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Abstract

Prior study shows that pre-training techniques001
can boost the performance of visual document002
understanding (VDU), which typically requires003
models to gain abilities to perceive and reason004
both document texts and layouts (e.g., loca-005
tions of texts and table-cells). To this end, we006
propose visually guided generative text-layout007
pre-training, named ViTLP. Given a document008
image, the model optimizes hierarchical lan-009
guage and layout modeling objectives to gen-010
erate the interleaved text and layout sequence.011
In addition, to address the limitation of pro-012
cessing long documents by Transformers, we013
introduce a straightforward yet effective multi-014
segment generative pre-training scheme, facil-015
itating ViTLP to process word-intensive doc-016
uments of any length. ViTLP can function as017
a native OCR model to localize and recognize018
texts of document images. Besides, ViTLP can019
be effectively applied to various downstream020
VDU tasks. Extensive experiments show that021
ViTLP achieves competitive performance over022
existing baselines on benchmark VDU tasks, in-023
cluding information extraction, document clas-024
sification, and document question answering.1025

1 Introduction026

Processing and reasoning document images with027

dense texts (e.g., scanned PDF files, digital forms,028

and spreadsheets) is a persistent yet challenging029

task for the research community and industry (Katti030

et al., 2018; Majumder et al., 2020; Li et al., 2021a).031

Advances in multimodal pre-training substantially032

improve the performance of visual document under-033

standing (VDU) (Xu et al., 2020, 2021; Gu et al.,034

2021; Appalaraju et al., 2021; Wang et al., 2022a).035

These pre-training methods typically take multi-036

modal inputs of given document images including037

i) visual features, ii) pre-processed OCR texts, and038

iii) spatial layouts of document elements (e.g., 2D039

1Code and checkpoints will be released once published.

Figure 1: An overview workflow of the proposed ViTLP.
Given a document image as input, ViTLP can generate
sequences of text and layout (i.e., word bounding boxes)
for various VDU tasks with task-specific prefixes.

coordinates of texts and table-cells). Among these 040

inputs, spatial layout information plays an essential 041

role in connecting visual and textual features, as 042

well as developing thorough reasoning of document 043

structures (Chen et al., 2021; Lee et al., 2022). 044

Though effective, the performance of most ex- 045

isting VDU approaches relies heavily on the OCR 046

pipelines, because the pre-processed OCR texts and 047

corresponding 2D coordinates are used as interme- 048

diate inputs to pre-trained VDU models. The exter- 049

nal OCR pipelines may produce incorrect or incom- 050

plete recognition results, which cannot be jointly 051

optimized by the gradient back from VDU models. 052

Another research line (Kim et al., 2022; Lee et al., 053

2023b) explores pre-training VDU models solely 054

based on image inputs. Despite no OCR errors 055

introduced, these methods focus on understanding 056

texts from raw document images but neglect layout 057

information modeling. Since the spatial informa- 058

tion contained in layout locations is not exploited, 059

it may hinder the models from understanding com- 060

plex document structures, especially for documents 061

containing nested paragraphs, forms, and tables. 062

In this work, we propose Visually guided gener- 063

ative Text-Layout Pre-training (ViTLP) to jointly 064

model text and layout information from document 065

images. As shown in Figure 1, ViTLP can localize, 066
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recognize, and understand visual document texts067

given the input document image and task prefixes.068

To achieve this goal, ViTLP is pre-trained to gen-069

erate unified text-layout sequences from document070

images. Since natively generating text and layout071

tokens in a flattened sequence is token-inefficient072

(see Sec. 2.1), we introduce hierarchical genera-073

tion modules to achieve both effective and efficient074

text-layout sequence generation. To the best of our075

knowledge, ViTLP is the first attempt to learn OCR076

(i.e., text localization and recognition) and VDU077

(i.e., document understanding) abilities in a unified078

generative text-layout pre-training framework.079

Besides, ViTLP is designed to handle long docu-080

ments with intensive texts. Long document process-081

ing is ubiquitous in real-world scenarios. However,082

existing pre-trained models are constrained to cer-083

tain token limits of input sequences. For instance,084

LayoutLMv2 (Xu et al., 2021) accepts the max-085

imum inputs of 512 word tokens using a BERT-086

structure encoder. In both pre-training and fine-087

tuning, the exceeded text tokens are truncated, lead-088

ing to incomplete document information modeling.089

To tackle this issue, we introduce a multi-segment090

pre-training scheme which divides the target text-091

layout sequence into consecutive segments to per-092

form generative pre-training. Given that the full093

document information is already encoded in vi-094

sual representations, ViTLP takes the suffix tokens095

from previous segments as prefix prompts to gen-096

erate the next-segment tokens. This multi-segment097

pre-training scheme further enables ViTLP to pro-098

cess documents of arbitrary length in fine-tuning.099

Notably, our multi-segment generation scheme re-100

tains the intact transformer architecture. Thus, it is101

more feasible than other long-document modeling102

workarounds, e.g., sparse attention (Beltagy et al.,103

2020) and memory modules (Bulatov et al., 2022),104

which need to modify the Transformer architecture105

and may affect the capacity of pre-trained models.106

We evaluate ViTLP on a variety of OCR and107

VDU tasks. Experiment results demonstrate that108

ViTLP can achieve superior overall performance109

on both OCR and VDU tasks. For instance, ViTLP110

achieves the 95.59% F1 score on CORD informa-111

tion extraction and 95.36% accuracy on RVL-CDIP112

document classification, both of which outperform113

most previous approaches. Notably, ViTLP can114

intrinsically generate 2D layout locations for visual115

grounding, which helps in certain generative VDU116

tasks (e.g., visual document question answering) to117

be more interpretable and reliable to human.118

2 Approach 119

2.1 Problem Formulation 120

We study multimodal pre-training for visual docu- 121

ment modeling. As widely studied (Xu et al., 2020, 122

2021; Appalaraju et al., 2021; Li et al., 2021b; 123

Powalski et al., 2021; Wang et al., 2022a; Huang 124

et al., 2022; Wang et al., 2022b), document images 125

V, texts T, and layouts L are three fundamental 126

modalities for visual document modeling. 127

Unified Text-Layout Generation We cast the 128

pre-training objective on visual documents as text- 129

layout sequence (i.e., {T;L}) generation condi- 130

tioned on document images V. The document texts 131

T are represented as word-token sequences. The 132

layouts L, following prior studies (Xu et al., 2020, 133

2021), can be represented by location bounding 134

boxes of words. Instead of generating two separate 135

sequences of T and L, ViTLP generates the texts 136

with corresponding layout locations in a sequence 137

of interleaved text-layout tokens, which facilitates 138

compact multimodal interaction between texts and 139

layouts. For the i-th word of a document, its text- 140

layout tokens {T;L}i are represented as 141

{T;L}i =
{
{w}i, {zx1, zy1, zx2, zy2}i

}
, (1) 142

where {w}i denotes the BPE tokens (Radford et al., 143

2019) of the i-th word, {zx1, zy1, zx2, zy2}i ∈ Z4
+ 144

are the corresponding left-top and right-bottom 145

bounding box coordinates. Given a document with 146

N words, the objective is to maximize the likeli- 147

hood function log p(T;L|V) which can be decom- 148

posed as autoregressive text and layout modeling: 149

log p(T;L|V) =

N∑
i=1

(
log p(Ti|T<i,L<i,V)︸ ︷︷ ︸

Text-modeling

150

+ log p(Li|T≤i,L<i,V)︸ ︷︷ ︸
Layout-modeling

)
. (2) 151

Note that Eq. (2) shares similar ideas with Chen 152

et al. (2022), where word and bounding box gener- 153

ation can be formulated as language modeling on 154

a unified text-layout sequence. However, it is in 155

fact nontrivial to generate sequences as in Eq. (1), 156

because real-world documents commonly contain 157

intensive texts, generating each word followed by 158

four coordinate tokens in a long flattened sequence 159

is especially token-inefficient. This would bring 160

prohibitive computational and space overhead2 to 161

the Transformer-based text-layout decoder. 162

2Recall that both the computational and space complexities
of Transformers are quadratic O(L2) in sequence length L.
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Figure 2: Overview of the ViTLP architecture. ViTLP is a generative pre-training model that performs autoregressive
text-layout modeling conditioned on visual document inputs. ViTLP adopts hierarchical decoder heads to generate
target text-layout sequences in a global-to-local manner. The segment mode tokens ∈ {[BOS],[CONT]} prompt
the beginning and continuous modes of generation, respectively.

2.2 Model Architecture163

The architecture of ViTLP is shown in Figure 2.164

ViTLP employs an encoder-decoder framework to165

encode document images V and generate target166

text-layout sequences {T;L}. Specifically, given167

an input document image V, ViTLP employs a vi-168

sion transformer (ViT) (Dosovitskiy et al., 2021) to169

learn visual representations HV ∈ R|V |×d, where170

|V | is the ViT patch number and d is the hidden171

size. The decoder receives the visual represen-172

tations HV and generates the unified text-layout173

sequence {T;L}. To address the token-inefficiency174

issue discussed in Sec. 2.1, we design the global-175

to-local text-layout generation process as follows.176

2.2.1 Global Text-Layout Modeling177

Instead of directly generating the text-layout se-178

quence as in Eq. (1), we first replace the bounding179

box coordinates {zx1, zy1, zx2, zy2} with a generic180

layout location token ŵ = [LOC]. This integrates181

the mixed text-layout sequence {T;L} to unified182

language modeling. Given the original vocabulary183

V , the global text-layout sequence T̂ derives from184

the augmented vocabulary V̂ = V ∪ [LOC]. The185

layout token embeddings E[LOC] are computed as186

E[LOC] =
[
Ex(zx1),Ey(zy1),Ex(zx2),Ey(zy2)

]
,187

where Ex(·) ∈ R
d
4 and Ey(·) ∈ R

d
4 denote the x- 188

and y-axis spatial embeddings. Besides, the word 189

tokens are embedded by Ew(·) ∈ Rd. Given a doc- 190

ument of N words and the corresponding bounding 191

boxes, the text-layout input embeddings are repre- 192

sented as HTL = {Ew,E[LOC]} ∈ R|T̂|×d. 193

The ViTLP text-layout decoder performs multi- 194

modal interaction among visual, textual, and layout 195

information via the Transformer cross-attention 196

HV TL = Transformer-Decoder(HV ,HTL). 197

For the i-th target token T̂i, the multimodal de- 198

coder output HV TL
i is fed to a linear language 199

modeling (LM) head with the softmax function 200

to compute the conditional generative probability 201

p(T̂i|T̂<i,V) = Softmax
(
Linear(HV TL

i )
)
. 202

With the generic layout token [LOC] incorporated, 203

the text-modeling term in Eq. (2) is expressed as 204

Lglobal-text = − 1

|T̂|

|T̂|∑
i=1

log p(T̂i|T̂<i,V). (3) 205

2.2.2 Local Layout Modeling 206

Local layout modeling aims to generate specific lay- 207

out locations for each generic layout token [LOC]. 208
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To capture the spatial relation among coordinates,209

we employ a simple sequential MLP layout head3210

to decode the short sequence of four layout coor-211

dinate tokens from the last hidden state of [LOC].212

For notation simplicity, we denote {Li,j}4j=1 =213

{zx1, zy1, zx2, zy2}i as the corresponding layout214

coordinates of the [LOC] token at the i-th posi-215

tion, and its generative probability is modeled as216

p(Li,j |T̂≤i,Li,<j ,V) = Softmax
(
MLP(Hi,<j)

)
,217

where Hi,0 = HV TL
i is selected from the learned218

multimodal representations where T̂i = [LOC].219

Here, we denote the index set of [LOC] tokens as220

SL =
{
i : T̂i = [LOC]| i = 1, 2, ..., |T̂|

}
. The221

layout-modeling term in Eq. (2) is expressed as222

Llocal-layout = −
∑

log p(Li|T̂≤i,L<i,V) (4)223

= − 1

4|SL|
∑
i∈SL

4∑
j=1

log p(Li,j |T̂≤i,Li,<j ,V).224

In summary, with the global and local text-layout225

modeling in a hierarchy, the original pre-training226

objective in Eq. (2) evolves to227

L = Lglobal-text + Llocal-layout. (5)228

The global-to-local generation process aims to229

be effective and efficient for text-layout modeling.230

On effectiveness, the interleaved text-layout se-231

quence modeling enables compact interaction be-232

tween text and layout inputs, which can effectively233

fuse the information of text and layout modalities.234

On efficiency, suppose that the average BPE tokens235

of a document word are |w|, and the compression236

ratio of the text-layout sequence is |w|+1
|w|+4 , i.e., four237

coordinate tokens are compressed to one. In our238

experiment datasets, the compression ratio is 0.48.239

2.3 Multi-segment Pre-training Scheme240

Documents are usually intensive in text and layout,241

and it would be computationally intractable to fit242

the entire sequence into a generative model. To pro-243

cess documents with arbitrary length, we propose a244

multi-segment pre-training scheme that divides the245

long sequence into multiple segments for genera-246

tion. Since a document image already contains all247

necessary information of the text and layout, long248

document modeling is feasible based on the visual249

representations and generation history context.250

Given the maximum sequence length of the de-251

coder as M , we first divide the text-layout sequence252

3Details of the layout head are in Appendix B.

into K segmented sequences {Si}Ki=1. The begin- 253

ning segment S1 contains M tokens to be gener- 254

ated, and the continuous segment Si>1 contains 255

αp ·M prefix tokens and (1 − αp) ·M tokens to 256

be generated. Here, αp is the pre-defined prefix 257

ratio. The overall generation process comprises 258

beginning and continuous modes. 259

Beginning Generation Mode In this mode, we 260

prepend a special mode token [BOS] to the be- 261

ginning sequence S1. The model then follows the 262

objective in Eq. (5) to generate the first M tokens. 263

Continuous Generation Mode For the contin- 264

uous segments Si>1, we prepend a special mode 265

token [CONT] to the input sequence. |P | = αp·M 266

prefix tokens are prepended to the input sequence. 267

These |P | prefix tokens of segmented sequence Si 268

come from the |P | suffix tokens of the previous 269

segmented sequence Si−1. The prefix tokens serve 270

as a prompt of generation history context which 271

guides the decoder to generate subsequent tokens 272

from arbitrary locations of a document. The special 273

token [EOS] is appended to the last segmented se- 274

quence SK to signal the end of generation. 275

Segmentation in Pre-training and Fine-tuning 276

In pre-training, the segmented sequences of a long 277

document are randomly scattered into different data 278

batches. In this way, ViTLP learns to model the 279

complete textual and layout information of a docu- 280

ment, conditioned on different prefix history-token 281

contexts. In fine-tuning (and inference), ViTLP can 282

also apply the multi-segment scheme to process 283

those long text-layout sequences, which is consis- 284

tent with the pre-training phase. For instance, OCR 285

and sequence labeling on long document texts can 286

be processed segment by segment. 287

2.4 Applications of ViTLP 288

2.4.1 OCR Text Localization and Recognition 289

Text localization and recognition are two funda- 290

mental functions of OCR engines (Li et al., 2023). 291

As ViTLP is pre-trained to generate text and layout 292

(i.e., 2D bounding boxes) sequences from docu- 293

ment images, it can intrinsically perform text lo- 294

calization and recognition by generating a unified 295

OCR sequence of texts and bounding boxes. ViTLP 296

can function as a word-level OCR model. 297

2.4.2 Downstream VDU Tasks 298

Information Extraction The information extrac- 299

tion task is formulated as sequence labeling on the 300
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Approach OCR Tasks VDU Tasks
Text Local. Text Recog. Info. Extraction Doc. Classification Document VQA VQA Grounding

OCR Pipelines ✓ ✓
Discriminative VDU Models ✓ ✓ ✓
Generative VDU Models ✓ ✓ ✓
ViTLP ✓ ✓ ✓ ✓ ✓ ✓

Table 1: The comprehensive capabilities of ViTLP and its comparison with the associated baselines on each task.

target texts given document image input. Follow-301

ing BART (Lewis et al., 2020), we feed ViTLP302

decoder’s final hidden states of a target word (with303

layout coordinate inputs) to a linear classifier which304

outputs the token-level semantic label.305

Document Classification Given an input docu-306

ment image to the encoder, we feed a task prefix307

token [DOC_CLS] as input to the decoder to out-308

put the document classification label.309

Document Visual Question Answering Unlike310

discriminative VDU models that perform extrac-311

tive QA on pre-processed OCR results, ViTLP di-312

rectly generates answers given a task prefix token313

[VQA] followed by the question. It is noteworthy314

that ViTLP can intrinsically generate interpretable315

grounding regions of interest (ROI), i.e., layout316

coordinates of answers, to verify the generation.317

3 Experiments318

3.1 Experiment Setup319

Implementation Details We implement ViTLP320

with a 12-layer ViT (Dosovitskiy et al., 2021) im-321

age encoder and a 6-layer text-layout decoder. The322

Transformer hidden size is d = 768 with 12 atten-323

tion heads. In pre-training, the input image height324

and width are 1920×1600 with the 32×32 ViT325

patch size, and the decoder segmented sequence326

length is M = 1024. Following LayoutLMv2 (Xu327

et al., 2021), the layout location coordinates are328

normalized into discrete bins of [0, 1000], resulting329

that the vocabulary size of the layout-head is 1001.330

The multi-segment prefix ratio is set as αp = 0.25.331

We use the AdamW optimizer (Loshchilov and Hut-332

ter, 2019) to train ViTLP in 250K steps, with the333

batch size of 384 and initial learning rate of 2e-4334

with cosine decay. More implementation details335

are provided in Appendix A.2.336

Pre-training Data Following prior work (Xu337

et al., 2021), we use IIT-CDIP Test Collection 1.0338

(Lewis et al., 2006) containing 11M document im-339

ages for pre-training. Following DONUT (Kim340

et al., 2022), we generate 2M synthetic document341

images with text and layout annotations. Another342

four supplementary datasets with 0.4M document343

images are also added to augment the diversity 344

of pre-training data, including PubLayNet (Zhong 345

et al., 2019), DocBank (Li et al., 2020), SciTSR 346

(Chi et al., 2019), and IAM (Marti and Bunke, 347

2002). We use our internal OCR tool to extract 348

words with location coordinates from the IIT-CDIP 349

and PubLayNet images. Words with locations are 350

provided in IAM, SciTSR, and DocBank. Refer to 351

Appendix A.1 for more detailed data statistics. 352

Evaluation Tasks We highlight that ViTLP are 353

capable of handling both 1) perception tasks of 354

document OCR and 2) cognition tasks of visual 355

document understanding (VDU). To evaluate the 356

comprehensive capabilities of ViTLP, we compare 357

to baselines on each task as summarized in Table 1. 358

For OCR evaluation, we conduct two benchmark 359

OCR sub-tasks, i.e., document text localization and 360

recognition. We evaluate model performance on 361

SROIE competition4 Task #1 for text localization 362

and Task #2 for text recognition. The text localiza- 363

tion task is evaluated by DetEval protocol (Wolf 364

and Jolion, 2006) which calculates the precision, 365

recall, and F1 based on the area of overlapping re- 366

gions between model predictions and ground-truth 367

text coordinates. The text recognition task evalu- 368

ates the word-level precision, recall, and F1 based 369

on exact word match. 370

For VDU evaluation, we conduct three docu- 371

ment understanding tasks. 1) Form Understanding. 372

Given a document image and its word entities, it is 373

a sequential labeling task to predict the BIO tags 374

for each textual entity. We use FUNSD (Jaume 375

et al., 2019) which contains 199 scanned forms, and 376

the entities are labeled in four categories: Header, 377

Question, Answer, and Other. FUNSD is divided 378

into 149 images for training and 50 for testing. We 379

report entity-level F1 as the evaluation score. 2) 380

Receipt Understanding. We use CORD (Park et al., 381

2019) containing 800 training and 100 testing im- 382

ages of real-world receipts. The receipt entities are 383

labeled in 30 categories. We use entity-level F1 for 384

evaluation. 3) Document Classification. We con- 385

duct experiments on the RVL-CDIP dataset (Harley 386

et al., 2015) containing 400K scanned documents 387

4https://rrc.cvc.uab.es/?ch=13&com=tasks
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in 16 classes. We adopt classification accuracy388

as the evaluation metric. For the sequence label-389

ing tasks on FUNSD, we perform multi-segment390

fine-tuning on those samples whose entity-word391

sequences exceed the maximum decoder sequence392

length. This differs from previous work that trun-393

cates the input sequences into certain tokens, e.g.,394

512 tokens in LayoutLM (Xu et al., 2020).395

Besides, we evaluate generative question answer-396

ing tasks on the DocVQA (Mathew et al., 2021) and397

InfographicVQA (Mathew et al., 2022) datasets.398

DocVQA consists of 12K document images with399

50K QA pairs, and InfographicVQA contains 5.4K400

document images with 30K QA pairs. Since the an-401

swer word locations are not provided in the training402

sets, we use an OCR tool to locate the coordinates403

of answer words with heuristic text matching. In404

this way, we feed the answers with grounding coor-405

dinates to ViTLP for document VQA fine-tuning.406

3.2 OCR Evaluation Results407

We compare ViTLP with representative OCR base-408

lines on SROIE 2019 benchmark (Huang et al.,409

2019). The text localization baselines include410

CRAFT (Baek et al., 2019), YOLO-v3 (Redmon411

and Farhadi, 2018), CTPN (Tian et al., 2016),412

and EAST (Zhou et al., 2017). The text recogni-413

tion baselines include BiLSTM-ResNet, BiLSTM-414

CTC (Lee and Osindero, 2016), UNet-CRNN (Ron-415

neberger et al., 2015), and TrOCR (Li et al., 2023).416

Unlike conventional OCR models that first perform417

text localization and then use the localized text-418

regions for text recognition, ViTLP performs text419

localization and recognition in unified text-layout420

sequence generation, which does not need ground421

truth text-region inputs in the recognition task.422

Table 2 shows the OCR evaluation performance.423

ViTLP outperforms most baseline methods on both424

localization and recognition tasks. ViTLP under-425

performs TrOCR, given that TrOCR is a strong426

pre-trained model for two-stage OCR text recogni-427

tion, while ViTLP performs text localization and428

recognition in one stage. Note that the SROIE train-429

ing samples are few, i.e., only 626 images, and the430

input text coordinates are at textline-level, which431

are different from our word-level pre-training input432

format and thus render it challenging to fine-tune433

our model. Nonetheless, ViTLP can still achieve434

competitive performance by fine-tuning on the lim-435

ited samples without additional data augmentation436

(Li et al., 2023), successfully adapting to output the437

textline coordinates that have never met in the pre-438

Text Localization Task
Method Area-Precision Area-Recall Area-F1

CRAFT 62.73 59.94 61.31
YOLO-v3 77.29 79.32 78.29
CTPN 81.14 87.23 84.07
EAST 85.07 87.17 86.11
ViTLP 91.62 91.68 91.65

Text Recognition Task
Method Word-Precision Word-Recall Word-F1

BiLSTM-ResNet 74.05 77.81 75.88
BiLSTM-CTC 83.38 87.37 85.33
UNet-CRNN 85.77 86.48 86.12
TrOCR† 95.89 95.74 95.82
ViTLP 93.07 92.52 92.79

Table 2: OCR text localization and recognition results
on SROIE 2019 benchmark. †TrOCR uses the ground-
truth cropped image regions as inputs, whereas ViTLP
performs text localization and recognition in a unified
stage. All scores are reported in percentage.

training phase. We also provide qualitative ViTLP 439

zero-shot OCR examples in Appendix C. 440

3.3 VDU Evaluation Results 441

We compare ViTLP with competitive pre-trained 442

baselines including i) general method RoBERTa 443

(Liu et al., 2019), ii) discriminative VDU models: 444

LayoutLM (Xu et al., 2020), SPADE (Hwang et al., 445

2021), SelfDoc (Li et al., 2021b), TITL (Powalski 446

et al., 2021), LayoutLMv2 (Xu et al., 2021), LiLT 447

(Wang et al., 2022a), FormNet (Lee et al., 2022) 448

and iii) generative VDU model DONUT (Kim et al., 449

2022). Table 3 shows the VDU task performance. 450

Information Extraction According to Table 3, 451

our model achieves better F1 scores compared to 452

most baselines on FUNSD and CORD. The results 453

indicate that ViTLP can develop thorough under- 454

standing of form/receipt structures from images. 455

Nonetheless, ViTLP underperforms the best dis- 456

criminative baselines, i.e., LiLT on FUNSD and 457

FormNet on CORD. We believe this is because 458

pre-trained discriminative VDU models have nat- 459

ural adavantages over generative models for the 460

information extraction task, which is formulated as 461

token-level classification. Besides, ViTLP outper- 462

forms DONUT, proving that layout modeling is as 463

necessary as language modeling to generative VDU 464

models. For example, for the CORD images, enti- 465

ties with the same semantic label <menu.price> 466

are always located in the same rightmost column 467

of the receipt, sharing adjacent layout coordinates. 468

Layout modeling can help generative VDU models 469

better extract such structural-aware information. 470
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Method Modeling Type # Param. Maximum
Doc-Length FUNSD (F1) CORD (F1) RVL-CDIP (Acc)

RoBERTabase (Liu et al., 2019) 125M 512 66.48 93.54 90.06
LayoutLMbase (Xu et al., 2020) 160M 512 79.27 – 94.42
SPADE (Hwang et al., 2021) 110M 512 70.50 91.50 –
SelfDoc (Li et al., 2021b) Discriminative 137M 1024 83.36 – 93.81
TILTbase (Powalski et al., 2021) (w/ OCR Input) 230M 512 – 95.11 95.25
LayoutLMv2base (Xu et al., 2021) 200M 512 82.76 94.95 95.25
LiLTbase (Wang et al., 2022a) – 512 88.41 96.07 95.68
FormNet (Lee et al., 2022) 217/345M† 1024 84.69 97.28 –

DONUT (Kim et al., 2022) Generative 259M 1536 – 84.10 95.30
ViTLP (w/o OCR Input) 253M unlimited 87.61 95.59 95.36

Table 3: VDU evaluation results on form understanding (FUNSD), receipt understanding (CORD), and document
classification (RVL-CDIP). † FormNet has different sizes of 217M and 345M for FUNSD and CORD (Lee et al.,
2022). “Maximum Doc-Length” denotes the maximum tokens of an input text sequence that the model can handle.

Ablation Variants FUNSD (F1) CORD (F1)

ViTLP 87.61 95.59
w/o layout modeling 81.42 91.54
w/o multi-segment training 86.73 95.01
w/o hierarchical modeling 86.28 94.86

Table 4: Ablation model performance on the informa-
tion extraction tasks.

Document Classification We can see that ViTLP471

achieves the second best performance on classifi-472

cation accuracy. We also find that the performance473

among TILT, LayoutLMv2, DONUT, and ViTLP474

are quite close. This may be because document475

classification is a coarse-grained task, wherein the476

vision modality contributes the most to classifi-477

cation performance, and the OCR text modality478

brings an incremental gain. Though ViTLP is sub-479

optimal compared to LiLT, OCR-free generative480

methods are more flexible and lightweight because481

no pre-processed OCR texts are needed for input.482

3.4 Further Discussion483

3.4.1 Ablation Study484

We conduct ablation study on the effect of hierar-485

chical text-layout modeling and multi-segment pre-486

training scheme. We compare ViTLP with three487

variants: i) pre-training with the language modeling488

objective only, without the layout modeling objec-489

tive; ii) truncating long input document sequences490

in pre-training, without the multi-segment strategy;491

iii) generating four layout coordinate tokens for492

each word in a long flatten sequence, without hier-493

archical text-layout modeling.494

Table 4 displays the ablation performance. We495

can observe that discarding the layout modeling496

objective leads to a substantial performance drop,497

i.e., 6.19 and 4.05 F1 drops on FUNSD and CORD.498

Generative Model DocVQA InfographicVQA

Dessurt (Davis et al., 2022) 63.2 –
DONUT (Kim et al., 2022) 67.5 11.6
ViTLP 65.9 28.7

Table 5: The results are reported on Average Normal-
ized Levenshtein Similarity (ANLS) between the model
generated answers and ground-truth.

The results suggest that generative pre-training on 499

the layout modality can enhance the document un- 500

derstanding capability of VDU models. Besides, 501

truncating long document inputs without the multi- 502

segment pre-training strategy leads to lower per- 503

formance. We believe that the multi-segment pre- 504

training scheme enables ViTLP to model complete 505

text and layout tokens of the pre-training corpora, 506

which benefits the pre-trained model performance. 507

We can also see that removing hierarchical text- 508

layout modeling causes performance descent. It 509

validates that hierarchical modeling is effective for 510

interleaved text-layout information fusion. 511

3.4.2 Generative Document VQA 512

Results and Analysis Table 5 presents the per- 513

formance of generative VDU models on DocVQA 514

and InfographicVQA datasets. We can see that 515

ViTLP underperforms DONUT by a slight margin 516

on DocVQA and surpasses DONUT by a signifi- 517

cant margin on InfographicVQA. As discussed in 518

Kim et al. (2022), DocVQA images are similar 519

to the pre-training IIT-CDIP images, pre-training 520

data quality may have a considerable influence on 521

the performance of DocVQA. The average results 522

show that ViTLP develops better overall document 523

VQA performance than the strong generative model 524

DONUT, which validates the effectiveness of our 525

generative pre-training approach. 526
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Question: What % of families are in poverty in the 

                 county 'Stoddard'?

 ViTLP output: {[“29.9”, [314, 336, 346, 354]]}

Question: For which individual was this request made?

 ViTLP output: {[“Dr.”       , [593, 245, 626, 266]], 

                         [“Robert” , [634, 245, 702, 266]],

                         [“E.”        , [713, 245, 738, 266]], 

                         [“Shank” , [748, 245, 804, 266]]}

Question: How much grands paid in the year 1981,        

                according to the table?

 ViTLP output: {[“$81,520.00”, [557, 229, 632, 251]}

Figure 3: Visualization of ViTLP generated answers on DocVQA. The ViTLP output answer sequences consist of
answer words (in blue) and corresponding location coordinates (in red). For direct visualization, we draw the region
of interest (ROI) referring to the output layout coordinates on the image.

Document VQA with Interpretable Grounding527

Owing to the layout localization ability learned by528

the pre-training stage, ViTLP can be fine-tuned to529

output the regions of interest (ROI) associated with530

the generated answers, which is unprecedented to531

prior work. As presented in Figure 3, the visual-532

ized ROI grounding can help users easily verify the533

model generated answers, making the generative534

question-answering process more interpretable to535

human that where the model derives the answers.536

A potential application is to use ViTLP as a semi-537

automatic annotator to annotate large-scale docu-538

ment VQA datasets, where human annotators can539

quickly verify and filter the annotations according540

to the visualized ROI. More grounding document541

VQA examples are provided in Appendix D.542

4 Related Work543

Visual document processing with multimodal pre-544

training has been widely studied recently. Depend-545

ing on the pre-processing of documents, existing546

works can be generally divided into two strands of547

research as listed below.548

OCR-based Methods Most existing VDU ef-549

forts adopt OCR tools to localize and recognize550

document layouts and texts, and then feed them551

to the multimodal pre-trained models (Xu et al.,552

2020, 2021; Huang et al., 2022; Appalaraju et al.,553

2021; Li et al., 2021a; Peng et al., 2022; Li et al.,554

2021b; Lee et al., 2023a). These methods usu-555

ally involve multiple multimodal pre-training ob-556

jectives over the vision, text, and layout. For in-557

stance, document word location (Xu et al., 2020,558

2021) and textline regions (Li et al., 2021b; Wang559

et al., 2022b) are rich in document structure infor-560

mation to align visual features with text embed-561

dings. Though promising, these pipeline models 562

suffer from heavy OCR pre-processing overhead. 563

Moreover, incorrect OCR results can easily propa- 564

gate errors to downstream tasks such as document 565

question answering (Kim et al., 2022). 566

OCR-free Methods There are few recent studies 567

(Kim et al., 2022; Lee et al., 2023b) that jointly con- 568

sider text reading and understanding without exter- 569

nal OCR pipelines. For instance, Kim et al. (2022) 570

takes document images as input to the model with- 571

out prerequisite OCR results and conducts visual 572

language pre-training. Lee et al. (2023b) further im- 573

proves the pre-training objectives over large-scaled 574

visual webpage corpora. 575

Our research lies within the OCR-free branch. 576

Different from existing works, we first study gen- 577

erative text-layout modeling conditioned on input 578

document images. Our empirical results also vali- 579

date that layout information not only enhances the 580

learned representations for downstream VDU tasks 581

but also makes the generation interpretable. 582

5 Conclusion 583

We propose visually guided generative text-layout 584

pre-training (ViTLP) to enhance visual document 585

processing covering the OCR and VDU tasks. 586

In pre-training phase, ViTLP optimizes hierarchi- 587

cal language and layout modeling objectives to 588

generate interleaved text-layout target sequences. 589

Moreover, the proposed multi-segment pre-training 590

scheme enables ViTLP to process long documents 591

with arbitrary lengths. ViTLP can function as a 592

native OCR model to locate and recognize texts 593

of document images. Experiments also show that 594

ViTLP achieves superior performance on various 595

VDU tasks with document grounding capability. 596
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Limitations597

Our community has entered the era of large lan-598

guage models (LLMs) with multimodal capabili-599

ties (Dai et al., 2023; OpenAI, 2023). However,600

regarding the model size, ViTLP is still a rather601

small-scale pre-trained model, which limits its po-602

tential to become an interactive and generalized603

document AI assistant. In future work, we plan to604

explore two paths: 1) scaling up ViTLP with more605

parameters and training data, extending it to a more606

powerful foundation document model; 2) integrat-607

ing ViTLP’s document-specific text-layout image608

encoder with generalized advanced LLMs (Chiang609

et al., 2023; Touvron et al., 2023) and instruction610

tuning (Zhu et al., 2023; Liu et al., 2023) to build611

up an interactive document AI assistant.612

References613

Srikar Appalaraju, Bhavan Jasani, Bhargava Urala Kota,614
Yusheng Xie, and R. Manmatha. 2021. Docformer:615
End-to-end transformer for document understanding.616
In 2021 IEEE/CVF International Conference on Com-617
puter Vision (ICCV), pages 973–983.618

Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo619
Yun, and Hwalsuk Lee. 2019. Character region620
awareness for text detection. In Proceedings of the621
IEEE Conference on Computer Vision and Pattern622
Recognition, pages 9365–9374.623

Iz Beltagy, Matthew E. Peters, and Arman Cohan.624
2020. Longformer: The long-document transformer.625
arXiv:2004.05150.626

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev.627
2022. Recurrent memory transformer. In Ad-628
vances in Neural Information Processing Systems,629
volume 35, pages 11079–11091. Curran Associates,630
Inc.631

Ting Chen, Saurabh Saxena, Lala Li, David J. Fleet, and632
Geoffrey Hinton. 2022. Pix2seq: A language model-633
ing framework for object detection. In International634
Conference on Learning Representations.635

Xingyu Chen, Zihan Zhao, Lu Chen, JiaBao Ji, Danyang636
Zhang, Ao Luo, Yuxuan Xiong, and Kai Yu. 2021.637
WebSRC: A dataset for web-based structural reading638
comprehension. In Proceedings of the 2021 Confer-639
ence on Empirical Methods in Natural Language Pro-640
cessing, pages 4173–4185, Punta Cana, Dominican641
Republic. Association for Computational Linguistics.642

Zewen Chi, Heyan Huang, Heng-Da Xu, Houjin Yu,643
Wanxuan Yin, and Xian-Ling Mao. 2019. Com-644
plicated table structure recognition. arXiv preprint645
arXiv:1908.04729.646

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 647
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 648
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 649
Stoica, and Eric Xing. 2023. Vicuna: An open-source 650
chatbot impressing gpt-4 with 90% chatgpt quality. 651

Wenliang Dai, Junnan Li, Dongxu Li, Anthony 652
Meng Huat Tiong, Junqi Zhao, Weisheng Wang, 653
Boyang Li, Pascale Fung, and Steven Hoi. 2023. In- 654
structblip: Towards general-purpose vision-language 655
models with instruction tuning. 656

Brian L. Davis, B. Morse, Bryan Price, Chris Tensmeyer, 657
Curtis Wigington, and Vlad I. Morariu. 2022. End- 658
to-end document recognition and understanding with 659
dessurt. In ECCV Workshops. 660

Alexey Dosovitskiy, Lucas Beyer, Alexander 661
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, 662
Thomas Unterthiner, Mostafa Dehghani, Matthias 663
Minderer, Georg Heigold, Sylvain Gelly, Jakob 664
Uszkoreit, and Neil Houlsby. 2021. An image 665
is worth 16x16 words: Transformers for image 666
recognition at scale. ICLR. 667

Jiuxiang Gu, Jason Kuen, Vlad I Morariu, Handong 668
Zhao, Rajiv Jain, Nikolaos Barmpalios, Ani Nenkova, 669
and Tong Sun. 2021. Unidoc: Unified pretraining 670
framework for document understanding. Advances in 671
Neural Information Processing Systems, 34:39–50. 672

Adam W Harley, Alex Ufkes, and Konstantinos G Der- 673
panis. 2015. Evaluation of deep convolutional nets 674
for document image classification and retrieval. In 675
2015 13th International Conference on Document 676
Analysis and Recognition, pages 991–995. 677

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian 678
error linear units (gelus). CoRR. 679

Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and 680
Furu Wei. 2022. Layoutlmv3: Pre-training for doc- 681
ument ai with unified text and image masking. In 682
Proceedings of the 30th ACM International Confer- 683
ence on Multimedia. 684

Zheng Huang, Kai Chen, Jianhua He, Xiang Bai, Di- 685
mosthenis Karatzas, Shijian Lu, and C. V. Jawahar. 686
2019. Icdar2019 competition on scanned receipt ocr 687
and information extraction. In 2019 International 688
Conference on Document Analysis and Recognition 689
(ICDAR), pages 1516–1520. 690

Wonseok Hwang, Jinyeong Yim, Seunghyun Park, So- 691
hee Yang, and Minjoon Seo. 2021. Spatial depen- 692
dency parsing for semi-structured document infor- 693
mation extraction. In Findings of the Association 694
for Computational Linguistics: ACL-IJCNLP 2021, 695
pages 330–343, Online. Association for Computa- 696
tional Linguistics. 697

Guillaume Jaume, Hazim Kemal Ekenel, and Jean- 698
Philippe Thiran. 2019. Funsd: A dataset for form 699
understanding in noisy scanned documents. In 2019 700
International Conference on Document Analysis and 701
Recognition Workshops, volume 2, pages 1–6. IEEE. 702

9

https://doi.org/10.1109/ICCV48922.2021.00103
https://doi.org/10.1109/ICCV48922.2021.00103
https://doi.org/10.1109/ICCV48922.2021.00103
https://proceedings.neurips.cc/paper_files/paper/2022/file/47e288629a6996a17ce50b90a056a0e1-Paper-Conference.pdf
https://openreview.net/forum?id=e42KbIw6Wb
https://openreview.net/forum?id=e42KbIw6Wb
https://openreview.net/forum?id=e42KbIw6Wb
https://doi.org/10.18653/v1/2021.emnlp-main.343
https://doi.org/10.18653/v1/2021.emnlp-main.343
https://doi.org/10.18653/v1/2021.emnlp-main.343
http://arxiv.org/abs/1908.04729
http://arxiv.org/abs/1908.04729
http://arxiv.org/abs/1908.04729
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://doi.org/10.1109/ICDAR.2019.00244
https://doi.org/10.1109/ICDAR.2019.00244
https://doi.org/10.1109/ICDAR.2019.00244
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.18653/v1/2021.findings-acl.28


Anoop R Katti, Christian Reisswig, Cordula Guder, Se-703
bastian Brarda, Steffen Bickel, Johannes Höhne, and704
Jean Baptiste Faddoul. 2018. Chargrid: Towards un-705
derstanding 2D documents. In Proceedings of the706
2018 Conference on Empirical Methods in Natural707
Language Processing, pages 4459–4469, Brussels,708
Belgium. Association for Computational Linguistics.709

Geewook Kim, Teakgyu Hong, Moonbin Yim,710
JeongYeon Nam, Jinyoung Park, Jinyeong Yim, Won-711
seok Hwang, Sangdoo Yun, Dongyoon Han, and Se-712
unghyun Park. 2022. Ocr-free document understand-713
ing transformer. In Computer Vision – ECCV 2022:714
17th European Conference, Tel Aviv, Israel, Octo-715
ber 23–27, 2022, Proceedings, Part XXVIII, page716
498–517, Berlin, Heidelberg. Springer-Verlag.717

C. Lee and S. Osindero. 2016. Recursive recurrent nets718
with attention modeling for ocr in the wild. In 2016719
IEEE Conference on Computer Vision and Pattern720
Recognition (CVPR), pages 2231–2239, Los Alami-721
tos, CA, USA. IEEE Computer Society.722

Chen-Yu Lee, Chun-Liang Li, Timothy Dozat, Vin-723
cent Perot, Guolong Su, Nan Hua, Joshua Ainslie,724
Renshen Wang, Yasuhisa Fujii, and Tomas Pfister.725
2022. FormNet: Structural encoding beyond sequen-726
tial modeling in form document information extrac-727
tion. In Proceedings of the 60th Annual Meeting of728
the Association for Computational Linguistics, pages729
3735–3754, Dublin, Ireland. Association for Compu-730
tational Linguistics.731

Chen-Yu Lee, Chun-Liang Li, Hao Zhang, Timothy732
Dozat, Vincent Perot, Guolong Su, Xiang Zhang,733
Kihyuk Sohn, Nikolay Glushnev, Renshen Wang,734
Joshua Ainslie, Shangbang Long, Siyang Qin, Ya-735
suhisa Fujii, Nan Hua, and Tomas Pfister. 2023a.736
FormNetV2: Multimodal graph contrastive learn-737
ing for form document information extraction. In738
Proceedings of the 61st Annual Meeting of the Asso-739
ciation for Computational Linguistics, pages 9011–740
9026, Toronto, Canada. Association for Computa-741
tional Linguistics.742

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexi-743
ang Hu, Fangyu Liu, Julian Martin Eisenschlos, Ur-744
vashi Khandelwal, Peter Shaw, Ming-Wei Chang, and745
Kristina Toutanova. 2023b. Pix2Struct: Screenshot746
parsing as pretraining for visual language understand-747
ing. In Proceedings of the 40th International Con-748
ference on Machine Learning, volume 202, pages749
18893–18912. PMLR.750

David Lewis, Gady Agam, Shlomo Argamon, Ophir751
Frieder, David Grossman, and Jefferson Heard. 2006.752
Building a test collection for complex document in-753
formation processing. In Proceedings of the 29th754
annual international ACM SIGIR conference, pages755
665–666.756

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan757
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,758
Veselin Stoyanov, and Luke Zettlemoyer. 2020.759
BART: Denoising sequence-to-sequence pre-training760

for natural language generation, translation, and com- 761
prehension. In Proceedings of the 58th Annual Meet- 762
ing of the Association for Computational Linguistics, 763
pages 7871–7880, Online. Association for Computa- 764
tional Linguistics. 765

Chenliang Li, Bin Bi, Ming Yan, Wei Wang, Song- 766
fang Huang, Fei Huang, and Luo Si. 2021a. Struc- 767
turalLM: Structural pre-training for form understand- 768
ing. In Proceedings of the 59th Annual Meeting of 769
the Association for Computational Linguistics, pages 770
6309–6318, Online. Association for Computational 771
Linguistics. 772

Minghao Li, Tengchao Lv, Jingye Chen, Lei Cui, Yijuan 773
Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, and 774
Furu Wei. 2023. Trocr: Transformer-based optical 775
character recognition with pre-trained models. In 776
AAAI 2023. 777

Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang, Furu 778
Wei, Zhoujun Li, and Ming Zhou. 2020. DocBank: 779
A benchmark dataset for document layout analy- 780
sis. In Proceedings of the 28th International Confer- 781
ence on Computational Linguistics, pages 949–960, 782
Barcelona, Spain (Online). International Committee 783
on Computational Linguistics. 784

Peizhao Li, Jiuxiang Gu, Jason Kuen, Vlad I Morariu, 785
Handong Zhao, Rajiv Jain, Varun Manjunatha, and 786
Hongfu Liu. 2021b. Selfdoc: Self-supervised doc- 787
ument representation learning. In Proceedings of 788
the IEEE/CVF Conference on Computer Vision and 789
Pattern Recognition, pages 5652–5660. 790

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 791
Lee. 2023. Visual instruction tuning. In Thirty- 792
seventh Conference on Neural Information Process- 793
ing Systems. 794

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 795
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 796
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 797
Roberta: A robustly optimized bert pretraining ap- 798
proach. In arXiv preprint arXiv: 1907.11692. arXiv. 799

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 800
weight decay regularization. In International Confer- 801
ence on Learning Representations. 802

Bodhisattwa Prasad Majumder, Navneet Potti, Sandeep 803
Tata, James Bradley Wendt, Qi Zhao, and Marc Na- 804
jork. 2020. Representation learning for information 805
extraction from form-like documents. In Proceed- 806
ings of the 58th Annual Meeting of the Association 807
for Computational Linguistics, pages 6495–6504, On- 808
line. Association for Computational Linguistics. 809

Urs-Viktor Marti and H. Bunke. 2002. The iam- 810
database: An english sentence database for offline 811
handwriting recognition. International Journal on 812
Document Analysis and Recognition, 5:39–46. 813

Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis 814
Karatzas, Ernest Valveny, and C. V. Jawahar. 2022. 815

10

https://doi.org/10.18653/v1/D18-1476
https://doi.org/10.18653/v1/D18-1476
https://doi.org/10.18653/v1/D18-1476
https://doi.org/10.1007/978-3-031-19815-1_29
https://doi.org/10.1007/978-3-031-19815-1_29
https://doi.org/10.1007/978-3-031-19815-1_29
https://doi.org/10.1109/CVPR.2016.245
https://doi.org/10.1109/CVPR.2016.245
https://doi.org/10.1109/CVPR.2016.245
https://doi.org/10.18653/v1/2022.acl-long.260
https://doi.org/10.18653/v1/2022.acl-long.260
https://doi.org/10.18653/v1/2022.acl-long.260
https://doi.org/10.18653/v1/2022.acl-long.260
https://doi.org/10.18653/v1/2022.acl-long.260
https://doi.org/10.18653/v1/2023.acl-long.501
https://doi.org/10.18653/v1/2023.acl-long.501
https://doi.org/10.18653/v1/2023.acl-long.501
https://proceedings.mlr.press/v202/lee23g.html
https://proceedings.mlr.press/v202/lee23g.html
https://proceedings.mlr.press/v202/lee23g.html
https://proceedings.mlr.press/v202/lee23g.html
https://proceedings.mlr.press/v202/lee23g.html
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.493
https://doi.org/10.18653/v1/2021.acl-long.493
https://doi.org/10.18653/v1/2021.acl-long.493
https://doi.org/10.18653/v1/2021.acl-long.493
https://doi.org/10.18653/v1/2021.acl-long.493
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/10.18653/v1/2020.coling-main.82
https://openreview.net/forum?id=w0H2xGHlkw
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2020.acl-main.580
https://doi.org/10.18653/v1/2020.acl-main.580
https://doi.org/10.18653/v1/2020.acl-main.580
https://doi.org/10.1007/s100320200071
https://doi.org/10.1007/s100320200071
https://doi.org/10.1007/s100320200071
https://doi.org/10.1007/s100320200071
https://doi.org/10.1007/s100320200071


Infographicvqa. In 2022 IEEE/CVF Winter Confer-816
ence on Applications of Computer Vision (WACV),817
pages 2582–2591.818

Minesh Mathew, Dimosthenis Karatzas, and CV Jawa-819
har. 2021. Docvqa: A dataset for vqa on document820
images. In Proceedings of the IEEE/CVF winter con-821
ference on applications of computer vision, pages822
2200–2209.823

OpenAI. 2023. Gpt-4 technical report.824

Seunghyun Park, Seung Shin, Bado Lee, Junyeop Lee,825
Jaeheung Surh, Minjoon Seo, and Hwalsuk Lee. 2019.826
Cord: a consolidated receipt dataset for post-ocr827
parsing. In Workshop on Document Intelligence at828
NeurIPS 2019.829

Qiming Peng, Yinxu Pan, Wenjin Wang, Bin Luo,830
Zhenyu Zhang, Zhengjie Huang, Yuhui Cao, Wei-831
chong Yin, Yongfeng Chen, Yin Zhang, Shikun Feng,832
Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. 2022.833
ERNIE-layout: Layout knowledge enhanced pre-834
training for visually-rich document understanding.835
In Findings of the Association for Computational836
Linguistics: EMNLP 2022, pages 3744–3756, Abu837
Dhabi, United Arab Emirates. Association for Com-838
putational Linguistics.839

Rafał Powalski, Łukasz Borchmann, Dawid Jurkiewicz,840
Tomasz Dwojak, Michał Pietruszka, and Gabriela841
Pałka. 2021. Going full-tilt boogie on document842
understanding with text-image-layout transformer. In843
International Conference on Document Analysis and844
Recognition, pages 732–747. Springer.845

Alec Radford, Jeff Wu, Rewon Child, David Luan,846
Dario Amodei, and Ilya Sutskever. 2019. Language847
models are unsupervised multitask learners.848

Joseph Redmon and Ali Farhadi. 2018. Yolov3: An849
incremental improvement. CoRR, abs/1804.02767.850

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.851
2015. U-net: Convolutional networks for biomedical852
image segmentation. In MICCAI 2015. MICCAI.853

Zhi Tian, Weilin Huang, Tong He, Pan He, and Yu Qiao.854
2016. Detecting text in natural image with connec-855
tionist text proposal network. In European Confer-856
ence on Computer Vision.857

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-858
bert, Amjad Almahairi, Yasmine Babaei, Nikolay859
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti860
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton861
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,862
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,863
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-864
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan865
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,866
Isabel Kloumann, Artem Korenev, Punit Singh Koura,867
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-868
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-869
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-870
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-871
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,872

Ruan Silva, Eric Michael Smith, Ranjan Subrama- 873
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 874
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 875
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 876
Melanie Kambadur, Sharan Narang, Aurelien Ro- 877
driguez, Robert Stojnic, Sergey Edunov, and Thomas 878
Scialom. 2023. Llama 2: Open foundation and fine- 879
tuned chat models. 880

Jiapeng Wang, Lianwen Jin, and Kai Ding. 2022a. LiLT: 881
A simple yet effective language-independent layout 882
transformer for structured document understanding. 883
In Proceedings of the 60th Annual Meeting of the As- 884
sociation for Computational Linguistics, pages 7747– 885
7757. Association for Computational Linguistics. 886

Zilong Wang, Jiuxiang Gu, Chris Tensmeyer, Nikolaos 887
Barmpalios, Ani Nenkova, Tong Sun, Jingbo Shang, 888
and Vlad Morariu. 2022b. MGDoc: Pre-training with 889
multi-granular hierarchy for document image under- 890
standing. In Proceedings of the 2022 Conference on 891
Empirical Methods in Natural Language Processing, 892
pages 3984–3993, Abu Dhabi, United Arab Emirates. 893
Association for Computational Linguistics. 894

Christian Wolf and Jean-Michel Jolion. 2006. Object 895
count/area graphs for the evaluation of object detec- 896
tion and segmentation algorithms. Document Analy- 897
sis and Recognition, 8:280–296. 898

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu 899
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha 900
Zhang, Wanxiang Che, Min Zhang, and Lidong Zhou. 901
2021. LayoutLMv2: Multi-modal pre-training for 902
visually-rich document understanding. In Proceed- 903
ings of the 59th Annual Meeting of the Association 904
for Computational Linguistics, pages 2579–2591, On- 905
line. Association for Computational Linguistics. 906

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu 907
Wei, and Ming Zhou. 2020. Layoutlm: Pre-training 908
of text and layout for document image understanding. 909
In KDD 2020, page 1192–1200, New York, NY, USA. 910
Association for Computing Machinery. 911

Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. 912
2019. Publaynet: largest dataset ever for document 913
layout analysis. In 2019 International Conference 914
on Document Analysis and Recognition, pages 1015– 915
1022. IEEE. 916

Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, 917
Shuchang Zhou, Weiran He, and Jiajun Liang. 2017. 918
East: An efficient and accurate scene text detector. 919
In 2017 IEEE Conference on Computer Vision and 920
Pattern Recognition (CVPR), pages 2642–2651. 921

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and 922
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing 923
vision-language understanding with advanced large 924
language models. arXiv preprint arXiv:2304.10592. 925

11

https://doi.org/10.1109/WACV51458.2022.00264
http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2022.findings-emnlp.274
https://doi.org/10.18653/v1/2022.findings-emnlp.274
https://doi.org/10.18653/v1/2022.findings-emnlp.274
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2022.acl-long.534
https://doi.org/10.18653/v1/2022.acl-long.534
https://doi.org/10.18653/v1/2022.acl-long.534
https://doi.org/10.18653/v1/2022.acl-long.534
https://doi.org/10.18653/v1/2022.acl-long.534
https://aclanthology.org/2022.emnlp-main.265
https://aclanthology.org/2022.emnlp-main.265
https://aclanthology.org/2022.emnlp-main.265
https://aclanthology.org/2022.emnlp-main.265
https://aclanthology.org/2022.emnlp-main.265
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1109/CVPR.2017.283


Dataset Size Proportion Document Type

IIT-CDIP 10, 816, 672 81.89% Scanned Document
SynthDog 2, 000, 000 15.14% Synthetic Document
PublayNet 261, 076 1.98% Scientific Paper
DocBank 125, 815 0.95% Arxiv Paper
SciTSR 3, 536 0.03% Figure and Table

IAM 1, 198 0.01% Hand Written

Table 6: Pre-training dataset statistics.

A Experiment Details926

A.1 Pre-training Data Statistics927

Table 6 shows the pre-training data statistics. Fol-928

lowing previous work, e.g., LayoutLMv2 (Xu et al.,929

2021), we use 11M IIT-CDIP document images as930

the main pre-training data. Besides, we follow Kim931

et al. (2022) and Davis et al. (2022) to include 2M932

machine-rendered synthetic documents for gener-933

ative pre-training. Specifically, we adapt the of-934

ficial SynthDog generator5 to generate synthetic935

document images with text and layout metadata.936

The other four corpora, i.e., PublayNet, DocBank,937

SciTSR, and IAM, account for only ∼ 3% pre-938

training data whereby we aim to improve the diver-939

sity of pre-training document types.940

The distribution of document sequence lengths941

is displayed in Figure 4. The number of text-layout942

sequence tokens follows a long-tailed distribution:943

there exist some long documents with the sequence944

lengths ranging from 1024 to 3072. This brings a945

trade-off to pre-training. With a relatively short se-946

quence length (e.g., 512 tokens in LayoutLM), lan-947

guage modeling on long documents is incomplete,948

as the sequence tokens are truncated and wasted.949

However, with a relatively long sequence length950

(e.g., 3072), the GPU computation and memory951

overload would become prohibitive, which further952

forbids large batch sizes for better performance.6953

The multi-segment pre-training scheme can cir-954

cumvent this bitter trade-off. Notably, the multi-955

segment processing scheme can be directly applied956

to long document fine-tuning (and inference). For957

example in the OCR and sequence labeling tasks,958

ViTLP also employs the multi-segment scheme to959

process the long documents by multiple segments960

with prefix context tokens.961

5https://github.com/clovaai/donut/tree/master/synthdog
6Even assuming sufficient GPU resources, the long-tailed

distribution of document lengths would also cause enormous
padding tokens in long sequence input to Transformers, lead-
ing to considerable waste of computational resources.
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Figure 4: Distribution of document sequence lengths.
The text sequences are tokenized by the standard BPE
tokenizer (Radford et al., 2019).

A.2 Fine-tuning Hyperparameter Settings 962

OCR Text Localization and Recognition Fine- 963

tuning ViTLP for text localization and recognition 964

follows the same objective Eq. (5) as pre-training. 965

Since the SROIE 2019 (Huang et al., 2019) training 966

set is rather small containing only 626 images, we 967

fine-tune ViTLP for 10 epochs with the batch size 968

of 1. The used learning rate and weight decay are 969

2e-5 and 1e-2. The input image resolution keeps 970

the same as pre-training, i.e., 1920×1600. 971

Information Extraction For FUNSD (Jaume 972

et al., 2019), the selected learning rate and weight 973

decay are 1e-4 and 1e-2. For CORD (Park et al., 974

2019), the selected learning rate and weight decay7 975

are 5e-5 and 1e-4. For both datasets, we fine-tune 976

ViTLP for 75 epochs with the batch size of 8, us- 977

ing the same input image resolution as pre-training. 978

Following the practice of prior work (Huang et al., 979

2022; Lee et al., 2023a), we use the shared segment- 980

level layout coordinates as input instead of word- 981

level coordinates, which can benefit the token clas- 982

sification accuracy in sequence labeling. 983

Document Classification We use the learning 984

rate of 1e-4 and weight decay of 1e-2 for the doc- 985

ument classification task. We fine-tune ViTLP for 986

100 epochs with the global batch size of 320. The 987

input image resolution is the same as pre-training. 988

Document VQA Since the layout coordinates of 989

answer words are not provided in the DocVQA 990

7For CORD, we search the configuration of learning rate
in {2e-4, 1e-4, 5e-5, 3e-5, 2e-5, 1e-5} and weight decay in
{1e-2, 1e-4}.
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(Mathew et al., 2021) and InfographicVQA991

(Mathew et al., 2022) datasets, we first conduct992

OCR on the training document images to obtain993

the texts with bounding-box coordinates. Then we994

apply a heuristic text-matching method to assign995

corresponding bounding-box coordinates to the an-996

swer words. It is worth noting that for the "Yes/No"997

questions that have no grounding answers on the998

images, we train ViTLP to generate a special an-999

swer token [YES_ANS] or [NO_ANS] without1000

layout coordinates. For both datasets, we fine-tune1001

ViTLP for 60 epochs with the batch size of 128.1002

We use a learning rate of 3e-5. Since the docu-1003

ment images are high-resolution, for DocVQA, we1004

set the fine-tuning image resolution as 2304×19201005

which is multiplied by 1.2 based on the pre-training1006

resolution. For InfographicVQA8, the fine-tuning1007

image resolution is set as 3200×1600. From our1008

empirical experiments, we find that input image res-1009

olution is essential to document VQA performance,1010

especially for InfographicVQA.1011

B Implementation Details of Sequential1012

Layout Head1013

Given that multimodal interaction is learned by the1014

stacked Transformer text-layout decoder layers, the1015

LM and layout heads hereby function as a prober1016

to output the next word and coordinate predictions.1017

As introduced in Sec 2.2.2, the layout head predicts1018

output probability Prob(Li,j) of the four coordi-1019

nates {Li,j}4j=1 = {zx1, zy1, zx2, zy2}i based on1020

the i-th global [LOC] token’s final hidden state1021

Hi,0 = HV TL
i ∈ Rd as follows.1022 

Hi,1 = GELU
(
WhHi,0

)
Hi,2 = GELU

(
WhHi,1 +E

′
x(Li,1)

)
Hi,3 = GELU

(
WhHi,2 +E

′
y(Li,2)

)
Hi,4 = GELU

(
WhHi,3 +E

′
x(Li,3)

)1023

1024
Prob(Li,j) = Softmax

(
WLHi,j

)
, j ∈ {1, 2, 3, 4}1025

The coordinate tokens are quantized into a discrete1026

range of [0, 1000], making the layout-token vocab-1027

ulary size of |L| = 1001. The layout head’s pa-1028

rameters are lightweight including a hidden matrix1029

Wh ∈ Rd×d, two embeddings E
′
x(·) ∈ Rd and1030

E
′
y(·) ∈ Rd, and a linear projection WL ∈ R|L|×d.1031

We use the same GELU activation (Hendrycks and1032

Gimpel, 2016) as in the Transformer layers. The1033

8The average height and width of InfographicVQA images
are 2542 and 1181, the average aspect ratio is 0.46.

layout head works sequentially, which is similar to 1034

a vanilla RNN, as each coordinate decoding step 1035

also considers the information of previous coordi- 1036

nates. Compared with naively using four indepen- 1037

dent linear heads, the sequential layout head can 1038

capture the spatial relation among the output coor- 1039

dinates (e.g., x1 < x2 and y1 < y2), bootstrapping 1040

more accurate coordinate prediction. 1041

C Qualitative Cases of ViTLP Document 1042

OCR Functionality 1043

Figure 5 to 7 demonstrate ViTLP’s functionality 1044

on zero-shot document OCR. ViTLP outputs the 1045

interleaved OCR sequence consisting of words and 1046

corresponding bounding boxes. 1047

D Qualitative Cases of ViTLP Document 1048

VQA with Grounding Capability 1049

Figure 8 showcases the ViTLP’s VQA outputs on 1050

DocVQA with grounding capability. The top two 1051

examples are successful cases, and the bottom two 1052

are failure cases. 1053
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Figure 5: ViTLP OCR results on a webpage. For comprehensive visualization, we render the output texts (in blue)
and bounding boxes (in red) according to the ViTLP’s interleaved output sequence.
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Figure 6: ViTLP OCR results on a paper. For comprehensive visualization, we render the words and bounding
boxes according to ViTLP’s interleaved output sequence. The shown generated OCR results comprise two segments,
as the generated tokens reach the decoder sequence length (M = 1024) in the first segment generation, and the
generation process continues by the second segment. Bounding boxes of the first segment are in red, and the second
are in green.

15



Figure 7: ViTLP OCR results as visualized in Figure 6 above.
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Question: What is the yield M.C % for MGC-817?

ViTLP output: {[“28.0”, [728, 434, 770, 446]]}

Ground-truth: {“28.0” or “28.0%”}

Question: For which position were the interviews  

                 conducted?

ViTLP output: {[“Summer”, [550, 457, 609, 472]],

                        [“Intern”     , [612, 457, 656, 472]]}

Ground-truth: {“Summer Intern Position”}

Question: What is the date of the C. V.?

ViTLP output: {[“March”, [445, 207, 508, 221]],

                        [“22”       , [515, 207, 550, 221]],

                        [“1921”  , [554, 207, 600, 221]]}

Ground-truth: {“December 1958”}

Question: What is the 'actual' value per 1000, 

                 during the year 1975?

ViTLP output: {[“0.2”, [184, 696, 215, 718]]}

Ground-truth: {“0.24”}

Figure 8: Four examples (two successful cases & two failure cases) of ViTLP document VQA outputs with
grounding locations.
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