

000 PROMISE: PROMPT-ROBUST VISION-LANGUAGE MOD- 001 002 ELS VIA META-FINETUNING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Vision-language models (VLMs) have demonstrated remarkable generalization
011 across diverse tasks by leveraging large-scale image-text pretraining. However,
012 their performance is notoriously unstable under variations in natural language
013 prompts, posing a considerable challenge for reliable real-world deployment. To
014 address this prompt sensitivity, we propose **Promise**, a meta-learning framework
015 for **prompt**-robust **vision**-language models via meta-finetuning, which explicitly
016 learns to generalize across diverse prompt formulations. Our method operates in a
017 dual-loop meta-finetuning setting: the inner loop adapts token embeddings based on
018 a set of varied prompts, while the outer loop optimizes for generalization on unseen
019 prompt variants. To further improve robustness, we introduce an adaptive prompt
020 weighting mechanism that dynamically emphasizes more generalizable prompts
021 and a token-specific learning rate module that fine-tunes individual prompt tokens
022 based on contextual importance. We further establish that **Promise**'s weighted and
023 preconditioned inner update provably (i) yields a one-step decrease of the outer em-
024 pirical risk together with a contraction of across-prompt sensitivity, and (ii) tightens
025 a data-dependent generalization bound evaluated at the post-inner initialization.
026 Across 15 benchmarks spanning base-to-novel generalization, cross-dataset trans-
027 fer, and domain shift, our approach consistently reduces prompt sensitivity and
028 improves performance stability over existing prompt learning methods.

029 030 1 INTRODUCTION 031

032 Vision-language models (VLMs) have achieved impressive generalization by aligning image and
033 text representations through large-scale pretraining (Radford et al., 2021; Jia et al., 2021; Li et al.,
034 2022). A common zero-shot inference strategy in these models involves filling handcrafted templates
035 like “a photo of a [CLASS]” and comparing encoded text features against image embeddings.
036 However, their predictions are surprisingly brittle: small variations in prompt phrasing can cause
037 large performance fluctuations (Zhou et al., 2022b). This phenomenon, often referred to as *prompt*
038 *sensitivity*, presents a serious obstacle when deploying VLMs reliably in real-world applications.

039 To mitigate manual prompt engineering, recent efforts in prompt learning introduce learnable tokens
040 to replace or augment natural language prompts (Lester et al., 2021; Zhou et al., 2022a; Jia et al.,
041 2022). CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al., 2022a) optimize textual prompts with
042 supervision from few-shot examples but tend to overfit on base classes and generalize poorly to
043 novel ones. Khattak et al. (2023b) propose MaPLe, a multi-modal approach that injects visual
044 and textual prompts across network layers to improve transferability. More recently, Guo & Gu
045 (2025) enhance cross-modal representations via dynamic feature routing. While these approaches
046 improve downstream adaptation, they still rely on a fixed set of prompt templates during finetuning
047 and inference. As shown in Figure 1, they remain vulnerable to prompt rewording and offer limited
048 robustness to natural linguistic variability.

049 This paper addresses the underexplored challenge of building *prompt-robust* vision-language models,
050 models whose predictions remain stable across diverse prompt formulations. While prior meta-
051 learning-based prompt tuning methods (Li et al., 2023; Park et al., 2024; Zhao et al., 2024) have
052 improved generalization by learning better prompt initializations, domain-invariant representations,
053 or task-level regularization, they typically assume fixed prompt templates and focus on cross-task or
cross-domain transfer. In contrast, we target *intra-task robustness* by explicitly modeling variation

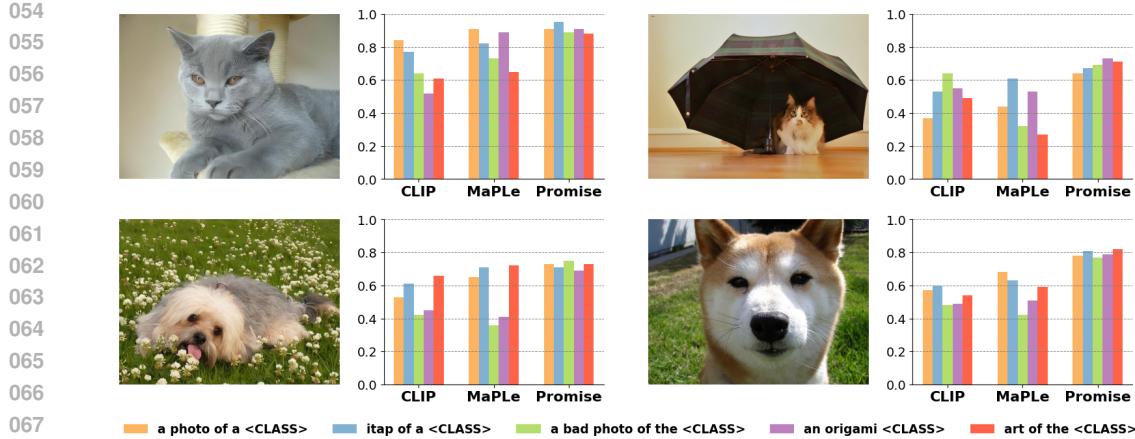


Figure 1: Prompt sensitivity and performance comparison in VLMs. We visualize the predicted confidence scores across five prompt formulations for the same input image. CLIP and MaPLe exhibit high sensitivity to prompt phrasing, with both larger fluctuations and lower overall scores. In contrast, our method not only produces more consistent predictions across prompts, but also achieves higher confidence values, reflecting both improved robustness and better overall performance.

across semantically equivalent prompts within the same task. Our method addresses this gap through a dual-loop meta-learning framework that learns prompt-invariant token embeddings and dynamically adapts to prompt-level variability.

To address prompt sensitivity, we introduce **Promise**, a meta-learning framework for prompt-robust vision-language models via meta-finetuning. The model learns to adapt token embeddings under varying prompt views and generalizes to unseen phrasings. Inspired by prior work on meta-gradient adaptation, we build a framework that enables both prompt-level and token-level adaptation. Our approach makes four key contributions. First, we design a dual-loop finetuning strategy: the inner loop adapts learnable token embeddings using a subset of prompt templates, while the outer loop evaluates them on disjoint prompts to encourage prompt-invariant representations. Second, we incorporate an adaptive prompt weighting mechanism that dynamically prioritizes templates with higher generalization utility. Third, we develop a token-specific learning rate module, which finetunes each prompt token based on its contextual importance. These components work jointly to produce stable, generalizable predictions across prompt variations. Finally, we prove that **Promise**’ weighted, preconditioned inner step both decreases the outer empirical risk in one move and contracts across-prompt sensitivity, thereby tightening a data-dependent generalization bound at the post-inner initialization.

Extensive experiments across 15 datasets demonstrate that our framework substantially reduces prompt sensitivity while enhancing generalization to novel categories. It consistently outperforms prior multi-modal prompt learning methods on base-to-new transfer, cross-dataset adaptation, and domain generalization benchmarks. Ablation studies further validate the effectiveness of each component, confirming that meta-learning, adaptive prompt weighting, and token-specific learning rates jointly contribute to improved robustness and reduced sensitivity to prompt variation in vision-language models.

2 RELATED WORK

Learning the Prompt Template. This line of work treats the textual prompt as a learnable sentence or soft vector sequence. CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al., 2022a) pioneered this approach by optimizing continuous embeddings of the prompt template in the language branch of CLIP (Radford et al., 2021), enabling few-shot generalization to new classes. Variants such as Bayesian prompt learning (Derakhshani et al., 2023) further model uncertainty over soft prompts to improve generalization. Subsequent works explore different strategies to enhance prompt robustness and generalizability: GRAM (Li et al., 2023) and MetaPrompt (Zhao et al., 2024) introduce meta-learning-based schemes to improve adaptation across domains, while DePT (Zhang et al., 2024) alleviates overfitting by decoupling base-specific and task-shared knowledge during prompt optimiza-

108
 109
 110
 111
 112
 113
 tion. These methods directly modify the textual input space, typically focusing on adapting the entire
 prompt string. In contrast, our work targets a different axis of generalization—robustness to prompt
 phrasing variation within the same task. Rather than optimizing a fixed prompt template, we simulate
 prompt distribution shifts during training and meta-learn prompt-invariant token embeddings. This
 shift in focus—from task-level or domain-level generalization to within-task prompt robustness—is
 central to our design and has been underexplored in prior prompt tuning literature.

114
Learning the Prompt Tokens. An alternative and increasingly prevalent direction is to append
 115 learnable tokens to the input embeddings without altering the prompt text itself. This paradigm, often
 116 referred to as prefix tuning, has been applied to either the text encoder (Khattak et al., 2025), the
 117 vision encoder (Jia et al., 2022; Bahng et al., 2022), or both (Li et al., 2024; Khattak et al., 2023b; Roy
 118 & Etemad, 2024; Guo & Gu, 2025; Park et al., 2024). These methods introduce soft tokens across
 119 one or more layers to improve model adaptation without modifying the underlying language prompt.
 120 Despite their effectiveness, they still rely on fixed prompt templates during training and evaluation,
 121 making them vulnerable to prompt phrasing variations. Our work belongs to this category but goes
 122 beyond conventional prompt tokens by incorporating meta-learning to explicitly learn from prompt
 123 variations. Instead of optimizing prompt tokens for a single fixed formulation, our framework learns
 124 to generalize across diverse prompt templates, thereby improving robustness to natural language
 125 variation.

126 3 METHOD

127
 128
 129 We propose prompt-robust vision-language models via Meta-finetuning (**Promise**), a meta-learning
 130 framework that enhances the robustness of vision-language models (VLMs) to variations in prompt
 131 phrasing. Our method learns prompt-invariant token representations by simulating prompt distribution
 132 shifts during finetuning. Specifically, it adopts a dual-loop structure: the inner loop updates token
 133 embeddings using a subset of prompt templates, while the outer loop optimizes for generalization
 134 to unseen prompts. Additionally, our method introduces two key modules—(1) an adaptive prompt
 135 weighting mechanism to prioritize generalizable prompts, and (2) a token-specific learning rate sched-
 136 uler for fine-grained token adaptation. These components jointly improve stability and performance
 137 under prompt variation.

138 3.1 DUAL-LOOP META-FINETUNING

139 Let \mathcal{P}_{in} and \mathcal{P}_{out} denote the subsets of prompt templates used in the inner and outer loops, respectively,
 140 where $\mathcal{P}_{\text{in}} \cap \mathcal{P}_{\text{out}} = \emptyset$. For each prompt $\mathbf{T}_i \in \mathcal{P}_{\text{in}}$, we associate a learnable token e_i . The meta-
 141 parameters θ represent the initial shared parameters for all prompt-specific tokens, where θ_t denotes
 142 the parameters associated with text tokens, and θ_v denotes those associated with visual features. For
 143 simplicity of notation, we refer to these collectively as θ from now on. **In our instantiation, the “tasks”**
 144 **in the meta-learning sense correspond to different natural-language prompt variants within the same**
 145 **dataset, rather than to different datasets or label spaces. The dual-loop structure is therefore used to**
 146 **explicitly simulate prompt distribution shifts within a fixed label space.**

147
 148 **Inner-Loop Finetuning.** In the inner loop, we adapt the text token embeddings e_i for each prompt
 149 template $\mathbf{T}_i \in \mathcal{P}_{\text{in}}$. Given an input image \mathbf{x} and its corresponding label y , the model adapts e_i to
 150 minimize the loss for each prompt in \mathcal{P}_{in} . This process can be described as follows:

$$152 \hat{\theta} = \theta - \alpha \sum_{\mathbf{T}_i \in \mathcal{P}_{\text{in}}} \nabla_{\theta} \mathcal{L}_{\text{in}}(\mathbf{f}(e_i, \mathbf{x}), y), \quad (1)$$

153
 154
 155 where $\mathcal{L}_{\text{in}}(\cdot)$ represents the loss computed with prompts from \mathcal{P}_{in} , α is the learning rate, and $\mathbf{f}(e_i, \mathbf{x})$
 156 denotes the model’s output given the adapted prompt embedding e_i and input \mathbf{x} . This prompt-specific
 157 adaptation helps the model capture the variations within the prompts in \mathcal{P}_{in} .

158
 159 **Outer-Loop Finetuning.** In the outer loop, we optimize the meta-parameters θ with a distinct set of
 160 prompt templates \mathcal{P}_{out} . For each prompt template $\mathbf{T}_j \in \mathcal{P}_{\text{out}}$, the corresponding token embedding e_j
 161 is utilized. Leveraging the adapted parameters $\hat{\theta}$ from the inner loop, we refine θ by minimizing the
 aggregate loss over all prompts in \mathcal{P}_{out} .

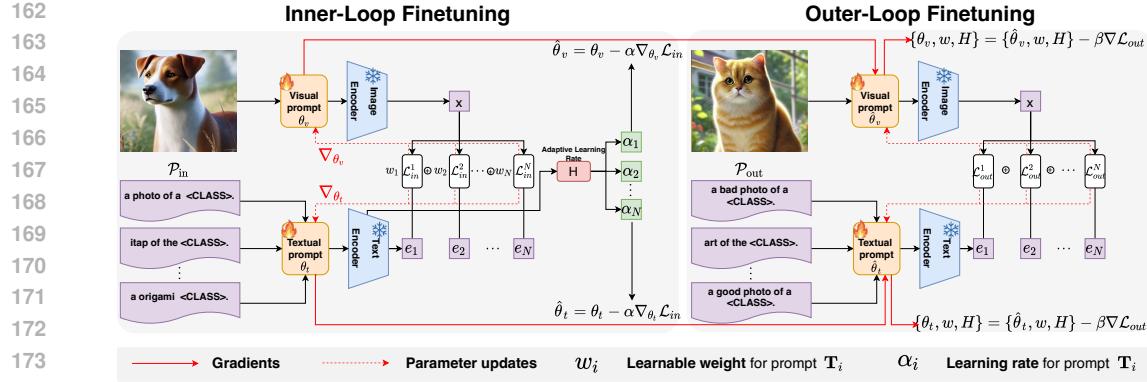


Figure 2: Overview of Promise. Inner-loop finetuning adapts the prompt tokens using the subset of prompts in \mathcal{P}_{in} to minimize the loss. Outer-loop finetuning updates the meta-parameters θ across the disjoint prompt subset \mathcal{P}_{out} to promote prompt-agnostic generalization. Adaptive prompt weighting and token-specific learning rates further stabilize performance under prompt variation.

$$\theta = \theta - \beta \sum_{T_j \in \mathcal{P}_{out}} \nabla_{\theta} \mathcal{L}_{out}(\mathbf{f}(e_j, \mathbf{x}), y), \quad (2)$$

where $\mathcal{L}_{out}(\cdot)$ is the loss calculated with prompts from \mathcal{P}_{out} and β is the outer-loop learning rate. This process ensures that the meta-parameters θ are optimized to generalize across both \mathcal{P}_{in} and \mathcal{P}_{out} , achieving the intended prompt-agnostic performance. **In practice, this inner/outer separation allows the model to adapt on one subset of prompt templates and to be explicitly optimized for stable performance on disjoint, unseen phrasings of the same labels, which directly targets intra-task prompt robustness.**

While MAML (Finn et al., 2017) provides a general framework for meta-gradient adaptation through an inner- and outer-loop structure, it typically assumes uniform treatment of input samples during meta-training. **Our formulation is MAML-inspired in that it uses a similar dual-loop meta-finetuning structure, but it is instantiated specifically for prompt robustness in vision-language models by treating different prompt templates as tasks and by explicitly optimizing for consistency across \mathcal{P}_{in} and \mathcal{P}_{out} .** Inspired by this dual-loop formulation, we adopt a similar meta-learning structure to simulate prompt variation: the inner loop performs prompt-specific adaptation, while the outer loop promotes generalization across prompt distributions. However, unlike MAML, it applies a uniform update across all inputs and lacks the flexibility to differentiate between prompts of varying generalization quality. This limitation is particularly problematic in prompt tuning, where some prompt templates are inherently more transferable than others.

3.2 ADAPTIVE PROMPT WEIGHTING

To further enhance robustness across varied prompt templates, **Promise** incorporates an adaptive prompt weighting mechanism. In this approach, each text prompt template T_i is assigned a learnable weight w_i within the inner loop, which scales the loss corresponding to each prompt template. This allows the model to learn the importance of each template dynamically, similar to mixture of expert models. The weights $\{w_i\}_{i=1}^N$ are optimized in the outer loop, where N represents the number of prompts in the inner loop. This optimization enables the model to prioritize templates that contribute more effectively to generalization.

In the inner loop, for each prompt template $T_i \in \mathcal{P}_{in}$, we compute the prompt-specific loss \mathcal{L}_{in}^i weighted by the corresponding parameter w_i . The adapted parameter θ_i for each prompt T_i is updated as:

$$\hat{\theta} = \theta - \alpha \sum_{T_i \in \mathcal{P}_{in}} w_i \nabla_{\theta} \mathcal{L}_{in}(\mathbf{f}(e_i, \mathbf{x}), y), \quad (3)$$

where $\mathcal{L}_{in}(\cdot)$ represents the inner-loop loss for prompt T_i , α is the learning rate, and w_i modulates the impact of each prompt-specific loss in the inner loop. This weighted adaptation enables the model to learn varying levels of emphasis for different prompt templates during the inner-loop optimization.

216 After the inner-loop updates, the outer loop optimizes the meta-parameters θ together with a set
 217 of unnormalized prompt scores $\{s_i\}_{i=1}^N$ on \mathcal{P}_{out} . To aggregate across prompts while controlling
 218 variance, we constrain the resulting weights $\tilde{\mathbf{w}} = (\tilde{w}_1, \dots, \tilde{w}_N)$ to lie on the probability simplex
 219 $\Delta^{N-1} = \{\mathbf{w} \geq 0, \sum_i w_i = 1\}$ via an entropic mirror map with a temperature $\tau > 0$: the outer step
 220 performs a gradient update on $\{s_i\}$ followed by a mirror descent normalization onto Δ^{N-1} . The
 221 temperature τ (learned or annealed) trades off exploration and concentration: larger τ spreads mass
 222 across templates to stabilize gradients, while smaller τ concentrates mass on high-utility prompts to
 223 reduce estimator variance. To further prevent degenerate collapse and encourage useful sparsity, we
 224 include an optional entropy regularizer $\lambda \mathcal{H}(\tilde{\mathbf{w}})$ (or its sparse alternative via entmax), which keeps
 225 a few high-utility prompts active while pruning noisy ones. Intuitively, this simplex-constrained,
 226 temperature-controlled weighting focuses learning signal on prompts that best transfer to unseen
 227 phrasings, without hand-tuning per-template coefficients.

228 Finally, the outer-loop update for both the meta-parameters θ and the weights $\{w_i\}$ is defined
 229 as: $\theta = \theta - \beta \nabla_{\hat{\theta}} \mathcal{L}_{\text{out}}$, $w_i = w_i - \beta \nabla_{w_i} \mathcal{L}_{\text{out}}$ where β is the learning rate for the outer-loop
 230 optimization. This update process enables the model to adaptively assign higher importance to
 231 prompts that contribute more effectively to generalization, achieving a more robust prompt-agnostic
 232 performance.

233 3.3 TOKEN-SPECIFIC ADAPTIVE LEARNING RATE

235 In **Promise**, we implement a token-specific adaptive learning rate module using a neural network
 236 that generates learning rates for each token embedding in the inner loop. Our design is inspired by
 237 MetaSGD (Li et al., 2017), which learns a task-specific learning rate for each parameter. We extend
 238 this idea by introducing a token-wise, data-driven learning rate module. Instead of treating learning
 239 rates as fixed or per-task scalars, we use a neural network to generate prompt-token-specific learning
 240 rates conditioned on input features. This enables fine-grained, context-aware adaptation for each
 241 token within the inner loop. Specifically, given a set of prompt templates \mathbf{T}_i and their corresponding
 242 features extracted by the text encoder, $H(\cdot)$ generates a unique learning rate α_i for each learnable
 243 token e_i in prompt template \mathbf{T}_i .

244 In the inner loop, the token-specific learning rate α_i is used to update each token embedding e_i in a
 245 targeted way. The adaptation process for each token embedding e_i with the generated learning rate is
 246 as follows:

$$247 \hat{\theta} = \theta - \alpha_i \sum_{\mathbf{T}_i \in \mathcal{P}_{\text{in}}} w_i \nabla_{\theta} \mathcal{L}_{\text{in}}(\mathbf{f}(e_i, \mathbf{x}), y), \quad (4)$$

$$248$$

249 where $\mathcal{L}_{\text{in}}(\cdot)$ represents the inner-loop loss for prompt template \mathbf{T}_i , and $\alpha_i = H(e_i)$ is the data-driven,
 250 token-specific learning rate generated by $H(\cdot)$. This token-specific adjustment enables the model to
 251 fine-tune each token based on its importance in the prompt, improving adaptation to variations in
 252 prompt templates. $H(\cdot)$ takes the encoded features of each prompt template \mathbf{T}_i as input and outputs
 253 a unique learning rate α_i for each token embedding e_i . This data-driven approach allows the learning
 254 rates to be conditioned on the specific characteristics of each prompt template, rather than using a
 255 uniform rate across all tokens. Formally, the token-specific learning rate for each token e_i is defined
 256 as $\alpha_i = H(e_i)$, where e_i denotes the encoded features of prompt \mathbf{T}_i derived from the text encoder.
 257 This feature-driven learning rate allows the model to adapt each token’s learning rate based on the
 258 semantic and contextual information within the prompt template.

259 In the outer loop, we update both the meta-parameters θ and the parameters of $H(\cdot)$ to optimize the
 260 model’s generalization across different prompt templates. The outer-loop objective thus becomes:
 261 $\theta = \theta - \beta \nabla_{\hat{\theta}} \mathcal{L}_{\text{out}}$, $H = H - \beta \nabla_H \mathcal{L}_{\text{out}}$, where \mathcal{L}_{out} is the cumulative outer-loop loss across prompts
 262 in \mathcal{P}_{out} and β is the outer-loop learning rate. This process ensures that both the meta-parameters and
 263 $H(\cdot)$ are optimized to enhance prompt-agnostic performance across diverse prompt templates.

264 4 ANALYSIS

265 The core idea of our **Promise** is to turn a single, globally shared SGD initialization into a prompt-
 266 aware initialization via a weighted and preconditioned inner step. The outer optimization starts
 267 from a better-conditioned and lower-variance point by tailoring the inner update to the prompt
 268 distribution—through adaptive prompt weights and a token-wise diagonal preconditioner. In this

270 section, we theoretically analyze the advantage of this adaptation: we show (i) a guaranteed one-step
 271 decrease of the outer empirical risk together with a contraction of across-prompt sensitivity, and (ii) a
 272 tightened, data-dependent generalization bound evaluated at the post-inner initialization.
 273

274 **Setup.** For a prompt template T , let \mathcal{D}_T denote its data distribution over samples $z = (x, y)$, and
 275 let $\ell(\theta; z, T)$ be the per-sample loss. We define the *population outer risk*

$$276 \quad R_{\text{pop}}(\theta) := \mathbb{E}_{T \sim \mathcal{P}} \mathbb{E}_{z \sim \mathcal{D}_T} [\ell(\theta; z, T)].$$

278 Given a finite set of samples $\{z_{T,j}\}_{j=1}^{n_T}$ for each T , the per-prompt empirical loss is

$$279 \quad L(\theta; T) = \frac{1}{n_T} \sum_{j=1}^{n_T} \ell(\theta; z_{T,j}, T), \quad \hat{R}_{P_{\text{out}}}(\theta) = \frac{1}{|P_{\text{out}}|} \sum_{T \in P_{\text{out}}} L(\theta; T), \quad n_{\text{out}} := \sum_{T \in P_{\text{out}}} n_T.$$

282 In each meta-episode we draw *independent* and disjoint prompt subsets $(P_{\text{in}}, P_{\text{out}})$ with $P_{\text{in}} \cap P_{\text{out}} = \emptyset$. **Promise** performs a *weighted & preconditioned* inner update

$$285 \quad \hat{\theta} = \theta - P \sum_{T \in P_{\text{in}}} w_T \nabla_{\theta} L(\theta; T), \quad P = \text{diag}(\alpha_1, \dots, \alpha_d) \succeq 0, \quad \sum_T w_T = 1, \quad w_T \geq 0,$$

287 and then evaluates $\hat{R}_{P_{\text{out}}}$ at $\hat{\theta}$ to update (θ, w, H) . For later use, denote the aggregated inner gradient
 288 and its variance by

$$290 \quad G(\theta) := \sum_{T \in P_{\text{in}}} w_T \nabla_{\theta} L(\theta; T), \quad \mu(\theta) := \mathbb{E}[G(\theta)], \quad \Sigma_w := \text{Var}[G(\theta)].$$

292 **Assumptions.** (i) $L(\cdot; T)$ is L -smooth; (ii) stochastic gradients are unbiased with bounded second
 293 moment; (iii) P_{in} and P_{out} are independent draws from \mathcal{P} ; (iv) the weighted inner gradient aligns
 294 with the outer descent direction (Def. B.1).

295 **Theorem 4.1** (One-step outer-risk descent & sensitivity contraction). *Under the assumptions above,
 296 there exist constants $\gamma \in (0, 1]$, $\kappa \geq 1$ determined by the alignment of the weighted inner gradient
 297 and by gradient heterogeneity across prompts, such that*

$$299 \quad \mathbb{E}[\hat{R}_{P_{\text{out}}}(\hat{\theta})] \leq \hat{R}_{P_{\text{out}}}(\theta) - \left(\gamma \lambda_{\min}(P) - \frac{L}{2} \kappa^2 \|P\|_2^2 \right) \|\nabla \hat{R}_{P_{\text{out}}}(\theta)\|^2 + \frac{L}{2} \|P\|_2^2 \text{Tr}(\Sigma_w),$$

300 where $\Sigma_w := \text{Var}[\sum_{T \in P_{\text{in}}} w_T \nabla_{\theta} L(\theta; T)]$. In particular, if $\|P\|_2$ is small enough so that
 301 $\gamma \lambda_{\min}(P) > \frac{L}{2} \kappa^2 \|P\|_2^2$, then the expected outer risk strictly decreases. Moreover, defining the
 302 across-prompt sensitivity $S(\theta) := \text{Var}_{T \sim \mathcal{P}}[f_{\theta}(x; T)]$ (or its Jacobian surrogate), we have

$$304 \quad \mathbb{E}[S(\hat{\theta})] \leq (1 - \mu_{\text{eff}}) S(\theta) + C \|P\|_2^2 \text{Tr}(\Sigma_w),$$

306 for some $\mu_{\text{eff}} > 0$ depending on the local Lipschitz constants of f_{θ} and the same alignment, i.e., the
 307 inner step contracts prompt sensitivity up to a variance term that shrinks with $\text{Tr}(\Sigma_w)$.

308 The adaptive weights w_T concentrate the inner update on prompts whose gradients are *aligned*
 309 with the outer descent direction (variance reduction), while the token-wise diagonal P rescales
 310 ill-conditioned coordinates (preconditioning). Their combination enlarges the one-step decrease of
 311 the outer objective and suppresses across-prompt drift. **Intuitively, the resulting inner update**

$$313 \quad \theta^+ = \theta - P \nabla_{\theta} \mathcal{L}_w(\theta), \quad \mathcal{L}_w(\theta) := \sum_{T \in P_{\text{in}}} w_T L(\theta; T),$$

315 acts as a cautious, biased gradient step that moves more strongly along directions supported by
 316 prompts which generalize well to P_{out} , while dampening directions that are unstable across templates.
 317 Under the conditions of Theorem 4.1, this weighted and preconditioned step tends to shrink the
 318 prompt-averaged outer risk, which is what we refer to as a “risk contraction” effect.

319 Empirically, we validate this behavior by counting how often a single inner update decreases the outer
 320 empirical loss on P_{out} . On a representative subset of datasets, the fraction of such “risk-decreasing”
 321 inner steps increases from about 61% for an unweighted, unpreconditioned update to about 78% when
 322 using the full **Promise** update with both w and P . This matches the qualitative picture suggested by
 323 Theorem 4.1, even though the smoothness and alignment assumptions used in the analysis are only
 324 approximate for large CLIP-scale networks in practice.

324 **Theorem 4.2** (Data-dependent generalization at the post-inner initialization). *Let $\hat{\theta} = \theta - P \sum_{T \in P_{\text{in}}} w_T \nabla_{\theta} L(\theta; T)$. Conditioned on $\hat{\theta}$, the samples in P_{out} are i.i.d.; hence for any $\delta \in (0, 1)$, with probability at least $1 - \delta$,*

$$328 \quad R_{\text{pop}}(\hat{\theta}) \leq \hat{R}_{P_{\text{out}}}(\hat{\theta}) + c_2 \sqrt{\frac{\ln(1/\delta)}{n_{\text{out}}}} + c_1 \Gamma \sqrt{\text{Tr}(P \Sigma_w P)}.$$

331 Here n_{out} is the number of samples used by $\hat{R}_{P_{\text{out}}}$, Γ upper-bounds the θ -Lipschitz constant of
 332 $L(\theta; T)$, and the last term quantifies the initialization variability induced by the inner-step gradient
 333 noise. Consequently, any choice of (w_T, P) that reduces both $\hat{R}_{P_{\text{out}}}(\hat{\theta})$ and $\text{Tr}(P \Sigma_w P)$ tightens the
 334 bound on $R_{\text{pop}}(\hat{\theta})$.

336 The complete proof is provided in Appendix B.

338 5 EXPERIMENTS

340 5.1 EXPERIMENTAL SETUP

342 **15 Datasets.** To evaluate base-to-new generalization and cross-dataset generalization, we adopt a
 343 diverse set of 11 image classification datasets, following prior work such as CLIP (Radford et al.,
 344 2021) and CoOp (Zhou et al., 2022b). These datasets cover a wide range of visual recognition tasks:
 345 ImageNet (Deng et al., 2009) and Caltech101 (Fei-Fei et al., 2004) are used for generic object classi-
 346 fication; OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback
 347 & Zisserman, 2008), Food101 (Bossard et al., 2014), and FGVCAircraft (Maji et al., 2013) are
 348 included for fine-grained image recognition; EuroSAT (Helber et al., 2019) is employed for satellite
 349 image classification; UCF101 (Soomro et al., 2012) for action recognition; DTD (Cimpoi et al.,
 350 2014) for texture classification; and SUN397 (Xiao et al., 2010) for scene recognition. For domain
 351 generalization experiments, we follow CoOp (Zhou et al., 2022b) and use ImageNet as the source
 352 domain, with four distinct ImageNet variants serving as the target domains: ImageNetV2 (Recht
 353 et al., 2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b), and
 354 ImageNet-R (Hendrycks et al., 2021a).

355 **Implementation Details.** To ensure a fair comparison, we use the CLIP-ViT-B/16 architecture as the
 356 base model across all methods, consistent with previous work like CoCoOp (Zhou et al., 2022a) and
 357 VPT (Jia et al., 2022). In line with MaPLE (Khattak et al., 2023a), we set the prompt depth to 9 and
 358 used prompt lengths of 2 for both language and vision prompts. All models are trained for 10 epochs
 359 with a batch size of 8 and a learning rate of 0.0035, utilizing the SGD optimizer on a single NVIDIA
 360 A6000 GPU. For training on the full 1000 classes of ImageNet as the source model, we set the prompt
 361 depth to 3 and trained for 5 epochs with a learning rate of 0.0035. Following PromptSRC (Khattak
 362 et al., 2023b), we adopt the 60 hand-crafted prompt templates originally provided in the PromptSRC
 363 appendix (Khattak et al., 2023b). In each training episode, we randomly sample 30 templates for
 364 inner-loop adaptation and 30 disjoint templates for outer-loop generalization. Our network H consists
 365 of a 3-layer MLP. We perform three iterations for the inner loop and adopt Reptile (Nichol et al.,
 366 2018)'s, using first-order derivatives to approximate the outer-loop loss. For consistency, all the
 367 results of the learning-based methods are computed as an average over three random seeds. All
 368 code will be made available. Additional results are in the Appendix: more robustness visualizations
 369 (App. §C), training time analysis (App. §F), results of structured-prompt effects (App. §D), detailed
 370 full prompts (App. §E), and algorithmic details (App. §F).

371 5.2 RESULTS

372 **Prompt Sensitivity of Promise.** To assess robustness to prompt variation, we use MaPLE as the base
 373 prompt learner and apply our method on top, resulting in the combined model **Promise**, we compare
 374 CLIP, MaPLE, PromptSRC, and MMRL under diverse prompt templates. This analysis highlights
 375 the ability to maintain both high accuracy and stable predictions across formulations, achieving
 376 prompt-agnostic behavior. We begin with a quantitative study on the UCF101 and Caltech101
 377 datasets, evaluating the consistency of predictions across different templates. As shown in Figure 3,
 378 while other methods exhibit notable performance fluctuations across prompts, our method yields

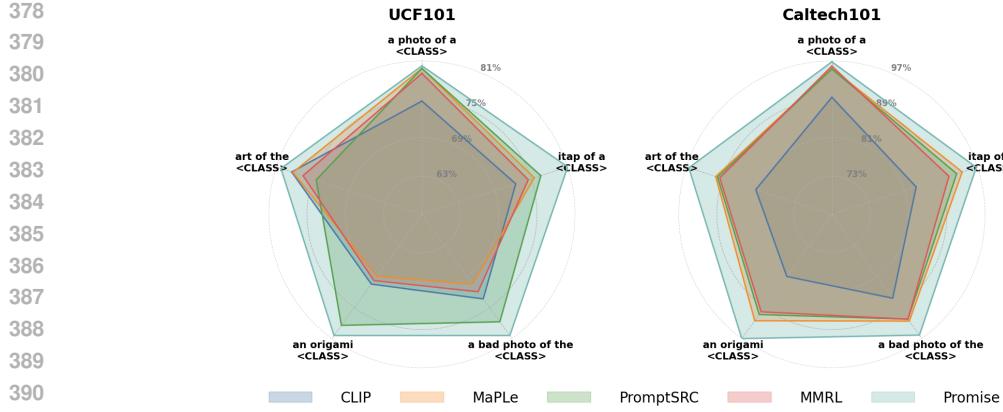


Figure 3: Sensitivity of models to various prompts on UCF101 and Caltech101. While other methods show considerable variability across templates, our method maintains consistent high performance, demonstrating robustness to prompt variation.

consistently high accuracy regardless of template choice. This stability underscores the effectiveness of our approach in mitigating prompt sensitivity and ensuring reliable performance under natural prompt shifts.

Enhancing Existing Prompt Learners. Table 1 shows that our meta-learning framework consistently improves the performance of existing prompt learning methods across 11 datasets. We apply our training strategy on top of MaPLe, IVLP, and MMRL by keeping their base architectures unchanged while replacing their original optimization with our dual-loop meta-learning procedure. Notably, this yields considerable gains in novel class accuracy—e.g., +2.09 on IVLP, +2.12 on MaPLe, and +1.68 on MMRL—while maintaining or slightly improving base class performance. These gains result in higher harmonic means across all methods, demonstrating that our framework not only enhances generalization but also integrates well with diverse prompting strategies.

Benefit of Adaptive Prompt Weighting. We assess the impact of adaptive prompt weighting by comparing **Promise** variants with and without this component, using MaPLe and MMRL as backbones. As shown in Table 2, incorporating adaptive weighting consistently improves performance, particularly on novel classes and in harmonic mean, across both settings. This mechanism complements our meta-finetuning framework by enabling the model to dynamically prioritize more transferable prompts during adaptation, thereby enhancing optimization efficiency and generalization performance.

Benefit of Token-Specific Adaptive Learning Rate. To isolate the effect of token-level adaptation, we compare three independent variants of our framework: (1) using a fixed learning rate for all tokens, (2) adopting a task-specific adaptive learning rate following MetaSGD (Li et al., 2017), and (3) our proposed token-specific learning rate module that assigns distinct learning rates to each prompt token. As shown in Table 3, the token-specific variant consistently yields better performance on both base and novel classes across MaPLe and MMRL. These results confirm the benefit of learning fine-grained, data-driven adaptation rates within the inner loop, providing more precise control over token optimization than task-level adaptation alone.

Robustness-cost trade-off. **Promise** is most useful in scenarios where robustness to prompt variation matters, not just raw accuracy. In many VLM applications, a model that behaves stably under different user phrasings can be more valuable than one that gains a small amount of accuracy but remains

Table 1: Effect of Promise.

Method	Base	New		H
IVLP	82.51	73.35		77.66
+ Promise	83.26	75.44		79.16
MaPLe	82.28	75.14		78.55
+ Promise	83.57	77.26		80.29
MMRL	85.68	77.16		81.20
+ Promise	86.14	78.84		82.33

Table 2: Impact of adaptive prompt weighting.

Base model	Promise variant	Base	New		H
MaPLe	w/o adaptive weighting	82.93	75.87		79.24
	w/ adaptive weighting	83.57	77.26		80.29
MMRL	w/o adaptive weighting	85.97	77.53		81.53
	w/ adaptive weighting	86.14	78.84		82.33

Table 3: Effect of token-specific adaptive learning rate.

Base model	Promise variant	Base	New		H
MaPLe	w/o token-specific adaptive learning rate	82.45	76.01		79.08
	w/ task-specific adaptive learning rate	82.93	76.29		79.25
	w/ token-specific adaptive learning rate	83.57	77.26		80.29
MMRL	w/o token-specific adaptive learning rate	85.79	77.42		81.39
	w/ task-specific adaptive learning rate	85.99	78.17		81.48
	w/ token-specific adaptive learning rate	86.14	78.84		82.33

Table 4: Base-to-new generalization across 11 datasets. Our method achieves the highest harmonic mean, demonstrating robust performance and superior novel class generalization compared to previous methods. **Blue** numbers indicate the best performance in each column, **cyan** highlights the second-best, and the values in parentheses represent the performance difference between our method and the best previous method in each column.

	ViT-B/16	Base	Novel	H	ViT-B/16	Base	Novel	H	ViT-B/16	Base	Novel	H	
CLIP (Radford et al., 2021)	69.34	74.22	71.70		CLIP (Radford et al., 2021)	72.43	68.14	70.22	CLIP (Radford et al., 2021)	96.84	94.00	95.40	
CoCoOp (Zhou et al., 2022a)	80.47	71.69	75.83		CoCoOp (Zhou et al., 2022a)	75.98	70.43	73.10	CoCoOp (Zhou et al., 2022a)	97.96	93.81	95.84	
PromptSRC (Khattak et al., 2023b)	84.26	76.10	79.97		PromptSRC (Khattak et al., 2023b)	77.60	70.73	74.01	PromptSRC (Khattak et al., 2023b)	98.10	94.03	96.02	
UNIGRAM (Li et al., 2023)	80.34	75.92	78.07		UNIGRAM (Li et al., 2023)	76.60	70.69	73.53	UNIGRAM (Li et al., 2023)	98.07	95.11	96.57	
MetaPrompt (Zhao et al., 2024)	83.65	75.48	79.09		MetaPrompt (Zhao et al., 2024)	77.52	70.83	74.02	MetaPrompt (Zhao et al., 2024)	98.13	94.58	96.32	
CoPrompt (Roy & Etemad, 2024)	84.40	77.04	80.48		CoPrompt (Roy & Etemad, 2024)	77.67	71.84	74.33	CoPrompt (Roy & Etemad, 2024)	98.17	94.50	96.55	
DePT (Zhang et al., 2024)	85.19	76.17	80.43		DePT (Zhang et al., 2024)	77.30	70.27	74.02	DePT (Zhang et al., 2024)	98.57	94.10	96.28	
ProMetaR (Park et al., 2024)	84.39	76.93	80.49		ProMetaR (Park et al., 2024)	77.76	70.75	74.09	ProMetaR (Park et al., 2024)	98.11	94.29	96.16	
HPT++ (Wang et al., 2024)	84.13	77.99	80.95		HPT++ (Wang et al., 2024)	77.66	71.11	74.24	HPT++ (Wang et al., 2024)	98.17	95.78	96.96	
MMRL (Guo & Gu, 2025)	85.68	77.16	81.20		MMRL (Guo & Gu, 2025)	77.90	71.30	74.45	MMRL (Guo & Gu, 2025)	98.97	94.50	96.68	
Ours	86.14	78.84	82.33	(+0.46) (+0.85) (+1.13)	Ours	78.98	73.45	76.11	Ours	98.85	95.96	97.43	(+0.02) (+0.18) (+0.47)
(a) Average over 11 datasets.													
	ViT-B/16	Base	Novel	H	ViT-B/16	Base	Novel	H	ViT-B/16	Base	Novel	H	
CLIP (Radford et al., 2021)	91.17	97.26	94.12		CLIP (Radford et al., 2021)	63.37	74.89	68.65	CLIP (Radford et al., 2021)	72.08	70.01	74.83	
CoCoOp (Zhou et al., 2022a)	95.20	97.69	96.43		CoCoOp (Zhou et al., 2022a)	70.49	73.59	72.01	CoCoOp (Zhou et al., 2022a)	94.87	71.75	81.71	
PromptSRC (Khattak et al., 2023b)	95.33	97.53	96.30		PromptSRC (Khattak et al., 2023b)	78.27	73.20	76.58	PromptSRC (Khattak et al., 2023b)	98.07	76.50	85.95	
UNIGRAM (Li et al., 2023)	94.94	97.94	96.42		UNIGRAM (Li et al., 2023)	73.50	75.15	74.43	UNIGRAM (Li et al., 2023)	95.20	76.21	84.65	
MetaPrompt (Zhao et al., 2024)	95.53	97.00	96.26		MetaPrompt (Zhao et al., 2024)	76.34	75.01	75.48	MetaPrompt (Zhao et al., 2024)	97.66	74.49	84.52	
CoPrompt (Roy & Etemad, 2024)	95.67	98.10	96.87		CoPrompt (Roy & Etemad, 2024)	76.97	74.40	75.66	CoPrompt (Roy & Etemad, 2024)	97.27	76.60	85.71	
DePT (Zhang et al., 2024)	95.43	97.33	96.37		DePT (Zhang et al., 2024)	80.80	75.00	77.79	DePT (Zhang et al., 2024)	98.40	77.10	86.46	
ProMetaR (Park et al., 2024)	95.57	97.57	96.49		ProMetaR (Park et al., 2024)	78.32	75.18	76.72	ProMetaR (Park et al., 2024)	98.13	77.66	86.70	
HPT++ (Wang et al., 2024)	95.94	97.89	96.91		HPT++ (Wang et al., 2024)	76.99	74.24	75.59	HPT++ (Wang et al., 2024)	97.50	76.69	85.85	
MMRL (Guo & Gu, 2025)	95.90	97.60	96.74		MMRL (Guo & Gu, 2025)	81.30	75.07	78.06	MMRL (Guo & Gu, 2025)	98.97	77.27	86.78	
Ours	96.13	95.24	95.68	(+0.19) (+2.86) (+1.23)	Ours	83.15	79.94	81.51	Ours	98.91	83.56	90.59	(+0.06) (+3.76) (+3.81)
(d) OxfordPets													
	ViT-B/16	Base	Novel	H	ViT-B/16	Base	Novel	H	ViT-B/16	Base	Novel	H	
CLIP (Radford et al., 2021)	90.10	91.22	90.66		CLIP (Radford et al., 2021)	27.19	36.29	31.09	CLIP (Radford et al., 2021)	69.36	75.35	72.23	
CoCoOp (Zhou et al., 2022a)	90.70	91.29	90.99		CoCoOp (Zhou et al., 2022a)	33.41	23.71	27.74	CoCoOp (Zhou et al., 2022a)	79.74	76.86	78.27	
PromptSRC (Khattak et al., 2023b)	90.67	91.53	91.10		PromptSRC (Khattak et al., 2023b)	42.73	37.87	40.15	PromptSRC (Khattak et al., 2023b)	82.67	78.47	80.52	
UNIGRAM (Li et al., 2023)	90.84	92.12	91.48		UNIGRAM (Li et al., 2023)	32.25	38.00	34.89	UNIGRAM (Li et al., 2023)	80.43	77.91	79.15	
MetaPrompt (Zhao et al., 2024)	90.74	91.85	91.29		MetaPrompt (Zhao et al., 2024)	40.14	36.51	38.24	MetaPrompt (Zhao et al., 2024)	82.26	79.04	80.62	
CoPrompt (Roy & Etemad, 2024)	90.73	92.07	91.40		CoPrompt (Roy & Etemad, 2024)	40.20	39.33	39.76	CoPrompt (Roy & Etemad, 2024)	82.63	80.03	81.31	
DePT (Zhang et al., 2024)	90.72	91.80	91.92		DePT (Zhang et al., 2024)	45.70	36.73	40.73	DePT (Zhang et al., 2024)	83.27	78.97	81.06	
ProMetaR (Park et al., 2024)	90.80	91.89	91.34		ProMetaR (Park et al., 2024)	42.02	38.85	40.25	ProMetaR (Park et al., 2024)	82.70	79.02	80.82	
HPT++ (Wang et al., 2024)	90.56	91.62	91.09		HPT++ (Wang et al., 2024)	40.50	42.19	41.43	HPT++ (Wang et al., 2024)	82.40	81.11		
MMRL (Guo & Gu, 2025)	90.57	91.50	91.03		MMRL (Guo & Gu, 2025)	46.77	41.75	44.12	MMRL (Guo & Gu, 2025)	83.20	79.30	81.20	
Ours	91.21	93.16	92.17	(+0.11) (+3.01) (+0.00)	Ours	46.77	41.75	44.12	Ours	83.23	79.58	81.36	(+0.04) (+3.45) (+0.01)
(g) Food101													
	ViT-B/16	Base	Novel	H	ViT-B/16	Base	Novel	H	ViT-B/16	Base	Novel	H	
CLIP (Radford et al., 2021)	53.24	59.90	56.37		CLIP (Radford et al., 2021)	56.48	64.05	60.03	CLIP (Radford et al., 2021)	70.53	77.50	73.85	
CoCoOp (Zhou et al., 2022a)	77.01	56.00	64.85		CoCoOp (Zhou et al., 2022a)	87.49	60.04	71.21	CoCoOp (Zhou et al., 2022a)	82.33	73.45	77.64	
PromptSRC (Khattak et al., 2023b)	83.37	62.00	71.75		PromptSRC (Khattak et al., 2023b)	92.90	73.90	82.32	PromptSRC (Khattak et al., 2023b)	87.10	78.80	82.74	
UNIGRAM (Li et al., 2023)	73.02	62.38	67.68		UNIGRAM (Li et al., 2023)	86.46	71.85	78.12	UNIGRAM (Li et al., 2023)	80.40	78.72	79.96	
MetaPrompt (Zhao et al., 2024)	83.10	58.05	68.35		MetaPrompt (Zhao et al., 2024)	93.53	75.21	83.38	MetaPrompt (Zhao et al., 2024)	85.33	77.72	81.35	
CoPrompt (Roy & Etemad, 2024)	83.13	64.73	72.79		CoPrompt (Roy & Etemad, 2024)	94.60	78.57	85.84	CoPrompt (Roy & Etemad, 2024)	86.90	79.57	83.07	
DePT (Zhang et al., 2024)	84.80	61.20	71.09		DePT (Zhang et al., 2024)	93.23	77.90	84.88	DePT (Zhang et al., 2024)	87.73	77.70	82.46	
ProMetaR (Park et al., 2024)	83.02	64.05	72.31		ProMetaR (Park et al., 2024)	94.94	77.44	85.30	ProMetaR (Park et al., 2024)	86.97	79.84	83.25	
HPT++ (Wang et al., 2024)	84.18	66.39	74.23		HPT++ (Wang et al., 2024)	95.31	80.64	87.36	HPT++ (Wang et al., 2024)	86.26	81.50	83.81	
MMRL (Guo & Gu, 2025)	85.67	65.00	73.82		MMRL (Guo & Gu, 2025)	95.60	80.17	87.21	MMRL (Guo & Gu, 2025)	88.10	80.07	83.89	
Ours	86.25	67.97	76.03	(+0.58) (+1.58) (+1.80)	Ours	95.41	77.64	85.61	Ours	88.59	78.99	83.52	(+0.49) (-2.51) (+0.37)
(j) DTD													
	ViT-B/16	Base	Novel	H	ViT-B/16	Base	Novel	H	ViT-B/16	Base	Novel	H	
CLIP (Radford et al., 2021)	53.24	59.90	56.37		CLIP (Radford et al., 2021)	56.48	64.05	60.03	CLIP (Radford et al., 2021)	70.53	77.50	73.85	
CoCoOp (Zhou et al., 2022a)	77.01	56.00	64.85		CoCoOp (Zhou et al., 2022a)	87.49	60.04	71.21	CoCoOp (Zhou et al., 2022a)	82.33	73.45	77.64	
PromptSRC (Khattak et al., 2023b)	83.37	62.00	71.75		PromptSRC (Khattak et al., 2023b)	92.90	73.90	82.32	PromptSRC (Khattak et al., 2023b)	87.10	78.80	82.74	
UNIGRAM (Li et al., 2023)	73.02	62.38	67.68		UNIGRAM (Li et al., 2023)	86.46	71.85	78.12	UNIGRAM (Li et al., 2023)	80.40	78.72	79.96	
MetaPrompt (Zhao et al., 2024)	83.10	58.05	68.35		MetaPrompt (Zhao et al., 2024)	93.53	75.21	83.38	MetaPrompt (Zhao et al., 2024)	85.33	77.72	81.35	
CoPrompt (Roy & Etemad, 2024)	83.13	64.73	72.79		CoPrompt (Roy & Etemad, 2024)	94.60	78.57	85.84	CoPrompt (Roy & Etemad, 2024)	86.90	79.57	83.07	
DePT (Zhang et al., 2024)	84.80	61.20	71.09		DePT (Zhang et al., 2024)	93.23	77.90	84.88	DePT (Zhang et al., 2024)	87.73	77.70	82.46	
ProMetaR (Park et al., 2024)	83.02	64.05	72.31		ProMetaR (Park et al., 2024)	94.94	77.44	85.30	ProMetaR (Park et al., 2024)	86.97	79.84	83.25	
HPT++ (Wang et al., 2024)	84.18	66.39	74.23		HPT++ (Wang et al., 2024)	95.31	80.64	87.36	HPT++ (Wang et al., 2024)	86.26	81.50	83.81	
MMRL (Guo & Gu, 2025)	85.67	65.00	73.82		MMRL (Guo & Gu, 2025)	95.60	80.17	87.21	MMRL (Guo & Gu, 2025)	88.10	80.07	83.89	
Ours	86.25	67.97	76.03	(+0.58) (+1.58) (+1.80)	Ours	95.41	77.64	85.61	Ours	88.59	78.99	83.52	(+0.49) (-2.51) (+0.37)
(k) EuroSAT													
	ViT-B/16	Base	Novel	H	ViT-B/16	Base	Novel	H	ViT-B/16	Base	Novel	H	
CLIP (Radford et al., 2021)	70.00	77.00	73.00		CLIP (Radford et al., 2021)	72.43	68.14	70.22	CLIP (Radford et al., 2021)	96.84	94.00	95.40	
CoCoOp (Zhou et al., 2022a)	70.40	77.00	73.00		CoCoOp (Zhou et al., 2022a)	75.98	70.43	73.10	CoCoOp (Zhou et al., 2022a)	97.96	93.81	95.84	
PromptSRC (Khattak et al., 2023b)	70.70	77.00	73.00		PromptSRC (Khattak et al., 2023b)	77.60	70.73	73.41	PromptSRC (Khattak et al., 2023b)	98.10	94.03	96.02	
UNIGRAM (Li et al., 2023)	70.60	77.00	73.00		UNIGRAM (Li et al., 2023)	77.52	70.83	73.53	UNIGRAM (Li et al., 2023)	98.07	95.11	96.57	
MetaPrompt (Zhao et al., 2024)	70.40	77.00	73.00		MetaPrompt (Zhao et al., 2024)	77.52	70.83	73.53	MetaPrompt (Zhao et al., 2024)	98.13	94.58	96.32	
CoPrompt (Roy & Etemad, 2024)	70.												

486 **Table 5: Cross-dataset generalization.** Our method consistently improves cross-dataset generalization. **Blue**
 487 numbers indicate the best performance in each column, **cyan** highlights the second-best, and the values in
 488 parentheses represent the performance difference between our method and the best previous method in each
 489 column.

490	Source				Target										
	491	ImageNet	492		StanfordCars	Flowers102	493		Aircraft	SUN397	494	DTD	EuroSAT	UCFI01	495
			496	Caltech101		OxfordPets	497	Food101							499
499	CLIP (Radford et al., 2021)	71.51	93.70	89.14	64.51	68.71	85.30	18.47	64.15	41.92	46.39	66.55	63.88	63.88	63.88
500	CoOp (Zhou et al., 2022b)	71.51	93.70	89.14	64.51	68.71	85.30	18.47	64.15	41.92	46.39	66.55	63.88	63.88	63.88
501	CoCoOp (Zhou et al., 2022a)	71.02	94.43	90.14	65.32	71.88	86.06	22.94	67.36	45.73	45.37	68.21	65.74	65.74	65.74
502	PromptSRC (Khattak et al., 2023b)	71.27	93.60	90.25	65.70	70.25	86.15	23.90	67.10	46.87	45.50	68.75	65.81	65.81	65.81
503	MetaPrompt (Zhai et al., 2024)	71.27	93.60	90.25	65.70	70.25	86.15	23.90	67.10	46.87	45.50	68.75	65.81	65.81	65.81
504	DePT (Zhang et al., 2024)	71.60	93.80	90.13	66.00	70.93	86.27	24.30	67.23	46.60	45.83	69.10	66.02	66.02	66.02
505	ProMetaR (Park et al., 2024)	71.29	93.74	90.59	65.83	71.13	86.39	24.78	67.41	47.08	45.02	69.50	66.15	66.15	66.15
506	MaPL (Khattak et al., 2023a)	70.72	93.53	90.49	65.57	72.23	86.20	24.74	67.01	46.49	48.06	68.69	66.30	66.30	66.30
507	ATPrompt (Li et al., 2025)	70.69	94.04	91.03	66.06	71.99	86.33	24.42	67.05	45.21	48.63	69.15	66.75	66.75	66.75
508	CoPrompt (Roy & Etemadi, 2024)	70.80	94.50	90.73	65.67	72.30	86.43	24.00	67.57	47.07	51.90	69.73	67.00	67.00	67.00
509	FedMVP (Singha et al., 2025)	70.87	95.37	89.27	65.83	72.80	87.06	25.94	68.19	49.78	50.84	70.58	67.57	67.57	67.57
510	MMRL (Guo & Gu, 2025)	72.03	94.67	91.43	66.10	72.77	86.40	26.30	67.57	45.90	53.10	68.27	67.25	67.25	67.25
511	HiCroPL (Zheng et al., 2025)	70.84	94.48	90.13	65.68	72.03	86.46	26.58	68.78	53.19	49.19	70.31	67.68	67.68	67.68
512	HPT++ (Wang et al., 2024)	71.81	94.02	92.16	65.55	72.43	86.34	28.60	68.78	51.02	50.76	70.53	68.02	68.02	68.02
513	Ours	72.77	95.72	92.73	67.09	73.56	86.95	28.15	68.94	47.92	54.21	70.62	68.68		
514		(+0.74)	(+0.35)	(+0.57)	(+0.99)	(+0.76)	(-0.11)	(-0.45)	(+0.16)	(-5.27)	(+1.11)	(+0.04)	(+0.66)		

sensitivity to prompt phrasing observed in our robustness analysis, leads to more stable base-to-new performance in both coarse- and fine-grained domains.

Cross-dataset Generalization. To evaluate the robustness of our method under domain shift, we conduct cross-dataset generalization experiments following the standard protocol. As shown in Table 5, our method outperforms all competing approaches across different datasets. These results highlight the ability of our prompt-robust meta-learning framework to generalize effectively across unseen distributions and confirm its superiority in cross-domain prompt transfer.

Domain Generalization. We evaluate the domain generalization ability of our method using the standard ImageNet robustness benchmark, where models trained on ImageNet are tested on four shifted domains: ImageNet-V2, -S, -A, and -R.

As shown in Table 6, our method outperforms all competing prompt learning methods, achieving the highest average accuracy. Ours yields strong improvements across all domain variants, notably outperforming HPT++ on the more challenging shifts such as ImageNet-A and -R. These results confirm that our prompt-robust design not only improves in-domain generalization but also significantly enhances resilience to distributional shifts.

6 CONCLUSION

We presented **Promise**, a meta-learning framework for prompt-robust vision–language modeling that learns to generalize across diverse prompt formulations. **Promise** combines a dual-loop adaptation scheme with adaptive prompt weighting and token-specific learning rates, enabling fine-grained, context-aware prompt optimization. Beyond empirical gains, our analysis shows that the weighted–preconditioned inner update induces a single-step decrease of the outer empirical risk while contracting across-prompt sensitivity and tightens a data-dependent generalization bound at the post-inner initialization. Experiments on base-to-new generalization, cross-dataset transfer, and domain-shift benchmarks corroborate these guarantees, yielding consistent improvements over state-of-the-art prompt tuning methods.

Table 6: Domain generalization.

	Source				Target			
	ImageNet	-V2	-S	-A	-R	Avg.		
CLIP (Radford et al., 2021)	66.73	60.83	46.15	47.77	73.96	57.17		
CoOp (Zhou et al., 2022b)	71.51	64.20	47.99	49.71	75.21	59.28		
CoCoOp (Zhou et al., 2022a)	71.02	64.07	48.75	50.63	76.18	59.90		
MaPL (Khattak et al., 2023a)	70.72	64.07	49.15	50.90	76.98	60.27		
ATPrompt (Li et al., 2025)	70.69	64.40	49.10	51.77	77.11	60.60		
CoPrompt (Roy & Etemadi, 2024)	70.80	64.25	49.43	50.50	77.51	60.42		
HiCroPL (Zheng et al., 2025)	71.22	64.33	49.47	50.79	77.15	60.44		
MMRL (Guo & Gu, 2025)	72.03	64.47	49.17	51.20	77.53	60.59		
PromptSRC (Khattak et al., 2023b)	71.27	64.35	49.55	50.90	77.80	60.65		
ProMetaR (Park et al., 2024)	71.29	64.39	49.55	51.25	77.89	60.77		
FedMVP (Singha et al., 2025)	70.87	63.72	50.93	51.76	77.23	60.91		
HPT++ (Wang et al., 2024)	71.81	65.31	49.28	51.18	77.52	60.82		
Ours	72.77	66.92	50.28	53.21	78.52	62.23		
	(+0.74)	(+1.61)	(-0.65)	(+1.44)	(+0.63)	(+1.32)		

540 **Ethics Statement** This work introduces **Promise**, a meta-finetuning framework to improve prompt
 541 robustness of vision–language models. We do not collect new human data or annotate personal
 542 information; all experiments use *public* datasets under their original licenses (e.g., ImageNet variants
 543 and standard cross-dataset/domain-shift benchmarks). Our method does not attempt to infer demo-
 544 graphics, identities, or other sensitive attributes. Nevertheless, adapted models may inherit societal
 545 biases present in pretraining/evaluation data and could be misused for privacy-invasive applications
 546 (e.g., surveillance on personal images) or for processing proprietary content without authorization.
 547 We discourage such uses and recommend adherence to data-governance policies, license terms, and
 548 applicable laws. We include dataset/usage licenses, prompt lists, and evaluation details to support
 549 responsible replication; we also report compute profiles to increase transparency about environmental
 550 impact.

551 **Reproducibility Statement** All models, datasets, and baselines used in this paper are publicly
 552 accessible. We specify training/validation splits, optimization settings, and evaluation protocols in
 553 the main text, with additional implementation details in the appendix. To facilitate replication: (i) we
 554 provide the complete prompt templates and structured-prompt variants; (ii) we include an algorithmic
 555 description with pseudocode and complexity notes; (iii) we report hardware, wall-clock training time,
 556 and memory usage; and (iv) we add qualitative visualizations to verify robustness behaviors. We
 557 release configuration files, random seeds, and checkpoints together with evaluation scripts to exactly
 558 reproduce the reported numbers.

559 REFERENCES

560 Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Exploring visual prompts
 561 for adapting large-scale models. *arXiv preprint arXiv:2203.17274*, 2022.

562 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
 563 nents with random forests. In *ECCV*, pp. 446–461, 2014.

564 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
 565 scribing textures in the wild. In *CVPR*, pp. 3606–3613, 2014.

566 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
 567 hierarchical image database. In *CVPR*, pp. 248–255, 2009.

568 Mohammad Mahdi Derakhshani, Enrique Sanchez, Adrian Bulat, Victor G Turrisi da Costa, Cees GM
 569 Snoek, Georgios Tzimiropoulos, and Brais Martinez. Bayesian prompt learning for image-language
 570 model generalization. In *ICCV*, pp. 15237–15246, 2023.

571 Yingjun Du, Wenfang Sun, and Cees G. M. Snoek. IPO: Interpretable prompt optimization for
 572 vision-language models. In *NeurIPS*, volume 37, pp. 126725–126766, 2024.

573 Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
 574 examples: An incremental bayesian approach tested on 101 object categories. In *CVPR*, pp.
 575 178–178, 2004.

576 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
 577 deep networks. In *ICML*, pp. 1126–1135, 2017.

578 Yuncheng Guo and Xiaodong Gu. MMRL: Multi-modal representation learning for vision-language
 579 models. In *CVPR*, pp. 25015–25025, 2025.

580 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. EuroSAT: A novel dataset
 581 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected
 582 Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.

583 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 584 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
 585 analysis of out-of-distribution generalization. In *ICCV*, pp. 8340–8349, 2021a.

586 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 587 examples. In *CVPR*, pp. 15262–15271, 2021b.

594 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
 595 Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with
 596 noisy text supervision. In *ICML*, pp. 4904–4916, 2021.

597

598 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
 599 Ser-Nam Lim. Visual prompt tuning. In *ECCV*, pp. 709–727, 2022.

600 Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shahbaz
 601 Khan. MaPLe: Multi-modal prompt learning. In *CVPR*, pp. 19113–19122, 2023a.

602

603 Muhammad Uzair Khattak, Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan
 604 Yang, and Fahad Shahbaz Khan. Self-regulating prompts: Foundational model adaptation without
 605 forgetting. In *ICCV*, pp. 15190–15200, 2023b.

606 Muhammad Uzair Khattak, Muhammad Ferjad Naeem, Muzammal Naseer, Luc Van Gool, and
 607 Federico Tombari. Learning to prompt with text only supervision for vision-language models. In
 608 *AAAI*, pp. 4230–4238, 2025.

609

610 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D object representations for fine-grained
 611 categorization. In *ICCV*, pp. 554–561, 2013.

612 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 613 tuning. In *EMNLP*, pp. 3045–3059, 2021.

614

615 Juncheng Li, XIN HE, Longhui Wei, Long Qian, Linchao Zhu, Lingxi Xie, Yuetong Zhuang, Qi Tian,
 616 and Siliang Tang. Fine-grained semantically aligned vision-language pre-training. In *NeurIPS*,
 617 volume 35, pp. 7290–7303, 2022.

618 Juncheng Li, Minghe Gao, Longhui Wei, Siliang Tang, Wenqiao Zhang, Mengze Li, Wei Ji, Qi Tian,
 619 Tat-Seng Chua, and Yuetong Zhuang. Gradient-regulated meta-prompt learning for generalizable
 620 vision-language models. In *ICCV*, pp. 2551–2562, 2023.

621

622 Zheng Li, Xiang Li, Xinyi Fu, Xin Zhang, Weiqiang Wang, Shuo Chen, and Jian Yang. PromptKD:
 623 Unsupervised prompt distillation for vision-language models. In *CVPR*, pp. 26617–26626, 2024.

624

625 Zheng Li, Yibing Song, Ming-Ming Cheng, Xiang Li, and Jian Yang. Advancing textual prompt
 626 learning with anchored attributes. In *ICCV*, 2025.

627

628 Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-SGD: Learning to learn quickly for
 629 few-shot learning. *arXiv preprint arXiv:1707.09835*, 2017.

630

631 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 632 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

633

634 Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. *arXiv
 635 preprint arXiv:1803.02999*, 2018.

636

637 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 638 of classes. In *ICVGIP*, pp. 722–729, 2008.

639

640 Jinyoung Park, Juyeon Ko, and Hyunwoo J Kim. Prompt learning via meta-regularization. In *CVPR*,
 641 pp. 26940–26950, 2024.

642

643 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *CVPR*, pp.
 644 3498–3505, 2012.

645

646 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 647 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 648 Learning transferable visual models from natural language supervision. In *ICML*, pp. 8748–8763,
 649 2021.

650

651 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
 652 generalize to imagenet? In *ICML*, pp. 5389–5400, 2019.

648 Shuvendu Roy and Ali Etemad. Consistency-guided prompt learning for vision-language models. In
 649 *ICLR*, 2024.
 650

651 Mainak Singha, Subhankar Roy, Sarthak Mehrotra, Ankit Jha, Moloud Abdar, Biplab Banerjee, and
 652 Elisa Ricci. Fedmvp: Federated multi-modal visual prompt tuning for vision-language models. In
 653 *ICCV*, 2025.

654 Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset of 101 human actions
 655 classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.
 656

657 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. *JMLR*, 9(11), 2008.
 658

659 Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations
 660 by penalizing local predictive power. In *NeurIPS*, volume 32, 2019.
 661

662 Yubin Wang, Xinyang Jiang, De Cheng, Wenli Sun, Dongsheng Li, and Cairong Zhao. HPT++:
 663 Hierarchically prompting vision-language models with multi-granularity knowledge generation
 664 and improved structure modeling. *arXiv preprint arXiv:2408.14812*, 2024.
 665

666 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. SUN database:
 667 Large-scale scene recognition from abbey to zoo. In *CVPR*, pp. 3485–3492, 2010.
 668

669 Ji Zhang, Shihan Wu, Lianli Gao, Heng Tao Shen, and Jingkuan Song. DePT: Decoupled prompt
 670 tuning. In *CVPR*, pp. 12924–12933, 2024.
 671

672 Cairong Zhao, Yubin Wang, Xinyang Jiang, Yifei Shen, Kaitao Song, Dongsheng Li, and Duoqian
 673 Miao. Learning domain invariant prompt for vision-language models. *TIP*, 33:1348–1360, 2024.
 674

675 Hao Zheng, Shunzhi Yang, Zhuoxin He, Jinfeng Yang, and Zhenhua Huang. Hierarchical cross-modal
 676 prompt learning for vision-language models. In *ICCV*, 2025.
 677

678 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
 679 vision-language models. In *CVPR*, pp. 16816–16825, 2022a.
 680

681 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
 682 language models. *IJCV*, 130(9):2337–2348, 2022b.
 683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A LLM USAGE STATEMENT**
703704 We used a large language model (ChatGPT) solely for grammar checking and language polishing
705 of the manuscript text. It did not contribute to research ideation, method design, experiments, data
706 analysis, or result generation; all technical content was authored and verified by the authors.
707708 **B PROOFS AND AUXILIARY RESULTS**
709710 **Notation.** Write the outer empirical risk as
711

712
$$R(\theta) := \hat{R}_{P_{\text{out}}}(\theta) = \frac{1}{|P_{\text{out}}|} \sum_{T \in P_{\text{out}}} L(\theta; T),$$

713

714 and the (weighted) inner aggregated gradient as
715

716
$$G(\theta) := \sum_{T \in P_{\text{in}}} w_T \nabla_{\theta} L(\theta; T), \quad \mu(\theta) := \mathbb{E}[G(\theta)], \quad \Sigma_w := \text{Var}[G(\theta)].$$

717

718 The post-inner update is $\hat{\theta} = \theta - P G(\theta)$ with a diagonal $P = \text{diag}(\alpha_1, \dots, \alpha_d) \succeq 0$.
719720 **B.1 ASSUMPTIONS**
721722 **A0: Disjoint and independent draws.** P_{in} and P_{out} are drawn independently from \mathcal{P} and $P_{\text{in}} \cap P_{\text{out}} = \emptyset$.
723724 **A1: Smoothness.** For every prompt T , $L(\cdot; T)$ is L -smooth; hence $R(\cdot)$ is also L -smooth:
725 $\|\nabla L(\theta; T) - \nabla L(\theta'; T)\| \leq L\|\theta - \theta'\|$, $\|\nabla R(\theta) - \nabla R(\theta')\| \leq L\|\theta - \theta'\|$.
726727 **A2: Unbiased inner gradient with bounded second moment.** $\mathbb{E}[G(\theta)] = \mu(\theta)$ and $\mathbb{E}\|G(\theta) - \mu(\theta)\|^2 = \text{Tr}(\Sigma_w) \leq \sigma^2$.
728729 **A3: Preconditioner.** $P = P^{\top} \succeq 0$ is diagonal, with spectral bounds $0 \leq \lambda_{\min}(P) \leq \|P\|_2$.
730731 **A4: Alignment and bounded amplification.** There exist $\gamma \in (0, 1]$ and $\kappa \geq 1$ such that
732

733
$$\langle \nabla R(\theta), P \mu(\theta) \rangle \geq \gamma \lambda_{\min}(P) \|\nabla R(\theta)\|^2, \quad \|\mu(\theta)\| \leq \kappa \|\nabla R(\theta)\|. \quad (5)$$

734

735 **A5: Lipschitz properties.** (i) (*Model Lipschitz for sensitivity*) There exists $\Gamma_f > 0$ such that
736 $|f_{\theta}(x; T) - f_{\theta'}(x; T)| \leq \Gamma_f \|\theta - \theta'\|$ for all (x, T) . (ii) (*Loss Lipschitz in parameters*) There exists
737 $\Gamma_L > 0$ such that $|L(\theta; T) - L(\theta'; T)| \leq \Gamma_L \|\theta - \theta'\|$ for all T .
738739 **A6: Prompt-coherence for sensitivity.** Let $S(\theta) := \text{Var}_{T \sim \mathcal{P}}[f_{\theta}(x; T)]$ (or its Jacobian surrogate).
740 There exist $\mu_{\text{eff}} \in (0, 1]$ and $C_0 \geq 0$ such that
741

742
$$S(\theta - P \mu(\theta)) \leq (1 - \mu_{\text{eff}}) S(\theta) + C_0 \|P \mu(\theta)\|^2. \quad (6)$$

743

744 **B.2 AUXILIARY LEMMAS**
745746 **Lemma B.1** (Smoothness descent). *For any $v \in \mathbb{R}^d$, $R(\theta - Pv) \leq R(\theta) - \langle \nabla R(\theta), Pv \rangle + \frac{L}{2} \|Pv\|^2$.*
747748 *Proof.* By L -smoothness, $R(y) \leq R(x) + \langle \nabla R(x), y - x \rangle + \frac{L}{2} \|y - x\|^2$. Set $x = \theta$ and $y = \theta - Pv$. \square
749750 **Lemma B.2** (Second moment under preconditioning). $\mathbb{E}\|P G(\theta)\|^2 \leq \|P\|_2^2 (\|\mu(\theta)\|^2 + \text{Tr}(\Sigma_w))$.
751752 *Proof.* Write $G = \mu + \xi$ with $\mathbb{E}[\xi] = 0$, $\text{Cov}(\xi) = \Sigma_w$. Then $\mathbb{E}\|PG\|^2 = \|P\mu\|^2 + \mathbb{E}\|P\xi\|^2 \leq$
753 $\|P\|_2^2 \|\mu\|^2 + \|P\|_2^2 \text{Tr}(\Sigma_w)$. \square
754

756 B.3 PROOF OF THEOREM 4.1
757758 Recall $\hat{\theta} = \theta - P G(\theta)$. Applying Lemma B.1 with $v = G(\theta)$ and taking expectation over P_{in} ,

759
$$\begin{aligned} 760 \mathbb{E} R(\hat{\theta}) &\leq R(\theta) - \langle \nabla R(\theta), P \mu(\theta) \rangle + \frac{L}{2} \mathbb{E} \|P G(\theta)\|^2 \\ 761 &\leq R(\theta) - \gamma \lambda_{\min}(P) \|\nabla R(\theta)\|^2 + \frac{L}{2} \|P\|_2^2 \left(\|\mu(\theta)\|^2 + \text{Tr}(\Sigma_w) \right) \\ 762 &\leq R(\theta) - \left(\gamma \lambda_{\min}(P) - \frac{L}{2} \kappa^2 \|P\|_2^2 \right) \|\nabla R(\theta)\|^2 + \frac{L}{2} \|P\|_2^2 \text{Tr}(\Sigma_w), \end{aligned}$$

763 where the second line uses Lemma B.2 and the alignment bound in equation 5, and the third line uses
764 $\|\mu(\theta)\| \leq \kappa \|\nabla R(\theta)\|$. If $\gamma \lambda_{\min}(P) > \frac{L}{2} \kappa^2 \|P\|_2^2$, the expectation strictly decreases.
765766 *Sensitivity contraction.* Let $\bar{\theta} = \theta - P \mu(\theta)$ be the noise-free step. By equation 6, $S(\bar{\theta}) \leq (1 -$
767 $\mu_{\text{eff}})S(\theta) + C_0 \|P \mu(\theta)\|^2$. Note that $\hat{\theta} - \bar{\theta} = -P(G - \mu)$. By the Lipschitz property of f_θ in A5(i)
768 and the definition of variance,
769

770
$$\mathbb{E} S(\hat{\theta}) \leq S(\bar{\theta}) + \Gamma_f^2 \mathbb{E} \|P(G - \mu)\|^2 \leq (1 - \mu_{\text{eff}})S(\theta) + C_0 \|P \mu\|^2 + \Gamma_f^2 \|P\|_2^2 \text{Tr}(\Sigma_w).$$

771 Using $\|P \mu\|^2 \leq \|P\|_2^2 \kappa^2 \|\nabla R(\theta)\|^2$ and absorbing constants into C yields $\mathbb{E} S(\hat{\theta}) \leq (1 - \mu_{\text{eff}})S(\theta) +$
772 $C \|P\|_2^2 \text{Tr}(\Sigma_w)$. \square
773774 **Remark.** If one subsequently takes an outer gradient step $\theta^+ = \hat{\theta} - \eta \nabla R(\hat{\theta})$ with $\eta \in$
775 $(0, 1/(L\|P\|_2))$, then by L -smoothness, $R(\theta^+) \leq R(\hat{\theta}) - \eta \|\nabla R(\hat{\theta})\|^2 + \frac{L}{2} \eta^2 \|\nabla R(\hat{\theta})\|^2$, which
776 further decreases the risk for suitably small η .
777778 B.4 PROOF OF THEOREM 4.2
779780 Decompose the error into (i) *initialization noise* from the inner step, and (ii) *sampling error* from
781 P_{out} .
782783 **Step 1: Initialization noise bound.** Write $\hat{\theta} = \theta - P(\mu + \xi)$ with $\mathbb{E}[\xi] = 0$ and $\text{Cov}(\xi) = \Sigma_w$.
784 By A5(ii) (loss Lipschitz in θ) and the triangle inequality,
785

786
$$|R_{\text{pop}}(\hat{\theta}) - R_{\text{pop}}(\theta - P\mu)| \leq \Gamma_L \|\hat{\theta} - (\theta - P\mu)\| = \Gamma_L \|P\xi\|.$$

787 Taking expectation and using Jensen, $\mathbb{E}[R_{\text{pop}}(\hat{\theta})] \leq R_{\text{pop}}(\theta - P\mu) + \Gamma_L \sqrt{\mathbb{E}\|P\xi\|^2} \leq R_{\text{pop}}(\theta -$
788 $P\mu) + \Gamma_L \sqrt{\text{Tr}(P\Sigma_w P)}$.
789790 **Step 2: Concentration on P_{out} .** Conditioned on $\hat{\theta}$, by A0 the samples in P_{out} are i.i.d. If $L \in [0, 1]$
791 (or is sub-Gaussian after scaling), Hoeffding's inequality gives, for any $\delta \in (0, 1)$, with probability at
792 least $1 - \delta$,

793
$$R_{\text{pop}}(\hat{\theta}) \leq R(\hat{\theta}) + c_2 \sqrt{\frac{\ln(1/\delta)}{n_{\text{out}}}},$$

794 where n_{out} is the number of samples in $\hat{R}_{P_{\text{out}}}$ and $c_2 > 0$ is an absolute constant. Combining Step 1
795 and the concentration of $R(\hat{\theta})$ around $R_{\text{pop}}(\hat{\theta})$, we obtain
796

797
$$R_{\text{pop}}(\hat{\theta}) \leq R(\hat{\theta}) + c_2 \sqrt{\frac{\ln(1/\delta)}{n_{\text{out}}}} + c_1 \Gamma_L \sqrt{\text{Tr}(P\Sigma_w P)},$$

798 after absorbing universal constants into $c_1 > 0$. This yields the stated bound. \square
799800 B.5 COROLLARY AND PRACTICAL DIAGNOSTICS
801802 **Corollary B.3** (Improvement over uniform inner update). *Let $\hat{\theta}_{\text{uni}} = \theta - \alpha \frac{1}{|P_{\text{in}}|} \sum_{T \in P_{\text{in}}} \nabla_{\theta} L(\theta; T)$.
803 If there exist (w_T, P) such that the alignment and amplification in equation 5 hold with $\gamma \lambda_{\min}(P) >$
804 $\frac{L}{2} \kappa^2 \|P\|_2^2$ and $\text{Tr}(P\Sigma_w P) \leq \text{Tr}(P\Sigma_{\text{uni}} P)$, then $\mathbb{E} R(\hat{\theta}) \leq \mathbb{E} R(\hat{\theta}_{\text{uni}})$ and the variance term in
805 Theorem 4.2 is smaller for (w_T, P) , resulting in a strictly tighter bound.*

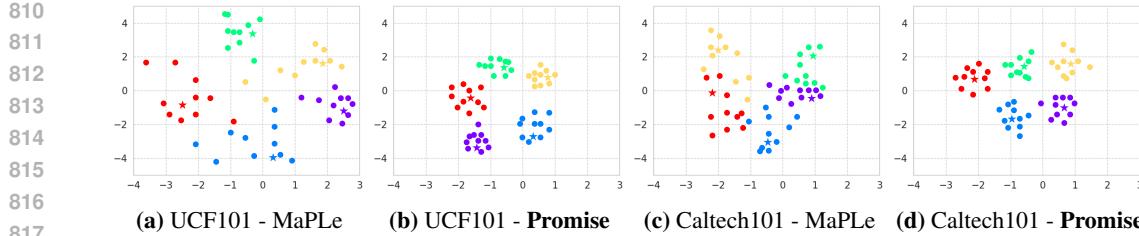


Figure 4: Visualization of prompt sensitivity and robustness with unseen prompts. Each color denotes a class. Stars are image embeddings; circles are text embeddings from ten unseen but semantically equivalent prompts generated by GPT-4o. MaPLe shows high prompt sensitivity (large star–circle gaps), while our method (**Promise**) produces more consistent, tightly clustered embeddings.

Table 7: Effect of structures prompt on Promise.

	Base	New	H
MaPLe (Khattak et al., 2023a)	82.28	75.14	78.55
+ Promise (CLIP prompts)	83.57	77.26	80.29
+ Promise (LLM prompts)	84.21	79.42	81.74

Diagnostics. (i) *Alignment.* Track $\cos \angle(\nabla R(\theta), P G(\theta))$ as an empirical lower bound for γ ; (ii) *Variance term.* Report $\text{Tr}(P \widehat{\Sigma}_w P)$ with batch-level estimates $\widehat{\Sigma}_w$ across training; (iii) *Sensitivity.* Monitor $S(\theta)$ (APV or Jacobian surrogate) and its contraction to validate equation 6.

C VISUALIZATION OF PROMPT ROBUSTNESS

To further examine the robustness of our method to prompt variations, we visualize the feature distributions obtained from different prompt templates using t-SNE (Van der Maaten & Hinton, 2008), as shown in Figure 4. Each class is represented by a unique color; stars denote the image embeddings, and circles correspond to text embeddings generated from ten semantically equivalent but unseen prompts using GPT-4o.

Compared to MaPLe, which exhibits high sensitivity to prompt variations—evidenced by the wide spread of circles around each star—our method, **Promise**, produces tightly clustered embeddings. This indicates that our method yields more stable and consistent text representations across diverse prompt formulations. Such consistency demonstrates **Promise**’s effectiveness in mitigating prompt sensitivity and achieving prompt-agnostic behavior.

D EFFECT OF STRUCTURED PROMPTS.

While our main experiments employ handcrafted CLIP-style prompt templates to simulate realistic prompt variation, recent advances suggest that prompts generated by LLMs can provide greater semantic diversity and syntactic richness. To evaluate whether our proposal can benefit from such structured prompt generation, we adopt the IPO framework (Du et al., 2024), which uses LLMs to automatically generate 80 diverse and interpretable prompt templates. We retrain **Promise** using the IPO-generated prompts, keeping all other experimental settings unchanged. As shown in Table 7, incorporating LLM-generated prompts leads to consistent performance improvements across both base and novel classes. These results confirm that **Promise** not only maintains compatibility with structured prompts but also benefits from their expanded distributional coverage.

E DETAILED PROMPTS

To implement the textual diversity technique, we randomly select 60 prompt templates from the full list of templates provided in Radford et al. (2021). Specifically, the following prompt templates are utilized in our textual diversity component.

864 "a photo of a {CLASS}."
 865 "a bad photo of a {CLASS}."
 866 "a photo of many {CLASS}."
 867 "a sculpture of a {CLASS}."
 868 "a photo of the hard to see {CLASS}."
 869 "a low resolution photo of the {CLASS}."
 870 "a rendering of a {CLASS}."
 871 "graffiti of a {CLASS}."
 872 "a bad photo of the {CLASS}."
 873 "a cropped photo of the {CLASS}."
 874 "a tattoo of a {CLASS}."
 875 "the embroidered {CLASS}."
 876 "a photo of a hard to see {CLASS}."
 877 "a bright photo of a {CLASS}."
 878 "a photo of a clean {CLASS}."
 879 "a photo of a dirty {CLASS}."
 880 "a dark photo of the {CLASS}."
 881 "a drawing of a {CLASS}."
 882 "a photo of my {CLASS}."
 883 "the plastic {CLASS}."
 884 "a photo of the cool {CLASS}."
 885 "a close-up photo of a {CLASS}."
 886 "a black and white photo of the {CLASS}."
 887 "a painting of the {CLASS}."
 888 "a painting of a {CLASS}."
 889 "a pixelated photo of the {CLASS}."
 890 "a sculpture of the {CLASS}."
 891 "a bright photo of the {CLASS}."
 892 "a cropped photo of a {CLASS}."
 893 "a dark photo of the {CLASS}."
 894 "a plastic {CLASS}."
 895 "a photo of the dirty {CLASS}."
 896 "a jpeg corrupted photo of a {CLASS}."
 897 "a blurry photo of the {CLASS}."
 898 "a photo of the {CLASS}."
 899 "a good photo of the {CLASS}."
 900 "a rendering of the {CLASS}."
 901 "a {CLASS} in a video game."
 902 "a sketch of a {CLASS}."
 903 "a photo of one {CLASS}."
 904 "a doodle of a {CLASS}."
 905 "a close-up photo of the {CLASS}."
 906 "the origami {CLASS}."
 907 "the {CLASS} in a video game."
 908 "a sketch of a {CLASS}."
 909 "a photo of a large {CLASS}."
 910 "a rendering of a {CLASS}."
 911 "a photo of a nice {CLASS}."
 912 "a photo of a weird {CLASS}."
 913 "a blurry photo of a {CLASS}."
 914 "a cartoon {CLASS}."
 915 "art of a {CLASS}."
 916 "a sketch of the {CLASS}."
 917 "a embroidered {CLASS}."

918 "a pixelated photo of a {CLASS}."
 919 "itap of the {CLASS}."
 920
 921

F ALGORITHM DESCRIPTION

925 The **Promise** algorithm, outlined in Algorithm 1, is designed to improve prompt learning for zero-shot
 926 generalization. It employs a meta-learning approach with two loops: the inner loop for task-specific
 927 adaptation and the outer loop for optimizing meta-parameters for generalization across diverse
 928 prompts. Key components of the algorithm include: (1) **Inner Loop**: The inner loop adapts the
 929 parameters of the CLIP model θ using a sub-set of prompts \mathcal{P}_{in} and data \mathcal{D}_{in} . A hypernet-
 930 work H dynamically generates learning rates
 931 for prompt-specific updates, enabling efficient
 932 optimization. The adapted parameters $\hat{\theta}$ are ob-
 933 tained after several gradient steps. (2) **Outer**
 934 **Loop**: The outer loop aims to improve the general-
 935 ization capability of the meta-parameters θ
 936 using a distinct subset of prompts \mathcal{P}_{out} and data
 937 \mathcal{D}_{out} . The meta-parameters θ , hypernetwork H ,
 938 and prompt weights $\{w_i\}$ are updated by min-
 939 imizing the loss over \mathcal{P}_{out} , ensuring robustness
 940 across varied prompts. (3) **Prompt Weight Ad-
 941 justment**: To balance the contribution of differ-
 942 ent prompts, the weights $\{w_i\}$ are updated using
 943 an exponential normalization mechanism based
 944 on the gradient of the outer-loop loss. This it-
 945 erative process ensures that **Promise** learns to
 946 generalize across diverse prompt templates, en-
 947 hancing the zero-shot capabilities of the underly-
 948 ing vision-language model. By leveraging first-
 949 order approximations in the outer loop, inspired
 950 by Reptile, the algorithm avoids computational
 951 overhead from second-order gradients, making
 952 it more time-efficient.

G ADDITIONAL ABLATION STUDIES

G.1 INNER VS. OUTER LOOPS IN TEXTBF PROMISE

958 To better separate the roles of the inner and outer loops, we compare the base prompt learner, an
 959 inner-loop-only variant, an outer-loop-only variant, and the full dual-loop **Promise**. Concretely, the
 960 inner-only variant applies a single inner update on P_{in} and is evaluated directly, while the outer-only
 961 variant optimizes directly on P_{out} without any inner adaptation step. The full Promise uses both loops
 962 as in the main method. Results, averaged over 11 datasets in the base-to-new setting, are summarized
 963 in Table 8.

964 As shown in Table 8, inner-only and outer-only variants bring only small gains over the base methods,
 965 whereas the full dual-loop Promise consistently achieves the best harmonic mean H . In particular, the
 966 inner-only variant tends to overfit the templates in P_{in} , while the outer-only variant loses the benefit
 967 of fast adaptation from a shared initialization. The combination of both loops is therefore important
 968 for robust performance on unseen prompts in P_{out} .

Table 8: Ablation on inner-only, outer-only, and dual-loop variants of Promise on top of MaPLe and MMRL in the base-to-new setting (averaged over 11 datasets). Promise consistently achieves the best harmonic mean H .

Base model	Variant	Base	New	H
MaPLe	w/o Promise	82.28	75.14	78.55
	inner-only	82.95	75.55	79.08
	outer-only	82.90	75.45	79.00
	dual-loop (Ours)	83.57	77.26	80.29
MMRL	w/o Promise	85.68	77.16	81.20
	inner-only	86.05	77.85	81.75
	outer-only	86.00	77.75	81.67
	dual-loop (Ours)	86.14	78.84	82.33

Table 9: Base-to-new results (averaged over 11 datasets) on SigLIP and BLIP-2 backbones with MaPLe and MMRL as base prompt learners. “Base PT” denotes the original prompt-tuning baseline without meta-finetuning. textbfPromise consistently improves the harmonic mean H .

Backbone	Base model	Method	Base	New	H
SigLIP	MaPLe	Base PT	83.10	76.20	79.50
		+ Promise	83.90	78.00	80.84
	MMRL	Base PT	86.00	78.30	81.97
		+ Promise	86.60	79.40	82.84
BLIP-2	MaPLe	Base PT	82.10	75.60	78.72
		+ Promise	82.90	76.80	79.73
	MMRL	Base PT	85.10	77.40	81.07
		+ Promise	85.97	78.94	82.30

G.2 ADDITIONAL RESULTS ON SIGLIP AND BLIP-2 BACKBONES

To verify that `textbfPromise` is not restricted to CLIP, we also evaluate it on more recent frozen multimodal encoders, namely SigLIP and BLIP-2, using MaPLe and MMRL as underlying prompt learners in the base-to-new setting. We apply exactly the same meta-finetuning protocol as in the CLIP experiments and report averages over 11 datasets in Table 9. As in the CLIP setting, adding `textbfPromise` on top of MaPLe and MMRL yields consistent gains in the harmonic mean H on both SigLIP and BLIP-2 backbones.

G.3 COMPONENT-WISE ABLATION AND REGULARIZATION BASELINE

To analyze how each component of **Promise** contributes to performance and how it compares to a simpler regularization-based baseline, we conduct a component-wise ablation using MMRL as the base prompt learner. We compare: plain MMRL, MMRL with a simple variance regularization term across prompts, MMRL with adaptive weighting only, MMRL with token-wise learning rate only, and the full **Promise** (adaptive weighting + token-wise learning rates). Averaged over 11 datasets in the base-to-new setting, the results are summarized in Table 10.

The regularization baseline provides only a small improvement over plain MMRL, while learning explicit adaptive weights and token-wise preconditioning each yields additional gains on H . Combining both components in **Promise** gives the most consistent improvement, indicating that the robustness and accuracy gains come from the full combination of adaptive weighting and token-wise learning rates rather than from a simple regularization trick.

For completeness, we also consider a randomized outer-loop baseline in which the outer objective is replaced by a Gaussian random signal that is independent of the data (the outer update observes random pseudo-loss values). In this case, dual-loop training either matches or slightly degrades the base model, with H typically dropping by about 0.3–0.5 on average. This highlights that the improve-

1026 **Table 10:** Component-wise ablation of **Promise** on top of MMRL in the base-to-new setting (averaged over 11
 1027 datasets). The regularization baseline brings only a small improvement, while adaptive weighting and token-wise
 1028 learning rates each yield additional gains. Combining both components gives the best harmonic mean H .
 1029

Variant	Base	New	H
MMRL (base prompt learner)	85.68	77.16	81.20
+ variance regularization	85.80	77.50	81.44
+ adaptive weighting only	86.00	78.00	81.80
+ token-wise learning rate only	85.95	78.10	81.84
full Promise (weighting + LR)	86.14	78.84	82.33

1030 **Table 11:** Sensitivity of **Promise** to different choices of inner/outer prompt splits (averaged over 11 datasets in
 1031 the base-to-new setting). Different disjoint splits yield very similar performance, while allowing a small overlap
 1032 slightly weakens but does not remove the robustness effect.
 1033

Split type	H (\uparrow), mean \pm std	Prompt Std (\downarrow), mean \pm std
disjoint, seed 1	80.31 ± 0.00	1.41 ± 0.00
disjoint, seed 2	80.12 ± 0.10	1.52 ± 0.10
disjoint, seed 3	80.23 ± 0.10	1.50 ± 0.10
20% overlap	80.07 ± 0.10	1.61 ± 0.10

1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276

1080
 1081 **Table 12:** Total training time over 11 datasets for MaPLe and MMRL with and without **Promise**, measured
 1082 on a single A6000 GPU. **Promise** increases wall-clock time by about 18–19% relative to the corresponding
 1083 single-loop baselines.

1084 Base model	1085 Method	1086 Total train time (h)	1087 Relative cost
1088 MaPLe	base PT	6.10	1.00×
1089 MaPLe	+ Promise	7.25	1.19×
1090 MMRL	base PT	6.30	1.00×
1091 MMRL	+ Promise	7.45	1.18×

1092 **Table 13:** Effect of template pool size and diversity on MMRL with **Promise** in the base-to-new setting (averaged
 1093 over 11 datasets). The base MMRL model uses a single CLIP-style template, while **Promise** meta-finetunes
 1094 over pools of 30, 60, 80, or 100 templates (human-designed plus LLM-generated variants).

1095 Template pool	1096 Method	1097 Base	1098 New	1099 H
single CLIP prompt	MMRL (base)	85.68	77.16	81.20
30 templates	+ Promise	85.95	78.20	81.89
60 templates	+ Promise	86.14	78.84	82.33
80 templates	+ Promise	86.17	78.93	82.39
100 templates	+ Promise	86.10	78.80	82.29

1100 1101 G.6 EFFECT OF TEMPLATE POOL SIZE AND DIVERSITY

1102 In the main experiments, we use 60 human-designed templates from PromptSRC (Khattak et al.,
 1103 2023b), which already cover a range of natural phrasings per dataset. The base MMRL model follows
 1104 the standard protocol and uses a single CLIP-style template, while **Promise** meta-finetunes over a
 1105 pool of templates. To study how **Promise** behaves under different degrees of syntactic and semantic
 1106 diversity, we vary the pool size and also add LLM-generated paraphrases and more structured prompts.
 1107 Table 13 reports results averaged over all 11 datasets in the base-to-new setting, using MMRL as the
 1108 base learner.

1109 Using a relatively small pool (30 templates) leads to slightly weaker gains, likely because the model
 1110 sees fewer distinct phrasings during meta-finetuning. Once the pool size reaches 60, further increasing
 1111 it to 80 or 100 templates has only a minor effect, and the harmonic mean H remains very similar.
 1112 Overall, **Promise** consistently improves over the single-template MMRL baseline and remains
 1113 effective when prompts become more syntactically and semantically varied, as long as the template
 1114 pool is reasonably diverse.

1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133