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Abstract

Vision-based intrusion detection has multiple applications in practical scenarios,
e.g., autonomous driving, intelligent monitoring, and security. Previous works
mainly focus on improving the intrusion detection performance, without a com-
prehensive and in-depth understanding of the intrusion scene. To fill this gap, we
explore a novel task called Multimodal Large Language Models based Intrusion
Scene Understanding (MLLM-ISU) and report a comprehensive benchmark for the
task. Specifically, we first design an effective and automatic visual question-answer
generation strategy, constructing a new MLLM-ISU dataset, with 3000 VQA eval-
uation Pairs, 8925 training Pairs, and six relevant subtasks. Then, we perform a
comprehensive assessment on various state-of-the-art proprietary and open-source
MLLMs, e.g., DeepSeek-VL2, GPT-4o, Qwen2.5-VL, etc, and find that current
MLLMs have weak abilities for this task. Further, in order to improve the intrusion
understanding capabilities of current MLLMs, we propose a Post-Training Frame-
work with three sequential training stages, i.e., Intrusion-aware Visual Instruction
Pre-training, Intrusion Chain of Thought tuning, and Intrusion-centric VQA tuning,
and sufficient experiments and comparisons are conducted to verify the effective-
ness of the proposed three-stage training framework. Available datasets and codes:
https://github.com/1012537710/MLLM-ISU.

1 Introduction

Vision-based intrusion detection has widespread applications in multiple domains, e.g., autonomous
driving, intelligent monitoring, and security. Vision-based intrusion detection refers to judging
whether a possible object exists in the restricted area-of-interest (AoI), and existing works can be
divided into two main categories via whether the camera is moving or not, i.e., static-view intrusion
detection [41, 25, 27] and dynamic-view intrusion detection [28, 11, 12, 10]. However, these works
can only perform simple intrusion detection tasks and cannot achieve comprehensive and in-depth
intrusion scene understanding, i.e, intrusion summary analysis, intrusion detection descriptions, as
shown in Tab. 1. And previous intrusion models cannot fulfill detailed descriptions like humans.
Besides, when the environment or scene changes, previous works struggle to retrain the network so
that the model can adapt to the new scene’s needs.

With the continuous development of Multimodal Large Language Models (MLLMs) in recent years,
i.e., Deepseek [9, 21, 8], ChatGPT [1], LLaVa [22], Qwen [4], and Gemini 1.5 [30], advanced
scene understanding seems to be possible. Thus, we cannot help but ask the basic yet important
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question: How about the capability of current MLLMs in Intrusion Scene Understanding? Although
MLLMs have showcased outstanding performance in multiple fields such as e.g., Fine-Grained Video
Motion Understanding [32], Industrial Anomaly Detection [20], the capability of intrusion scene
understanding still remains blank and unexplored. To remedy the limitations mentioned above and
answer this question, we define and investigate a new and practical task, Multimodal Large Language
Models based Intrusion Scene Understanding (MLLM-ISU) for the first time.

To accomplish the aforementioned MLLM-ISU task, the first challenge is the lack of relevant
datasets to assess the ability of existing MLLMs to understand the intrusion scenes. Previous
related datasets, e.g., Cityintrusion [28], Cityintrusion-Multicategory [11], and Multi-Domain Multi-
Category [12], mainly focus on image understanding of structured outputs, e.g., object detection and
semantic segmentation, and lack the capabilities of visual reasoning guided by linguistic instructions.
In this paper, we design and introduce the first MLLM-ISU dataset, with 3000 VQA Pairs for
evaluation, 8925 Pairs for supervised fine-tuning training, and six relevant subtasks, i.e., two low-level
understanding subtasks: Intrusion Behavior Judgment, Person Intrusion Classification, three high-
level understanding subtasks: Intrusion Summary Analysis, Intrusion Object Localization, Intrusion
Category Identification, and an open-level understanding subtask: Intrusion Scene Descriptions. We
show that our MLLM-ISU dataset can effectively meet the requirements of the proposed task.

Table 1: The comparison between previous promis-
ing intrusion detection and our MLLM-ISU task.
● and ● denote the low and high scene understand-
ing capabilities of different intrusion models.

Intrusion tasks Task Type Structure Modal Scene
Understanding (↑)

PIDNet [28] Detectable Single Task Close Single-Modal ●

MF-ID [11] Detectable Single Task Close Single-Modal ●

MM-ID [12] Detectable Single Task Close Single-Modal ●

Ada-iD [10] Detectable Single Task Close Single-Modal ●

MLLM-ISU Comprehension Multi Task Open Multi-Modal ●

The second challenge is that there is still a lack
of effective training strategies to improve the ca-
pability of current MLLMs in the intrusion scene
understanding task. To address this, we propose
a new post-training framework with three se-
quential training stages: an Intrusion-aware Vi-
sual Instruction Pre-training to get the capability
of basic coarse-grained scene understanding; an
Intrusion Chain of Thought Tuning strategy to
give the model the ability to reason and explain;
an intrusion-centric VQA tuning method to en-
hance fine-grained and structured understanding skills. Comprehensive experiments show that our
framework can effectively improve the intrusion scene understanding ability of current MLLMs.

Our contributions can be summarized as: (1) Novel task and benchmark. To the best of our
knowledge, the MLLM based Intrusion Scene Understanding (MLLM-ISU) task is proposed for
the first time. A comprehensive benchmark, including relative datasets and baselines, is reported
for the specific task. All datasets, codes, and baselines will be publicly available. (2) Effect
strategies and framework. We introduce an effective automatic visual question-answer generation
pipeline, overcoming the limitation that existing datasets are not directly applicable to the MLLM-ISU
task. Besides, an effective post-training framework with sequential training strategies is designed
to improve the performance of the MLLM-ISU task. (3) Sufficient experiments. We conduct
comprehensive experiments to evaluate the intrusion understanding capability of current MLLMs and
demonstrate the effectiveness of the proposed framework. Our framework can effectively improve
the weak comprehension of current MLLMs, even surpassing the proprietary MLLMs.

2 Related Work

Traditional Vision-based Intrusion Detection. Traditional Vision-based Intrusion Detection tasks
mainly focus on two main directions: static-view and dynamic-view intrusion detection. For
static-view intrusion detection tasks, some promising methods, e.g., Histogram of Oriented Gradi-
ents (HOG) [41], Conditional Random Field (CRF) [25], and Adaptive Background Subtraction
(ABS) [27], are proposed to solve the problem in a static environment. Besides, to compensate
for the lack of generalizability and category diversity of previous static-view works in adverse or
challenging environments, some encouraging dynamic-view works and methods, e.g., MF-ID [11],
MMID (Unsupervised Domain Adaptation) [12], Ada-iD (Active Domain Adaptation) [10], are
proposed to improve the performance of different intrusion detection frameworks in dynamic-view.
However, although these works effectively address the problem of dynamic-view intrusion detection,
they can only accomplish the single task of detection and not the multi-task of intrusion scenario
understanding, as shown in Tab. 1. Thus, in this paper, we propose a new and vital task to solve the
problem, i.e., Multimodal Large Language Models based Intrusion Scene Understanding.
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Multimodal Large Language Models Benchmarks. Multimodal Large Language Models achieve
promising performance in multiple understanding, and rich benchmarks are proposed. On the one
hand, some datasets are designed to evaluate the comprehensive performance of LLMs or MLLMs,
e.g. Math/Science (GSM8k [6], MATH [16], MathQA [2]), Reasoning (CLRS [33], HiPho [39]),
Image Understanding (MMMU [40], MathVista [23], ChartQA [24] ), Coding (DeepSeek-Coder [9]),
etc. Based on these datasets, the comprehensive ability of understanding is also reported. On
the other hand, for specific tasks, richer baselines are established and given, e.g., Fine-Grained
Video Motion Understanding (FAVOR-Bench) [32], Olympiad-level bilingual multimodal scientific
(OlympiadBench) [14], and End-to-End Autonomous Driving (OpenEMMA) [36], Enhanced Mul-
tiModal ReAsoning (EMMA) [13], Industrial Anomaly Detection [20]. However, although these
promising benchmarks are proposed, the capability of intrusion scene understanding still remains
blank and unexplored. Therefore, to remedy the limitation, in this paper, we propose a comprehensive
benchmark for the MLLM-ISU task, including relevant datasets, framework, and baselines.

3 MLLM-ISU Dataset

3.1 Data Collections

Vision-based intrusion detection (V-ID) is a joint task with detection and segmentation. Therefore,
the V-ID task usually needs both detection and segmentation annotations. However, acquiring these
labels for the same image is very time-consuming and difficult. Fortunately, with the development
of computer vision, some promising vision-based intrusion detection works are proposed, e.g.,
PIDNet [28], MF-ID [11], MMID [12], and Ada-iD [10]. By investigating, we find that the designed
datasets for the specific intrusion detection works are based on the Cityscape dataset [7], e.g.,
Cityintrusion [28], Cityintrusion-Multicategory [11], and Multi-Domain Multi-Category [12]. The
main reason is that the Cityscape dataset provides rich detection and segmentation annotation on
the same original image, making it the dataset of choice for intrusion detection tasks. Therefore, in
this paper, we also use the Cityscape dataset to build our MLLM-ISU datasets and further test the
capability of current MLLMs. Our MLLM-ISU datasets include 3000 VQA Pairs for evaluation, with
six relative subtasks, as shown in Section 3.2. Besides, we also design 8925 training Pairs to help
improve intrusion understanding performance for MLLMs, and the details are shown in Section 4.
The detailed data statistics and word cloud of all questions are shown in Fig. 1 and Fig. 2, respectively.
Note that to verify the universality of the proposed pipeline of VQA-Data Generation and enhance
the diversity of intrusion scene types in real-world environments, we create a new benchmark dataset
based on the BDD-100K [38] for the MLLM-ISU task. Please refer to the section Discussion.

I-VIP (Stage1)

2975

I-COT (Stage2)

2975
I-VQA (Stage3)

2975

IBJ

500

PIC

500

ISA

500

IOL

500

ICI

500

ISD

500

Train

8925

Val

3000

Figure 1: Data statistics Figure 2: The word Cloud of all questions

3.2 Question Definition

To evaluate the comprehensive intrusion scene understanding capability of current MLLMs, we define
six different intrusion subtasks from multiple views: low-level understanding tasks (L-U-T), high-level
understanding tasks (H-U-T), and open-level understanding tasks (O-U-T), respectively. The L-U-T
mainly focuses on simple intrusion understanding and contains two subtasks: Intrusion Behavior
Judgment and Person Intrusion Classification. Besides, H-U-T focuses on high-level understanding
and contains three subtasks: Intrusion Summary Analysis, Intrusion Object Localization, and Intrusion
Category Identification. O-U-T is an open understanding task and contains the Intrusion Scene
Descriptions subtask. Each subtask is designed to test different capabilities of MLLMs, as follows.
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· Subtask1: Intrusion Behavior Judgment (IBJ). The subtask of IBJ is used to test whether the
MLLMs can correctly make intrusion judgments. It is a binary classification and can measure the
model’s ability to determine intrusion events.

· Subtask2: Person Intrusion Classification (PIC).The subtask of PIC is designed to test the
model’s intrusion judgments for individual categories. It is used to measure the model’s ability to
categorize intrusion events at a fine-grained level.

· Subtask3: Intrusion Summary Analysis (ISA). ISA is used to test the ability to summarize
and analyze in the intrusion scene understanding task, i.e., how many intrusion and non-intrusion
behaviors are in the image.

· Subtask4: Intrusion Object Localization (IOL). IOL is designed to measure the localization
capabilities of MLLMs. This subtask is used to determine the object location for different intrusion
behaviors and to identify the most dangerous intrusion objects.

· Subtask5: Intrusion Category Identification (ICI). This subtask is used to test the ability to
identify the intrusion category. Ask the MLLMs which types have intruded into the divine area. about
the type of intrusion detection behavior.

· Subtask6: Intrusion Scene Descriptions (ISD). This is an open-level question that aims to assess
the ability to describe intrusion detection scenes.

3.3 VQA-Data Generation

Automatic Question-Answer Generation. To obtain the final VQA pairs, we design a novel
and efficient data generation strategy. Compared to some automatic Question-Answer generation
methods by using MLLMs (GPT-4V or GPT-4o), e.g., MMAD [20], FAVOR-Bench [32], Biology
Instructions [15], our proposed strategy presents more efficiency and accuracy, as shown in Fig. 3.
Specifically, our data generation strategy mainly contains four main steps: (i) We first utilize the
detection labels (from the XML file) and segmentation labels in the original cityscape dataset [7]
to compute overlapping pixel points. (ii) Based on the overlapping pixel point results, we obtain
intrusion (‘Y’) and non-intrusion (‘N’) labels. Following the previous promising work [28, 11, 10],
we set the threshold of overlapping pixel points to 20. (iii) Then, we write the obtained intrusion
(‘Y’) and non-intrusion (‘N’) labels to the original XML file. The new XML file contains three
rich labels for the intrusion scene understanding task, i.e., the intrusion/non-intrusion categories,
bbox coordinates, and intrusion/non-intrusion labels. (iv) Finally, the original image and the newly
obtained XML file are utilized to generate VQA pairs for multiple subtasks. Note that in order to test
the real capabilities of the MLLMs better, we set the Random method to avoid biased/tendentious
answers for some subtasks and to distribute the answers for all options as much as possible.

Manual Verification. After getting a preliminary VQA pair, a team of multiple students is formed
to manually check to make sure all questions and answers are aligned and correct. Besides, for the
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Figure 3: The pipeline of efficient data generation strategy. Step 1: Use the segmentation label to get
the AoI mask and read the Bbox of the XML document. Step 2: Calculate the overlapping pixels and
give the Intrusion/Non-intrusion labels. Step 3: Write the intrusion labels for the original XML to get
the new XML. Step 4: Combine the original image and new XML to generate final VQA Pairs.
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Is there any vision-based intrusion 

object in the image?

B: Yes

A: No

Intrusion Behavior Judgment

Intrusion Summary Analysis

Which intrusion object is most likely to pose an 

immediate risk to the driver of the ego vehicle?

A: Bicycle

B: Bus

C: Motorcycle

D: Person

Intrusion Object Localization

Which types of objects have intruded 

into the drivable area?

C: Bicycle, car, person, and rider

A: Bus and truck

B: Motorcycle

D: Bus, train, and truck

Intrusion Category Identification

A: Yes

Is there any person intruding into the drivable 

area in the image?

Person Intrusion Classification 

B: No

Intrusion Scene Descriptions

How many vision-based intrusion or 

non-intrusion behaviors are present 

in the image?

A: 3 and 10

B: 4 and 9

C: 6 and 7

D: 7 and 10

Please describe the comprehensive understanding 

of the scene in this image, including the types and 

approximate number of vision-based intrusion 

objects, as well as their potential risks.

The image contains 7 intrusion objects, 

consisting of 1 bicycle, 1 car, 5 persons. 

These objects have entered the restricted 

road region and pose potential risk to the 

ego vehicle.

Figure 4: The detailed cases of the proposed VQA evaluation pairs in the MLLM-ISU dataset.

VQA task, we add some content to the prompt to get the correct structured answers, e.g., <Please
answer with only A or B>. Our final Question-Answer pairs for intrusion scene understanding are
shown in Fig. 4. More VQA Pairs cases can be found in Appendix A.

4 Three-stages Post-Training Framework

To improve the capability of MLLMs in the intrusion scene understanding task, we propose a
three-stage post-training framework with three different Supervised Fine-tuning strategies, i.e.,
Perception (Intrusion-aware Visual Instruction Pre-training)→Reasoning (Intrusion Chain of Thought
Tuning)→Understanding (Intrusion-centric VQA Tuning). The detailed workflow is shown in Fig. 5.

Qwen2.5-VL-3B-Instruct QwenVL-I-VQA

Instruction:
User: “Based on the visual 
information in the image, please 
describe any vision-based intrusion 
and non-intrusion behaviors in the 
scene.”
Assistant: “There are 7 intrusion 
objects in the image, including the 
following categories…...”

Stage1: Intrusion-aware Visual 

Instruction Pre-training

Step3: Intrusion-centric 

VQA tuning
Step2: Intrusion Chain of 

Though tuning

QwenVL-I-VIP QwenVL-I-COT

Perception Reasoning Understanding

Instruction:
User: “You are a highly 
knowledgeable AI assistant 
specializing…. When analyzing an 
image, ensure to provide step-by-step 
explanations to …...”
Assistant: “Step 1: Scene 
Understanding. The image contains 
several objects……”

Instruction:
User: “Is there any vision-based 
intrusion object in the image? 
A: No 
B: Yes 
Please answer with only A or B.”
Assistant: “B”

Figure 5: The workflow of the three-stage post-training. We take the Qwen2.5-VL-3B-Instruct as an
example. For MLLMs, we first propose an Intrusion-aware Visual Instruction Pre-training strategy to
obtain the initial coarse-grained perception capabilities. Then, an Intrusion Chain of Thought Tuning
method is designed to enhance the ability to reason. Finally, we introduce an Intrusion-centric VQA
Tuning to further enhance the capability of understanding fine-grained structures.

Stage 1: Intrusion-aware Visual Instruction Pre-training (I-VIP)

To give initial perception capabilities to MLLMs in the vision-based intrusion scene understanding
task, we propose an Intrusion-aware Visual Instruction Pre-training strategy. Specifically, we use the
system prompt: "Based on the visual information in the image, please describe any vision-based
intrusion and non-intrusion behaviors in the scene". This prompt will help the MLLMs to understand
the basic intrusion and non-intrusion behaviors and have a coarse-grained scene understanding.
Besides, to efficiently perform supervised fine-tuning of the original MLLMs, we adopt the Lora [17]
Supervised Fine-Tuning (SFT) method. The main reason is that Lora Supervised Fine-Tuning (SFT)
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received great attention due to its efficiency and effectiveness strategy in improving the performance
of MLLMs [15, 31]. Our detailed prompt template is shown in Appendix B.
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or non-intrusion behaviors are 
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How many vision-based intrusion 
or non-intrusion behaviors are 
present in the image? 
A: 5 and 2 B: 6 and 3 
C: 9 and 4 D: 9 and 5

GT: B

Figure 6: The proposed pipeline of I-COT.

Stage 2: Intrusion Chain of Thought Tuning (I-COT)

Based on Stage 1, the MLLMs obtain effective coarse-
grained (initial perception) capabilities. However, the
models still have weaknesses in structured reasoning
aspects. Therefore, in order to make the model get the
ability to reason and explain, e.g., “what is intrusion
and why it constitutes an intrusion”. We design a novel
Intrusion Chain of Thought Tuning approach to improve
the performance of the scene understanding. We use
the system prompt <You are a highly knowledgeable AI
assistant specializing in vision-based intrusion detection
scene understanding task. When analyzing an image,
ensure to provide step-by-step explanations to make your
responses correct and easy to understand> and five reasoning steps to conduct the tuning. After
I-COT, the reasoning process is shown in Fig. 6. We compare the original standard prompting strategy.

Stage 3: Intrusion-centric VQA Tuning (I-VQA)

In the aforementioned two stages, to further improve MLLMs’ ability to understand and answer
structured questions about different intrusion understanding tasks, we design six different subtasks
and build a training VQA tuning dataset, containing 2975 VQA pairs. The VQA tuning dataset
can go deeper to enhance the structured understanding of the model. Through VQA Supervised
Fine-Tuning (SFT), MLLMs develop the skill of fine-grained understanding and can have a structured
understanding of the different subtasks.

5 Experiment and Results

5.1 Experiment settings

Benchmark Evaluation Models. To evaluate and report the comprehensive performance of our
proposed MLLM-ISU task, we conduct sufficient experiments and comparisons on some dominant
MLLMs, i.e., Proprietary and Open-source MLLMs. For proprietary MLLMs, because the original
model is not available, we adopt accessible APIs to test, e.g., Gemini-1.5-pro-latest [30], GPT-4o [19],
and Claude-3.7-sonnet [3]. For Open-source MLLMs, we choose the Qwen-series models (i.e.,
Qwen2-VL-Instruct [34], Qwen2.5-VL-Instruct-3B [4], Qwen2.5-VL-Instruct-7B [4]), LLava-series
models (i.e., LLava-1.5-7b-hf [22], LLava-1.5-13b-hf [22]), InternVL-series (i.e., InternVL2.5-
1B [5], InternVL2.5-2B [5], InternVL2.5-8B [5]), and the latest InterVL3-2B [5], InterVL3-8B [5],
Gemma-series (Gemma3-4B-it [29] and Gemma3-12B-it [29]), DeepSeek-VL2-tiny [35], DeepSeek-
VL2-small [35], Kimi-VL-A3B-Instruct [31], Kimi-VL-A3B-Thinking [31], MiniCPM-V2.6 [37].
Unless specified, all experiments will be evaluated in a zero-shot manner.

Evaluation Metrics. In proposed MLLM-ISU task, low-level understanding tasks (L-U-T) and
high-level understanding tasks (H-U-T) are designed to as multiple-choice. Therefore, the evaluation
metrics of these subtasks are set to Accuracy, i.e., the proportion of options made correctly. For
open-level understanding tasks (O-U-T), we use the BLEU-4 (BiLingual Evaluation Understudy) [26]
metrics to evaluate the performance. More metrics and results can be found in Appendix C.

5.2 Main Results and Findings

We conduct a comprehensive experiment on the proposed task using various MLLMs. The detailed
evaluation results are shown in Tab. 2. Three main findings can be observed.

Findings 1: The performance and comparison of different MLLMs. 1) In our proposed task,
the best overall performance is Qwen2.5-VL-3B-Instruct, and its performance can reach 50.79%.
Note that the performance is even 8.74% higher than the Qwen2.5-VL-7B-Instruct. The main reason
is that the Qwen2.5-VL-7B-Instruct model exhibits a weak ability in the intrusion judgment task,
i.e., subtask1: IBJ. The second-best performance model is Deepseek-VL2-small, the performance
can reach 50.15%. 2) Besides, we can also find that different MLLMs exhibit different strengths
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Table 2: Comprehensive performance evaluation of the 20 dominant MLLMs on the proposed task.
The bold and underlined results denote the best and second-best performance.

Model Source Release
L-U-T
(Easy)

H-U-T
(Difficult)

O-U-T
(Open) Average

IBJ PIC ISA IOL ICI ISD

Human - - 98.00 72.00 44.00 77.00 98.00 39.36 71.39

Proprietary MLLMs
GPT-4o [19] OpenAI 2024-08 41.28 68.27 29.38 53.23 83.80 6.74 47.12
Gemini-1.5-pro-latest [30] Google 2024-04 7.40 65.40 37.00 68.40 68.80 6.04 42.17
Claude-3.7-sonnet [3] Anthropic 2025-02 56.14 56.40 20.28 53.71 52.00 9.09 41.27

Open-source MLLMs
LLaVa1.5-7B-hf [22] UW-M&Micro 2023-10 94.00 41.80 22.60 26.60 33.80 12.12 38.49
LLaVa1.5-13B-hf [22] UW-M&Micro 2023-10 71.00 62.20 23.60 30.00 51.80 12.33 41.82
Qwen2-VL-7B-Instruct [34] Alibaba 2024-06 56.20 65.60 33.80 52.20 57.80 5.93 45.26
MiniCPM-V2.6 [37] OpenBMB 2024-08 7.00 64.80 32.60 38.00 81.00 11.65 39.18
InternVL2.5-1B [5] OpenGVLab 2024-12 22.80 59.60 30.60 27.60 48.00 12.87 33.58
InternVL2.5-2B [5] OpenGVLab 2024-12 7.60 60.60 30.40 44.80 61.60 12.53 36.26
InternVL2.5-8B [5] OpenGVLab 2024-12 28.40 64.60 28.80 56.80 80.00 15.27 45.65
DeepSeek-VL2-tiny [35] DeepSeek 2024-12 64.60 65.40 32.40 41.80 73.80 18.79 49.47
DeepSeek-VL2-small [35] DeepSeek 2024-12 40.60 64.00 32.80 74.40 81.00 8.12 50.15
Qwen2.5-VL-3B-Instruct [4] Alibaba 2025-01 43.00 61.20 30.20 79.80 84.20 6.36 50.79
Qwen2.5-VL-7B-Instruct [4] Alibaba 2025-01 16.00 61.40 24.00 64.80 81.40 4.68 42.05
Gemma3-4B-it [29] Google 2025-03 52.60 64.20 25.20 50.40 54.60 5.93 42.16
Gemma3-12B-it [29] Google 2025-03 58.20 54.80 26.00 65.40 81.00 5.73 48.52
Kimi-VL-A3B-Instruct [31] Moonshot AI 2025-04 8.60 74.20 23.40 47.80 87.20 11.65 42.14
Kimi-VL-A3B-Thinking [31] Moonshot AI 2025-04 45.40 41.00 21.40 25.20 23.40 5.22 26.97
InternVL3-2B [5] OpenGVLab 2025-04 24.40 63.60 35.20 41.40 85.80 6.49 42.82
InternVL3-8B [5] OpenGVLab 2025-04 12.40 70.60 34.20 36.40 63.00 6.58 37.20

and weaknesses in multiple subtasks, e.g., two low-level understanding tasks IBJ and PIC, the
best performance reaches 94.00% (LLaVa1.5-7B-hf) and 74.20% (Kimi-VL-A3B-Intruct). The
performance is relatively high. The main reason is that the two subtasks are binary classification tasks
and are relatively simple. Therefore, the models can easily make accurate judgments. 3) In proprietary
MLLMs, the best performance is 47.12% of GPT-4o, 3.67% below Qwen2.5-VL-3B-Instruct.

Findings 2: Current MLLMs are not capable of intrusion scene understanding. Although most
of the MLLMs show promising performance on easy binary classification tasks, their performance
does not seem good on some difficult and open tasks, e.g.. Intrusion Summary Analysis (ISA)
subtask and Intrusion Scene Descriptions (ISD) subtask. The results denote that they are less capable
of summarizing and analyzing visual intrusion detection, which is a direction worth improving
subsequently. Note that in the open task Intrusion Scene Descriptions that we designed, all the
models exhibit poor performance. This is mainly due to the models’ insufficient ability to understand
intrusion events and make correct judgments.

Findings 3: The best MLLMs still have a wide gap with human performance. To better evaluate
the capability of current MLLMs in proposed tasks, we give comparisons to human performance and
find that even the best models [4] still have a wide gap with human, i.e., 50.79% vs 71.39%. This
suggests a need to better enhance the intrusion scene understanding capability of current MLLMs.

5.3 Validation Experiments and Analyses

Training settings. To verify the effectiveness of the proposed improvement strategies, we conduct
comprehensive experiments and analyses. Two promising and typical MLLMs are selected to train
and evaluate, i.e., Qwen2.5-VL-3B-Instruct and Qwen2.5-VL-7B-Instruct. Besides, we report the
performance of training by the proposed six intrusion scene understanding subtasks, with two metrics
(i.e., Accuracy and BLEU-4). More training details are shown in Appendix D.

Can the proposed three-stage post-training strategy be effective in improving the understanding
capacity of MLLMs? We first test the performance of the proposed three-stage post-training
strategy, as shown in Tab. 3. We can find that when three different supervised Fine-tuning training
strategies are added, the scene understanding capabilities of different MLLMs will be improved
effectively, e.g., Qwen2.5-VL-3B-Instruct: 50.79→52.04→55.50→72.15, Qwen2.5-VL-7B-Instruct:
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Table 3: The performance of the proposed three post-training stages on different MLLMs. I-VIP,
I-COT, and I-VQA denote the proposed three different strategies in the training stages, respectively.

Model+Method IBJ PIC ISA IOL ICI ISD Average

3B Open-source MLLMs, Epoch=2
Qwen2.5-VL-3B-Instruct 43.00 61.20 30.20 79.80 84.20 6.36 50.79
Qwen2.5-VL-3B-Instruct+I-VIP 49.00 61.60 28.00 81.00 86.60 6.03 52.04
Qwen2.5-VL-3B-Instruct+I-VIP+I-COT 52.20 58.60 25.00 83.60 89.60 24.00 55.50
Qwen2.5-VL-3B-Instruct+I-VIP+I-COT+I-VQA 94.60 67.20 36.80 88.80 97.20 48.31 72.15
7B Open-source MLLMs, Epoch=5
Qwen2.5-VL-7B-Instruct 16.00 61.40 24.00 64.80 81.40 4.68 42.05
Qwen2.5-VL-7B-Instruct+I-VIP 85.60 63.40 23.20 81.40 91.60 30.51 62.62
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT 95.40 66.00 24.60 82.00 95.20 54.37 69.60
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT+I-VQA 95.80 78.40 53.60 92.60 99.40 50.44 78.37

42.05→62.62→69.60→78.37, which benefits from the advantage of supervised fine-tuning. Besides,
in multiple subtasks, the performance of MLLMs is improved, which verifies the effectiveness of the
proposed three-stage post-training strategy. We provide a new paradigm for training and improving
performance for different tasks. More metrics and results can be found in Appendix E.

Figure 7: The training loss of three stages on
Qwen2.5-VL-7B-Instruct model.

What role does each stage play for perfor-
mance in the MLLM-ISU task? To further
explore the role of every stage, we give the train-
ing loss, as illustrated in Fig. 7. We can find that
in the early training steps, the loss significantly
reduces, which indicates that the model rapidly
learn the basic knowledge, i.e., coarse-grained
understanding capability. Then, by stage 2, the
loss of model is further minimized, which de-
notes the model can further learn the ability of
the MLLM-ISU task-related, e.g., reasoning. Be-
sides, in stage 3, the absolute changes of loss are
the smallest. The main reason is that we use the
well-designed VQA pairs to conduct refinement
adjustments and learn fine-grained capabilities.
Each of the three stages continuously learns the
capability of coarse-grained understanding, reasoning understanding, and fine-grained understanding,
respectively. These trends are reflected in the design of a three-stage progressive training strategy,
and each stage plays a distinct and indispensable role.

Table 4: The results of generalization experiments.

Normal→Foggy

Model Train stages Avg. Model Train stages Avg.

Qwen2.5-VL
-3B-Instruct [4]

- 50.88
Qwen2.5-VL

-7B-Instruct [4]

- 44.79
w/ stage1 51.87 w/ stage1 61.27

w/ stage1&2 55.15 w/ stage1&2 69.10
w/ stage1&2&3 72.17 w/ stage1&2&3 77.66

Generalization verification. We further go
to verify the effectiveness of the three-stage
training framework by the generalizability ex-
periments. We use the trained model (3B and
7B) in normal weather to reason in adverse
weather, i.e., Normal→Foggy, as shown in
Tab. 4. We can find that, 1) as the different
stages of strategy are added, the understanding
capability increases. 2) Compared with trained results in normal weather and the same setting, the
results do not change much at each stage, even slightly above it, which indicates that the model has
good generalization. More generalization experiments can be found in Appendix F.

5.4 More Exploration Experiments and Analyses

To what extent does model scale influence understanding performance? In this subsection, we
explore the relationship between the understanding performance of MLLMs and model scale. We use
the InternVL2.5 series model to conduct the experiments due to its rich model scale, as shown in Fig. 8.
We can find that, 1) as the model size continues to increase, the average comprehension (red line)
increases, and the best performance can be reached when the model scale is 8B. Compared with the
smallest InternVL2.5-1B model, the average performance can surpass it by 12.07%. However, some
interesting phenomena can also be found in some subtasks, e.g., the performance of InternVL2.5-2B

8



is lower than InternVL2.5-1B (-15.2%) in the IBJ subtask. In the IOL subtask, the best performance
is the 4B model, not the 38B model. These findings indicate that we need to strike a balance between
model scale and subtask performance to achieve better capability in intrusion scene understanding.
More model scale results can be found in Appendix G.

Figure 8: The performance of six model scales

Qwen2.5-VL-7B-Instruct

"predict": "To determine if there is a vision-based intrusion object in the image, we need 

to identify any object that is not typically found in the scene or is out of place. In this 

image, the scene appears to be a typical urban street with parked cars, a person on a 

bicycle, and buildings. There are no objects that stand out as being out of place or 

unusual in this context. Given this analysis, the answer is: B: No"

Qwen2.5-VL-3B-Instruct

"predict": "A: Yes" 

Is there any vision-based intrusion object in the 

image?

A: Yes

B: No
GT (A: Yes)

VQA

Figure 9: Reasoning comparison

Is a long chain of thought really good? In previous experiments, we found that larger models do not
perform as well as smaller models in the proposed MLLM-ISU task, e.g., Qwen2.5-VL-7B-Instruct
(42.05%)<Qwen2.5-VL-3B-Instruct (50.79%), DeepSeek-VL2-small (50.15%)<DeepSeek-VL2-
tiny (49.47%). To explore the reasons, we compare the processes of the two models in a simple binary
classification VQA pair, as shown in Fig. 9. We find that Qwen2.5-VL-7B-Instruct seems to think too
much about the simple problems, which leads to poor or incorrect final results. The phenomenon
suggests that long chain thinking is not always good. Besides, these results suggest that there are still
some key issues that need to be addressed and improved in the MLLM-ISU task.

How significant is the impact of training cost on performance. In this question, we explore
the impact of training cost on performance. Specifically, we set up five different training epochs
(Epoch=15, 25, 35, 45, 50) to continuously expand the training cost of the model and use the
Qwen2.5-VL-7B-Instruct to conduct the experiments, as shown in Fig. 10. We can find that the
average performance does not continuously improve as training costs increase. It reaches its optimum
at a certain critical point, e.g., in stage 1, the best performance is reached at 65.20% in Epoch 35.
Similarly, 69.00% in Epoch 35 (stage 2), 78.39% in Epoch 25 (stage 3). The main reason is that
the SFT data is too small. As the training cost increases, the model can lead to overfitting and poor
generalization performance. Therefore, we need to balance the relationship between the training data
and the cost of the model to achieve the best performance.

(a) Stage 1: I-VIP (b) Stage 2: I-COT (c) Stage 3: I-VQA

Figure 10: The performance impact of different training costs in three stages.

Table 5: The experimental results of processing
costs and latency on val (500 images).

Model Task Runtime in val Latency Memory Predicted_samples/s

3B IBJ 5m34s 0.668 9565MiB 1.499
3B PIC 5m46s 0.692 9565MiB 1.446
7B IBJ 5m44s 0.688 18441MiB 1.453
7B PIC 5m47s 0.694 18441MiB 1.443

Processing costs and latency. We test the run-
time, latency, and efficiency on two different
models without any inference acceleration strat-
egy, i.e., 3B and 7B. The input size of the image
is 1024×2048, as shown in Tab. 5. We can find
that our model has a low latency of 0.668 and
a high predicted sample rate of 1.499.
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6 Discussions

Dataset diversity. To verify the universality of the proposed pipeline of VQA-Data Generation and
enhance the diversity of intrusion scene types in real-world environments, we create a new benchmark
dataset based on the BDD-100K for the MLLM-ISU task, namely MLLM-ISU-BDD. Due to space
limitations, detailed information about the dataset can be found in Appendix H. Then, we also test
the performance in some dominant MLLMs, as shown in Tab. 6. We can find that current MLLMs
are not capable of intrusion scene understanding, especially in harsh and volatile scenarios. Besides,
we can also find that even the best models still have a wide gap with human performance. These
phenomena suggest that there is still some way to go for the task of intrusion scene understanding.

Table 6: Comprehensive performance evaluation of the 18 dominant MLLMs on the MLLM-ISU-
BDD. The bold and underlined results denote the best and second-best performance.

Model Source Release IBJ PIC ISA IOL ICI ISD Average

Human - - 90.00 96.67 38.89 85.56 96.67 35.61 73.90

GPT-4o [19] OpenAI 2024-08 19.38 84.41 27.62 62.14 89.98 6.40 48.32

LLaVa1.5-7B-hf [22] UW-M&Micro 2023-10 92.65 21.60 21.38 24.94 35.41 12.03 34.67
LLaVa1.5-13B-hf [22] UW-M&Micro 2023-10 71.71 79.29 21.60 27.17 32.52 12.32 40.77
Qwen2-VL-7B-Instruct [34] Alibaba 2024-06 25.84 86.19 36.53 50.56 59.91 6.07 44.18
MiniCPM-V2.6 [37] OpenBMB 2024-08 5.79 83.96 30.29 33.85 77.95 12.44 40.71
InternVL2.5-1B [5] OpenGVLab 2024-12 24.05 79.73 25.61 27.84 35.86 12.53 34.27
InternVL2.5-2B [5] OpenGVLab 2024-12 5.35 83.96 30.73 45.66 43.88 11.69 36.88
InternVL2.5-8B [5] OpenGVLab 2024-12 24.05 77.73 29.84 61.92 66.37 13.80 45.62
DeepSeek-VL2-tiny [35] DeepSeek 2024-12 73.05 86.64 30.73 51.22 76.61 18.25 56.08
DeepSeek-VL2-small [35] DeepSeek 2024-12 32.07 85.30 27.39 64.59 79.51 9.20 49.68
Qwen2.5-VL-3B-Instruct [4] Alibaba 2025-01 35.41 77.73 29.18 89.76 80.62 5.79 53.08
Qwen2.5-VL-7B-Instruct [4] Alibaba 2025-01 18.49 82.85 26.50 83.52 86.41 4.47 50.37
Gemma3-4B-it [29] Google 2025-03 49.00 84.19 22.49 48.11 32.07 5.73 40.27
Gemma3-12B-it [29] Google 2025-03 49.00 43.65 24.28 71.94 83.07 5.60 46.26
Kimi-VL-A3B-Instruct [31] Moonshot AI 2025-04 16.93 86.86 26.50 36.08 88.42 17.21 45.33
Kimi-VL-A3B-Thinking [31] Moonshot AI 2025-04 44.10 20.27 20.94 24.50 20.71 5.08 22.60
InternVL3-2B [5] OpenGVLab 2025-04 18.04 75.72 33.18 42.32 77.28 6.57 42.19
InternVL3-8B [5] OpenGVLab 2025-04 8.91 87.53 25.17 37.86 42.76 6.13 34.73

Table 7: The quantitative results with the light task-
specific strategy. Avg. denotes the average of six
sub-tasks in different datasets.

Model Method Avg. w/ MLLM-ISU-CS Avg. w/ MLLM-ISU-BDD

Gemma3-4B-it [29]
Zero-shot 42.16 40.27

w/ light strategy 45.60 43.14
Performance Gain +3.44 +2.87

Kimi-VL-A3B-Instruct [31]
Zero-shot 42.14 45.33

w/ light strategy 44.38 47.90
Performance Gain +2.24 +2.57

InternVL3-2B [5]
Zero-shot 42.82 42.19

w/ light strategy 44.09 46.26
Performance Gain +1.27 +4.07

Exploration of light task-specific strategy. In
Tab. 2, we adopt the default form to evaluate
the performance of multiple MLLMs, i.e., zero-
shot manner. To understand upper-bound per-
formance of MLLMs, we explore a light task-
specific strategy, e.g., prompt optimization, to
understand upper-bound performance. We add
a definitional prompt to facilitate better model
understanding of the vision-based intrusion de-
tection task, i.e., <Vision-based intrusion detec-
tion refers to judging whether a possible object exists in road>. Note that MLLM-ISU-CS and
MLLM-ISU-BDD denote the benchmark datasets that are built based on the original Cityscape and
BDD-100K datasets for our MLLM-ISU task, respectively. Besides, We test the light task-specific
strategy on three MLLMs, i.e., Gemma3-4B [29], Kimi-VL-A3B-Instruct [31], InternVL3-2B [5], as
shown in Tab. 7. We can find that our strategy can improve the upper-bound performance, achieving
average performance gains of 1.27 to 4.07, which proves the validity of our light task-specific strategy.

7 Conclusions

In this paper, we develop a new and vital task, Multimodal Large Language Models based Intrusion
Scene Understanding (MLLM-ISU), to explore the capabilities of current MLLMs. To better accom-
plish the given task, we first design an effective automatic visual question-answer generation strategy
and propose a novel MLLM-ISU dataset. Besides, we propose a three-stage post-training framework
to improve understanding capability gradually. Finally, comprehensive experiments are conducted to
evaluate the performance of current MLLMs and verify the effectiveness of the proposed framework.
Our benchmark provides a new paradigm and direction for intrusion scene understanding tasks. In
the future, we will explore effective strategies to improve the understanding capability of MLLMs.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [No]
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Justification: The paper does not include theory assumptions and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose the information in Section 5 and provide the code and data for the
convenience of reproduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15



Answer: [Yes]
Justification: We provide the code for reproduction. Please check the Abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify them in Section 5 and in our released code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We reported some results in the experiments of Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research is conducted with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Not applicable to societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original papers or websites that produced the code package or
dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Appendix for MLLM-ISU

A More VQA evaluation pairs cases in the MLLM-ISU dataset

In this subsection, we provide more VQA Paris cases. In every subtask, we report two different
cases, as shown in Fig. 11. The VQA pairs contain six subtasks and are designed to evaluate the
comprehensive and in-depth understanding capability of the current MLLMs. Intrusion Behavior
Judgment and Person Intrusion Classification are the choice questions on binary classification. These
two subtasks are used to test the capability of basic understanding and are relatively easy. Intrusion
Summary Analysis, Intrusion Object Localization, and Intrusion Category Identification are used
to test the capability of deeper levels of understanding and are relatively difficult. Intrusion Scene
Descriptions is an open subtask and is designed to test the capability for open scene understanding.
Our subtask is diverse and rich. The design VQA pairs can meet the requirements of the MLLM-ISU
task and provide the foundation for the task.

Is there any vision-based intrusion object 

in the image?
Is there any vision-based intrusion object 

in the image?

Is there any person intruding into the drivable 

area in the image?

Is there any person intruding into the drivable 

area in the image?

How many vision-based intrusion or non-

intrusion behaviors are present in the image?

A: 8 and 18

B: 9 and 16

C: 11 and 14

D: 11 and 17

How many vision-based intrusion or non-

intrusion behaviors are present in the image?

A: 1 and 11

B: 2 and 12

C: 3 and 11

D: 6 and 11

Which intrusion object is most likely to pose an 

immediate risk to the driver of the ego vehicle?

A: Car

B: Train

C: Bus

D: Motorcycle

Which intrusion object is most likely to pose an 

immediate risk to the driver of the ego vehicle?

A: Motorcycle

C: Rider

B: Car

D: None

Which types of objects have intruded 

into the drivable area?

C: Motorcycle and rider

A: Bus

B: Bicycle, car, and person

D: Bus and rider

Please describe the comprehensive 

understanding of the scene in this image, 

including the types and approximate 

number of vision-based intrusion objects, 

as well as their potential risks.

The image contains 11 intrusion objects, consisting of 3 

bicycles, 4 cars, 4 persons. These objects have entered the 

restricted road region and pose potential risk to the ego vehicle.

Intrusion Behavior Judgment Intrusion Behavior Judgment

Person Intrusion Classification Person Intrusion Classification 

Intrusion Summary Analysis Intrusion Summary Analysis

Intrusion Object Localization Intrusion Object Localization

Intrusion Category Identification Intrusion Category Identification

Intrusion Scene Descriptions

Please describe the comprehensive 

understanding of the scene in this image, 

including the types and approximate 

number of vision-based intrusion objects, 

as well as their potential risks.

There is no intrusion object present in the image. The scene is 

clear and safe for driving.

Intrusion Scene Descriptions

Which types of objects have intruded 

into the drivable area?

B: Bus and car

A: Bicycle and train

C: Bicycle, person, and train

D: Train

A: Yes

B: No

A: No

B: Yes

A: Yes

B: No

A: Yes

B: No

Figure 11: More VQA evaluation pairs cases in the MLLM-ISU dataset.

B Detailed prompt template of Intrusion-aware Visual Instruction
Pre-training

In this subsection, we introduce the detailed prompt template for our Intrusion-aware Visual Instruc-
tion Pre-training strategy, as shown in Fig. 12. We show two different prompt template cases, intrusion
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(Upper) and non-intrusion (Lower) cases, respectively. We use the same system prompt: <Based on
the visual information in the image, please describe any vision-based intrusion and non-intrusion
behaviors in the scene.>. Then, we give the corresponding answers. In this way, we construct the
training dataset and perform Lora supervised fine-tuning to get the initial perception capabilities for
MLLMs.

<user> Based on the visual 
information in the image, please 
describe any vision-based intrusion 
and non-intrusion behaviors in the 
scene.

<assistant> There are 9 intrusion objects in the image, including 
the following categories: 'bicycle, person, rider'. Besides, there 
are also 10 non-intrusion objects, including 'bus, person'. The 
object posing the greatest potential risk is a 'person', The main 
reason is that the category 'person' is closest to the driver of 
the ego vehicle and may pose a potential risk for the driver. 
Therefore, caution is advised, and the driver may need to take 
some necessary action.

<user> Based on the visual 
information in the image, please 
describe any vision-based intrusion 
and non-intrusion behaviors in the 
scene.

<assistant> There is no vision intrusion object in the image. All 
15 detected objects are non-intrusions, including the following 
categories: car, motorcycle, person. Therefore, the driver can 
safely drive.

Figure 12: Two different templates for Supervised Fine-Tuning in I-VIP (stage 1).

C More metrics and experimental results

In subsection 5.2, for the subtask: Intrusion Scene Descriptions (ISD), we mainly adopt the BLEU-
4 to evaluate the performance. In this subsection, to calculate and provide a richer baseline, we
also report some other metrics and performance for this subtask on some MLLMs, i.e., Rouge-1,
Rouge-2, Rouge-L, as shown in Tab. 8. Note that MLLM-ISU-CS and MLLM-ISU-BDD denote the
benchmark datasets that are built based on Cityscape and BDD-100K datasets for our MLLM-ISU
task, respectively.

Table 8: Some other metrics results for the ISD subtask.

Model Source Release MLLM-ISU-CS MLLM-ISU-BDD

Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

GPT-4o[19] OpenAI 2024-08 15.75 1.80 7.50 14.78 1.62 7.03
LLaVa1.5-13B-hf[22] UW-M&Micro 2023-10 19.95 3.33 12.29 20.64 3.39 12.32
MiniCPM-V2.6 [37] OpenBMB 2024-08 19.14 2.21 11.42 19.86 2.48 12.07
InternVL2.5-2B[5] OpenGVLab 2024-12 18.73 2.23 11.54 18.63 2.30 10.84
InternVL2.5-8B[5] OpenGVLab 2024-12 21.49 2.34 13.40 20.10 1.96 12.07
DeepSeek-VL2-tiny[35] DeepSeek 2024-12 22.66 4.31 16.49 23.02 4.43 16.08
DeepSeek-VL2-small[35] DeepSeek 2024-12 20.41 2.32 8.60 19.09 1.65 8.98
Qwen2.5-VL-3B-Instruct[4] Alibaba 2025-01 16.44 1.72 6.94 14.61 1.53 6.19
Qwen2.5-VL-7B-Instruct[4] Alibaba 2025-01 14.74 1.64 5.07 13.75 1.57 4.86
Gemma3-4B-it[29] Google 2025-03 14.56 1.92 5.31 13.82 1.74 5.07
Gemma3-12B-it[29] Google 2025-03 13.77 1.45 5.40 13.73 1.53 5.23
Kimi-VL-A3B-Instruct[31] Moonshot AI 2025-04 21.50 2.90 11.30 24.04 3.16 15.07
Kimi-VL-A3B-Thinking[31] Moonshot AI 2025-04 13.98 1.61 5.41 13.43 1.72 5.46
InternVL3-2B[5] OpenGVLab 2025-04 15.75 1.44 6.67 15.42 1.49 6.63
InternVL3-8B[5] OpenGVLab 2025-04 16.53 1.64 6.67 15.42 1.65 6.21

21



D More training details

In this appendix, we present more details of the training for the proposed three-stage framework. For
the cutoff_len parameters, we use 2048. For the learning_rate, we adopt the default setting, i.e., 5e-5.
All stages adopt the Lora as a supervised fine-tuning method.

Table 9: The detail setting for the training experiments.

Setting Value Setting Value
cutoff_len (stage1) 2048 preprocessing_num_workers 16
cutoff_len (stage2) 2048 per_device_train_batch_size 1
cutoff_len (stage3) 2048 per_device_eval_batch_size 1

gradient_accumulation_steps 8 learning_rate 5e-5
num_train_epochs (3B/7B) 2/5 finetuning_type lora

E More metrics and results of three post-training stages

We further verify the effectiveness of the proposed three-Stage Post-Training Framework. Like
the previous experiment, we use the Qwen2.5-VL-7B-Instruct to conduct the experiment in five
different epochs, i.e., Epoch=15, 25, 35, 45, 50, as shown in Tab. 10. We can find that as the different
stages are added, the performance increases and reaches 78.19%, 78.39%, 77.97%, 78.25%, and
77.82%, respectively. Besides, in different subtasks, our framework can also give a performance
gain, which denotes that the three different Supervised Fine-tuning strategies are effective, i.e.,
Perception (Intrusion-aware Visual Instruction Pre-training)→Reasoning (Intrusion Chain of Thought
Tuning)→Understanding (Intrusion-centric VQA Tuning). We also give the training loss in different
epochs, as shown in Fig. 13. We can find that in different epochs, models can learn the different
capabilities of the three stages. As the training step increases, the loss of the model changes less,
especially after 1500 steps. Therefore, we believe it is important to choose appropriate training steps.

Table 10: More performance results of the proposed three post-training stages on different MLLMs.
I-VIP, I-COT, and I-VQA denote the proposed three different strategies in the training stages.

Model+Method IBJ PIC ISA IOL ICI ISD Average

7B Open-source MLLMs, Epoch=15
Qwen2.5-VL-7B-Instruct [4] 16.00 61.40 24.00 64.80 81.40 4.68 42.05
Qwen2.5-VL-7B-Instruct+I-VIP 81.00 65.60 24.40 81.80 92.00 29.93 62.46
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT 95.40 68.40 22.80 81.60 96.60 34.97 66.63
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT+I-VQA 97.00 79.40 48.80 93.20 99.40 51.33 78.19
7B Open-source MLLMs, Epoch=25
Qwen2.5-VL-7B-Instruct [4] 16.00 61.40 24.00 64.80 81.40 4.68 42.05
Qwen2.5-VL-7B-Instruct+I-VIP 80.80 65.80 27.40 83.00 94.00 29.84 63.47
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT 92.60 72.40 29.40 84.00 95.40 39.35 68.86
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT+I-VQA 95.20 77.80 54.00 93.40 99.20 50.73 78.39
7B Open-source MLLMs, Epoch=35
Qwen2.5-VL-7B-Instruct [4] 16.00 61.40 24.00 64.80 81.40 4.68 42.05
Qwen2.5-VL-7B-Instruct+I-VIP 87.60 67.40 29.80 82.40 94.20 29.79 65.20
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT 94.20 69.20 31.80 83.80 96.40 38.58 69.00
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT+I-VQA 96.40 77.60 52.00 92.00 99.20 50.61 77.97
7B Open-source MLLMs, Epoch=45
Qwen2.5-VL-7B-Instruct [4] 16.00 61.40 24.00 64.80 81.40 4.68 42.05
Qwen2.5-VL-7B-Instruct+I-VIP 84.40 66.60 27.60 85.80 95.00 29.90 64.88
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT 94.00 66.60 27.60 84.60 96.80 35.89 67.58
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT+I-VQA 96.20 78.40 51.00 93.40 99.20 51.28 78.25
7B Open-source MLLMs, Epoch=50
Qwen2.5-VL-7B-Instruct [4] 16.00 61.40 24.00 64.80 81.40 4.68 42.05
Qwen2.5-VL-7B-Instruct+I-VIP 84.80 66.40 27.60 81.80 94.00 29.94 64.09
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT 93.80 66.20 31.80 83.60 95.40 40.89 68.62
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT+I-VQA 95.60 78.00 52.60 91.60 98.80 50.29 77.82
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(a) Epoch 15 (b) Epoch 25 (c) Epoch 35

Figure 13: The training loss in three different epochs.

F More generalization verification experiments

In this appendix, we further conduct more generalization verification experiments and report more
experimental results for the three-stage training framework. Specifically, we use the three different
foggy coefficients to conduct, i.e., α=0.02, α=0.01, and α=0.005, respectively. The Qwen2.5-VL-
3B-Instruct [4] and Qwen2.5-VL-7B-Instruct [4] are chosen as the baseline model, and the result
is shown in Tab. 11. We can find that our three-stage training framework has strong generalization
performance and shows promising performance on several different tasks.

Table 11: More generalization results of the proposed three post-training stages on different tasks.
Note that our strategy is to increase them one by one. α denotes the foggy coefficients in Cityscape [7].

Normal→Foggy, α = 0.02

Model Train stages IBJ PIC ISA IOL ICI ISD Avg.

Qwen2.5-VL
-3B-Instruct [4]

- 47.00 61.20 31.00 78.00 81.60 6.51 50.88
w/ stage1 51.60 61.60 28.60 78.80 83.80 6.81 51.87

w/ stage1&2 55.80 57.60 25.00 81.60 85.60 25.30 55.15
w/ stage1&2&3 94.40 67.80 37.40 87.40 97.60 48.41 72.17

Normal→Foggy, α = 0.01

Model Train stages IBJ PIC ISA IOL ICI ISD Avg.

Qwen2.5-VL
-3B-Instruct [4]

- 45.80 62.20 30.60 78.20 82.40 6.58 50.96
w/ stage1 50.80 61.40 28.00 80.00 84.40 6.67 51.88

w/ stage1&2 55.20 58.20 24.60 81.20 87.40 25.02 55.27
w/ stage1&2&3 94.40 68.20 36.60 88.40 97.40 48.22 72.20

Normal→Foggy, α = 0.005

Model Train stages IBJ PIC ISA IOL ICI ISD Avg.

Qwen2.5-VL
-3B-Instruct [4]

- 45.00 60.80 30.40 78.40 82.40 6.54 50.59
w/ stage1 50.80 61.80 27.80 81.00 84.00 6.73 52.02

w/ stage1&2 55.00 58.00 24.60 83.80 88.00 25.42 55.80
w/ stage1&2&3 94.40 67.60 38.20 88.00 97.60 48.34 72.36

Normal→Foggy, α = 0.02

Model Train stages IBJ PIC ISA IOL ICI ISD Avg.

Qwen2.5-VL
-7B-Instruct [4]

- 31.20 62.60 24.20 63.60 82.40 4.72 44.79
w/ stage1 76.40 63.40 23.80 80.80 92.80 30.41 61.27

w/ stage1&2 94.00 63.00 24.20 82.60 96.00 54.81 69.10
w/ stage1&2&3 95.20 77.40 49.80 94.00 99.20 50.33 77.66

Normal→Foggy, α = 0.01

Model Train stages IBJ PIC ISA IOL ICI ISD Avg.

Qwen2.5-VL
-7B-Instruct [4]

- 26.60 63.00 24.40 61.00 82.00 4.75 43.63
w/ stage1 81.00 63.60 23.80 80.60 92.00 30.41 61.90

w/ stage1&2 94.40 64.20 24.80 81.60 96.00 55.24 69.37
w/ stage1&2&3 95.60 79.20 51.20 94.20 99.20 50.34 78.29

Normal→Foggy, α = 0.005

Model Train stages IBJ PIC ISA IOL ICI ISD Avg.

Qwen2.5-VL
-7B-Instruct [4]

- 22.20 62.40 24.60 62.00 81.00 4.72 42.82
w/ stage1 85.40 63.60 24.00 79.60 91.40 30.67 62.45

w/ stage1&2 94.60 65.40 24.60 82.20 96.00 55.79 69.77
w/ stage1&2&3 96.20 79.60 52.80 93.60 99.20 50.87 78.71
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G More model scale results on InternVL3-series models

In addition to InternVL2.5-series models, we also conduct model scale experiments in the latest
InternVL3-series model, as shown in Fig. 14. We can find that, like the InternVL2.5-series model,
the best average performance can be reached when the model scale is 9B, not the largest 38B model.
We think this phenomenon has something to do with overthinking the model, where overthinking
simple problems instead creates illusions. This is something we need to study further.

Figure 14: The model scale results on InternVL3-series

H The detailed information for proposed MLLM-ISU-BDD

To verify the universality of the proposed pipeline of VQA-Data Generation and enhance the diversity
of intrusion scene types in real-world environments, we create a new benchmark dataset for the
MLLM-ISU task, namely MLLM-ISU-BDD. The MLLM-ISU-BDD is built based on the BDD-100K
datasets. The detailed method can refer to Fig. 3. Our new MLLM-ISU-BDD datasets contain rich
intrusion scene types, e.g., multiple different weather (Clear, Cloudy, Rainy, Foggy, Night), different
geographic environment (City, Highway, Suburban/Rural), different period of time (Daytime, Dusk,
Night), and Different transportation environments (Heavy Traffic, Empty Road). We clean the original
dataset based on the proposed intrusion detection task features. Finally, our datasets contain 8892
training Pairs and 2694 VQA evaluation Pairs. Our extended benchmark explicitly includes nighttime,
adverse weather, and non-urban roads, enabling more comprehensive evaluation of the intrusion
scene understanding task in real-world environments.

I More discussion and interesting finding

Discussion on model version performance variations. In Tab. 2 and Tab. 6, we observed that
newer versions of multimodal large models (MLLMs) do not always outperform their predecessors
on our proposed intrusion scene understanding task, e.g., in Tab. 2, InternVL3-8B is lower than
InternVL2.5-8B, the interesting phenomenon also occurs in previous work [18]. We think this is
reasonable. The main reason is that, during the model update process, priority is typically given
to improving abstract reasoning, instruction-following, and general linguistic capabilities rather
than low-level visual perception. Consequently, newer models may excel in complex reasoning and
multi-turn understanding but show reduced sensitivity to small, partially occluded, or contextually
subtle intrusion targets. Besides, stronger reasoning abilities typically imply longer chains of thought.
However, in section 5.4, we find that longer reasoning isn’t always effective for our tasks. These
findings indicate that when applying general MLLMs to visual intrusion understanding, we need
to explore the task-specific adaptation strategies to enhance their perception and recognition of
fine-grained intrusion cues.
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J Limitations

To the best of our knowledge, the MLLM-ISU is proposed for the first time and is the first attempt in
the intrusion detection field. We believe our work will produce positive effects in several application
areas, e.g., autonomous driving, intelligent monitoring, and security. We believe designing more
comprehensive benchmarks, e.g., richer understanding tasks, and exploring more efficient improve-
ment training or training-free strategies, e.g., training-free reasoning method (Retrieving Augmented
Generation), is a worthy research direction in the future.
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