fingerprinting method to effectively and efficiently identify short audio snip-

pets (≤2s) in high noise and reverberant environments.
• Our emperical study shows the robustness and scalability of our approach. Furthermore, we

demonstrate its superior performance compared to LSH and the recently introduced OT-based
method by Singh et al. (2023).

2 RELATED WORK

Audio fingerprinting. The common approaches for audio fingerprinting transform audio segments
into low-dimensional vectors, commonly referred to as representations or fingerprints. The existing
methods can be categorized based on two key characteristics. Firstly, the approach employed to
generate fingerprints can be either knowledge-based (Haitsma & Kalker, 2002; Wang et al., 2003;
Ke et al., 2005) or machine-learning-based (Gfeller et al., 2017; Báez-Suárez et al., 2020). Sec-
ondly, the generated fingerprints can be either hash representations (Baluja & Covell, 2008; Wu &
Wang, 2022) or real-value representations (Báez-Suárez et al., 2020; Singh et al., 2022). The real-
value representations offer a notable advantage in precise identification owing to their expansive
information-capturing capability. However, hash-based representations facilitate fast comparisons
and impose lower memory demands. Recent advances in audio fingerprinting have witnessed the
emergence of deep-learning-based methodologies (Chang et al., 2021; Singh et al., 2022; 2023),
often trained within a self-supervised learning framework. These methods exhibit robustness and
achieve high retrieval performance even under high-distortion conditions such as noise and rever-
beration.

Hash-based indexing. A large body of work exists on hash-based indexes for approximate nearest-
neighbor searches in high-dimensional space. Locality-sensitive hashing methods, like Multi-Probe
LSH (Lv et al., 2007) and Cross-polytope LSH (Andoni et al., 2015), utilize hash functions to
map data to fixed-size hash codes, yielding sub-linear time complexity. The LSB-tree (Tao et al.,
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2009) merges LSH with trees for logarithmic query complexity. Entropy-LSH (Panigrahy, 2005)
improves similarity-preserving hashing through entropy-based techniques. Bayesian LSH (Satuluri
& Parthasarathy, 2011) enhances search precision via probabilistic models. Deep learning-based
LSH approaches, such as Deep-LSH (Gao et al., 2014) and Neural-LSH (Dong et al., 2019), leverage
deep learning for effective hash function learning.

Generative modeling. The two prominent generative models include Generative Adversarial Net-
works (GANs) (Goodfellow et al., 2014) and Variational Autoencoders (VAEs) (Kingma & Welling,
2013), facilitating data generation and latent space exploration. However, neither of them evaluates
explicit probability estimation on generated samples. Normalizing Flows (NFs) have emerged as
a promising alternative. They employ invertible transformations to model complex distributions,
yielding both tractable likelihood estimation and efficient sampling. NFs find several applications,
including density estimation (Dinh et al., 2016), audio generation (Esling et al., 2019), and anomaly
detection (Gudovskiy et al., 2022).

Optimal transport. OT has gained traction (Torres et al., 2021) in machine learning for its ability
to quantify the minimal cost of transforming one distribution to another. It finds applications in
diverse domains, such as generative modeling (Arjovsky et al., 2017), domain adaptation (Courty
et al., 2017), and clustering (Caron et al., 2020). In machine learning, the Sinkhorn-Knopp algo-
rithm (Cuturi, 2013) solves optimal transport problems efficiently. However, its iterative nature and
matrix computations lead to computational complexity, which poses challenges for integration into
machine-learning tasks, particularly in large-scale scenarios. Moreover, high memory requirements
due to operations on large cost matrices further limit its practicality.
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Figure 1: An overview of the FlowHash model. The encoders Fθ and Fϕ are initially pre-trained in a
self-supervised learning framework to generate robust encodings e ∈ Sd and y ∈ RK , respectively,
corresponding to the audio segment x. Subsequently, y, combined with a fixed distribution pY , is
fed into the normalizing flow model FΘ to compute z ∈ RK . The distribution of z conforms to
the desired pZ , facilitating the generation of balanced hash codes. Additionally, we introduce a
regularization term during normalizing flow training to enhance code robustness.

3 OUR APPROACH: FLOWHASH

Our primary goal is the efficient indexing of the fingerprint database of size N , denoted as E =
{en}Nn=1, using a balanced hash table T = {hk : Ak, Ak ⊂ E, k ∈ {1, 2, ..., 2K}}. To this end,
we first project fingerprints e into a low-dimensional RK space while preserving the neighborhood
structure. These projections are subsequently transformed using the normalizing flow model to
achieve a distribution characterized by 2K well-balanced modes, each linked to a distinct hash code.
This ensures that the size of each Ak is approximately N/2K . We illustrate an overview of our
method in Figure 1.
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3.1 ENCODER: REPRESENTATION LEARNING

We utilize the Transformer-based encoder Fθ as initially proposed by Singh et al. (2023) to obtain
contextualized audio representations. Given a set D of audio files, we randomly select an audio
segment x of fixed length and convert it to a log-Mel spectrogram. We further split the spectrogram
into non-overlapping patches along the temporal axis and convert each into a 1D embedding using a
projection layer. The sequence of these embedding are then fed into the Transformer encoder. The
Transformer output sequence is then concatenated, thereby preserving the temporal structure of the
audio. This concatenated sequence is then projected to a d-dimensional embedding, followed by
length-normalization. This process results in a fingerprint denoted as e = Fθ(x) ∈ Sd. Similarly,
we generate e+ = Fθ(x

+) for the distorted counterpart x+ of x. To achieve robust representations,
we train the encoder to maximize the cosine similarity between e and e+ using a contrastive loss:

Lcontrastive = − log
exp ((e · e+)/τ)

exp ((e · e+)/τ) +
∑

e− exp ((e · e−)/τ)
, (1)

where τ is a temperature hyperparameter that facilitates effective learning from hard negatives.

Next, we focus on learning the K-bit hash code h corresponding to each fingerprint e. As a first step,
we employ a projection mapping Fϕ, which transforms the fingerprint into a low-dimensional RK

space, resulting in y = Fϕ(e). We learn this mapping using the triplet loss to ensure the respective
projections of e and e+ maintain proximity based on the Euclidean distance as:

Ltriplet = max(0, ∥ y − y+ ∥2 − ∥ y − 1

2M − 2

2M−2∑
m=1

y−m ∥2) (2)

Note that in a minibatch comprising M pairs {x, x+}, resulting in 2M samples, there are 2M -2
negative samples, x−, for each pair within the batch. Finally, we pre-train the encoders Fθ and Fϕ

using the overall loss that combines both contrastive and triplet losses:

Lpretrain = Lcontrastive + Ltriplet (3)

The reason for pre-training the encoders is to establish a fixed distribution pY of projections y. This
distribution serves as input to the normalizing flow model in the subsequent step.

3.2 NORMALIZING FLOW: BALANCED HASHING

We aim to transform samples y into z while ensuring that each component zk independently follows
a bimodal Gaussian mixture distribution pZk

along its respective k-th dimension. This transforma-
tion results in a joint distribution pZ consisting of 2K balanced modes in the RK space (see Figure 5
in Appendix A.4). To accomplish this, we leverage the RNVP normalizing flow model (Dinh et al.,
2016).

The RNVP model applies a series of invertible mappings to transform a simple prior distribution
into a complex distribution. Let Z ∈ RK be a random variable with prior distribution pZ , and
fΘ = fL ◦ fL−1 ◦ ... ◦ f1 be an invertible function such that Y = fΘ(Z). We can determine the
probability density of random variable Y using the change of variable of formula as:

log(pY (y)) = log(pZ(f
−1

Θ (y))) +

L∑
l=1

log |det(Jf−1
l

(yl))|, (4)

where Jf−1
l

is the Jacobian of f−1

l . We denote the l-th intermediate flow output as yl = fl◦fl−1◦...◦
f1(z) and thus yL = y. These mappings fl are parameterized by neural networks, and when applied
sequentially, they are able to transform a simple distribution into a more complex one. Moreover,
these mappings are designed to be invertible with tractable Jacobian determinants. In RNVP, we
define these mappings as affine coupling layers. This layer splits the input z ∈ RK into two disjoint
parts, (z(1), z(2)) ∈ Rk × RK−k and transforms the input non-linearly as:

y(1) = z(1) (5)

y(2) = z(2) ⊙ exp(s(z(1))) + t(z(1)), (6)
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where s(.) and t(.) are neural networks, and ⊙ represents the Hadamard product.

Here, we consider zk of z as mutually independent components, each following a fixed bimodal
Gaussian distribution pZk

and thus we define pZ as:

log(pZ(z)) =

K∑
k=1

log(pZk
(zk)) =

K∑
k=1

log(0.5 · N (zk| − 2, 1) + 0.5 · N (zk|2, 1)), (7)

where N (z;µ, σ2) represents a Gaussian distribution with mean µ and variance σ2. We train the
RNVP model using the forward KL-divergence loss function, which is equivalent to minimizing the
negative log-likelihood of the input data:

LNLL = − log(pY (y)) (8)
Here, in contrast to the generative task, we employ the inverse function f−1

Θ to transform the input
embedding y into z. Subsequently, after training the model, we use it to generate a K-bit hash code
h by quantizing z as h = positive(z). Specifically, for each component k = 1, 2, ...,K, we define
positive(zk) = 1, if zk > 0, and positive(zk) = 0 otherwise.

Hash codes robustness. We also aim to ensure that both fingerprints in any given pair {e, e+} are
consistently mapped to the same hash bucket h. This objective essentially translates to a binary
classification problem, where each bit is assigned to either class 0 or 1. Therefore, we introduce
cross-entropy based regularization term to achieve robust hash codes. The primary purpose of the
regularization is to enforce the embeddings z and z+ to align closely, thereby promoting the reliable
mapping of samples to hash buckets. The regularization term is defined as:

LBCE =

K∑
k=1

(
H(zk, z

+
k ) +H(z+k , zk)

)
, (9)

where H(u, v) represents the cross-entropy between two distribution u and v. In our context, it
quantifies the dissimilarity between zk and z+k . To further clarify, H(u, v) is computed as:

H(u, v) = −
[
pZ1k

(u) · log(pZ1k
(v)) + pZ2k

(u) · log(pZ2k
(v))

]
, (10)

Here, pZ1k
and pZ2k

denote the probability density associated with two modes of the Gaussian
mixture distribution along the k-th dimension. We finally train our model to minimize the overall
loss combining negative log-likelihood loss and regularization term:

LNF =
1

M

M∑
m=1

(
LNLL(zm) + λLBCE(zm, z+m)

)
, (11)

where the hyperparameter λ ≥ 0 controls the trade-off between balanced hashing and hash code
robustness.

3.3 INDEXING

We employ the trained encoders and normalizing flow model to extract fingerprints from a set of
reference audio tracks D and subsequently index them using a hash table T for an efficient retrieval
during inference:

• Fingerprinting: We first extract audio segments of t seconds from each audio track at a regular
interval of s(< t) seconds. Then, we generate a log-Mel spectrogram corresponding to each
segment and feed it into the encoder to generate its fingerprint e ∈ Sd.

• Hashing:We input the fingerprint e into the projection encoder, followed by the normalizing flow
model, which computes z ∈ RK . To create the hash code h ∈ {0, 1}K , we quantize z using the
positive(.) function. However, this straightforward approach has a limitation - it assigns a bit with
full confidence even to a z value near 0. Moreover, their slightly perturbed counterpart z+ may
map to a different bit than that assigned to z, leading to a degradation in retrieval performance.
Therefore, we assign both bit 0 and 1 to z values within a small neighborhood r(> 0) around 0.
As a result, e is mapped to multiple hash codes h(z) = {h1, h2, . . . , hi}. This ensures a more
robust retrieval performance, mitigating the potential performance loss associated with near-zero
z values.

• Hash Table: Finally, we build the hash table T =
{
hk : {en | hk ∈ h(zn)}, n = 1, 2, . . . , N

}
,

where N is the total number of fingerprints extracted from all reference audio tracks.
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3.4 RETRIEVAL

For a query q of length t̃ (≥ t) seconds, we follow the same steps as above to extract fingerprints
eq = {eqo}Oo=1, where O is the number of segments extracted from q. For each eqo , we compute its
corresponding hash codes h(qo) = {h1, . . . , hi} depending on a neighborhood r̃. Then, we look up
into each hash bucket to retrieve all the bucket candidates, C = {T (hk), hk ∈ h(qo)}. To find the
best match among the candidates, we perform a linear search as: argmaxp∈C (ep · eqo)
As the query is segmented sequentially over time, the retrieved set of best-matching indices must
correspond to a contiguous sequence. However, this contiguity is not always achieved due to ap-
proximate matching. To this end, we employ a simple yet effective subsequence search strategy (see
Figure 6 in Appendix). This approach enables us to precisely locate the best-matching subsequence
within the reference database that aligns with the query q. Let i = {i1, . . . , iO} be the retrieved
sequence of indices. Then, we generate all possible sequence candidates as:

Sm = {io + o−m, o = 1, 2, .., O},m = 1, 2, . . . , O (12)
Finally, we select the best matching sequence Sm∗ which has the maximum consensus with i:

m∗ = argmax
m

O∑
o=1

I[Sm,o=io] (13)

4 EXPERIMENTS

4.1 DATASET

Music: We use the Free Music Archive (FMA) (Defferrard et al., 2016) as a benchmark dataset
prominently used for audio fingerprinting tasks. The dataset comprises three primary subsets: small,
medium, and large, each containing 30s audio clips. We use the small subset for model training,
which consists of 8000 balanced clips representing the top 8 genres in the dataset. We use the
medium set of 25,000 clips, equivalent to 208 hours, to evaluate systems performance. We also
use the large subset comprising a substantial 106,574 clips, totaling about 888 hours of content and
spanning 161 genres, to assess the scalability of the systems. Note that the medium and large subsets
exhibit an unbalanced track distribution per genre. This diversity in genre representation allows for
a more comprehensive assessment of system performance on a larger scale.

Noises: We extracted diverse noise samples from the MUSAN corpus (Snyder et al., 2015) for
model training. We used a distinct set of noise clips obtained from the ETSI database 1 during
the evaluation phase. These clips correspond to various environmental contexts, including babble,
cafeteria, car, living room, shopping, train station, and traffic.

RIRs: We used the MUSAN corpus to acquire Room Impulse Responses (RIRs) corresponding
to various environmental settings, ranging from small indoor rooms to large rooms such as halls,
conference rooms, and churches. We used RIRs from the Aachen Impulse Response Database (Jeub
et al., 2009) during the evaluation. These RIRs correspond to a t60 reverberation time of 0.2 to 0.8s.

4.2 METRICS

Efficacy is measured using the top-1 recall rate, which indicates the percentage of outcomes where
the correct match is found at the top rank. Note that we consider the correct match only if the
identified timestamp of a query is within 50ms of the actual timestamp.

Efficiency serves as a quantitative measure of how effectively the database is searched to find the
top match. Let N denote the total number of database samples and Np be the total unique points
evaluated in the candidates list C , then we define the metric as eval = 100× Np

N .

4.3 BASELINES

We compare our proposed method, FlowHash, against state-of-the-art deep learning-based encoding
methods introduced by Singh et al. (2022) (AE) and Chang et al. (2021) (NAFP). Moreover, we

1https://docbox.etsi.org/
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employ the recently proposed OT-based method (Singh et al., 2023) for balanced hashing and the
LSH as baseline methods to show the effectiveness of our proposed approach for efficient retrieval.

4.4 IMPLEMENTATION

Augmentation: We randomly apply the following distortions to audio input x to generate x+ as:

• Noise: We add a randomly selected background noise within a 0-20dB SNR level range.
• Reverberation: We filter the input audio with a randomly chosen RIR to simulate room acoustics.
• Time offset: We add a temporal offset of up to 50ms to account for potential temporal inconsis-

tencies in the real-world scenario.

Database: We use the medium and large subsets to construct their respective fingerprint databases.
We generate fingerprints for 1s audio segments extracted every 100ms in each audio track. As a
result, the medium and large subsets yield a database of ∼7M and ∼29M fingerprints, respectively.

Queries: We generate 1,000 queries by randomly selecting segments from the reference audio
tracks. These queries vary in length from 1-5s and are distorted with added noise, reverb, or a
mix of both. To generate noisy reverberant queries, we first filter them using an RIR with a t60 of
0.5s, followed by adding noise in a 0-20dB SNR range.

4.5 RESULTS

Table 1: Comparison of top-1 recall rates (%) in various distortion environments for varied query
lengths. The final column represent retrieval efficiency, determined by the percentage of the total
database evaluated to identify the top match. We underline our results if the accuracy drop is less
than 1.5% compared to the best performing baseline.

Method Noise ↑ Noise + Reverb ↑ Reverb ↑ eval ↓
0dB 5dB 10dB 15dB 20dB 0dB 5dB 10dB 15dB 20dB 0.2s 0.4s 0.5s 0.7s 0.8s

1s

NAFP + LSH 50.1 66.4 73.0 75.1 76.0 21.3 43.1 53.9 58.3 60.5 61.4 60.3 57.6 48.5 42.3 2.28
AE + LSH 59.1 70.2 71.5 74.8 75.7 32.1 52.0 57.9 63.3 65.1 66.2 65.3 63.1 55.3 51.9 2.32
TE + LSH 74.6 81.9 87.0 89.1 91.4 47.8 67.5 77.8 82.1 83.0 83.4 82.2 80.2 74.0 72.7 2.30
TE + OT 65.3 82.0 87.5 89.6 90.2 42.3 62.1 74.1 78.7 81.3 83.5 82.7 80.1 68.0 63.4 1.21

TE + NF (FlowHash) 63.2 81.0 89.1 93.0 92.7 36.6 60.1 73.2 78.9 81.4 82.5 79.5 79.2 70.6 68.5 0.76

2s

NAFP + LSH 69.7 79.0 85.0 86.8 87.1 40.1 63.3 72.6 75.0 76.1 77.1 76.7 75.5 68.3 61.0 2.28
AE + LSH 75.4 83.7 84.5 87.0 87.7 53.1 71.6 78.0 81.6 82.2 84.0 82.5 81.6 75.2 70.8 2.32
TE + LSH 82.6 90.0 92.3 93.8 94.6 61.5 81.2 85.5 86.3 87.1 90.0 88.6 87.0 80.6 76.9 2.30
TE + OT 81.6 90.0 92.6 93.6 94.2 59.2 80.6 85.1 86.1 87.3 91.6 88.5 86.0 79.1 71.1 1.21

TE + NF (FlowHash) 82.0 90.1 94.1 94.8 95.9 55.9 78.6 84.7 85.9 86.9 90.2 87.6 87.6 79.6 74.9 0.76

3s

NAFP + LSH 77.0 83.8 88.0 88.7 89.1 53.6 71.1 77.7 78.5 81.0 82.3 78.6 76.5 69.1 62.3 2.28
AE + LSH 81.7 86.5 88.1 88.7 89.4 64.4 78.1 82.4 85.0 86.7 88.8 85.6 84.0 76.7 72.3 2.32
TE + LSH 86.5 92.2 94.1 94.9 96.0 70.6 85.5 88.7 88.6 89.3 92.8 89.6 89.0 81.3 78.2 2.30
TE + OT 85.0 91.1 95.0 96.0 96.6 70.0 83.8 88.4 88.7 89.4 93.1 91.0 87.2 79.5 73.1 1.21

TE + NF (FlowHash) 86.0 92.1 94.7 96.0 96.7 69.6 84.6 88.9 88.7 89.7 92.3 88.9 88.0 80.1 77.0 0.76

5s

NAFP + LSH 81.4 88.2 90.3 91.5 91.6 62.1 80.1 82.5 82.7 83.6 84.5 83.1 78.1 74.0 64.8 2.28
AE + LSH 83.1 89.0 90.8 91.2 92.0 76.3 85.1 87.1 89.0 89.1 90.5 88.0 86.3 80.0 76.9 2.32
TE + LSH 89.9 92.4 95.4 96.4 96.5 81.3 90.0 90.2 90.9 89.7 94.0 91.2 90.1 82.3 79.0 2.30
TE + OT 88.1 93.4 95.3 96.1 97.0 80.1 88.2 90.8 90.8 91.0 95.2 91.4 88.3 79.4 74.9 1.21

TE + NF (FlowHash) 89.9 93.2 96.0 96.4 97.0 80.6 90.0 90.8 90.9 91.2 94.2 90.3 90.2 81.5 78.9 0.76

Table 1 compares our method with the baselines, focusing on efficiency and efficacy. We first assess
the effectiveness by comparing the performance of the Transformer-based encoding (TE) with NAFP
and AE methods while using LSH for indexing and maintaining a consistent evaluation of points.
TE excels at capturing contextual information, resulting in better discriminative embeddings. Thus,
TE consistently achieves 10-20% higher hit rates across varying distortion levels and query lengths.

For 1 second queries, we observed several mismatches due to repeated instances of a query (e.g.
refrain of a song) in an audio track. Therefore, it becomes crucial to choose an extended query to
be more discriminative to accurately identify its correct match. This is corroborated by the con-
sistent trend of improved performance across all methods with extended query lengths. Moreover,
our subsequence search allows precise query alignment in the identified audio track, resulting in a
substantial 10-20% increase in recall rates for longer queries.

Furthermore, we compare the retrieval efficiency of our proposed approach using NF with OT and
LSH on the fingerprints database generated with TE. Our method outperforms LSH and OT across
different distortion levels, achieving an average speedup of 3.1× and 1.6×, respectively. With this
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Figure 2: The illustration shows the marginal
distributions, pZk

, for each dimension. Each di-
mension exhibits a bimodal Gaussian mixture
distribution for K=16 (left) and K=24 (right).
This indicates that the joint distribution pZ con-
sists of well-balanced 2K modes in the RK

space.

speedup, we achieve competitive or even higher hit rates across different distortion environments.
However, our method underperforms in noisy reverberant environment, particularly at 0dB and 5dB
SNR for the short (1 second) queries. Nevertheless, it is encouraging that the accuracy gap narrows
to 1-2% for longer query lengths and even surpasses the accuracy of the other methods at high SNR
levels.

It is important to highlight that OT selects top-k buckets to probe by evaluating the similarity of
a query with all 2K hash buckets, which adds significant computational overhead in the retrieval
process as K increases. In contrast, our method efficiently probes buckets based on near zero-valued
z-values, resulting in a computationally inexpensive procedure. On average, our method probes 35
buckets, which is a substantial reduction compared to 1000 bucket probes in OT and LSH.

4.6 ANALYSES

Target distribution. In Figure 2, we present an analysis for K=16, demonstrating that the nor-
malizing flow effectively yields the target distribution pZ . In particular, we analyze the marginal
distributions pZk

of pZ along each dimension. These marginals are depicted as a bimodal Gaussian
mixture with balanced modes, resulting in an overall balance across all 216 modes in the R16 space.
Notably, we achieve this balance mode distribution even for a larger K, such as K=24. This high-
lights the applicability of our approach in scenarios where a substantial number of hash buckets are
required to index an extensive database efficiently.

Balanced hash codes. We evaluate the balance of K-bit hash codes by examining the density of
each hash bucket within a hash table T . The density measures the proportion of total samples N
mapped to a hash bucket hk, and is defined as ρk = − log2(|T (hk)|/N). A uniform distribution of
density values indicates an optimal balance, each attaining the value of K. This signifies an ideal
scenario where samples are evenly distributed across all possible 2K hash buckets. Deviations in
density from K, either higher or lower, indicate that the respective bucket is either underfilled or
overfilled. We show in Figure 3 that NF achieves hash codes with a more balanced distribution
compared to the OT formulation. Our method results in ∼95% of total hash buckets that are almost
uniformly filled, as opposed to ∼78% in the OT-based approach. Adding the LBCE loss introduces
some disruption to this balance; however, it still outperforms the OT method.

13 14 15 16 17 18 19 20
density(ρ)

0

2

4

6

8

%
 o
f t
ot
al
 h
as
h 
bu

ck
et
s

15≤HNF≤17: 98.7%
15≤HOT≤17: 78.0%

OT %s NF (λBCE=0.0)
OT
NF

13 14 15 16 17 18 19 20
de sity(ρ)

0

2

4

6

8

%
 o
f t
ot
al
 h
as
h 
bu

ck
et
s

15≤HNF≤17: 94.6%
15≤HOT≤17: 78.0%

OT %s NF (λBCE=0.5)
OT
NF

Figure 3: Comparison of hash code balance between NF and OT for K=16.

Regularization loss. To assess the effectiveness of the regularization term, we analyze the absolute
value difference between zk and z+k across all K dimensions. Figure 4 shows that zk and z+k tend
to lie closer when employing the LBCE loss function during training. Consequently, this increases
the probability of zk and z+k being assigned to the same bit and thus requires fewer bucket probes
during the search. On the contrary, a substantial difference in z values is observed without LBCE
loss. Our analysis indicates that ∼82% of all pairs (z, z+) exhibit less than a 0.5 z-value difference,
compared to only ∼51% in the absence of LBCE.
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Figure 4: Effect of LBCE on the absolute differ-
ence between zk and z+k . The addition of the
LBCE loss coaxes zk and z+k to map them to the
same bit, whereas its absence results in an in-
creased distance between them.

Scalability. To evaluate the scalability of our method, we index a database comprising ∼29M fin-
gerprints using 24-bit hash codes. Due to computational constraints, computing 24-bit hash codes
with OT is infeasible. Therefore, we present the results for both LSH and our method in Table
2. Both methods experience a decline in recall rate accuracy, ranging from 10-20%, in noisy and
noisy+reverberant environments, particularly at 0dB and 5dB SNR levels. However, at lower distor-
tion levels, we observe a more modest decrease in accuracy, ranging from 5-7%. In comparison to
LSH, our method attains a similar hit rate while exhibiting a 2.4× speedup, which is slightly lower
than the 3.1× speedup observed in the prior evaluation conducted on a smaller database.

Table 2: Comparison of top-1 recall rates (%) and the percentage of database (large) evaluated in
various distortion environments for 1 second queries. We underline our results if the accuracy drop
is less than 1.5% compared to the best performing baseline.

Method Noise ↑ Noise + Reverb ↑ Reverb ↑ eval ↓
0dB 5dB 10dB 15dB 20dB 0dB 5dB 10dB 15dB 20dB 0.2s 0.4s 0.5s 0.7s 0.8s

1s TE + LSH 61.2 74.4 84.8 88.2 89.6 27.9 55.2 64.4 69.7 71.9 75.8 75.7 72.3 66.0 62.3 0.14
TE + NF (FlowHash) 51.5 73.5 84.3 89.9 90.1 23.5 48.4 63.5 71.0 75.4 75.1 75.6 71.2 63.6 59.5 0.06

5 LIMITATIONS

The main limitation of the proposed method lies in the computational complexity associated with
generating balanced hash codes using NF. However, the balanced K-bit hash codes speed up the re-
trieval process, particularly as K increases. Additionally, our method utilizes a computationally in-
tensive encoder to generate fingerprints, enabling precise matching of queries even in high-distortion
environments. While these choices do come with a trade-off in terms of longer encoding time, they
ultimately contribute to the great efficacy and retrieval efficiency of our method. In terms of mem-
ory requirements, each fingerprint is encoded using 4 bytes, occupying a total of 4.8GB for ∼7M
fingerprints. However, this space requirement could be reduced by half by encoding each fingerprint
using 2 bytes with only a negligible (≤ 0.5%) decline in the recall accuracy.

6 CONCLUSION

This paper proposes a novel application of NF in the domain of vector search, particularly for the
audio fingerprinting task. We leverage normalizing flows to attain balanced K-bit hash codes. We
achieve this by transforming vectors within a latent RK space, resulting in a distribution charac-
terized by well-balanced 2K modes, each corresponding to a hash bucket. This allows an efficient
database indexing using a balanced hash table. In addition, we incorporate a regularization term
while training the NF model to ensure a vector and its corresponding perturbation map to the same
hash bucket, thereby adding robustness to the indexing process. Moreover, we validate that our
method produces hash codes with superior balancing compared to the recently proposed OT-based
approach. We employ a self-supervised learning framework to enhance robustness of our finger-
printing system against high noise and reverberation levels. Furthermore, our system demonstrates
scalability and efficiency in retrieval, surpassing the performance of both the LSH and the OT-based
approach.
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7 REPRODUCIBILITY

We provide the details of the models used to build our system in the Appendix A.3. Additionally, we
intend to make the source codes available to the public for reproducibility after the review process.
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A APPENDIX

A.1 MORE RESULTS

A.1.1 LIBRISPEECH

We also demonstrate in Table 3 the performance of our method on the LibriSpeech database, com-
monly used for the Automatic Speech Recognition (ASR) task. This database provides free au-
diobooks of the public domain text and consists of recordings from a diverse set of readers. This
database is organized into distinct sets for training, development, and testing. We used the ‘train-
clean-100’ training subset, consisting of 100 hours of data for training our models. We used the
‘train-clean-360’ subset for evaluation purposes, containing 360 hours of data. This subset is em-
ployed to build the fingerprints database, resulting in ∼12M fingerprints.

Table 3: Comparison of top-1 recall rates (%) in various distortion environments for 1 second
queries. The final column represent retrieval efficiency, determined by the percentage of the to-
tal database evaluated to identify the top match. We underline our results if the accuracy drop is less
than 1.5% compared to the best performing baseline.

Method Noise ↑ Noise + Reverb ↑ Reverb ↑ eval ↓
0dB 5dB 10dB 15dB 20dB 0dB 5dB 10dB 15dB 20dB 0.2s 0.4s 0.5s 0.7s 0.8s

1s
TE + LSH 84.1 90.6 90.5 92.7 93.5 70.9 79.7 88.7 89.6 89.4 91.9 91.2 90.7 89.5 89.2 1.98
TE + OT 75.3 90.0 91.2 92.9 93.2 62.3 80.3 85.0 89.4 93.2 93.1 91.7 91.5 90.7 83.4 1.01

TE + NF (FlowHash) 75.5 90.2 92.6 93.5 94.4 57.6 80.1 86.8 91.7 93.4 93.5 91.9 91.2 90.2 87.5 0.58

A.1.2 BROADCAST CONTENT

In Table 4, we compare the performance of our method using an internally curated dataset of broad-
cast content. This dataset encompasses diverse content types such as awards shows, folk music,
sports programs, autobiographies, and interviews. To train our model, we utilized a subset of ap-
proximately 100 hours of data. The remaining dataset, totaling around 200 hours of content, was
used to construct a fingerprint database for evaluation purposes. Our reference database comprised
of ∼7M fingerprints.

Table 4: Comparison of top-1 recall rates (%) in various distortion environments for 1 second
queries. The final column represent retrieval efficiency, determined by the percentage of the to-
tal database evaluated to identify the top match. We underline our results if the accuracy drop is less
than 1.5% compared to the best performing baseline.

Method Noise ↑ Noise + Reverb ↑ Reverb ↑ eval ↓
0dB 5dB 10dB 15dB 20dB 0dB 5dB 10dB 15dB 20dB 0.2s 0.4s 0.5s 0.7s 0.8s

1s
TE + LSH 76.1 85.4 89.2 90.7 91.6 54.5 73.7 82.2 82.9 84.2 90.0 87.7 85.4 83.5 77.2 2.01
TE + OT 70.0 85.0 90.0 91.7 92.9 49.8 70.0 82.0 86.4 88.0 90.2 88.5 84.5 81.9 78.4 1.06

TE + NF (FlowHash) 68.2 84.7 89.6 92.2 93.4 45.9 70.8 81.8 87.4 88.0 89.4 87.9 86.8 82.7 78.7 0.80

A.2 ABLATION

A.2.1 INDEXING

In the indexing phase (section 3.3), we proposed assigning fingerprint e to multiple hash buckets
depending on the width parameter r (r > 0). Similarly, during the inference phase, we use the width
parameter r̃ to determine the hash buckets to probe for a given query fingerprint eqo . In Table 5, we
show how varying r and r̃ affect the probability of the candidate set C containing the best match for
query q during lookup. Additionally, we investigate how the fingerprint dimensions d influence this
probability.

We find that increasing values for r and r̃ result in higher probabilities across different distortion
levels. However, this also entails a higher number of candidate evaluations because increasing r
leads to an increase in hash bucket size, and increasing r̃ requires probing more buckets during
search. Therefore, to strike a balance between accuracy and the total candidate evaluation, we opted
for r = 1.0 and r̃ = 1.25 during the evaluation. The results also indicate that increasing the
fingerprint dimension has negligible effect on the probability.
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Table 5: The effect of widths r and r̃ and the fingerprints dimension d at different distortion levels
on the probability depicting that candidate list C contains the best match for a query q.

Noise (dB)
r = 0.5, r̃ = 1.0 r = 0.5, r̃ = 1.5 r = 1.0, r̃ = 1.0 r = 1.0, r̃ = 1.5

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
d=128 0.51 0.69 0.85 0.93 0.98 0.68 0.84 0.93 0.98 0.99 0.64 0.83 0.93 0.97 0.99 0.78 0.92 0.97 0.99 0.99
d=256 0.50 0.71 0.85 0.94 0.98 0.70 0.96 0.93 0.98 0.99 0.65 0.84 0.93 0.98 0.99 0.81 0.92 0.97 0.98 0.99
d=512 0.51 0.70 0.86 0.94 0.98 0.70 0.86 0.94 0.98 0.99 0.67 0.85 0.94 0.98 0.99 0.82 0.93 0.97 0.99 0.99

Noise + Reverb (dB)
r = 0.5, r̃ = 1.0 r = 0.5, r̃ = 1.5 r = 1.0, r̃ = 1.0 r = 1.0, r̃ = 1.5

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
d=128 0.29 0.40 0.53 0.58 0.64 0.48 0.61 0.70 0.78 0.81 0.46 0.57 0.68 0.76 0.77 0.61 0.73 0.82 0.87 0.91
d=256 0.30 0.42 0.52 0.61 0.65 0.50 0.62 0.74 0.79 0.83 0.47 0.60 0.70 0.76 0.79 0.61 0.75 0.83 0.89 0.91
d=512 0.29 0.41 0.51 0.60 0.64 0.48 0.60 0.71 0.77 0.83 0.46 0.60 0.72 0.77 0.81 0.63 0.77 0.84 0.90 0.91

A.2.2 ENCODING

We analyze the effect of increasing the fingerprint dimension, specifically from 64 to 128, 256, and
512. The results in Table 6 indicate that increasing dimensions from 64 to 128 leads to a 2-3% in-
crease in the recall rate, particularly at low SNR levels in noisy and noisy reverberant environments.
There is a negligible performance improvement when increasing dimensions from 128 to 256. How-
ever, a 3-5% gain in the recall rate is attained in both noisy reverberant and reverberant environments
when dimensions are increased from 128 to 512, with negligible impact in the noisy environment.
Note that the percentage of candidates evaluated is similar across different dimensions.

Table 6: Comparison of top-1 recall rates (%) in various distortion environments for varied finger-
prints dimensions d.

Noise ↑ Noise+Reverb ↑ Reverb ↑ eval ↓
0dB 5dB 10dB 15dB 20dB 0dB 5dB 10dB 15dB 20dB 0.2s 0.4s 0.5s 0.7s 0.8s

d=64 59.5 78.0 87.4 91.2 93.0 34.1 57.6 71.8 76.6 79.4 81.5 79.0 79.5 69.1 67.2 0.79
d=128 63.2 80.3 89.1 93.0 92.7 36.6 60.1 73.2 78.9 81.4 82.5 79.5 79.2 70.6 68.5 0.76
d=256 62.5 80.3 88.5 92.7 93.2 36.1 61.0 74.5 79.6 82.1 82.8 80.3 80.1 72.1 69.5 0.77
d=512 64.9 82.9 89.0 92.6 93.4 41.0 64.5 77.8 82.9 84.8 86.2 82.3 82.1 73.7 71.3 0.77

A.3 IMPLEMENTATION DETAILS

A.3.1 MODEL ARCHITECTURE

• Transformer Encoder: We first divided the input spectrogram of 64 frequency bins and 100 time-
frames into 10 non-overlapping patches along the temporal axis, each of dimension 64×10. These
patches were transformed into embeddings of size 128 using a neural network. The sequence of
these embeddings served as input to the Transformer model. The parameters of the Transformer
encoder are as follows:

– Number of layers: 8
– Attention heads: 8
– Feedforward neural network: 1 hidden layer with a size of 2048
– Dimensionality: 128
– Activation: ReLU

• Projection Layer: A feedforward network with a hidden layer of size 512 with ReLU activation
• Normalizing Flow: The following parameters were used to implement the RNVP model:

– Number of coupling layers: 10
– Neural network architecture in coupling layer: A feedforward network with 3 hidden layers

of size 64 with ReLU activation

A.3.2 OTHER DETAILS

• Sampling frequency (fs) of input audio: 16kHz
• Temperature τ in Equation 1: 0.1
• We chose λ = 0.5 to weight the LBCE loss while training normalizing flow model.
• Batch size of M : 512 pairs
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• We chose width r = 1.0 when indexing the database, whereas we chose r̃ = 1.25 for the
query during inference.

• We chose LSH implementation from https://github.com/FALCONN-LIB/
FALCONN.

A.3.3 TRAINING

The encoders were jointly trained using the Adam optimizer with a learning rate of 1e-4 for 1500
epochs. Further, we trained the RNVP model using the same optimizer with an initial learning rate
of 1e-3 for 1200 epochs until the learning rate reached its minimum value of 1e-4. These models
were trained on a single NVIDIA A100 GPU.

A.4 NORMALIZING FLOW ON TOY DATASETS

We illustrate in Figure 5 the transformation of the 2D input data Y , representing different distribu-
tions, using the NF model. The NF transforms the data to follow a bimodal Gaussian distribution in
each dimension, resulting in an overall distribution pZ consisting of 4 distinct modes. Each mode
represents a cluster and thus can be encoded using a 2-bit hash code.

A.5 FAILED APPROACHES

In the initial phase of the system development, we investigated two approaches to achieve balance
clustering. Firstly, we looked into the Gumbel softmax trick (as used in Wav2Vec2.0) to learn a
codebook. However, we observed a tendency for the codewords to collapse, rendering it unsuitable
for our purposes. Subsequently, we investigated the Minimal-cost flow problem 2, a graph-based
approach. While this approach enabled the attainment of balanced clusters, it proved to be compu-
tationally infeasible when employed, even when dealing with a relatively small number of clusters
in the few hundred range. Moreover, we devised a custom loss function to achieve balanced cluster-
ing. However, none of the approaches yielded satisfactory results when a large number (2K , where
K ≥10) of clusters were considered

2https://www.ijcai.org/proceedings/2019/0414.pdf
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(a)

(b)

(c)

(d)

Figure 5: Examples illustrating the transformation of input 2D data (left) into the corresponding
output (middle) that follows a bimodal Gaussian distribution along each dimension, resulting in an
overall distribution consisting of 4 balanced modes (right).
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Figure 6: Illustration of the retrieval process using subsequence search.
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