
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROMISE: PROMPT-ROBUST VISION-LANGUAGE MOD-
ELS VIA META-FINETUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-language models (VLMs) have demonstrated remarkable generalization
across diverse tasks by leveraging large-scale image-text pretraining. However,
their performance is notoriously unstable under variations in natural language
prompts, posing a considerable challenge for reliable real-world deployment. To
address this prompt sensitivity, we propose Promise, a meta-learning framework
for prompt-robust vision-language models via meta-finetuning, which explicitly
learns to generalize across diverse prompt formulations. Our method operates in a
dual-loop meta-finetuning setting: the inner loop adapts token embeddings based on
a set of varied prompts, while the outer loop optimizes for generalization on unseen
prompt variants. To further improve robustness, we introduce an adaptive prompt
weighting mechanism that dynamically emphasizes more generalizable prompts
and a token-specific learning rate module that fine-tunes individual prompt tokens
based on contextual importance. We further establish that Promise’s weighted and
preconditioned inner update provably (i) yields a one-step decrease of the outer em-
pirical risk together with a contraction of across-prompt sensitivity, and (ii) tightens
a data-dependent generalization bound evaluated at the post-inner initialization.
Across 15 benchmarks spanning base-to-novel generalization, cross-dataset trans-
fer, and domain shift, our approach consistently reduces prompt sensitivity and
improves performance stability over existing prompt learning methods.

1 INTRODUCTION

Vision-language models (VLMs) have achieved impressive generalization by aligning image and
text representations through large-scale pretraining (Radford et al., 2021; Jia et al., 2021; Li et al.,
2022). A common zero-shot inference strategy in these models involves filling handcrafted templates
like “a photo of a [CLASS]” and comparing encoded text features against image embeddings.
However, their predictions are surprisingly brittle: small variations in prompt phrasing can cause
large performance fluctuations (Zhou et al., 2022b). This phenomenon, often referred to as prompt
sensitivity, presents a serious obstacle when deploying VLMs reliably in real-world applications.

To mitigate manual prompt engineering, recent efforts in prompt learning introduce learnable tokens
to replace or augment natural language prompts (Lester et al., 2021; Zhou et al., 2022a; Jia et al.,
2022). CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al., 2022a) optimize textual prompts with
supervision from few-shot examples but tend to overfit on base classes and generalize poorly to
novel ones. Khattak et al. (2023b) propose MaPLe, a multi-modal approach that injects visual
and textual prompts across network layers to improve transferability. More recently, Guo & Gu
(2025) enhance cross-modal representations via dynamic feature routing. While these approaches
improve downstream adaptation, they still rely on a fixed set of prompt templates during finetuning
and inference. As shown in Figure 1, they remain vulnerable to prompt rewording and offer limited
robustness to natural linguistic variability.

This paper addresses the underexplored challenge of building prompt-robust vision-language models,
models whose predictions remain stable across diverse prompt formulations. While prior meta-
learning-based prompt tuning methods (Li et al., 2023; Park et al., 2024; Zhao et al., 2024) have
improved generalization by learning better prompt initializations, domain-invariant representations,
or task-level regularization, they typically assume fixed prompt templates and focus on cross-task or
cross-domain transfer. In contrast, we target intra-task robustness by explicitly modeling variation
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Figure 1: Prompt sensitivity and performance comparison in VLMs. We visualize the predicted confidence
scores across five prompt formulations for the same input image. CLIP and MaPLe exhibit high sensitivity
to prompt phrasing, with both larger fluctuations and lower overall scores. In contrast, our method not only
produces more consistent predictions across prompts, but also achieves higher confidence values, reflecting both
improved robustness and better overall performance.

across semantically equivalent prompts within the same task. Our method addresses this gap through
a dual-loop meta-learning framework that learns prompt-invariant token embeddings and dynamically
adapts to prompt-level variability.

To address prompt sensitivity, we introduce Promise, a meta-learning framework for prompt-robust
vision-language models via meta-finetuning. The model learns to adapt token embeddings under
varying prompt views and generalizes to unseen phrasings. Inspired by prior work on meta-gradient
adaptation, we build a framework that enables both prompt-level and token-level adaptation. Our
approach makes four key contributions. First, we design a dual-loop finetuning strategy: the inner
loop adapts learnable token embeddings using a subset of prompt templates, while the outer loop
evaluates them on disjoint prompts to encourage prompt-invariant representations. Second, we
incorporate an adaptive prompt weighting mechanism that dynamically prioritizes templates with
higher generalization utility. Third, we develop a token-specific learning rate module, which fine-
tunes each prompt token based on its contextual importance. These components work jointly to
produce stable, generalizable predictions across prompt variations. Finally, we prove that Promise ’
weighted, preconditioned inner step both decreases the outer empirical risk in one move and contracts
across-prompt sensitivity, thereby tightening a data-dependent generalization bound at the post-inner
initialization.

Extensive experiments across 15 datasets demonstrate that our framework substantially reduces
prompt sensitivity while enhancing generalization to novel categories. It consistently outperforms
prior multi-modal prompt learning methods on base-to-new transfer, cross-dataset adaptation, and
domain generalization benchmarks. Ablation studies further validate the effectiveness of each
component, confirming that meta-learning, adaptive prompt weighting, and token-specific learning
rates jointly contribute to improved robustness and reduced sensitivity to prompt variation in vision-
language models.

2 RELATED WORK

Learning the Prompt Template. This line of work treats the textual prompt as a learnable sentence
or soft vector sequence. CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al., 2022a) pioneered
this approach by optimizing continuous embeddings of the prompt template in the language branch
of CLIP (Radford et al., 2021), enabling few-shot generalization to new classes. Variants such as
Bayesian prompt learning (Derakhshani et al., 2023) further model uncertainty over soft prompts
to improve generalization. Subsequent works explore different strategies to enhance prompt robust-
ness and generalizability: GRAM (Li et al., 2023) and MetaPrompt (Zhao et al., 2024) introduce
meta-learning-based schemes to improve adaptation across domains, while DePT (Zhang et al., 2024)
alleviates overfitting by decoupling base-specific and task-shared knowledge during prompt optimiza-
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tion. These methods directly modify the textual input space, typically focusing on adapting the entire
prompt string. In contrast, our work targets a different axis of generalization—robustness to prompt
phrasing variation within the same task. Rather than optimizing a fixed prompt template, we simulate
prompt distribution shifts during training and meta-learn prompt-invariant token embeddings. This
shift in focus—from task-level or domain-level generalization to within-task prompt robustness—is
central to our design and has been underexplored in prior prompt tuning literature.

Learning the Prompt Tokens. An alternative and increasingly prevalent direction is to append
learnable tokens to the input embeddings without altering the prompt text itself. This paradigm, often
referred to as prefix tuning, has been applied to either the text encoder (Khattak et al., 2025), the
vision encoder (Jia et al., 2022; Bahng et al., 2022), or both (Li et al., 2024; Khattak et al., 2023b; Roy
& Etemad, 2024; Guo & Gu, 2025; Park et al., 2024). These methods introduce soft tokens across
one or more layers to improve model adaptation without modifying the underlying language prompt.
Despite their effectiveness, they still rely on fixed prompt templates during training and evaluation,
making them vulnerable to prompt phrasing variations. Our work belongs to this category but goes
beyond conventional prompt tokens by incorporating meta-learning to explicitly learn from prompt
variations. Instead of optimizing prompt tokens for a single fixed formulation, our framework learns
to generalize across diverse prompt templates, thereby improving robustness to natural language
variation.

3 METHOD

We propose prompt-robust vision-language models via Meta-finetuning (Promise), a meta-learning
framework that enhances the robustness of vision-language models (VLMs) to variations in prompt
phrasing. Our method learns prompt-invariant token representations by simulating prompt distribution
shifts during finetuning. Specifically, it adopts a dual-loop structure: the inner loop updates token
embeddings using a subset of prompt templates, while the outer loop optimizes for generalization
to unseen prompts. Additionally, our method introduces two key modules—(1) an adaptive prompt
weighting mechanism to prioritize generalizable prompts, and (2) a token-specific learning rate sched-
uler for fine-grained token adaptation. These components jointly improve stability and performance
under prompt variation.

3.1 DUAL-LOOP META-FINETUNING

Let Pin and Pout denote the subsets of prompt templates used in the inner and outer loops, respectively,
where Pin ∩ Pout = ∅. For each prompt Ti ∈ Pin, we associate a learnable token ei. The meta-
parameters θ represent the initial shared parameters for all prompt-specific tokens, where θt denotes
the parameters associated with text tokens, and θv denotes those associated with visual features. For
simplicity of notation, we refer to these collectively as θ from now on. In our instantiation, the “tasks”
in the meta-learning sense correspond to different natural-language prompt variants within the same
dataset, rather than to different datasets or label spaces. The dual-loop structure is therefore used to
explicitly simulate prompt distribution shifts within a fixed label space.

Inner-Loop Finetuning. In the inner loop, we adapt the text token embeddings ei for each prompt
template Ti ∈ Pin. Given an input image x and its corresponding label y, the model adapts ei to
minimize the loss for each prompt in Pin. This process can be described as follows:

θ̂ = θ − α
∑

Ti∈Pin

∇θLin(f(ei,x), y), (1)

where Lin(·) represents the loss computed with prompts from Pin, α is the learning rate, and f(ei,x)
denotes the model’s output given the adapted prompt embedding ei and input x. This prompt-specific
adaptation helps the model capture the variations within the prompts in Pin.

Outer-Loop Finetuning. In the outer loop, we optimize the meta-parameters θ with a distinct set of
prompt templates Pout. For each prompt template Tj ∈ Pout, the corresponding token embedding ej
is utilized. Leveraging the adapted parameters θ̂ from the inner loop, we refine θ by minimizing the
aggregate loss over all prompts in Pout:
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Figure 2: Overview of Promise. Inner-loop finetuning adapts the prompt tokens using the subset of prompts in
Pin to minimize the loss. Outer-loop finetuning updates the meta-parameters θ across the disjoint prompt subset
Pout to promote prompt-agnostic generalization. Adaptive prompt weighting and token-specific learning rates
further stabilize performance under prompt variation.

θ = θ − β
∑

Tj∈Pout

∇θ̂Lout(f(ej ,x), y), (2)

where Lout(·) is the loss calculated with prompts from Pout and β is the outer-loop learning rate.
This process ensures that the meta-parameters θ are optimized to generalize across both Pin and
Pout, achieving the intended prompt-agnostic performance. In practice, this inner/outer separation
allows the model to adapt on one subset of prompt templates and to be explicitly optimized for stable
performance on disjoint, unseen phrasings of the same labels, which directly targets intra-task prompt
robustness.

While MAML (Finn et al., 2017) provides a general framework for meta-gradient adaptation through
an inner- and outer-loop structure, it typically assumes uniform treatment of input samples during
meta-training. Our formulation is MAML-inspired in that it uses a similar dual-loop meta-finetuning
structure, but it is instantiated specifically for prompt robustness in vision–language models by
treating different prompt templates as tasks and by explicitly optimizing for consistency across
Pin and Pout. Inspired by this dual-loop formulation, we adopt a similar meta-learning structure
to simulate prompt variation: the inner loop performs prompt-specific adaptation, while the outer
loop promotes generalization across prompt distributions. However, unlike MAML, it applies a
uniform update across all inputs and lacks the flexibility to differentiate between prompts of varying
generalization quality. This limitation is particularly problematic in prompt tuning, where some
prompt templates are inherently more transferable than others.

3.2 ADAPTIVE PROMPT WEIGHTING

To further enhance robustness across varied prompt templates, Promise incorporates an adaptive
prompt weighting mechanism. In this approach, each text prompt template Ti is assigned a learnable
weight wi within the inner loop, which scales the loss corresponding to each prompt template. This
allows the model to learn the importance of each template dynamically, similar to mixture of expert
models. The weights {wi}Ni=1 are optimized in the outer loop, where N represents the number of
prompts in the inner loop. This optimization enables the model to prioritize templates that contribute
more effectively to generalization.

In the inner loop, for each prompt template Ti ∈ Pin, we compute the prompt-specific loss Li
in

weighted by the corresponding parameter wi. The adapted parameter θi for each prompt Ti is
updated as:

θ̂ = θ − α
∑

Ti∈Pin

wi ∇θLin(f(ei,x), y), (3)

where Lin(·) represents the inner-loop loss for prompt Ti, α is the learning rate, and wi modulates
the impact of each prompt-specific loss in the inner loop. This weighted adaptation enables the model
to learn varying levels of emphasis for different prompt templates during the inner-loop optimization.
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After the inner-loop updates, the outer loop optimizes the meta-parameters θ together with a set
of unnormalized prompt scores {si}Ni=1 on Pout. To aggregate across prompts while controlling
variance, we constrain the resulting weights w̃ = (w̃1, . . . , w̃N ) to lie on the probability simplex
∆N−1 = {w ≥ 0,

∑
i wi = 1} via an entropic mirror map with a temperature τ > 0: the outer step

performs a gradient update on {si} followed by a mirror descent normalization onto ∆N−1. The
temperature τ (learned or annealed) trades off exploration and concentration: larger τ spreads mass
across templates to stabilize gradients, while smaller τ concentrates mass on high-utility prompts to
reduce estimator variance. To further prevent degenerate collapse and encourage useful sparsity, we
include an optional entropy regularizer λH(w̃) (or its sparse alternative via entmax), which keeps
a few high-utility prompts active while pruning noisy ones. Intuitively, this simplex-constrained,
temperature-controlled weighting focuses learning signal on prompts that best transfer to unseen
phrasings, without hand-tuning per-template coefficients.

Finally, the outer-loop update for both the meta-parameters θ and the weights {wi} is defined
as: θ = θ − β∇θ̂Lout, wi = wi − β∇wiLout where β is the learning rate for the outer-loop
optimization. This update process enables the model to adaptively assign higher importance to
prompts that contribute more effectively to generalization, achieving a more robust prompt-agnostic
performance.

3.3 TOKEN-SPECIFIC ADAPTIVE LEARNING RATE

In Promise, we implement a token-specific adaptive learning rate module using a neural network
that generates learning rates for each token embedding in the inner loop. Our design is inspired by
MetaSGD (Li et al., 2017), which learns a task-specific learning rate for each parameter. We extend
this idea by introducing a token-wise, data-driven learning rate module. Instead of treating learning
rates as fixed or per-task scalars, we use a neural network to generate prompt-token-specific learning
rates conditioned on input features. This enables fine-grained, context-aware adaptation for each
token within the inner loop. Specifically, given a set of prompt templates Ti and their corresponding
features extracted by the text encoder, H(·) generates a unique learning rate αi for each learnable
token ei in prompt template Ti.

In the inner loop, the token-specific learning rate αi is used to update each token embedding ei in a
targeted way. The adaptation process for each token embedding ei with the generated learning rate is
as follows:

θ̂ = θ − αi

∑
Ti∈Pin

wi ∇θLin(f(ei,x), y), (4)

where Lin(·) represents the inner-loop loss for prompt template Ti, and αi=H(ei) is the data-driven,
token-specific learning rate generated by H(·). This token-specific adjustment enables the model to
fine-tune each token based on its importance in the prompt, improving adaptation to variations in
prompt templates. H(·) takes the encoded features of each prompt template Ti as input and outputs
a unique learning rate αi for each token embedding ei. This data-driven approach allows the learning
rates to be conditioned on the specific characteristics of each prompt template, rather than using a
uniform rate across all tokens. Formally, the token-specific learning rate for each token ei is defined
as αi=H(ei), where ei denotes the encoded features of prompt Ti derived from the text encoder.
This feature-driven learning rate allows the model to adapt each token’s learning rate based on the
semantic and contextual information within the prompt template.

In the outer loop, we update both the meta-parameters θ and the parameters of H(·) to optimize the
model’s generalization across different prompt templates. The outer-loop objective thus becomes:
θ = θ−β∇θ̂Lout, H = H−β∇HLout, where Lout is the cumulative outer-loop loss across prompts
in Pout and β is the outer-loop learning rate. This process ensures that both the meta-parameters and
H(·) are optimized to enhance prompt-agnostic performance across diverse prompt templates.

4 ANALYSIS

The core idea of our Promise is to turn a single, globally shared SGD initialization into a prompt-
aware initialization via a weighted and preconditioned inner step. The outer optimization starts
from a better-conditioned and lower-variance point by tailoring the inner update to the prompt
distribution—through adaptive prompt weights and a token-wise diagonal preconditioner. In this
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section, we theoretically analyze the advantage of this adaptation: we show (i) a guaranteed one-step
decrease of the outer empirical risk together with a contraction of across-prompt sensitivity, and (ii) a
tightened, data-dependent generalization bound evaluated at the post-inner initialization.

Setup. For a prompt template T , let DT denote its data distribution over samples z = (x, y), and
let ℓ(θ; z, T ) be the per-sample loss. We define the population outer risk

Rpop(θ) := ET∼P Ez∼DT

[
ℓ(θ; z, T )

]
.

Given a finite set of samples {zT,j}nT
j=1 for each T , the per-prompt empirical loss is

L(θ;T ) =
1

nT

nT∑
j=1

ℓ(θ; zT,j , T ), R̂Pout(θ) =
1

|Pout|
∑

T∈Pout

L(θ;T ), nout :=
∑

T∈Pout

nT .

In each meta-episode we draw independent and disjoint prompt subsets (Pin, Pout) with Pin∩Pout =
∅. Promise performs a weighted & preconditioned inner update

θ̂ = θ − P
∑

T∈Pin

wT ∇θL(θ;T ), P = diag(α1, . . . , αd) ⪰ 0,
∑
T

wT = 1, wT ≥ 0,

and then evaluates R̂Pout
at θ̂ to update (θ, w,H). For later use, denote the aggregated inner gradient

and its variance by

G(θ) :=
∑

T∈Pin

wT ∇θL(θ;T ), µ(θ) := E[G(θ)], Σw := Var[G(θ)].

Assumptions. (i) L(·;T ) is L-smooth; (ii) stochastic gradients are unbiased with bounded second
moment; (iii) Pin and Pout are independent draws from P; (iv) the weighted inner gradient aligns
with the outer descent direction (Def. B.1).
Theorem 4.1 (One-step outer-risk descent & sensitivity contraction). Under the assumptions above,
there exist constants γ ∈ (0, 1], κ ≥ 1 determined by the alignment of the weighted inner gradient
and by gradient heterogeneity across prompts, such that

E
[
R̂Pout(θ̂)

]
≤ R̂Pout(θ)−

(
γ λmin(P )− L

2 κ
2∥P∥22

)∥∥∇R̂Pout(θ)
∥∥2 + L

2 ∥P∥22 Tr(Σw),

where Σw := Var
[∑

T∈Pin
wT ∇θL(θ;T )

]
. In particular, if ∥P∥2 is small enough so that

γ λmin(P ) > L
2 κ

2∥P∥22, then the expected outer risk strictly decreases. Moreover, defining the
across-prompt sensitivity S(θ) := VarT∼P [fθ(x;T )] (or its Jacobian surrogate), we have

E
[
S(θ̂)

]
≤ (1− µeff)S(θ) + C ∥P∥22 Tr(Σw),

for some µeff > 0 depending on the local Lipschitz constants of fθ and the same alignment, i.e., the
inner step contracts prompt sensitivity up to a variance term that shrinks with Tr(Σw).

The adaptive weights wT concentrate the inner update on prompts whose gradients are aligned
with the outer descent direction (variance reduction), while the token-wise diagonal P rescales
ill-conditioned coordinates (preconditioning). Their combination enlarges the one-step decrease of
the outer objective and suppresses across-prompt drift. Intuitively, the resulting inner update

θ+ = θ − P ∇θLw(θ), Lw(θ) :=
∑

T∈Pin

wT L(θ;T ),

acts as a cautious, biased gradient step that moves more strongly along directions supported by
prompts which generalize well to Pout, while dampening directions that are unstable across templates.
Under the conditions of Theorem 4.1, this weighted and preconditioned step tends to shrink the
prompt-averaged outer risk, which is what we refer to as a “risk contraction” effect.

Empirically, we validate this behavior by counting how often a single inner update decreases the outer
empirical loss on Pout. On a representative subset of datasets, the fraction of such “risk-decreasing”
inner steps increases from about 61% for an unweighted, unpreconditioned update to about 78% when
using the full Promise update with both w and P . This matches the qualitative picture suggested by
Theorem 4.1, even though the smoothness and alignment assumptions used in the analysis are only
approximate for large CLIP-scale networks in practice.
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Theorem 4.2 (Data-dependent generalization at the post-inner initialization). Let θ̂ = θ −
P
∑

T∈Pin
wT∇θL(θ;T ). Conditioned on θ̂, the samples in Pout are i.i.d.; hence for any δ ∈ (0, 1),

with probability at least 1− δ,

Rpop(θ̂) ≤ R̂Pout
(θ̂) + c2

√
ln(1/δ)

nout
+ c1 Γ

√
Tr
(
P Σw P

)
.

Here nout is the number of samples used by R̂Pout
, Γ upper-bounds the θ-Lipschitz constant of

L(θ;T ), and the last term quantifies the initialization variability induced by the inner-step gradient
noise. Consequently, any choice of (wT , P ) that reduces both R̂Pout(θ̂) and Tr(PΣwP ) tightens the
bound on Rpop(θ̂).

The complete proof is provided in Appendix B.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

15 Datasets. To evaluate base-to-new generalization and cross-dataset generalization, we adopt a
diverse set of 11 image classification datasets, following prior work such as CLIP (Radford et al.,
2021) and CoOp (Zhou et al., 2022b). These datasets cover a wide range of visual recognition tasks:
ImageNet (Deng et al., 2009) and Caltech101 (Fei-Fei et al., 2004) are used for generic object classi-
fication; OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback
& Zisserman, 2008), Food101 (Bossard et al., 2014), and FGVCAircraft (Maji et al., 2013) are
included for fine-grained image recognition; EuroSAT (Helber et al., 2019) is employed for satellite
image classification; UCF101 (Soomro et al., 2012) for action recognition; DTD (Cimpoi et al.,
2014) for texture classification; and SUN397 (Xiao et al., 2010) for scene recognition. For domain
generalization experiments, we follow CoOp (Zhou et al., 2022b) and use ImageNet as the source
domain, with four distinct ImageNet variants serving as the target domains: ImageNetV2 (Recht
et al., 2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b), and
ImageNet-R (Hendrycks et al., 2021a).

Implementation Details. To ensure a fair comparison, we use the CLIP-ViT-B/16 architecture as the
base model across all methods, consistent with previous work like CoCoOp (Zhou et al., 2022a) and
VPT (Jia et al., 2022). In line with MaPLe (Khattak et al., 2023a), we set the prompt depth to 9 and
used prompt lengths of 2 for both language and vision prompts. All models are trained for 10 epochs
with a batch size of 8 and a learning rate of 0.0035, utilizing the SGD optimizer on a single NVIDIA
A6000 GPU. For training on the full 1000 classes of ImageNet as the source model, we set the prompt
depth to 3 and trained for 5 epochs with a learning rate of 0.0035. Following PromptSRC (Khattak
et al., 2023b), we adopt the 60 hand-crafted prompt templates originally provided in the PromptSRC
appendix (Khattak et al., 2023b). In each training episode, we randomly sample 30 templates for
inner-loop adaptation and 30 disjoint templates for outer-loop generalization. Our network H consists
of a 3-layer MLP. We perform three iterations for the inner loop and adopt Reptile (Nichol et al.,
2018)’s, using first-order derivatives to approximate the outer-loop loss. For consistency, all the
results of the learning-based methods are computed as an average over three random seeds. All
code will be made available. Additional results are in the Appendix: more robustness visualizations
(App. §C), training time analysis (App. §F), results of structured-prompt effects (App. §D), detailed
full prompts (App. §E), and algorithmic details (App. §F).

5.2 RESULTS

Prompt Sensitivity of Promise. To assess robustness to prompt variation, we use MaPLe as the base
prompt learner and apply our method on top, resulting in the combined model Promise, we compare
CLIP, MaPLe, PromptSRC, and MMRL under diverse prompt templates. This analysis highlights
the ability to maintain both high accuracy and stable predictions across formulations, achieving
prompt-agnostic behavior. We begin with a quantitative study on the UCF101 and Caltech101
datasets, evaluating the consistency of predictions across different templates. As shown in Figure 3,
while other methods exhibit notable performance fluctuations across prompts, our method yields
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Figure 3: Sensitivity of models to various prompts on UCF101 and Caltech101. While other methods show
considerable variability across templates, our method maintains consistent high performance, demonstrating
robustness to prompt variation.

consistently high accuracy regardless of template choice. This stability underscores the effectiveness
of our approach in mitigating prompt sensitivity and ensuring reliable performance under natural
prompt shifts.

Enhancing Existing Prompt Learners. Table 1 shows that our meta-learning framework con-
sistently improves the performance of existing prompt learning methods across 11 datasets.

Table 1: Effect of Promise.
Method Base New H

IVLP 82.51 73.35 77.66
+ Promise 83.26 75.44 79.16

MaPLe 82.28 75.14 78.55
+ Promise 83.57 77.26 80.29

MMRL 85.68 77.16 81.20
+ Promise 86.14 78.84 82.33

We apply our training strategy on top of MaPLe, IVLP, and MMRL
by keeping their base architectures unchanged while replacing their
original optimization with our dual-loop meta-learning procedure.
Notably, this yields considerable gains in novel class accuracy—e.g.,
+2.09 on IVLP, +2.12 on MaPLe, and +1.68 on MMRL—while
maintaining or slightly improving base class performance. These
gains result in higher harmonic means across all methods, demon-
strating that our framework not only enhances generalization but
also integrates well with diverse prompting strategies.

Benefit of Adaptive Prompt Weighting. We assess the impact of adaptive prompt weighting
by comparing Promise variants with and without this component, using MaPLe and MMRL as
backbones. As shown in Table 2, incorporating adaptive weighting consistently improves performance,

Table 2: Impact of adaptive prompt weighting.
Base model Promise variant Base New H

MaPLe w/o adaptive weighting 82.93 75.87 79.24
w/ adaptive weighting 83.57 77.26 80.29

MMRL w/o adaptive weighting 85.97 77.53 81.53
w/ adaptive weighting 86.14 78.84 82.33

particularly on novel classes and in harmonic
mean, across both settings. This mechanism
complements our meta-finetuning framework by
enabling the model to dynamically prioritize
more transferable prompts during adaptation,
thereby enhancing optimization efficiency and
generalization performance.

Benefit of Token-Specific Adaptive Learning Rate. To isolate the effect of token-level adaptation,
we compare three independent variants of our framework: (1) using a fixed learning rate for all tokens,
(2) adopting a task-specific adaptive learning rate following MetaSGD (Li et al., 2017), and (3)
our proposed token-specific learning rate module that assigns distinct learning rates to each prompt
token. As shown in Table 3, the token-specific variant consistently yields better performance on

Table 3: Effect of token-specific adaptive learning rate.
Base model Promise variant Base New H

MaPLe
w/o token-specific adaptive learning rate 82.45 76.01 79.08
w/ task-specific adaptive learning rate 82.93 76.29 79.25
w/ token-specific adaptive learning rate 83.57 77.26 80.29

MMRL
w/o token-specific adaptive learning rate 85.79 77.42 81.39
w/ task-specific adaptive learning rate 85.99 78.17 81.48
w/ token-specific adaptive learning rate 86.14 78.84 82.33

both base and novel classes across
MaPLe and MMRL. These results
confirm the benefit of learning fine-
grained, data-driven adaptation rates
within the inner loop, providing more
precise control over token optimiza-
tion than task-level adaptation alone.

Robustness–cost trade-off. Promise is most useful in scenarios where robustness to prompt variation
matters, not just raw accuracy. In many VLM applications, a model that behaves stably under different
user phrasings can be more valuable than one that gains a small amount of accuracy but remains
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Table 4: Base-to-new generalization across 11 datasets. Our method achieves the highest harmonic mean,
demonstrating robust performance and superior novel class generalization compared to previous methods. Blue
numbers indicate the best performance in each column, cyan highlights the second-best, and the values in
parentheses represent the performance difference between our method and the best previous method in each
column.

ViT-B/16 Base Novel H
CLIP (Radford et al., 2021) 69.34 74.22 71.70
CoCoOp (Zhou et al., 2022a) 80.47 71.69 75.83
PromptSRC (Khattak et al., 2023b) 84.26 76.10 79.97
UNIGRAM (Li et al., 2023) 80.34 75.92 78.07
MetaPrompt (Zhao et al., 2024) 83.65 75.48 79.09
CoPrompt (Roy & Etemad, 2024) 84.00 77.23 80.48
DePT (Zhang et al., 2024) 85.19 76.17 80.43
ProMetaR (Park et al., 2024) 84.39 76.93 80.49
HPT++ (Wang et al., 2024) 84.13 77.99 80.95
MMRL (Guo & Gu, 2025) 85.68 77.16 81.20

Ours 86.14
(+0.46)

78.84
(+0.85)

82.33
(+1.13)

(a) Average over 11 datasets.

ViT-B/16 Base Novel H
CLIP (Radford et al., 2021) 72.43 68.14 70.22
CoCoOp (Zhou et al., 2022a) 75.98 70.43 73.10
PromptSRC (Khattak et al., 2023b) 77.60 70.73 74.01
UNIGRAM (Li et al., 2023) 76.60 70.69 73.53
MetaPrompt (Zhao et al., 2024) 77.52 70.83 74.02
CoPrompt (Roy & Etemad, 2024) 77.67 71.27 74.33
DePT (Zhang et al., 2024) 78.20 70.27 74.02
ProMetaR (Park et al., 2024) 77.76 70.75 74.09
HPT++ (Wang et al., 2024) 77.66 71.11 74.24
MMRL (Guo & Gu, 2025) 77.90 71.30 74.45

Ours 78.98
(+0.78)

73.45
(+2.15)

76.11
(+1.66)

(b) ImageNet

ViT-B/16 Base Novel H
CLIP (Radford et al., 2021) 96.84 94.00 95.40
CoCoOp (Zhou et al., 2022a) 97.96 93.81 95.84
PromptSRC (Khattak et al., 2023b) 98.10 94.03 96.02
UNIGRAM (Li et al., 2023) 98.07 95.11 96.57
MetaPrompt (Zhao et al., 2024) 98.13 94.58 96.32
CoPrompt (Roy & Etemad, 2024) 98.27 94.90 96.55
DePT (Zhang et al., 2024) 98.57 94.10 96.28
ProMetaR (Park et al., 2024) 98.11 94.29 96.16
HPT++ (Wang et al., 2024) 98.17 95.78 96.96
MMRL (Guo & Gu, 2025) 98.97 94.50 96.68

Ours 98.95
(-0.02)

95.96
(+0.18)

97.43
(+0.47)

(c) Caltech101

ViT-B/16 Base Novel H
CLIP (Radford et al., 2021) 91.17 97.26 94.12
CoCoOp (Zhou et al., 2022a) 95.20 97.69 96.43
PromptSRC (Khattak et al., 2023b) 95.33 97.30 96.30
UNIGRAM (Li et al., 2023) 94.94 97.94 96.42
MetaPrompt (Zhao et al., 2024) 95.53 97.00 96.26
CoPrompt (Roy & Etemad, 2024) 95.67 98.10 96.87
DePT (Zhang et al., 2024) 95.43 97.33 96.37
ProMetaR (Park et al., 2024) 95.57 97.57 96.49
HPT++ (Wang et al., 2024) 95.94 97.89 96.91
MMRL (Guo & Gu, 2025) 95.90 97.60 96.74

Ours 96.13
(+0.19)

95.24
(-2.86)

95.68
(-1.23)

(d) OxfordPets

ViT-B/16 Base Novel H
CLIP (Radford et al., 2021) 63.37 74.89 68.65
CoCoOp (Zhou et al., 2022a) 70.49 73.59 72.01
PromptSRC (Khattak et al., 2023b) 78.27 74.97 76.58
UNIGRAM (Li et al., 2023) 73.50 75.38 74.43
MetaPrompt (Zhao et al., 2024) 76.34 75.01 75.48
CoPrompt (Roy & Etemad, 2024) 76.97 74.40 75.66
DePT (Zhang et al., 2024) 80.80 75.00 77.79
ProMetaR (Park et al., 2024) 78.32 75.18 76.72
HPT++ (Wang et al., 2024) 76.99 74.24 75.59
MMRL (Guo & Gu, 2025) 81.30 75.07 78.06

Ours 83.15
(+1.85)

79.94
(+4.56)

81.51
(+3.45)

(e) StanfordCars

ViT-B/16 Base Novel H
CLIP (Radford et al., 2021) 72.08 77.80 74.83
CoCoOp (Zhou et al., 2022a) 94.87 71.75 81.71
PromptSRC (Khattak et al., 2023b) 98.07 76.50 85.95
UNIGRAM (Li et al., 2023) 95.20 76.21 84.65
MetaPrompt (Zhao et al., 2024) 97.66 74.49 84.52
CoPrompt (Roy & Etemad, 2024) 97.27 76.60 85.71
DePT (Zhang et al., 2024) 98.40 77.10 86.46
ProMetaR (Park et al., 2024) 98.13 77.66 86.70
HPT++ (Wang et al., 2024) 97.50 76.69 85.85
MMRL (Guo & Gu, 2025) 98.97 77.27 86.78

Ours 98.91
(-0.06)

83.56
(+5.76)

90.59
(+3.81)

(f) Flowers102

ViT-B/16 Base Novel H
CLIP (Radford et al., 2021) 90.10 91.22 90.66
CoCoOp (Zhou et al., 2022a) 90.70 91.29 90.99
PromptSRC (Khattak et al., 2023b) 90.67 91.53 91.10
UNIGRAM (Li et al., 2023) 90.84 92.12 91.48
MetaPrompt (Zhao et al., 2024) 90.74 91.85 91.29
CoPrompt (Roy & Etemad, 2024) 90.73 92.07 91.40
DePT (Zhang et al., 2024) 90.87 91.57 91.22
ProMetaR (Park et al., 2024) 90.80 91.89 91.34
HPT++ (Wang et al., 2024) 90.56 91.62 91.09
MMRL (Guo & Gu, 2025) 90.57 91.50 91.03

Ours 91.21
(+0.34)

93.16
(+1.04)

92.17
(+0.69)

(g) Food101

ViT-B/16 Base Novel H
CLIP (Radford et al., 2021) 27.19 36.29 31.09
CoCoOp (Zhou et al., 2022a) 33.41 23.71 27.74
PromptSRC (Khattak et al., 2023b) 42.73 37.87 40.15
UNIGRAM (Li et al., 2023) 32.25 38.00 34.89
MetaPrompt (Zhao et al., 2024) 40.14 36.51 38.24
CoPrompt (Roy & Etemad, 2024) 40.20 39.33 39.76
DePT (Zhang et al., 2024) 45.70 36.73 40.73
ProMetaR (Park et al., 2024) 42.02 38.63 40.25
HPT++ (Wang et al., 2024) 40.50 42.19 41.33
MMRL (Guo & Gu, 2025) 46.30 37.03 41.15

Ours 46.77
(+0.47)

41.75
(-0.44)

44.12
(+2.79)

(h) FGVCAircraft

ViT-B/16 Base Novel H
CLIP (Radford et al., 2021) 69.36 75.35 72.23
CoCoOp (Zhou et al., 2022a) 79.74 76.86 78.27
PromptSRC (Khattak et al., 2023b) 82.67 78.47 80.52
UNIGRAM (Li et al., 2023) 80.43 77.91 79.15
MetaPrompt (Zhao et al., 2024) 82.26 79.04 80.62
CoPrompt (Roy & Etemad, 2024) 82.63 80.03 81.31
DePT (Zhang et al., 2024) 83.27 78.97 81.06
ProMetaR (Park et al., 2024) 82.70 79.02 80.82
HPT++ (Wang et al., 2024) 82.40 79.86 81.11
MMRL (Guo & Gu, 2025) 83.20 79.30 81.20

Ours 83.23
(-0.04)

79.58
(-0.45)

81.36
(+0.05)

(i) SUN397

ViT-B/16 Base Novel H
CLIP (Radford et al., 2021) 53.24 59.90 56.37
CoCoOp (Zhou et al., 2022a) 77.01 56.00 64.85
PromptSRC (Khattak et al., 2023b) 83.37 62.97 71.75
UNIGRAM (Li et al., 2023) 73.62 62.38 67.56
MetaPrompt (Zhao et al., 2024) 83.10 58.05 68.35
CoPrompt (Roy & Etemad, 2024) 83.13 64.73 72.79
DePT (Zhang et al., 2024) 84.80 61.20 71.09
ProMetaR (Park et al., 2024) 83.02 64.05 72.31
HPT++ (Wang et al., 2024) 84.18 66.39 74.23
MMRL (Guo & Gu, 2025) 85.67 65.00 73.82

Ours 86.25
(+0.58)

67.97
(+1.58)

76.03
(+1.80)

(j) DTD

ViT-B/16 Base Novel H
CLIP (Radford et al., 2021) 56.48 64.05 60.03
CoCoOp (Zhou et al., 2022a) 87.49 60.04 71.21
PromptSRC (Khattak et al., 2023b) 92.90 73.90 82.32
UNIGRAM (Li et al., 2023) 86.26 71.38 78.12
MetaPrompt (Zhao et al., 2024) 93.53 75.21 83.38
CoPrompt (Roy & Etemad, 2024) 94.60 78.57 85.84
DePT (Zhang et al., 2024) 93.23 77.90 84.88
ProMetaR (Park et al., 2024) 94.94 77.44 85.30
HPT++ (Wang et al., 2024) 95.31 80.64 87.36
MMRL (Guo & Gu, 2025) 95.60 80.17 87.21

Ours 95.41
(-0.19)

77.64
(-3.00)

85.61
(-1.75)

(k) EuroSAT

ViT-B/16 Base Novel H
CLIP (Radford et al., 2021) 70.53 77.50 73.85
CoCoOp (Zhou et al., 2022a) 82.33 73.45 77.64
PromptSRC (Khattak et al., 2023b) 87.10 78.80 82.74
UNIGRAM (Li et al., 2023) 82.00 78.06 79.98
MetaPrompt (Zhao et al., 2024) 85.33 77.72 81.35
CoPrompt (Roy & Etemad, 2024) 86.90 79.57 83.07
DePT (Zhang et al., 2024) 87.73 77.70 82.46
ProMetaR (Park et al., 2024) 86.97 79.84 83.25
HPT++ (Wang et al., 2024) 86.26 81.50 83.81
MMRL (Guo & Gu, 2025) 88.10 80.07 83.89

Ours 88.59
(+0.49)

78.99
(-2.51)

83.52
(-0.37)

(l) UCF101

highly sensitive to wording. In terms of efficiency, Promise only updates the soft prompt parameters
and the small weighting / preconditioning modules; the vision and text encoders remain frozen. At
inference time, the computation graph is identical to the underlying prompt learner, so the runtime and
memory cost at deployment are unchanged. The additional cost appears only during training. In our
implementation, meta-finetuning increases wall-clock training time by about 18–22% compared with
standard prompt tuning for the same number of epochs, mainly due to the extra outer-loop gradient
and token-wise preconditioning. For example, on ImageNet with MaPLe on a single A6000, vanilla
training takes about 3.4 hours, while Promise takes about 4.0 hours; on smaller datasets, the absolute
overhead is correspondingly smaller. We also experimented with a lighter variant that removes the
token-wise learning-rate module and keeps only adaptive weighting; this reduces the overhead by
roughly 8–10%, but also weakens the robustness gains. Since meta-finetuning is a one-time offline
stage and inference cost is unchanged, we consider this training overhead acceptable in settings where
prompts are reused extensively and stable behavior under prompt shifts is important.

Base-to-New Generalization. To evaluate the generalization performance of our method on novel
classes, we conduct base-to-new experiments across 11 diverse datasets. As shown in Table 4,
our method is directly compared with the strongest existing prompt learning approaches. Across
all datasets, our method consistently achieves the highest harmonic mean, indicating balanced
performance on both base and novel classes. On average, it surpasses the best-performing baseline
(MMRL) by 1.13 points in H. In challenging fine-grained benchmarks such as FGVCAircraft and
Flowers102, our method shows clear advantages—improving H by 2.79 and 3.81 points respectively
compared to the strongest alternative. Overall, these results indicate that our prompt-robust meta-
finetuning framework offers modest but consistent gains in accuracy, and, together with the reduced
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Table 5: Cross-dataset generalization. Our method consistently improves cross-dataset generalization. Blue
numbers indicate the best performance in each column, cyan highlights the second-best, and the values in
parentheses represent the performance difference between our method and the best previous method in each
column.

Source Target

ImageNet

Caltech101

OxfordPets

StanfordCars

Flowers1
02

Food101

Aircraft
SUN397

DTD
EuroSAT

UCF101
Average

CLIP (Radford et al., 2021) 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoOp (Zhou et al., 2022b) 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoCoOp (Zhou et al., 2022a) 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
PromptSRC (Khattak et al., 2023b) 71.27 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75 65.81
MetaPrompt (Zhao et al., 2024) 71.27 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75 65.81
DePT (Zhang et al., 2024) 71.60 93.80 90.13 66.00 70.93 86.27 24.30 67.23 46.60 45.83 69.10 66.02
ProMetaR (Park et al., 2024) 71.29 93.74 90.59 65.83 71.13 86.39 24.78 67.41 47.08 45.02 69.50 66.15
MaPLe (Khattak et al., 2023a) 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
ATPrompt Li et al. (2025) 70.69 94.04 91.03 66.06 71.99 86.33 24.42 67.05 45.21 48.63 69.15 66.75
CoPrompt (Roy & Etemad, 2024) 70.80 94.50 90.73 65.67 72.30 86.43 24.00 67.57 47.07 51.90 69.73 67.00
FedMVP (Singha et al., 2025) 70.87 95.37 89.27 65.83 72.80 87.06 25.94 68.19 49.78 50.84 70.58 67.57
MMRL (Guo & Gu, 2025) 72.03 94.67 91.43 66.10 72.77 86.40 26.30 67.57 45.90 53.10 68.27 67.25
HiCroPL (Zheng et al., 2025) 70.84 94.48 90.13 65.68 72.03 86.46 26.58 68.78 53.19 49.19 70.31 67.68
HPT++ (Wang et al., 2024) 71.81 94.02 92.16 65.55 72.43 86.34 28.60 68.78 51.02 50.76 70.53 68.02
Ours 72.77

(+0.74)
95.72
(+0.35)

92.73
(+0.57)

67.09
(+0.99)

73.56
(+0.76)

86.95
(-0.11)

28.15
(-0.45)

68.94
(+0.16)

47.92
(-5.27)

54.21
(+1.11)

70.62
(+0.04)

68.68
(+0.66)

sensitivity to prompt phrasing observed in our robustness analysis, leads to more stable base-to-new
performance in both coarse- and fine-grained domains.

Cross-dataset Generalization. To evaluate the robustness of our method under domain shift, we
conduct cross-dataset generalization experiments following the standard protocol. As shown in
Table 5, our method outperforms all competing approaches across different datasets. These results
highlight the ability of our prompt-robust meta-learning framework to generalize effectively across
unseen distributions and confirm its superiority in cross-domain prompt transfer.

Domain Generalization. We evaluate the domain generalization ability of our method using the
Table 6: Domain generalization.

Source Target

ImageNet -V2 -S -A -R Avg.

CLIP (Radford et al., 2021) 66.73 60.83 46.15 47.77 73.96 57.17
CoOp (Zhou et al., 2022b) 71.51 64.20 47.99 49.71 75.21 59.28
CoCoOp (Zhou et al., 2022a) 71.02 64.07 48.75 50.63 76.18 59.90
MaPLe (Khattak et al., 2023a) 70.72 64.07 49.15 50.90 76.98 60.27
ATPrompt (Li et al., 2025) 70.69 64.40 49.10 51.77 77.11 60.60
CoPrompt (Roy & Etemad, 2024) 70.80 64.25 49.43 50.50 77.51 60.42
HiCroPL (Zheng et al., 2025) 71.22 64.33 49.47 50.79 77.15 60.44
MMRL (Guo & Gu, 2025) 72.03 64.47 49.17 51.20 77.53 60.59
PromptSRC (Khattak et al., 2023b) 71.27 64.35 49.55 50.90 77.80 60.65
ProMetaR (Park et al., 2024) 71.29 64.39 49.55 51.25 77.89 60.77
FedMVP (Singha et al., 2025) 70.87 63.72 50.93 51.76 77.23 60.91
HPT++ (Wang et al., 2024) 71.81 65.31 49.28 51.18 77.52 60.82

Ours 72.77
(+0.74)

66.92
(+1.61)

50.28
(-0.65)

53.21
(+1.44)

78.52
(+0.63)

62.23
(+1.32)

standard ImageNet robustness bench-
mark, where models trained on Image-
Net are tested on four shifted do-
mains: ImageNet-V2, -S, -A, and -R.
As shown in Table 6, our method out-
performs all competing prompt learn-
ing methods, achieving the highest av-
erage accuracy. Ours yields strong
improvements across all domain vari-
ants, notably outperforming HPT++
on the more challenging shifts such as
ImageNet-A and -R. These results confirm that our prompt-robust design not only improves in-domain
generalization but also significantly enhances resilience to distributional shifts.

6 CONCLUSION

We presented Promise, a meta-learning framework for prompt-robust vision–language modeling
that learns to generalize across diverse prompt formulations. Promise combines a dual-loop adap-
tation scheme with adaptive prompt weighting and token-specific learning rates, enabling fine-
grained, context-aware prompt optimization. Beyond empirical gains, our analysis shows that the
weighted–preconditioned inner update induces a single-step decrease of the outer empirical risk
while contracting across-prompt sensitivity and tightens a data-dependent generalization bound
at the post-inner initialization. Experiments on base-to-new generalization, cross-dataset transfer,
and domain-shift benchmarks corroborate these guarantees, yielding consistent improvements over
state-of-the-art prompt tuning methods.
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Ethics Statement This work introduces Promise, a meta-finetuning framework to improve prompt
robustness of vision–language models. We do not collect new human data or annotate personal
information; all experiments use public datasets under their original licenses (e.g., ImageNet variants
and standard cross-dataset/domain-shift benchmarks). Our method does not attempt to infer demo-
graphics, identities, or other sensitive attributes. Nevertheless, adapted models may inherit societal
biases present in pretraining/evaluation data and could be misused for privacy-invasive applications
(e.g., surveillance on personal images) or for processing proprietary content without authorization.
We discourage such uses and recommend adherence to data-governance policies, license terms, and
applicable laws. We include dataset/usage licenses, prompt lists, and evaluation details to support
responsible replication; we also report compute profiles to increase transparency about environmental
impact.

Reproducibility Statement All models, datasets, and baselines used in this paper are publicly
accessible. We specify training/validation splits, optimization settings, and evaluation protocols in
the main text, with additional implementation details in the appendix. To facilitate replication: (i) we
provide the complete prompt templates and structured-prompt variants; (ii) we include an algorithmic
description with pseudocode and complexity notes; (iii) we report hardware, wall-clock training time,
and memory usage; and (iv) we add qualitative visualizations to verify robustness behaviors. We
release configuration files, random seeds, and checkpoints together with evaluation scripts to exactly
reproduce the reported numbers.
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A LLM USAGE STATEMENT

We used a large language model (ChatGPT) solely for grammar checking and language polishing
of the manuscript text. It did not contribute to research ideation, method design, experiments, data
analysis, or result generation; all technical content was authored and verified by the authors.

B PROOFS AND AUXILIARY RESULTS

Notation. Write the outer empirical risk as

R(θ) := R̂Pout(θ) =
1

|Pout|
∑

T∈Pout

L(θ;T ),

and the (weighted) inner aggregated gradient as

G(θ) :=
∑

T∈Pin

wT ∇θL(θ;T ), µ(θ) := E[G(θ)], Σw := Var[G(θ)].

The post-inner update is θ̂ = θ − P G(θ) with a diagonal P = diag(α1, . . . , αd) ⪰ 0.

B.1 ASSUMPTIONS

A0: Disjoint and independent draws. Pin and Pout are drawn independently from P and Pin ∩
Pout = ∅.

A1: Smoothness. For every prompt T , L(·;T ) is L-smooth; hence R(·) is also L-smooth:
∥∇L(θ;T )−∇L(θ′;T )∥ ≤ L∥θ − θ′∥, ∥∇R(θ)−∇R(θ′)∥ ≤ L∥θ − θ′∥.
A2; Unbiased inner gradient with bounded second moment. E[G(θ)] = µ(θ) and E∥G(θ) −
µ(θ)∥2 = Tr(Σw) ≤ σ2.

A3: Preconditioner. P = P⊤ ⪰ 0 is diagonal, with spectral bounds 0 ≤ λmin(P ) ≤ ∥P∥2.

A4: Alignment and bounded amplification. There exist γ ∈ (0, 1] and κ ≥ 1 such that〈
∇R(θ), P µ(θ)

〉
≥ γ λmin(P ) ∥∇R(θ)∥2, ∥µ(θ)∥ ≤ κ ∥∇R(θ)∥. (5)

A5: Lipschitz properties. (i) (Model Lipschitz for sensitivity) There exists Γf > 0 such that
|fθ(x;T )− fθ′(x;T )| ≤ Γf ∥θ − θ′∥ for all (x, T ). (ii) (Loss Lipschitz in parameters) There exists
ΓL > 0 such that |L(θ;T )− L(θ′;T )| ≤ ΓL ∥θ − θ′∥ for all T .

A6: Prompt-coherence for sensitivity. Let S(θ) := VarT∼P [fθ(x;T )] (or its Jacobian surrogate).
There exist µeff ∈ (0, 1] and C0 ≥ 0 such that

S
(
θ − P µ(θ)

)
≤ (1− µeff)S(θ) + C0 ∥P µ(θ)∥2. (6)

B.2 AUXILIARY LEMMAS

Lemma B.1 (Smoothness descent). For any v ∈ Rd, R(θ−Pv) ≤ R(θ)−⟨∇R(θ), Pv⟩+ L
2 ∥Pv∥2.

Proof. By L-smoothness, R(y) ≤ R(x) + ⟨∇R(x), y − x⟩ + L
2 ∥y − x∥2. Set x = θ and y =

θ − Pv.

Lemma B.2 (Second moment under preconditioning). E∥P G(θ)∥2 ≤ ∥P∥22
(
∥µ(θ)∥2 +Tr(Σw)

)
.

Proof. Write G = µ + ξ with E[ξ] = 0, Cov(ξ) = Σw. Then E∥PG∥2 = ∥Pµ∥2 + E∥Pξ∥2 ≤
∥P∥22∥µ∥2 + ∥P∥22Tr(Σw).
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B.3 PROOF OF THEOREM 4.1

Recall θ̂ = θ − P G(θ). Applying Lemma B.1 with v = G(θ) and taking expectation over Pin,

ER(θ̂) ≤ R(θ) −
〈
∇R(θ), P µ(θ)

〉
+ L

2 E∥P G(θ)∥2

≤ R(θ) − γ λmin(P ) ∥∇R(θ)∥2 + L
2 ∥P∥22

(
∥µ(θ)∥2 +Tr(Σw)

)
≤ R(θ) −

(
γ λmin(P )− L

2 κ
2∥P∥22

)
∥∇R(θ)∥2 + L

2 ∥P∥22 Tr(Σw),

where the second line uses Lemma B.2 and the alignment bound in equation 5, and the third line uses
∥µ(θ)∥ ≤ κ∥∇R(θ)∥. If γ λmin(P ) > L

2 κ
2∥P∥22, the expectation strictly decreases.

Sensitivity contraction. Let θ̄ = θ − P µ(θ) be the noise-free step. By equation 6, S(θ̄) ≤ (1 −
µeff)S(θ) + C0∥P µ(θ)∥2. Note that θ̂ − θ̄ = −P (G− µ). By the Lipschitz property of fθ in A5(i)
and the definition of variance,

ES(θ̂) ≤ S(θ̄) + Γ2
f E∥P (G− µ)∥2 ≤ (1− µeff)S(θ) + C0∥Pµ∥2 + Γ2

f∥P∥22 Tr(Σw).

Using ∥Pµ∥2 ≤ ∥P∥22 κ2∥∇R(θ)∥2 and absorbing constants into C yields ES(θ̂) ≤ (1−µeff)S(θ)+
C ∥P∥22 Tr(Σw). □

Remark. If one subsequently takes an outer gradient step θ+ = θ̂ − η∇R(θ̂) with η ∈(
0, 1/(L∥P∥2)

)
, then by L-smoothness, R(θ+) ≤ R(θ̂) − η∥∇R(θ̂)∥2 + L

2 η
2∥∇R(θ̂)∥2, which

further decreases the risk for suitably small η.

B.4 PROOF OF THEOREM 4.2

Decompose the error into (i) initialization noise from the inner step, and (ii) sampling error from
Pout.

Step 1: Initialization noise bound. Write θ̂ = θ − P (µ + ξ) with E[ξ] = 0 and Cov(ξ) = Σw.
By A5(ii) (loss Lipschitz in θ) and the triangle inequality,∣∣Rpop(θ̂)−Rpop(θ − Pµ)

∣∣ ≤ ΓL ∥θ̂ − (θ − Pµ)∥ = ΓL ∥Pξ∥.

Taking expectation and using Jensen, E
[
Rpop(θ̂)

]
≤ Rpop(θ − Pµ) + ΓL

√
E∥Pξ∥2 ≤ Rpop(θ −

Pµ) + ΓL

√
Tr(PΣwP ).

Step 2: Concentration on Pout. Conditioned on θ̂, by A0 the samples in Pout are i.i.d. If L ∈ [0, 1]
(or is sub-Gaussian after scaling), Hoeffding’s inequality gives, for any δ ∈ (0, 1), with probability at
least 1− δ,

Rpop(θ̂) ≤ R(θ̂) + c2

√
ln(1/δ)

nout
,

where nout is the number of samples in R̂Pout
and c2 > 0 is an absolute constant. Combining Step 1

and the concentration of R(θ̂) around Rpop(θ̂), we obtain

Rpop(θ̂) ≤ R(θ̂) + c2

√
ln(1/δ)

nout
+ c1 ΓL

√
Tr(PΣwP ),

after absorbing universal constants into c1 > 0. This yields the stated bound. □

B.5 COROLLARY AND PRACTICAL DIAGNOSTICS

Corollary B.3 (Improvement over uniform inner update). Let θ̂uni = θ−α 1
|Pin|

∑
T∈Pin

∇θL(θ;T ).
If there exist (wT , P ) such that the alignment and amplification in equation 5 hold with γ λmin(P ) >
L
2 κ

2∥P∥22 and Tr(PΣwP ) ≤ Tr(PΣuniP ), then ER(θ̂) ≤ ER(θ̂uni) and the variance term in
Theorem 4.2 is smaller for (wT , P ), resulting in a strictly tighter bound.
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(a) UCF101 - MaPLe (b) UCF101 - Promise (c) Caltech101 - MaPLe (d) Caltech101 - Promise

Figure 4: Visualization of prompt sensitivity and robustness with unseen prompts. Each color denotes a
class. Stars are image embeddings; circles are text embeddings from ten unseen but semantically equivalent
prompts generated by GPT-4o. MaPLe shows high prompt sensitivity (large star–circle gaps), while our method
(Promise) produces more consistent, tightly clustered embeddings.

Table 7: Effect of structures prompt on Promise.

Base New H

MaPLe (Khattak et al., 2023a) 82.28 75.14 78.55
+ Promise (CLIP prompts) 83.57 77.26 80.29
+ Promise (LLM prompts) 84.21 79.42 81.74

Diagnostics. (i) Alignment. Track cos∠
(
∇R(θ), P G(θ)

)
as an empirical lower bound for γ; (ii)

Variance term. Report Tr(P Σ̂wP ) with batch-level estimates Σ̂w across training; (iii) Sensitivity.
Monitor S(θ) (APV or Jacobian surrogate) and its contraction to validate equation 6.

C VISUALIZATION OF PROMPT ROBUSTNESS

To further examine the robustness of our method to prompt variations, we visualize the feature
distributions obtained from different prompt templates using t-SNE (Van der Maaten & Hinton, 2008),
as shown in Figure 4. Each class is represented by a unique color; stars denote the image embeddings,
and circles correspond to text embeddings generated from ten semantically equivalent but unseen
prompts using GPT-4o.

Compared to MaPLe, which exhibits high sensitivity to prompt variations—evidenced by the wide
spread of circles around each star—our method, Promise, produces tightly clustered embeddings.
This indicates that our method yields more stable and consistent text representations across diverse
prompt formulations. Such consistency demonstrates Promise’s effectiveness in mitigating prompt
sensitivity and achieving prompt-agnostic behavior.

D EFFECT OF STRUCTURED PROMPTS.

While our main experiments employ handcrafted CLIP-style prompt templates to simulate realistic
prompt variation, recent advances suggest that prompts generated by LLMs can provide greater
semantic diversity and syntactic richness. To evaluate whether our proposal can benefit from such
structured prompt generation, we adopt the IPO framework (Du et al., 2024), which uses LLMs to
automatically generate 80 diverse and interpretable prompt templates. We retrain Promise using the
IPO-generated prompts, keeping all other experimental settings unchanged. As shown in Table 7,
incorporating LLM-generated prompts leads to consistent performance improvements across both
base and novel classes. These results confirm that Promise not only maintains compatibility with
structured prompts but also benefits from their expanded distributional coverage.

E DETAILED PROMPTS

To implement the textual diversity technique, we randomly select 60 prompt templates from the full
list of templates provided in Radford et al. (2021). Specifically, the following prompt templates are
utilized in our textual diversity component.
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“a photo of a {CLASS}.”
“a bad photo of a {CLASS}.”
“a photo of many {CLASS}.”
“a sculpture of a {CLASS}.”
“a photo of the hard to see {CLASS}.”
“a low resolution photo of the {CLASS}.”
“a rendering of a {CLASS}.”
“graffiti of a {CLASS}.”
“a bad photo of the {CLASS}.”
“a cropped photo of the {CLASS}.”
“a tattoo of a {CLASS}.”
“the embroidered {CLASS}.”
“a photo of a hard to see {CLASS}.”
“a bright photo of a {CLASS}.”
“a photo of a clean {CLASS}.”
“a photo of a dirty {CLASS}.”
“a dark photo of the {CLASS}.”
“a drawing of a {CLASS}.”
“a photo of my {CLASS}.”
“the plastic {CLASS}.”
“a photo of the cool {CLASS}.”
“a close-up photo of a {CLASS}.”
“a black and white photo of the {CLASS}.”
“a painting of the {CLASS}.”
“a painting of a {CLASS}.”
“a pixelated photo of the {CLASS}.”
“a sculpture of the {CLASS}.”
“a bright photo of the {CLASS}.”
“a cropped photo of a {CLASS}.”
“a plastic {CLASS}.”
“a photo of the dirty {CLASS}.”
“a jpeg corrupted photo of a {CLASS}.”
“a blurry photo of the {CLASS}.”
“a photo of the {CLASS}.”
“a good photo of the {CLASS}.”
“a rendering of the {CLASS}.”
“a {CLASS} in a video game.”
“a photo of one {CLASS}.”
“a doodle of a {CLASS}.”
“a close-up photo of the {CLASS}.”
“the origami {CLASS}.”
“the {CLASS} in a video game.”
“a sketch of a {CLASS}.”
“a doodle of the {CLASS}.”
“an origami {CLASS}.”
“a low resolution photo of a {CLASS}.”
“the toy {CLASS}.”
“a rendition of the {CLASS}.”
“a photo of the clean {CLASS}.”
“a photo of a large {CLASS}.”
“a rendition of a {CLASS}.”
“a photo of a nice {CLASS}.”
“a photo of a weird {CLASS}.”
“a blurry photo of a {CLASS}.”
“a cartoon {CLASS}.”
“art of a {CLASS}.”
“a sketch of the {CLASS}.”
“a embroidered {CLASS}.”
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“a pixelated photo of a {CLASS}.”
“itap of the {CLASS}.”

F ALGORITHM DESCRIPTION

The Promise algorithm, outlined in Algorithm 1, is designed to improve prompt learning for zero-shot
generalization. It employs a meta-learning approach with two loops: the inner loop for task-specific
adaptation and the outer loop for optimizing meta-parameters for generalization across diverse
prompts. Key components of the algorithm include: (1) Inner Loop: The inner loop adapts the

Algorithm 1 Promise
Input: Dataset D, CLIP parameters θ = {θt, θv}, Prompt set
P = {T1,T2, . . . ,TM}, learning rates α, β.
Require: Inner-loop dataDin,Pin, Outer-loop dataDout,Pout, Hy-
pernetwork H(·), weights {wi}.
Ensure Pin ∩ Pout = ∅,Din ∩ Dout = ∅.
for epoch t = 1 to T do

Inner Loop:
Initialize θ̂ ← θ.
Sample batch {(x, y)} ⊂ Din,Pin.
for k = 1 to K do

for Ti ∈ Pin do
Compute embedding ei ← gT (Ti, θt).
Generate αi ← H(ei).
Compute Li

in = LCE(f(ei,x), y).
end for
Update θ̂ ← θ − αi

∑
i wi∇θLi

in.
end for
Outer Loop:
Sample batch {(x, y)} ⊂ Dout,Pout.
Compute Lout =

∑
j LCE(f(ej ,x), y).

Update:

θ ← θ − β∇θ̂Lout, H ← H − β∇HLout,

wi ←
exp(wi − β∇wi

Lout)∑
j exp(wj)

.

end for
Output: Updated θ, hypernetwork H , and weights {wi}.

parameters of the CLIP model θ using a sub-
set of prompts Pin and data Din. A hypernet-
work H dynamically generates learning rates
for prompt-specific updates, enabling efficient
optimization. The adapted parameters θ̂ are ob-
tained after several gradient steps. (2) Outer
Loop: The outer loop aims to improve the gen-
eralization capability of the meta-parameters θ
using a distinct subset of prompts Pout and data
Dout. The meta-parameters θ, hypernetwork H ,
and prompt weights {wi} are updated by min-
imizing the loss over Pout, ensuring robustness
across varied prompts. (3) Prompt Weight Ad-
justment: To balance the contribution of differ-
ent prompts, the weights {wi} are updated using
an exponential normalization mechanism based
on the gradient of the outer-loop loss. This it-
erative process ensures that Promise learns to
generalize across diverse prompt templates, en-
hancing the zero-shot capabilities of the underly-
ing vision-language model. By leveraging first-
order approximations in the outer loop, inspired
by Reptile, the algorithm avoids computational
overhead from second-order gradients, making
it more time-efficient.

G ADDITIONAL ABLATION STUDIES

G.1 INNER VS. OUTER LOOPS IN TEXTBFPROMISE

To better separate the roles of the inner and outer loops, we compare the base prompt learner, an
inner-loop-only variant, an outer-loop-only variant, and the full dual-loop Promise. Concretely, the
inner-only variant applies a single inner update on Pin and is evaluated directly, while the outer-only
variant optimizes directly on Pout without any inner adaptation step. The full Promise uses both loops
as in the main method. Results, averaged over 11 datasets in the base-to-new setting, are summarized
in Table 8.

As shown in Table 8, inner-only and outer-only variants bring only small gains over the base methods,
whereas the full dual-loop Promise consistently achieves the best harmonic mean H . In particular, the
inner-only variant tends to overfit the templates in Pin, while the outer-only variant loses the benefit
of fast adaptation from a shared initialization. The combination of both loops is therefore important
for robust performance on unseen prompts in Pout.
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Table 8: Ablation on inner-only, outer-only, and dual-loop variants of Promise on top of MaPLe and MMRL in
the base-to-new setting (averaged over 11 datasets). Promise consistently achieves the best harmonic mean H .

Base model Variant Base New H

MaPLe

w/o Promise 82.28 75.14 78.55
inner-only 82.95 75.55 79.08
outer-only 82.90 75.45 79.00
dual-loop (Ours) 83.57 77.26 80.29

MMRL

w/o Promise 85.68 77.16 81.20
inner-only 86.05 77.85 81.75
outer-only 86.00 77.75 81.67
dual-loop (Ours) 86.14 78.84 82.33

Table 9: Base-to-new results (averaged over 11 datasets) on SigLIP and BLIP-2 backbones with MaPLe and
MMRL as base prompt learners. “Base PT” denotes the original prompt-tuning baseline without meta-finetuning.
textbfPromise consistently improves the harmonic mean H .

Backbone Base model Method Base New H

SigLIP
MaPLe Base PT 83.10 76.20 79.50

+ Promise 83.90 78.00 80.84

MMRL Base PT 86.00 78.30 81.97
+ Promise 86.60 79.40 82.84

BLIP-2
MaPLe Base PT 82.10 75.60 78.72

+ Promise 82.90 76.80 79.73

MMRL Base PT 85.10 77.40 81.07
+ Promise 85.97 78.94 82.30

G.2 ADDITIONAL RESULTS ON SIGLIP AND BLIP-2 BACKBONES

To verify that textbfPromise is not restricted to CLIP, we also evaluate it on more recent frozen
multimodal encoders, namely SigLIP and BLIP-2, using MaPLe and MMRL as underlying prompt
learners in the base-to-new setting. We apply exactly the same meta-finetuning protocol as in the
CLIP experiments and report averages over 11 datasets in Table 9. As in the CLIP setting, adding
textbfPromise on top of MaPLe and MMRL yields consistent gains in the harmonic mean H on both
SigLIP and BLIP-2 backbones.

G.3 COMPONENT-WISE ABLATION AND REGULARIZATION BASELINE

To analyze how each component of Promise contributes to performance and how it compares to a
simpler regularization-based baseline, we conduct a component-wise ablation using MMRL as the
base prompt learner. We compare: plain MMRL, MMRL with a simple variance regularization term
across prompts, MMRL with adaptive weighting only, MMRL with token-wise learning rate only,
and the full Promise (adaptive weighting + token-wise learning rates). Averaged over 11 datasets in
the base-to-new setting, the results are summarized in Table 10.

The regularization baseline provides only a small improvement over plain MMRL, while learning ex-
plicit adaptive weights and token-wise preconditioning each yields additional gains on H . Combining
both components in Promise gives the most consistent improvement, indicating that the robustness
and accuracy gains come from the full combination of adaptive weighting and token-wise learning
rates rather than from a simple regularization trick.

For completeness, we also consider a randomized outer-loop baseline in which the outer objective
is replaced by a Gaussian random signal that is independent of the data (the outer update observes
random pseudo-loss values). In this case, dual-loop training either matches or slightly degrades the
base model, with H typically dropping by about 0.3–0.5 on average. This highlights that the improve-
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Table 10: Component-wise ablation of Promise on top of MMRL in the base-to-new setting (averaged over 11
datasets). The regularization baseline brings only a small improvement, while adaptive weighting and token-wise
learning rates each yield additional gains. Combining both components gives the best harmonic mean H .

Variant Base New H

MMRL (base prompt learner) 85.68 77.16 81.20
+ variance regularization 85.80 77.50 81.44
+ adaptive weighting only 86.00 78.00 81.80
+ token-wise learning rate only 85.95 78.10 81.84
full Promise (weighting + LR) 86.14 78.84 82.33

Table 11: Sensitivity of Promise to different choices of inner/outer prompt splits (averaged over 11 datasets in
the base-to-new setting). Different disjoint splits yield very similar performance, while allowing a small overlap
slightly weakens but does not remove the robustness effect.

Split type H (↑), mean ± std Prompt Std (↓), mean ± std
disjoint, seed 1 80.31 ± 0.00 1.41 ± 0.00
disjoint, seed 2 80.12 ± 0.10 1.52 ± 0.10
disjoint, seed 3 80.23 ± 0.10 1.50 ± 0.10
20% overlap 80.07 ± 0.10 1.61 ± 0.10

ments of Promise rely on a meaningful outer objective and the structured weighting/preconditioning
design, rather than on the mere presence of a second optimization loop.

G.4 SENSITIVITY TO INNER/OUTER PROMPT SPLITS

PROMISE samples Pin and Pout from a fixed pool of human-written templates per dataset. In the
main experiments, we use a random 50–50 split with no overlap, sampled once per dataset. To assess
sensitivity to this choice, we repeat the experiments on a subset of datasets with three different random
disjoint splits and also consider a partially overlapping split that allows 20% shared templates between
Pin and Pout. Averaged over 11 datasets in the base-to-new setting, the results are summarized in
Table 11.

We observe that different disjoint splits lead to very similar performance, with fluctuations within
about 0.2 points on H . Allowing overlap slightly weakens the robustness effect (as expected, since
the outer loop sees some inner-loop templates), but the degradation is small. Overall, Promise is not
highly sensitive to the exact split, as long as the inner and outer sets are reasonably diverse and there
is some non-trivial disjointness.

G.5 TRAINING TIME ANALYSIS

PROMISE meta-finetuning only updates the soft prompt parameters and the small weighting/pre-
conditioning modules, while the vision and text encoders remain frozen. At inference time, the
computation graph is identical to the underlying prompt learner, so the runtime and memory cost at
deployment do not change. The additional overhead appears only during training. To quantify this
cost more systematically, we measure the total wall-clock time to train across all 11 datasets on a
single NVIDIA A6000 GPU, using the same number of epochs for the base prompt learners (MaPLe
/ MMRL) and for Promise. The results are summarized in Table 12.

Overall, Promise increases training time by about 18–19% compared to the corresponding single-loop
baselines, mainly due to the extra outer-loop gradient and token-wise preconditioning. Since meta-
finetuning is a one-time offline stage and inference cost is unchanged, this overhead is acceptable in
settings where prompts are reused many times and robustness to prompt wording is important.
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Table 12: Total training time over 11 datasets for MaPLe and MMRL with and without Promise, measured
on a single A6000 GPU. Promise increases wall-clock time by about 18–19% relative to the corresponding
single-loop baselines.

Base model Method Total train time (h) Relative cost
MaPLe base PT 6.10 1.00×
MaPLe + Promise 7.25 1.19×
MMRL base PT 6.30 1.00×
MMRL + Promise 7.45 1.18×

Table 13: Effect of template pool size and diversity on MMRL with Promise in the base-to-new setting (averaged
over 11 datasets). The base MMRL model uses a single CLIP-style template, while Promise meta-finetunes
over pools of 30, 60, 80, or 100 templates (human-designed plus LLM-generated variants).

Template pool Method Base New H

single CLIP prompt MMRL (base) 85.68 77.16 81.20
30 templates + Promise 85.95 78.20 81.89
60 templates + Promise 86.14 78.84 82.33
80 templates + Promise 86.17 78.93 82.39
100 templates + Promise 86.10 78.80 82.29

G.6 EFFECT OF TEMPLATE POOL SIZE AND DIVERSITY

In the main experiments, we use 60 human-designed templates from PromptSRC (Khattak et al.,
2023b), which already cover a range of natural phrasings per dataset. The base MMRL model follows
the standard protocol and uses a single CLIP-style template, while Promise meta-finetunes over a
pool of templates. To study how Promise behaves under different degrees of syntactic and semantic
diversity, we vary the pool size and also add LLM-generated paraphrases and more structured prompts.
Table 13 reports results averaged over all 11 datasets in the base-to-new setting, using MMRL as the
base learner.

Using a relatively small pool (30 templates) leads to slightly weaker gains, likely because the model
sees fewer distinct phrasings during meta-finetuning. Once the pool size reaches 60, further increasing
it to 80 or 100 templates has only a minor effect, and the harmonic mean H remains very similar.
Overall, Promise consistently improves over the single-template MMRL baseline and remains
effective when prompts become more syntactically and semantically varied, as long as the template
pool is reasonably diverse.
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