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ABSTRACT

We consider the problem of fairness transfer in domain generalization. Tradi-
tional domain generalization methods are designed to generalize a model to un-
seen domains. Recent work has extended this capability to incorporate fairness
as an additional requirement. However, it is only applicable to a single, unchang-
ing sensitive attribute across all domains. As a naive approach to extend it to a
multi-attribute context, we can train a model for each subset of the potential set of
sensitive attributes. However, this results in 2n models for n attributes. We pro-
pose a novel approach that allows any combination of sensitive attributes in the
target domain. We learn two representations, a domain invariant representation
to generalize the model’s performance, and a selective domain invariant represen-
tation to transfer the model’s fairness to unseen domains. As each domain can
have a different set of sensitive attributes, we transfer the fairness by learning a
selective domain invariant representation which enforces similar representations
among only those domains that have similar sensitive attributes. We demonstrate
that our method decreases the current requirement of 2n models to 1 to accom-
plish this task. Moreover, our method outperforms the state-of-the-art on unseen
target domains across multiple experimental settings.

1 INTRODUCTION

The successful integration of AI into various sectors of society like healthcare, security systems,
autonomous vehicles, and digital assistants, has led to profound impacts on the community. How-
ever, two significant concerns refrain us from trusting AI in critical applications. The first concern is
distribution shift, where AI performs poorly when faced with data it hasn’t seen before. Two popular
frameworks that improve the generalization capability of a model to unseen data are domain adap-
tation (Long et al., 2015) and domain generalization (Blanchard et al., 2011). Domain adaptation
techniques assume access to unlabelled samples of the target data while domain generalization has
no exposure to target data. The second concern involves unwarranted biases in AI decisions. AI has
exhibited biases in its decisions in the past, for example, predicting a higher risk of re-offense for
African Americans compared to Caucasians (Tolan et al., 2019), biasing against Hispanics while as-
sessing loan applications (Bartlett et al., 2022), and women while screening resumes (Cohen et al.,
2019). Several methods (Chuang & Mroueh, 2021; Finocchiaro et al., 2021; Dwork et al., 2011;
Kang et al., 2023) improve fairness by making models robust against various fairness metrics.

Models that cater to distribution shifts usually ignore fairness and vice versa. A few works (Rezaei
et al., 2021; Stan & Rostami, 2023; Singh et al., 2021; Chen et al., 2022; Schumann et al., 2019;
Pham et al., 2023) address distribution shift and fairness together. To the best of our knowledge,
FATDM (Pham et al., 2023) is the only work that addresses fairness under domain generalization.
However, FATDM assumes that only a single, fixed sensitive attribute exists in all domains includ-
ing unseen domains (for example, the sensitive attribute is either race or gender, but not both).
In reality, multiple sensitive attributes co-occur in the data. We may need to maintain fairness
with respect to multiple sensitive attributes and these attributes need not be the same across all
domains, especially in unseen target domains. The extension from single to multiple attributes in
DG is not straightforward, as each domain may have a different set of sensitive attributes. When
one attempts to overcome this by simply providing extreme level of fairness i.e. protecting against
all sensitive attributes, model performance could unnecessarily be compromised given the inherent
trade-off (Menon & Williamson, 2018) between fairness and accuracy. We illustrate this trade-off
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Figure 1: Fair DG with multiple sensitive
attributes. A model trained with patient
data from the source regions can be de-
ployed in a new region with good perfor-
mance and fairness with respect to all sen-
sitive attributes for that region.

Figure 2: Performance-fairness trade-off in disease
predictions with gender and race as sensitive attributes.
We have performance (AUROC ↑) and unfairness met-
rics (Mean Difference ↓) from 4 models, each trained
with a different level of fairness, tested on the same
target domain. The drop in performance is high when
fairness is enforced on multiple attributes.

in Fig 2. As another naive approach to extending to a multi-attribute setting, we can train differ-
ent models for each combination of the sensitive attributes (2n models, for n sensitive attributes).
However, the computational complexity of this approach scales exponentially with the number of
sensitive attributes, making it an infeasible solution in most scenarios.

To overcome these limitations, we propose a framework that can adapt the model fairness based on
the sensitive attributes of the unseen domain. Our proposed method extends the domain generaliza-
tion methods to new dimensions where they not only generalize to tackle distribution shifts in the
data but can also deal with any arbitrary subsets of sensitive attributes within a predefined set of sen-
sitive attributes. Our novel problem of fair domain generalization with multiple sensitive attributes
can be visualized in Figure 1. Our contributions are as follows:

• We introduce a new problem setting of fair domain generalization with multiple sensi-
tive attributes. We are the first to devise a framework that can generalize across domains
and maintain fairness transfer across multiple sensitive attributes to an unseen domain.
Meanwhile, our model caters to the heterogeneous sensitivity of attributes across different
domains and generalizes it to the target domain too.

• In order to tackle both problems, we learn two representations, one to encode generalization
and the other, to encode fairness. Generalization representation is made domain invariant
to generalize across domains with distribution shifts and fairness representation is made
domain invariant only when their sensitive attributes match.

• We present a comprehensive training approach where we train the model with the con-
catenated representations of the source domain inputs and sensitivity information of the
attributes. Compared to a naive approach which creates a model for each combination of
the sensitive attributes, our method demonstrates a significant reduction in the number of
models to be trained, reducing it from 2n to just one, where n is the total sensitive attributes.

• We conduct experiments on two real-world datasets and show that our method outperforms
the state-of-the-art (Pham et al., 2023) in the presence of (2-4) sensitive attributes.

2 RELATED WORKS

Domain Adaptation and Domain Generalization Domain adaptation (DA) Long et al. (2015);
Ganin et al. (2015); Csurka (2017) techniques assume that unlabeled samples or in some cases few
labeled samples of the target distribution are available for training. It is a framework to address
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distribution shifts where we have some prior information on the target distribution. Under these
assumptions, DA methods can yield some theoretical guarantees on their optimality on the source
and the target distribution (Ben-David et al., 2010).

Domain generalization (DG) techniques (Blanchard et al., 2011) assume target domain data is un-
available during training. Instead, data is available from a set of distinct sources with some common
characteristics. The aim of the model is to use multiple sources and generalize well to a target do-
main that is not present in the training set. DG techniques can be broadly categorized into domain
invariant representation learning (Nguyen et al., 2021; Robey et al., 2021; Zhou et al., 2020; Ar-
jovsky et al., 2019), data augmentation Volpi et al. (2018); Li et al. (2020); Gong et al. (2019) and
various training strategies Mancini et al. (2018); Balaji et al. (2018). Studies for DA and DG focus
only on generalization across domains and do not consider fairness.

Fairness in Machine Learning Model fairness can be considered at an individual or a group level.
Individual fairness requires similar individuals to be treated similarly (Mehrabi et al., 2022). Group
fairness partitions the population into multiple groups and employs statistical measures across the
groups to eliminate any bias towards certain groups. We address group fairness in this work. Most
works consider the number of groups or sensitive attributes to be single. There are few works
that specifically cater to multiple attributes (Kang et al., 2023; 2021). Group fairness methods can
also vary based on the fairness measure used to equalize the groups. Commonly used group fairness
measures are demographic parity (Dwork et al., 2011), equalized odds, and equal opportunity (Hardt
et al., 2016). However, these methods assume that the training and testing distributions are identical.

Fairness under Distribution Shift Recently, some works have proposed improving fairness in the
context of distribution shifts. Schumann et al. (2019) attempt to transfer fairness from the sensitive
attribute available during training (race) to an unseen sensitive attribute (gender). Singh et al. (2021)
make assumptions on the data generative process based on causality and adds a fairness constraint
to it to improve generalization and fairness on a target domain. Mandal et al. (2020) make their
model robust against weighted perturbations of training data so that it is fair and robust with respect
to a class of distributions. Chen et al. (2022) guarantee statistical group fairness when the distri-
bution shift is within pre-specified bounds. An et al. (2022) maintain consistency across different
sensitive attributes using self-training techniques. However, all these methods are under the domain
adaptation setting where part of the target domain data is available during training.

Khoshnevisan & Chi (2021) develop a model that generalizes to an unseen sensitive attribute using
only data from another attribute. However, their focus is on improving performance and they do not
enforce any fairness measures. To the best of our knowledge, FATDM (Pham et al., 2023) is the first
and only work that transfers accuracy and fairness to an unseen domain in a domain generalization
setting. However, it works for a single sensitive attribute which is fixed across all the source do-
mains. We can extend FATDM to a multi-attribute setting, either by strictly enforcing fairness on all
sensitive attributes or by training different models for each combination of the sensitive attributes
(2n models, for n sensitive attributes). However, it either compromises model performance or is an
infeasible solution when a large number of sensitive attributes are involved.

3 PROPOSED FRAMEWORK

3.1 PROBLEM SETTING

We consider a novel setting of DG where data from multiple labeled source domains T = {T1 ∪
T2 . . . ∪ Tm} where Td ∼ Pd is a collection of domain d (where d ∈ D) data of the form (x, y),
where x ∈ X is the input, y ∈ Y is the label of x. The domains differ from each other due to
covariate shift. The goal of the learner is to learn from T and obtain good predictive performance
on a novel domain d̃ while maintaining adequate fairness across the sensitive attributes in d̃.

We use S to denote a predefined set of possible multiple sensitive attributes. We denote n = |S|
as the number of sensitive attributes. However, each domain may have a subset of S as its set of
sensitive attributes. The sensitivity configuration set is a power set of S and contains all possible
configurations (subsets of S) of the sensitive attributes a domain may take. For ease of represen-
tation, we map the configuration set to a corresponding set of binary vectors where 1 implies an
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Fairness
Block

Generalization
Block

Figure 3: Overview of our approach. The block in blue represents the fairness components. The
block in yellow represents the generalization components. The flow starts from x and ends at the
model prediction ŷ. The inputs/outputs are in the round rectangles. The models that are part of the
end-to-end training are in the ellipses.

attribute is sensitive and 0 implies it is not. We denote the binary configuration set by C. The
cardinality of C is 2n. We use c ∈ C,= (c[0], . . . , c[n]), where each c[i] ∈ {0, 1} . Each sen-
sitive attribute can take multiple instances. We use Ic to denote the set of instances for a par-
ticular configuration c in C. The following is an example when n = 2. S = {gender, race}.
The power set of S = {[none], [race], [gender], [gender, race]}. The binary sensitivity configura-
tion set, C = {[0, 0], [0, 1], [1, 0], [1, 1]}. If c = [1, 1], the set of sensitive attribute instances for c,
Ic = {[female, black], [female,white], [female, other], [male, black], [male,white], [male, other]}. If
c = [0, 1], then Ic = {[black], [white], [other]}.

3.2 METHOD

Our aim is to devise a framework that can transfer predictive performance and fairness from source
domains to an (unseen) target domain. To this end, we propose to learn two domain invariant rep-
resentations, one for transferring predictive performance and the other for transferring fairness of
sensitive attributes. For transferring predictive performance across domains (generalization), we
enforce the representations from different domains to be close when belong to the same class. For
transferring fairness across domains, we enforce the representations from different domains to be
close only if they have the same sensitive attributes. Otherwise, we increase the gap between the
representations. Due to selectively applying invariance among the representations across domains,
we refer to our method as SISA: Selective Invariance for Sensitive Attributes. Once both representa-
tions are learned, they are combined to get the final prediction. We describe the practical realization
of our approach below. Figure 3 shows the overview of our approach.

3.2.1 MODULES

Our model has 4 components.

Domain Density Translators: Represented by a mapping G : X × D × D → X , G translates
a data point from one domain to another domain. That is, G(x, d, d′) is intended to map a sample
x of d to a sample x′ = G(x, d, d′) of domain d′. We use two such domain density translators,
denoted by G′′ and G′, to capture the domain-invariance representations for predictive performance
and fairness, respectively. For domain generalization, we translate x ∈ d to x′′ ∈ d′ via a generative
network G′′. We enforce G′′ to transform the data distribution within the class y of x.

x′′ = G′′(x, d, d′) (1)

Similarly, for fairness generalization, we translate x in domain d to x′ in domain d′ via a generative
network G′. We enforce G′′ to transform the data distribution within the class y and the same
sensitive attributes of x.

x′ = G′(x, d, d′) (2)
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We train G′ and G′′ as a precursor step through an optimization loss as discussed in Nguyen et al.
(2021).

Generalization Encoder: gθ : X → Zg encodes the data to an invariant representation that is
generalizable across all domains. It is parameterized by θ. gθ receives x as its input and outputs the
encoded representation zg .

zg = gθ(x) (3)

Given input x and its label y, we use Equation 1 to obtain x′′ from another domain d′ ∼ D. Then
we encode x′′ through gθ.

z′′g = gθ(x
′′) (4)

We learn gθ via the following loss function.

LDG = Ed∼DE(x,y)∼Pd
∥ zg − z′′g ∥2 (5)

Fairness Encoder: fϕ : X ×C → {Zf}n encodes the data to a selectively invariant representation
across the domains. It is parameterized by ϕ. In our design, we consider fϕ to have n outputs so that
each sensitive attribute gets a corresponding fairness representation. However, we sometimes refer
to the collection of n representations as a single representation for better readability. In order to
adapt the model to handle any sensitive attribute configuration c ∼ C during the test time, the input
to fϕ should be the combinations of x with c (x⊕ c) ∀c ∼ C. This approach might be cumbersome
as it complicates the training of fϕ with |C| additional inputs per data point. In practice, we have
found that randomly sampling a single c ∼ C and concatenating with x during each iteration was
adequate for fairness transfer. So, the input to fϕ is a concatenation (⊕) of x and a sensitive attribute
configuration c randomly sampled from C. fϕ outputs the representations (zf1 , . . . , zfn), where zfi
corresponds to sensitive attribute i.

(zf1 , . . . , zfn) = fϕ(x⊕ c) (6)

To improve fairness to a target domain, we minimize the gap between the domain representations
that have the same sensitive attribute configurations and maximize the gap for representations with
different sensitive attributes. We sample another configuration c′ ∈ C. In case of changes in the
sensitive attributes, zfi = f(x⊕ c)[i] and z′fi = f(x′⊕ c′)[i] are made closer when c[i] = c′[i] and
far apart when c[i] ̸= c′[i]. We realize this in practice using a contrastive loss and learn fϕ as below.

LDF =

{
Ed∼DE(x,y)∼Pd,d′∼D ∥ zfi − z′fi ∥2 if c[i] = c′[i] ∀ i ∈ (1, n)

Ed∼DE(x,y)∼Pd,d′∼D max(0, ϵ− ∥ zfi − z′fi ∥2) if c[i] ̸= c′[i] ∀ i ∈ (1, n)
(7)

ϵ is a hyperparameter that controls the margins of the separation while maximizing the distance
between the representations.

Classifier: hψ : Z → Y predicts the final output of the model. It is parameterized by ψ. The input
to hψ is the concatenation (⊕) of the representations obtained from gθ and fϕ. It outputs the final
prediction.

ŷ = hψ(zg ⊕ zf1 ⊕ . . .⊕ zfn) (8)

Our classifier is trained with two objectives. The first one is to minimize the prediction error on the
training domains (DG goal). The second one is to minimize the unfairness measure for the given set
of sensitive attributes (Fairness goal).

We reduce the classification error between the true labels and the model predictions on the source
domains. We concatenate the outputs of the encoders into the unified representation z = zg ⊕
zf1 . . . ⊕ zfn . The classifier utilizes this representation as its input and subsequently produces the
model prediction. We minimize l : Y × Y → R, (e.g., cross entropy) between the model prediction
and the true label.

LERR = Ed∼DE(x,y)∼Pd
l(hψ(z), y) (9)

where z is computed using Equations (3), (6) and (8).
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Algorithm 1 SISA: Selective Invariance for Sensitive Attributes
Require: Training data: T , sensitive attribute set S, sensitive attribute configurations C, density

translators: G′′, G′, batch size: B
1: Initialize θ, ϕ, and ψ, the parameters of gθ, fϕ and, hψ respectively.
2: for epoch in MAX EPOCHS do
3: for each domain d ∈ D do
4: Sample a batch {xk, yk}Bk=1 ∼ Pd from T
5: for each k ∈ (1, B) do
6: zkg ← gθ(x

k) # Compute the generalization representation
7: d′ ∼ D # Sample another domain
8: xk

′′ ← G′′(xk, d, d′) # Translate x into domain d′

9: zk
′′

g ← gθ(x
k′′) # Compute the domain translated representation

10: c ∼ C # Sample a sensitive attribute configuration
11: (zkf1 , . . . , z

k
fn
)← fϕ(x

k ⊕ c) # Compute the fairness representation
12: xk

′ ← G′(xk, d, d′)
13: c′ ∼ C # Sample another sensitive attribute configuration
14: {zk′f1 , . . . , z

k′

fn
} ← fϕ(x

k′ ⊕ c′) # Compute the domain translated representation
15: zk ← zkg ⊕ zkf1 ⊕ · · · ⊕ zkfn
16: end for
17: LDG ←

∑
k[∥ zkg − zk

′′

g ) ∥2] # Invariance measure for performance
18: for each i ∈ (1, n) do
19: LDF ← LDF +

∑
k[1[c[i]=c′[i]] ∥ zkfi −zk

′

fi
∥2 +1[c[i]̸=c′[i]] max(0, ϵ− ∥ zkfi −zk

′

fi
∥2)]

20: end for # Selective invariance measure for fairness
21: LERR ←

∑
k[l(hψ(z

k), yk)] # Classification loss over source domains
22: LEO = Ed∼DE(x,y)∼Pd

E y ∈ Y E i, j ∈ I c((hψ(z | y, i)− (hψ(z | y, j))2
23: Lfinal ← LERR + ω LEO + α LDG + γ LDF
24: θ ← θ −∇θLfinal # Update network weights via gradient descent
25: ϕ← ϕ−∇ϕLfinal
26: ψ ← ψ −∇ψLfinal
27: end for
28: end for
29: return Trained θ, ϕ, ψ

We reduce the divergence in true positive rates and false positive rates across various instances of
sensitive attributes. This measure is known as equalized odds (EO) and is popularly used in the
fairness literature.

LEO = Ed∼DE(x,y)∼Pd
E y ∈ Y E i, j ∈ I c((hψ(z | y, i)− (hψ(z | y, j))2

where z is computed using Equations (3), (6) and (8).

Our final loss function is:

Lfinal ← LERR + ω LEO + α LDG + γ LDF (10)

where α, γ and ω are hyperparameters. We train gθ, fϕ, and hψ together, end-to-end. We train
density translators G′ and G′′ prior to them. We summarize our proposed method in Algorithm 1.

4 EXPERIMENTS

We perform experiments to demonstrate the effectiveness of our proposed method. We first discuss
the datasets and baselines used in our experiments, then we present the experimental results and
model analysis.

4.1 DATASETS

MIMIC-CXR MIMIC-CXR (Johnson et al., 2019) contains chest-xrays of 227, 827 patients for
various diseases. These images are linked with Johnson et al. (2021) dataset which includes patients’
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Table 1: Details of target attributes, domains, and the sensitive attributes across the datasets.

Dataset Target Attribute (y) Domains (d) Sensitive Attribute (S)
Name Value Name Value Name Value

CelebA Attractive yes/no

big nose yes/no
hair brown/black/ smiling yes/no
color blonde male yes/no

young yes/no

Cardiomegaly yes/no

age 0-40/40-60/ gender male/female
60-80/80-100 race white/black/other

MIMIC gender male/female
CXR image 0◦/15◦/ 30◦/ race white/black/other

rotations 45◦/60◦ age 0-40/40-60/
60-80/80-100

information such as age, gender, race, etc. We chose the cardiomegaly disease prediction as our task.
We created two different training sets T where for the first set, the domains were based on (i) the
age of the patients, and for the second set, the domains were based on (ii) the degree of rotation of
the images. We chose S as gender and race (set of sensitive attributes) for (i) and S as gender, race,
and age for set (ii).

CelebA CelebA (Liu et al., 2015) contains 202, 599 face images from 10, 177 celebrities. Each of
them is annotated with 40 binary attributes based on facial features. This dataset is commonly used
in fairness-based tasks. Our aim is to predict whether a given image is attractive or not. We create 3
domains based on hair color. We chose the attributes big nose, smiling, young, and male as S.

4.2 BASELINES

DIRT: We use a domain generalization algorithm DIRT (Nguyen et al., 2021) that uses do-
main density transformations between domains to create domain invariant representations. DIRT
is FATDM without any fairness considerations.

ERM: We perform empirical risk minimization over the aggregated training data from all the
domains. It is commonly used as a baseline in DG literature (Carlucci et al., 2019; Dou et al., 2019;
Nguyen et al., 2021; Zhang et al., 2022).

ERMF: We perform empirical risk minimization over the training data but also employ the un-
fairness metric (LEO) to improve fairness.

FATDM: FATDM is the state-of-the-art (only) method that performs domain generalization and
fairness to a target domain. However, FATDM considers only a single sensitive attribute that is fixed
across domains. In order to compare with our method, we extend FATDM to a multi-attribute setting
using a naive approach where we train a model for each configuration of the sensitive attribute. If
there are n sensitive attributes, we train 2n models for FATDM.

4.3 IMPLEMENTATION DETAILS

Encoders f and g are Resnet-18 (He et al., 2016) for all the experiments. For a fair comparison,
we used the same dimension for the representation z in our method and the baselines. The details
are present in the appendix. Classifier h is a single-layer dense network preceded by a ReLU layer
activation for all the experiments. We modelled G′ and G′′ using a StarGAN Choi et al. (2018).
We chose hyperparameters α = 0.1, ω = 1 because FATDM also utilized these values for its
hyperparameters, and they were found to be the most effective based on their reported results. We
chose γ = 1 and ϵ = 1 through hyperparameter tuning. We used Adam optimizer with a learning
rate of 0.001 for training.
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Table 2: MIMIC-CXR dataset - Performance and fairness metrics averaged over the domains and
the set of sensitive attribute configurations.

Domains Sensitive Model Performance Measures (↑) Fairness Measures (↓)
Attribute (S) AUROC AUPR Acc F1 Mean EMD

age

ERM 85.19 92.59 78.27 82.19 0.1153 0.2945
DIRT 85.20 92.62 78.69 82.65 0.1182 0.3078

gender, ERMF 83.58 91.74 76.60 80.72 0.0298 0.1183
race FATDM (SOTA) 83.66 91.85 76.05 81.08 0.0531 0.1248

SISA (ours) 84.71 92.35 76.99 81.89 0.0197 0.0873
ERM 81.61 91.46 74.57 81.09 0.2441 0.3907

image gender, DIRT 82.22 91.77 74.10 80.37 0.2785 0.4392
rotations race, age ERMF 81.75 91.70 73.86 80.15 0.0056 0.0547

FATDM (SOTA) 81.86 91.66 74.11 80.42 0.0045 0.0476

SISA (ours) 82.89 92.13 74.93 81.09 0.0022 0.0319

Table 3: CelebA dataset - Performance and fairness metrics averaged over the domains and the set
of sensitive attribute configurations

Domains Sensitive Model Performance Measures (↑) Fairness Measures (↓)
Attribute (S) AUROC AUPR Acc F1 Mean EMD

big nose, ERM 87.00 91.36 78.07 80.91 2.6214 1.2356
hair smiling, DIRT 86.92 91.30 77.94 80.63 3.0341 1.2039

color male, ERMF 83.11 88.77 74.27 77.01 0.4248 0.3058
young FATDM (SOTA) 83.02 88.75 74.12 76.77 0.2540 0.2533

SISA (ours) 84.82 90.02 75.86 78.67 0.0017 0.0195

4.4 EXPERIMENTAL RESULTS

Experimental Setup: We use the leave-one-domain-out evaluation scheme of domain generaliza-
tion, where one of the domains is chosen as the target domain and kept aside for evaluation and
the model is trained on the rest of the domains. We repeat this procedure over every domain in the
dataset and average the results over them. We run the experiment 5 times with different seeds to
report the mean results. As the sensitivity configuration of the target domain can be any c ∈ C, we
calculate the performance and fairness obtained over each of them separately in Tables 10, 11, and
12 and combined in Tables 2 and 3, for MIMIC and CelebA datasets, respectively. The choice of
domains, targets, and sensitive attributes for the two datasets are summarized in Table 1.

We consider several metrics to measure the performance and fairness of the model on the target
domain. For performance, we consider AUROC (area under the receiver operating characteristic
curve), AUPR (area under the precision-recall curve), Accuracy, and F1 score as the metrics that
measure the performance of the model on the target domain. For fairness, we consider equalized
odds as the unfairness metric and adopt Mean (distance between first moments of the distributions)
and EMD (earth mover’s distance) (Levina & Bickel, 2001) as the divergence measure Div(. ∥ .).

MIMIC-CXR: For MIMIC-CXR, we have two sets of experiments considering, (i) the ages of the
patients and (ii) the different rotations of the images as the domains for domain generalization. We
consider gender and race to be sensitive attributes for (i) and gender, race, and age to be sensitive
attributes for (ii). The prediction task is the existence of Cardiomegaly disease for (i) and (ii).

CelebA: For CelebA, we consider the various hair colors of celebrities as the domains of domain
generalization. We consider big nose, smiling, male, and young attributes to be sensitive. The
prediction task is whether a sample is attractive or not.

Results: We report the results of our experiments on MIMIC-CXR and CelebA in Tables 2 and 3
respectively. We average the predictive performance and report the best performances. Since ERM
and DIRT do not optimize any fairness measures, they generalize fairness poorly. Compared to the
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Table 4: Sensitivity analysis of parameter ϵ using CelebA dataset

Model ϵ
Performance Measures (↑) Fairness Measures (↓)

AUROC AUPR Acc F1 Mean EMD

SISA

0.01 83.73 88.82 74.65 77.73 0.0011 0.0148
0.1 84.26 89.50 75.19 78.20 0.0020 0.0201
1 84.82 90.02 75.86 78.67 0.0017 0.0195
10 84.79 89.92 76.16 79.17 0.0045 0.0288

methods that consider fairness, ERMF (baseline) and FATDM (state-of-the-art), our model SISA
achieves the best values for performance and fairness on the target domain consistently on MIMIC-
CXR and CelebA datasets. Moreover, the predictive performance of SISA is not far off from ERM
despite having to minimize a fairness constraint. We note an improvement of 1.05, 1.03, and 1.80
with a single model of SISA over 3, 8, and 15 models of FATDM for cases of 2, 3, and 4 sensitive
attributes. The standard errors of our model and FATDM are reported in the appendix.

4.5 MODEL ANALYSIS

Sensitivity analysis of ϵ: ϵ is the hyperparameter that decides how apart zfi and z′fi should be if
sensitive attribute i is not equal. We train our model with ϵ = {0.01, 0.1, 1, 10} and report the results
in Table 4. We do not observe a lot of difference in the performance and fairness as we changed
ϵ. In general, we notice slightly better results for performance when ϵ ≥ 1 and for fairness when
ϵ = 0.01. We chose ϵ = 1 as it had the best predictive performance versus fairness trade-off.

Sensitivity analysis of γ: γ is the hyperparameter that decides the weight of LDF loss in our
model. We train our model with γ = {0.01, 0.1, 1, 10} and report the results in Table 6. We do not
observe a lot of difference in the performance and fairness as we changed γ. In general, we notice
slightly better results for performance when γ ↑ and fairness when γ ↓. We chose γ = 1 as it had
the best predictive performance versus fairness trade-off.

Ablation study on the representations: To validate the efficacy of having two separate encoders
to model the domain shift (generalization) and fairness, we conduct a study where we only use a
single encoder to model both. We report the results in Table 7 in the appendix. We find that having
multiple (two) encoders to model the representations improved the predictive performance while a
single encoder improved the fairness.

5 CONCLUSION

We introduced a new problem setting of fair domain generalization with multiple sensitive attributes.
We developed a framework that can generalize across domains and maintain fairness transfer across
multiple sensitive attributes to an unseen domain. We learned two representations, one to encode
generalization and the other, to encode fairness, and used their combined strength to get a model
that is fair to any specified sensitive attribute and has a good predictive performance on the target
domain. Our model outperformed the state-of-the-art FATDM in fair domain generalization over
both performance and fairness. Our work is the first to tackle the challenging setting of fair domain
generalization with multiple sensitive attributes. Currently, our model caters to arbitrary subsets
within a prespecified sensitive attribute set. In the future, it would be interesting to extend it to
completely unseen sensitive attributes in a zero-shot learning manner.
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Table 5: Dimension of z

Model
MIMIC (n = 2) MIMIC (n = 3) CelebA

z z z
zg zfi zg zfi zg zfi

ERM 1024 1280 1024
DIRT 1024 1280 1024

FATDM 1024 1280 1024
SISA 512 256 512 256 768 64

A APPENDIX

Fairness Bound From FATDM paper, we have:

ϵEODT (f̂) ≤
1

N

N∑
i=1

ϵEODSi (f̂) +
√
2 min
i∈[N ]

∑
y

∑
a

dJS(P
X|Z=y,A=a

DT , P
X|Y=y,A=a

DSi
) (11)

+
√
2 max
i,j∈[N ]

∑
y

∑
a

dJS(P
Z|Z=y,A=a

DSi
, P

Z|Y=y,A=a

DSj
) (12)

Unfairness measure within a domain Di:

ϵEODSi (f̂) = EDSi
[f̂(X)1 | Y = 1, A = a]− EDSi

[f̂(X)1 | Y = 1, A = a′]+ (13)

EDSi
[f̂(X)1 | Y = 0, A = a]− EDSi

[f̂(X)1 | Y = 0, A = a′] (14)

Ry,aDSi
= EDSi

[f̂(X)1 | Y = y,A = a] (15)

Ry,aDSi
= EDSi

[f̂(X)1 | Y = y,A = a] (16)

Ry,aDSj
can be bounded by Ry,aDSi

as follows provided, they have the same A?

Dimension of z We report the dimensions used for the representation z in Table 5. We consider
the same dimensions for z across the baselines and our model for a valid comparison. We use the
same dimension value for each zfi ’s.

Results with standard errors We report the standard errors of FATDM and our model in Ta-
bles 8, 9. In most cases, the standard errors for performance metrics are less than 0.001, for both
FATDM and our model. Standard errors for fairness metrics are less than 0.001 for Mean and 0.05
for EMD. In general, we observed that our model exhibits a lower standard error than FATDM.

Results with all configurations of sensitive attributes in target We report the results for all
sensitive attribute configurations in Tables 10, 11, 12. Additionally, for SISA we also report the
results for None attribute where we do not consider any fairness attributes. However, we did not
include this result while averaging to get a fair comparison with the FATDM baseline as FATDM
does not have this configuration.

Ablation study on the representations We report the results of the study on the number of rep-
resentations used in Table 7.
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Table 6: Sensitivity analysis of parameter γ using CelebA dataset

Model γ
Performance Measures (↑) Fairness Measures (↓)

AUROC AUPR Acc F1 Mean EMD

SISA

0.01 84.44 89.88 75.42 78.25 0.0009 0.0165
0.1 84.36 89.72 75.17 77.89 0.0016 0.0194
1 84.82 90.02 75.86 78.67 0.0017 0.0195
10 84.76 89.98 75.85 78.78 0.0014 0.0216

Table 7: Ablation on the number of encoders used

Model Number of Performance Measures (↑) Fairness Measures (↓)
Encoders Used AUROC AUPR Acc F1 Mean EMD

SISA one 82.36 87.82 73.47 76.10 0.0003 0.0109
two 84.82 90.02 75.86 78.67 0.0017 0.0195

Table 8: MIMIC-CXR dataset - Performance and fairness metrics averaged over the domains and
the set of sensitive attribute configurations with standard errors.

Domains Sensitive Model Performance Measures (↑) Fairness Measures (↓)
Attribute (S) AUROC AUPR Acc F1 Mean EMD

age

FATDM (SOTA) 83.66 91.85 76.05 81.08 0.0531 0.1248
gender Standard error 0.0017 0.0009 0.0039 0.0044 0.0070 0.0134

race SISA (ours) 84.71 92.35 76.99 81.89 0.0197 0.0873
Standard error 0.0019 0.0017 0.0038 0.0039 0.0030 0.0110

FATDM (SOTA) 81.86 91.66 74.11 80.42 0.0045 0.0476
image gender Standard error 0.0280 0.0290 0.0256 0.0270 0.0035 0.0108

rotations race, age SISA (ours) 82.89 92.13 74.93 81.09 0.0022 0.0319
Standard error 0.0036 0.0021 0.0045 0.0044 0.0007 0.0050

Table 9: CelebA dataset - Performance and fairness metrics averaged over the domains and the set
of sensitive attribute configurations with standard errors.

Domains Sensitive Model Performance Measures (↑) Fairness Measures (↓)
Attribute (S) AUROC AUPR Acc F1 Mean EMD

big nose, FATDM (SOTA) 83.02 88.75 74.12 76.77 0.2540 0.2533
hair smiling, Standard error 0.0033 0.0026 0.0055 0.0075 0.0560 0.0316

color male, SISA (ours) 84.82 90.02 75.86 78.67 0.0017 0.0195
young Standard error 0.0053 0.0030 0.0039 0.0046 0.0005 0.0031

Table 10: MIMIC (i) Performance and Fairness with all configurations in Target domain

Model Target Sensitive Attributes Performance Measures ↑ Fairness Measures ↓
AUROC AUPR Acc F1 Mean EMD

FATDM gender gender 84.86 92.57 76.84 81.78 0.0947 0.2385
FATDM race race 83.71 91.98 75.79 80.94 0.0231 0.0893

FATDM gender race gender, race 82.40 91.01 75.91 80.26 0.0064 0.0522

SISA

gender 84.78 92.49 76.77 81.73 0.0554 0.2117
race 84.78 92.47 77.17 82.03 0.0035 0.0362

gender, race 84.58 92.09 77.03 81.92 0.0003 0.0142
None 84.70 92.47 76.80 81.76 - -
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Table 11: MIMIC (i) Performance and Fairness with all configuration in Target domain

Model Target Sensitive Attributes Performance Measures ↑ Fairness Measures ↓
AUROC AUPR Acc F1 Mean EMD

FATDM gender gender 83.73 92.60 76.03 82.15 0.0143 0.1340
FATDM race race 83.02 92.42 75.14 81.37 0.0054 0.0730
FATDM age age 82.23 92.12 73.87 80.17 0.0108 0.0693

FATDM gender race gender, race 81.28 91.36 73.85 80.22 0.0006 0.0281
FATDM gender age gender, age 81.50 91.75 73.03 79.34 0.0005 0.0145

FATDM race age race, age 80.98 90.92 73.86 80.27 0.0001 0.0106
FATDM gender race age gender, race, age 80.26 90.42 72.97 79.43 0.0000 0.0033

SISA

gender 83.60 92.64 75.60 81.74 0.0118 0.1129
race 83.15 92.34 75.66 81.81 0.0019 0.0429
age 82.49 92.20 74.50 80.69 0.0016 0.0419

gender, race 82.92 92.00 75.35 81.51 0.0001 0.0100
gender, age 82.78 92.13 74.76 80.95 0.0001 0.0072

race, age 82.71 91.92 74.98 81.16 0.0000 0.0057
gender, race, age 82.59 91.68 73.66 79.77 0.0000 0.0025

None 83.64 92.65 75.66 81.81 - -

Table 12: MIMIC (i) Performance and Fairness with all configuration in Target domain

Model Target Sensitive Attributes Performance Measures ↑ Fairness Measures ↓
AUROC AUPR Acc F1 Mean EMD

FATDM big nose big nose 86.41 91.02 77.02 79.62 0.5399 0.6242
FATDM smiling smiling 86.60 91.09 77.48 80.02 0.1768 0.3710

FATDM male male 85.49 90.42 75.96 78.81 1.6107 1.1951
FATDM young young 84.91 90.20 76.10 78.61 0.8258 0.8864

FATDM big nose smiling big nose, smiling 83.43 89.09 75.18 78.16 0.0779 0.1008
FATDM big nose male big nose, male 82.83 88.45 73.67 76.69 0.0542 0.0790

FATDM big nose young big nose, young 81.66 87.76 73.54 76.12 0.1003 0.1078
FATDM smiling male smiling, male 83.56 89.23 72.63 75.20 0.1761 0.1441

FATDM smiling young smiling, young 81.95 88.21 73.59 75.93 0.0603 0.0928
FATDM male young male, young 81.89 88.31 72.58 74.85 0.1632 0.1150

FATDM big nose smiling male big nose, smiling, male 82.05 87.93 72.52 75.01 0.0017 0.0179
FATDM big nose smiling young big nose, smiling, young 81.98 88.09 74.08 76.92 0.0024 0.0181

FATDM big nose male young big nose, male, young 80.26 86.53 72.26 75.20 0.0165 0.0239
FATDM smiling male young smiling, male, young 80.80 87.51 71.90 74.36 0.0033 0.0180

FATDM big nose smiling male young big nose, smiling, male, young 81.46 87.39 73.20 76.04 0.0003 0.0058

SISA

big nose 85.14 90.41 76.34 79.32 0.0035 0.0439
smiling 86.27 90.87 77.08 80.31 0.0006 0.0313

male 83.88 89.44 74.97 77.98 0.0160 0.1046
young 84.59 90.18 75.61 78.46 0.0031 0.0578

big nose, smiling 85.47 90.31 76.64 79.62 0.0002 0.0057
big nose, male 84.63 89.89 75.88 78.80 0.0007 0.0071

big nose, young 84.95 90.28 76.18 79.05 0.0002 0.0064
smiling, male 84.53 89.80 75.57 78.45 0.0005 0.0080

smiling, young 85.41 90.46 76.42 79.34 0.0002 0.0071
male, young 84.09 89.80 75.36 78.08 0.0006 0.0077

big nose, smiling, male 84.81 89.79 75.72 78.44 0.0001 0.0025
big nose, smiling, young 84.96 89.94 76.07 78.72 0.0000 0.0025

big nose, male, young 84.51 89.84 75.67 78.24 0.0001 0.0031
smiling, male, young 84.43 89.66 74.92 77.39 0.0000 0.0025

big nose, smiling, male, young 84.57 89.59 75.43 77.83 0.0000 0.0018
None 86.10 90.79 76.91 80.22 - -
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Table 13: Pearson Correlation between Model Outputs and Sensitive Attributes.

Dataset Domain Pearson Correlation

MIMIC-CXR Image Rotation Gender Race Age

ERM 0.027 0.007 0.177
SISA 0.016 0.000 0.103

CelebA Big Nose Male Smiling Young

ERM -0.186 0.188 -0.383 0.332
SISA -0.136 0.239 -0.329 0.257
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