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Abstract

Despite the rapid and significant advancements in
deep learning for Quantitative Structure-Activity
Relationship (QSAR) models, the challenge of
learning robust molecular representations that ef-
fectively generalize in real-world scenarios to
novel compounds remains an elusive and unre-
solved task. This study examines how atom-level
pretraining with quantum mechanics (QM) data
can mitigate violations of assumptions regarding
the distributional similarity between training and
test data and therefore improve performance and
generalization in downstream tasks. In the public
dataset Therapeutics Data Commons (TDC), we
show how pretraining on atom-level QM improves
performance overall and makes the activation of
the features distributes more Gaussian-like which
results in a representation that is more robust to
distribution shifts. To the best of our knowledge,
this is the first time that hidden state molecular
representations are analyzed to compare the ef-
fects of molecule-level and atom-level pretraining
on QM data.

1. Introduction
Despite the rapid and significant advancements in deep learn-
ing for Quantitative Structure-Activity Relationship (QSAR)
models, the challenge of learning robust molecular represen-
tations that effectively generalize in real-world scenarios to
novel compounds remains an elusive and unresolved task.

At the core of supervised learning with deep neural net-
works, there is the underlying assumption that the function
we aim to approximate is ”smooth” enough, meaning that
small changes in the input should not result in large changes
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in the output (Goodfellow et al., 2016). However, in the ap-
plication field of QSAR, we often experience regions where
small chemical modifications drastically change the biologi-
cal response (Cruz-Monteagudo et al., 2014). For example,
the extreme forms of Structure-Activity Relationship (SAR)
discontinuity are called activity cliffs (AC) (Bajorath et al.,
2009), which are formed by pairs of structurally similar
compounds with large differences in potency [(Stumpfe &
Bajorath, 2012),(Peltason & Bajorath, 2011)]. One way of
overcoming this problem would be to increase the number
of datapoints since the smoothness assumption works well
as long as there are enough examples for the learning algo-
rithm to observe high points on most peaks and low points
on most valleys of the true underlying function to be learned
(Goodfellow et al., 2016). However, it is not a general or
scalable solution because the costs of producing additional
experimental datapoints are high and would be applicable
only locally for a specific target property

Supervised Learning methods also assume that test data
comes from the same underlying distribution as training data
(Bishop, 2006). Although novel techniques often present
impressive metrics, most often they do not suffice to meet
the practical needs in real-world drug discovery (Deng et al.,
2023). In the real world, data production is by construction
strongly biased: Chemists work with structurally analogous
series. In practice, target data is drifting (Tossou et al.,
2023), making these models obsolete for real-world produc-
tion environments. The fundamental factors that influence
molecular properties are still unexplored (Deng et al., 2023).
With statistical analyses, fixed representations like finger-
prints generally match end-to-end deep learning (DL) mod-
els in most datasets (Deng et al., 2023; Baptista et al., 2022;
Robinson et al., 2020), especially in the presence of activity
cliffs (van Tilborg et al., 2022). Much of the progress in
molecular property estimation has been driven by the strate-
gic incorporation of inductive biases (Li & Fourches, 2020;
Xia et al., 2023a). Techniques such as pretraining (Xia et al.,
2023b), the use of equivariant networks, and graph neural
networks have proven useful (Satorras et al., 2021; Le et al.,
2022). The shift towards leveraging domain-specific knowl-
edge through inductive biases underlines the evolution in
our approach to QSAR modeling.
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Pretraining and Transfer Learning in QSAR Models.
Pretraining has emerged as a potent solution to overcome
data scarcity and enhance model generalizability in vari-
ous domains, including image and natural language pro-
cessing. However, without appropriate domain expertise,
pretraining can sometimes lead to negative transfer or only
marginal performance gains (Rosenstein et al., 2005). In the
realm of molecular modeling, pretraining strategies have
been successful, particularly when models are pretrained
on large-scale datasets (Wang et al., 2019; Chithrananda
et al., 2020; Stärk et al., 2023; Xu et al., 2024). For instance,
the large-scale pretraining of models has been shown to
improve sample efficiency in active learning frameworks
used for molecule virtual screening (Cao et al., 2023). Or
(Schimunek et al., 2023) which enriches molecule represen-
tations with contextual knowledge from reference molecules
using a Modern Hopfield Network (Ramsauer et al., 2021).
Combining node-level and graph-level pre-training tasks
to achieve superior generalization, particularly in out-of-
distribution scenarios was presented in (Hu et al., 2020).
ChemBERTa utilizes large-scale pretraining datasets to ex-
plore the effects of dataset size on downstream task perfor-
mance (Chithrananda et al., 2020).

Multitask learning. Closely related to transfer learning,
involves the simultaneous learning of multiple related tasks,
enhancing the model’s ability to generalize across tasks
(Caruana, 1997). This approach has been leveraged effec-
tively in models like MolPMoFiT, which was pretrained
using bioactive molecules from ChEMBL for QSPR/QSAR
tasks (Li & Fourches, 2020).

Multimodal and Self-supervised Learning. Recent ad-
vancements have also been made in multimodal learning and
self-supervised learning frameworks. The GIMLET model,
for example, pretrained on a dataset of molecule tasks with
textual instructions, bridging the gap between graph and text
data modalities and paving the way for instruction-based
pretraining (Zhao et al., 2023). Similarly, the D&D frame-
work utilizes a cross-modal distillation approach, transfer-
ring knowledge from 3D to 2D molecular structures, thereby
significantly enhancing model performance in downstream
tasks (Cho et al., 2023). Or denoising 3D structures as a
pre-training objective, setting new benchmarks in the widely
used QM9 dataset (Zaidi et al., 2022).

Contrastive learning approaches (Le-Khac et al., 2020;
Khosla et al., 2020) can overcome data limitations by inte-
grating additional data. For example, CLOOME (Sanchez-
Fernandez et al., 2023) embeds bioimages and chemical
structures into a unified space, enabling highly accurate re-
trieval of bioimages based on chemical structures. MolFeS-
Cue (Zhang et al., 2024) incorporates a dynamic contrastive
loss function tailored for class imbalance. MolCLR (Wang

et al., 2022) uses large-scale unlabeled data, graph-based
augmentations, and a contrastive learning strategy to im-
prove model generalization. A recent overview of methods
for multi-modal contrastive learning is presented in (Seidl,
2024).

Our approach effectively combines pretraining with QM
data at node-level, to improve the downstream task of prop-
erty modeling. We analyze the effect of this pretraining
in the distribution of the features of the network, and we
observe that atom-level pretrained networks have more
Gaussian-like distributions which are more robust to dis-
tribution shifts in the input space, establishing a direct con-
nection between pretraining at node-level and supervised
learning theory of generalization.

Or contributions can be summarized as follows:

• We empirically show that atom-level pretraining in
Graph neural networks with QM properties improves
performance over scratch networks and molecular-level
pretraining, in the TDC public dataset.

• We empirically show that atom-level pretraining pro-
duces a more normal distribution of features, compared
to scratch and molecular-level pretrained networks.

• We empirically show that atom-level pretraining pro-
duces a more robust molecular representation against
distribution shift from train to eval and train to test
datasplits, which could explain the performance gain
of atom-level pretraining approach.

To the best of our knowledge, this is the first study that
aims to understand how atom-level pretraining improves
molecular representation.

2. Methods
Graphormer. In 2021, Microsoft published
Graphormer(Ying et al., 2021), a neural network
specifically engineered for processing graphs and, more
pointedly, molecular structures. This network has exhibited
outstanding performance in molecular quantum properties,
adapting the architecture of BERT(Devlin et al., 2019) to
suit graph data effectively. Graphormer introduces several
novel features, the key among them being ”centrality
encoding”. This technique captures the importance of nodes
within the graph by integrating graph degree centrality,
which is encoded as embedding vectors added into the
atom’s node type embeddings. Additionally, Graphormer
incorporates a ”spatial encoding” strategy. This involves
representing the shortest path between pairs of nodes, which
is then utilized as a learnable bias in the attention matrix.
This concept mirrors techniques used in other advanced
models like T5(Raffel et al., 2019) and ALIBI(Press et al.,
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Table 1. Graphormer results
Metric Direction scratch mol-level atom-level

pretrained pretrained
HLgap all (4)

caco2 wang MAE ↓ 0.48 ± 0.06 0.53 ± 0.02 0.41 ± 0.03
lipophilicity astrazeneca MAE ↓ 0.58 ± 0.02 0.57 ± 0.02 0.42 ± 0.01
solubility aqsoldb MAE ↓ 0.89 ± 0.04 0.89 ± 0.02 0.75 ± 0.01
ppbr az MAE ↓ 8.38 ± 0.24 8.22 ± 0.23 7.79 ± 0.24
ld50 zhu MAE ↓ 0.61 ± 0.02 0.60 ± 0.03 0.57 ± 0.02

hia hou ROC-AUC ↑ 0.96 ± 0.03 0.96 ± 0.02 0.94 ± 0.05
pgp broccatelli ROC-AUC ↑ 0.87 ± 0.04 0.86 ± 0.01 0.89 ± 0.02
bioavailability ma ROC-AUC ↑ 0.52 ± 0.01 0.55 ± 0.03 0.64 ± 0.05
bbb martins ROC-AUC ↑ 0.83 ± 0.01 0.82 ± 0.03 0.88 ± 0.02
cyp3a4 substrate carbonmangels ROC-AUC ↑ 0.63 ± 0.07 0.64 ± 0.03 0.64 ± 0.02
ames ROC-AUC ↑ 0.72 ± 0.02 0.73 ± 0.01 0.80 ± 0.01
dili ROC-AUC ↑ 0.86 ± 0.02 0.87 ± 0.01 0.88 ± 0.03
herg ROC-AUC ↑ 0.78 ± 0.01 0.76 ± 0.04 0.77 ± 0.06

vdss lombardo Spearman ↑ 0.58 ± 0.04 0.59 ± 0.04 0.59 ± 0.03
half life obach Spearman ↑ 0.39 ± 0.07 0.34 ± 0.07 0.48 ± 0.06
clearance microsome az Spearman ↑ 0.49 ± 0.03 0.46 ± 0.03 0.60 ± 0.01
clearance hepatocyte az Spearman ↑ 0.34 ± 0.04 0.31 ± 0.02 0.46 ± 0.03

cyp2d6 veith PR-AUC ↑ 0.43 ± 0.03 0.47 ± 0.02 0.61 ± 0.02
cyp3a4 veith PR-AUC ↑ 0.73 ± 0.01 0.74 ± 0.03 0.80 ± 0.03
cyp2c9 veith PR-AUC ↑ 0.63 ± 0.02 0.66 ± 0.03 0.69 ± 0.02
cyp2d6 substrate carbonmangels PR-AUC ↑ 0.52 ± 0.01 0.54 ± 0.04 0.58 ± 0.03
cyp2c9 substrate carbonmangels PR-AUC ↑ 0.35 ± 0.02 0.33 ± 0.03 0.37 ± 0.04

Figure 1. Different aromatic ring representations folded into a single form

2021), highlighting its relevance and utility in enhancing
the model’s attention mechanism within graph networks.

Custom implementation. Following (Nugmanov et al.,
2022), we have refined the ”centrality encoder” of the orig-
inal Graphormer to encompass not just explicit neighbors
but total neighbors, integrating both explicit atom neigh-
bors and implicit hydrogens. This approach eliminates the
need for an ”edge encoder”, leveraging a combination of the
centrality encoder and an atom type encoder to implicitly
capture atom hybridization. Moreover, we have stream-
lined the model by omitting the encoding of atoms’ formal
charges and radical states, allowing for the representation
of resonance structures in a unified form and dispensing
with the traditional concept of ”aromatic” bonds typically
applied to arenes. Additionally, our model introduces a
”spatial encoder” constrained by a configurable maximum
distance threshold to enhance computational efficiency and
model accuracy. By treating distances beyond this threshold
uniformly, the model focuses on more relevant short-range

interactions understanding molecular structures.

Enabling multitask learning by task-specific virtual
nodes. Similar to the original BERT model, Graphormer
utilizes a [CLS] token as a global readout for estimating
properties of graphs and molecules. This methodology
aligns with techniques used in graph convolutional networks
(GCNs), where virtual nodes connected to every node of
the graph can serve a comparable purpose (Cai et al., 2023).
Building on this concept, we propose a novel extension tai-
lored for multitask learning applications. In our approach,
we employ the same encoder and output head to estimate
multiple properties, but differentiate the tasks by using dis-
tinct virtual nodes for each. This allows for task-specific
processing while maintaining a unified architecture, enhanc-
ing the model’s efficiency, adaptability, and scalability in
handling diverse learning tasks.

Quantitative Assessment of learned features. To ana-
lyze the impact of pretraining methods on the molecular
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Distribution of Activations for 20 Features

Figure 2. Distribution of first 20 features from the first layer of the Graphormer network for three different training approaches —scratch,
HOMO-LUMO pretrained and atom-level pretrained— across test split of lipophilicity dataset .

representation captured by the model, we conducted a com-
prehensive analysis of learned feature distributions. We run
the models on the three different data splits (training, valida-
tion, and test), and extract the distribution of features after
the first layer of the Graphormer architecture.

For each compound in the dataset, we aggregated the node
representations after the first Graphormer layer, resulting in
a cumulative dataset-wide node representation. This aggre-
gation facilitated the derivation of an empirical distribution
of activations per model and data split. Using this empiri-
cal distribution, we applied various statistical techniques to
quantify the differences in feature distributions across the
different data splits for each of the models. Furthermore,
we undertook an evaluation of the normality of these distri-
butions using Shapiro-Wilk and Kolmogorov-Smirnov tests.
This assessment was used to determine whether significant
deviations exist in the distribution of learned features across
different pretraining methods.

3. Experiments
Datasets For pretraining, we used a publicly available
dataset (Guan et al., 2021) consisting of 136k organic

molecules. Each molecule is represented by a single con-
former generated using the Merck Molecular Force Field
(MMFF94s) in the RDKit library. The initial geometry
for the lowest-lying conformer was then optimized at the
GFN2-xtb level of theory followed by refinement of the elec-
tronic structure with DFT (B3LYP/def2svp). The advantage
of the described dataset is several reported atomic proper-
ties: charge, electrophilicity, nucleophilicity Fukui indexes,
and an NMR shielding constant. Some additional curation
was carried out as described in the addendum. Another
pretraining dataset, PCQM4Mv2, consists of a single molec-
ular property per molecule, a HOMO-LUMO gap https:
//ogb.stanford.edu/docs/lsc/pcqm4mv2/. It
was curated under the PubChemQC project (Nakata & Shi-
mazaki, 2017). For the benchmarking of the obtained
pretrained models, we used the absorption, distribution,
metabolism, excretion, and toxicity (ADMET) group of the
Therapeutics Data Commons (TDC) dataset (Huang et al.,
2022), consisting of 9 regression and 13 binary classification
tasks for modeling biochemical molecular properties.

Experiments setup We train our Graphormer network
from scratch on the set of tasks provided by the TDC dataset.
We also pretrained the same network using as main task

https://ogb.stanford.edu/docs/lsc/pcqm4mv2/
https://ogb.stanford.edu/docs/lsc/pcqm4mv2/
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Figure 3. This heatmap illustrates the differences in distribution shifts between scratch and pretrained networks, calculated across various
feature dimensions using metrics such as Kullback-Leibler Divergence, Jensen-Shannon Divergence, Earth Mover’s Distance, Total
Variation Distance, and Hellinger Distance. Green hues indicate instances where the pretrained network exhibits smaller distribution shifts
compared to the scratch network, while purple hues denote the opposite. Notably, both heatmaps comparison frequently show reduced
distribution shifts in pretrained networks, specially for Train-Test comparison, which likely helps to explain pretrained network’s superior
performance on the test data split.

HOMO-LUMO gap (molecule-level) and the atomic prop-
erties charge, electrophilicity, and nucleophilicity Fukui
indexes and an NMR shielding constant (atom-level). For
atom-level pretrain, we pretrained 4 models, one per every
single property. We also pretrained a fifth model which is
pretrained on 4 properties via multi-task by task-specific vir-
tual nodes. Main results reported in this paper for atom-level
uses this last model. Results for specific atomic property
pretrained are available in the Supplementary Material.

4. Results
This section provides a concise summary of the key findings
of this study. For an exhaustive elaboration of the results,
please refer to the supplementary materials.

Pretraining on atom-level node with QM significantly
improves performance in downstream tasks In Table
1, we present the outcomes from benchmarking three dis-
tinct training approaches: scratch, molecule-level QM pre-
trained, and atom-level QM pretrained with all properties
for 5 different seeds, as described in the guidelines pro-
vided by the TDC dataset https://tdcommons.ai/
benchmark/overview/. We have excluded the results
for atom-level pretraining on individual QM properties from
this table; these can be found in the Supplementary Materi-
als. These results show that atom-level pretraining notably
enhances model performance compared to training from
scratch for 21 of the 22 datasets.

Pretraining on atom-level node with QM results on
smoother feature distribution We further examined the
distribution of the features from the network’s first layer for
atom-level pretrained, molecular-level (HOMO-LUMO gap)
and scratch models across different data splits and datasets.
Figure 2 illustrates the feature distribution for the test split of
one of the datasets (lipophilicity), highlighting how scratch
and molecular-level pretrain compare to the atom-level pre-

trained network (for other datasets and splits, please refer to
the Supplementary Materials). Visually, we can observe that
the atom-level pretrained method results in a more Gaussian-
like distribution of the features. We conducted a Shapiro-
Wilk test for each dimension in both scratch and pretrained
networks to assess the normality of the distributions. The
average p-value for the scratch network was 3.2E-06 with
a standard deviation of 5E-05, suggesting a significant de-
viation from normality. In contrast, the pretrained network
had an average p-value of 4E-04 with a standard deviation
of 0.003, indicating a closer approximation to a Gaussian
distribution.

Pretraining on atom-level node with QM enhances ro-
bustness to input distribution shifts Pretrained networks
show in general less distribution shift compared to scratch
network, as we can see in Figure 3. In this figure, we show
the distribution shifts differences between scratch and pre-
trained networks. As we can appreciate, in most of the
cases, specially in the Train-Test comparison, atom-level
pretrained networks have less distribution shift than scratch
networks.

5. Conclusions
In this study, we have demonstrated that pretraining of graph-
based neural networks with atom-level quantum mechanics
(QM) data significantly enhances performance on down-
stream tasks related to ADMET properties within the TDC
dataset, as illustrated in Table 1. Furthermore, we showed
the change in the distributions of activations of the internal
model’s features due to specific pretraining. After atom-
level pretraining with QM data, these distributions become
more Gaussian-like, which is known to be conducive to bet-
ter learning dynamics and thus improved performance (see
Figure 2). Moreover, our findings indicate that pretrained
models exhibit smaller distribution shifts from training to
testing datasets, further supporting the efficacy of QM data

https://tdcommons.ai/benchmark/overview/
https://tdcommons.ai/benchmark/overview/
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pretraining in enhancing model robustness (see Figure 2).

To our knowledge, this is the first study that elucidates how
atom-level pretraining can optimize molecular representa-
tions by analyzing the model’s internal representation and
robustness to distribution shifts.
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