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Abstract

Parameter-efficient fine-tuning (PEFT) is essen-
tial for adapting large language models (LLMs),
with low rank adaptation (LoRA) being the
most popular approach. However, LoRA suf-
fers from slow convergence, and some recent
LoRA variants, such as PiSSA, primarily rely
on Singular Value Decomposition (SVD) for
initialization, leading to expensive computa-
tion. To mitigate these problems, we resort
to Nystrom method, which follows a three-
matrix manipulation. Therefore, we first in-
troduce StructuredLoRA (SLoRA), investigat-
ing to introduce a small intermediate matrix
between the low-rank matrices A and B. Sec-
ondly, we propose NystromLoRA (NLoRA),
which leverages Nystrom-based initialization
for SLoRA to improve its effectiveness and effi-
ciency. Finally, we propose IntermediateTune
(IntTune) to explore fine-tuning exclusively the
intermediate matrix of NLoRA to furthermore
boost LLMs’ efficiency. We evaluate our meth-
ods on 5 natural language generation (NLG)
tasks and 8 natural language understanding
(NLU) tasks. On GSM8K, SLoRA and NLoRA
achieve accuracies of 56.48% and 57.70%, sur-
passing LoRA by 33.52% and 36.41% with
only 3.67M additional trainable parameters.
IntTune boosts average NLG performance over
LoRA by 7.45% while using only 1.25% of
its parameters. These results demonstrate the
efficiency and effectiveness of our approach in
enhancing model performance with minimal
parameter overhead.

1 Introduction

Fine-tuning large language models (LLMs) has
emerged as a fundamental approach to enhancing
model capabilities (Yu et al., 2023; Li et al., 2023;
Xia et al., 2024) and aligning models with spe-
cific application requirements (Zheng et al., 2023;
Ouyang et al., 2022). However, the growing scale
of LLMs introduces significant challenges to LLM
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Figure 1: The comparison among LoRA and our models

development, with fine-tuning requiring substan-
tial computational and memory resources (Hu et al.,
2021; Chang et al., 2024). For example, fine-tuning
a LLaMA-65B model requires more than 780 GB
of GPU memory (Dettmers et al., 2023), while
training GPT-3 175B requires 1.2 TB of VRAM
(Hu et al., 2021). Such resource-intensive pro-
cesses are infeasible for many researchers and in-
stitutions, driving the development of parameter-
efficient fine-tuning (PEFT) methods. Among these
methods, Low-Rank Adaptation (LoRA) (Hu et al.,
2021) has received widespread attention due to its
ability to achieve competitive performance com-
pared to full parameter fine-tuning, while signifi-
cantly reducing memory consumption and avoiding
additional inference latency.

LoRA enables the indirect training of dense lay-
ers in a neural network by optimizing low-rank
decomposition matrices that represent changes in
the dense layers during adaptation, all while keep-
ing the pre-trained weights fixed. For a pre-trained
weight matrix W € R™*", LoRA introduces a
low-rank decomposition AW = AB, where A €
R™*", B € R™", and the rank r < min(m,n).
This modifies the forward pass of a layer as fol-
lows:

Y = X(W + AW) = X(W + AB), (1)

where X € RV*sxm 'y ¢ RbX$X7 and b rep-
resents the batch size, s represents the sequence
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length. For initialization, A is randomly initial-
ized with Gaussian values and B is set to zero,
ensuring that injection of the low-rank adaptation
does not alter the model predictions at the start of
training. Unlike traditional fine-tuning methods
that require updating and storing gradients for the
full weight matrix W, LoRA optimizes only the
smaller matrices A and B, significantly reducing
the number of trainable parameters and memory
usage. Furthermore, LoRA often achieves perfor-
mance comparable or superior to full fine-tuning,
demonstrating that adapting only a small subset of
parameters suffices for many downstream tasks.

Despite the above benefits, LoRA suffers from
slow convergence (Ding et al., 2023). To address
this issue, some recent LoRA variants, such as
PiSSA (Meng et al., 2024), choose to conduct ini-
tialization of the low rank matrices by using Singu-
lar Value Decomposition (SVD). However, SVD-
based initialization is computationally expensive
and requires a long time. To mitigate this issue, we
investigate using Nystrém method, which approx-
imates a matrix as a product of three matrices, to
approximate SVD. To fit the three-matrix structure,
we first propose StructuredLoRA (SLoRA), where
an additional r X r matrix is inserted between the
low-rank matrices A and B, as shown in Figure 2.
Furthermore, we explore whether an extra matrix
can influence the language model’s performance,
experimental results indicate that SLoRA effec-
tively enhances performance with only a minor
increase in the number of parameters, demonstrat-
ing the potential of the three-matrix structure for
PEFT.

Secondly, inspired by NystromFormer (Xiong
et al.,, 2021), we proposed NystromLoRA
(NLoRA) to leverage Nystrom method, which con-
ducts SVD approximation by sampling a subset of

rows and columns of the pre-trained parameter ma-
trix to reduce the computational cost, for weight ini-
tialization. NLoRA is supposed to bypass the com-
putational cost of SVD’s eigenvalue decomposition,
reducing time complexity to O (mr+72+rn) com-
pared to the O(mn?) complexity of SVD-based
methods.

Finally, to explore whether we can further com-
press the trainable parameters of NLoRA, we pro-
pose IntermediateTune (IntTune), which exclu-
sively adjusts the intermediate matrix of NLoRA.
This method significantly reduces the number of
trainable parameters. Specifically, on the evalua-
tion of LLaMA 2-7B across five NLG benchmarks,
LoRA uses 320M parameters, while our IntTune
method only requires tuning 4M parameters. In the
meantime, IntTune outperforms LoRA by 7.45%
on average across NLG benchmarks. The com-
parison of our proposed methods with LoRA in
terms of performance and trainable parameters is
illustrated in Figure 1.

In summary, our contributions are as follows:

1. We propose SLoRA, an extension to the LoRA
framework, incorporating an additional inter-
mediate matrix to enhance model expressive-
ness, achieving improved performance with
minimal parameter overhead.

2. We introduce NLoRA, leveraging Nystrom
approximation for efficient and effective ini-
tialization, particularly excelling in natural
language generation (NLG) and natural lan-
guage understanding (NLU) tasks.

3. We propose IntTune to fulfill supervised fine-
tuning (SFT) LLaMA 2-7B by tuning 4M
parameters, achieving superior performance
compared to LoRA on average, offering a



lightweight and efficient alternative for SFT
LLMs in resource-constrained scenarios.

2 Related Works

2.1 LoRA’s variants and related extensions

With the introduction of LoRA (Hu et al., 2021),
many derivative methods have emerged. AdaLoRA
(Zhang et al., 2023) proposes an adaptive rank allo-
cation strategy based on parameter importance to
improve fine-tuning efficiency. DoRA (Liu et al.,
2024) introduces a decomposation of weight ma-
trices into magnitude and direction components,
leveraging LoRA to update only the directional
component. ReLoRA (Lialin et al., 2023) achieves
high-rank training through iterative low-rank up-
dates, periodically merging parameters into the
main model. LoORA+ (Hayou et al., 2024) further
improves efficiency by applying different learning
rates to the two matrices in LoRA. Other works
have focused on improving the initialization of the
AB matrix, such as PiSSA (Meng et al., 2024),
which suggests initializing A and B by performing
SVD on the pre-trained matrix W to accelerate the
convergence speed. LORA-GA (Wang et al., 2024)
initializes A and B using the eigenvectors of the
full-gradient matrix, aligning the gradient direc-
tion of the low-rank product B A with the gradient
direction of the pretrained weight matrix W. A
related work is LaMDA (Azizi et al., 2024), which
also introduces an intermediate matrix. However,
LaMDA relies on SVD-based initialization and pri-
marily focuses on memory efficiency. In contrast,
our method adopts Nystrom-based initialization,
which not only significantly shortens the initial-
ization time but also achieves strong performance
with fewer parameters, offering advantages in both
computational and memory efficiency.

Beyond these LoRA variants, some works have
explored integrating LoRA into more efficient
model architectures. MixLoRA (Li et al., 2024)
and MLoRA (Yang et al., 2024) extend LoRA to
multi-task and multi-domain settings. MixLoRA
builds a sparse MoE with multiple LoRA experts,
while MLoRA uses domain-specific LORA mod-
ules for CTR prediction, both improving perfor-
mance with efficient resource use. Besides, m-
LoRA (Ye et al., 2023) introduces a LoRA-aware
pipeline parallelism scheme to efficiently fine-tune
multiple LoRA tasks across GPUs and machines,
significantly reducing fine-tuning time and improv-
ing GPU utilization.

2.2 Nystrom-like methods

Nystrom-like methods approximate matrices by
sampling a subset of columns, a technique widely
used in kernel matrix approximation (Baker and
Taylor, 1979; Williams and Seeger, 2000). Numer-
ous variants have been proposed to enhance the
basic Nystrom method, including Nystrom with
k-means clustering (Wang et al., 2019), Nystrom
with spectral problems (Vladymyrov and Carreira-
Perpinan, 2016), randomized Nystrom (Li et al.,
2010; Persson et al., 2024), ensemble Nystrom
method (Kumar et al., 2009), fast-Nys (Si et al.,
2016).

The Nystrom method has also been extended to
general matrix approximation beyond symmetric
matrices (Nemtsov et al., 2016). Some methods
(Wang and Zhang, 2013; Xiong et al., 2021) ex-
plicitly address general matrix approximation by
sampling both rows and columns to reconstruct the
full matrix. Inspired by such strategies, we propose
NLoRA method by to optimize the approximation
for efficient matrix reconstruction.

3 Method

The Nystrom method (Baker and Taylor, 1979),
originating from the field of integral equations, is a
approach for discretizing integral equations using
a quadrature technique. It is commonly employed
for out-of-sample extension problems. Specifically,
given an eigenfunction problem of the form:

b
M@ = [ Mepfd,

the Nystrom method utilizes a set of s sample
points y1, %2, .. .,ys to approximate f(z) as fol-
lows:

~ A b—a
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This approach effectively converts the continuous
integral equation into a discrete summation, facili-
tating numerical computation and enabling out-of-
sample extensions.

For the pre-trained matrix W € R™*", we as-
sume that it can be decomposed as follows:

Aw BW:|

P Cyw “)

W= |
where, Ay € R™" is designated to be our sample
matrix, By € R"™*("=") and Fyy € R("=7)%7 rep-
resent the remaining sampled column and row com-
ponents, respectively, and Cyy € R(m—)x(n-7)
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corresponds to the remainder of the matrix W.
The matrix W can be efficiently approximated us-
ing the Nystrom method’s basic quadrature tech-
nique. Starting with the singular value decomposi-
tion (SVD) of the sample matrix Ay, represented
as Ay = UNHT, where U, H € R"*" are unitary
matrices and A € R"*" is diagonal. The Nystrom
approximation reconstructs W based on the out-
of-sample approximation strategy (Nemtsov et al.,
2016). This strategy utilizes the entries of Fjr and
By as interpolation weights for extending the sin-
gular vector, resulting in the full approximations of
the left and right singular vectors of W:

N U . H
U‘[FWHAI]’H_[B%UAl]’(ﬂ

Using the Nystrom method, the pretrained ma-
trix W can be approximated as:

—~ A B
_ T w w
W =UAH _[Fw FWA%BW}
A
= [ F::j A}, [Aw Bw], (6)

where A?i/ is the Moore-Penrose pseudoinverse of
the sampled core matrix Ayy. The remaining block
Cy is approximated as Fyy A}, Byy. This approx-
imation demonstrates that W can be effectively
reconstructed using only Ay, By, and Fyy, sig-
nificantly reducing computational complexity. For
the detailed derivation, please refer to Appendix A.
In this way, the matrix WW can be approximated
as the product of three matrices. Based on this
finding, we propose an improvement to LoRA
by introducing an intermediate matrix, named as
StructuredLoRA (SLoRA). Specifically, we intro-
duce an intermediate matrix N € R"*" between
the low-rank matrices A and B, as illustrated in
Figure 2. This modification transforms the weight

update into:
AW = ANB, 7

where A € R™*", B ¢ R™*" N € R"™", and
r < min(m,n).

Building on the three-matrix structure, we fur-
ther enhance SLoRA’s effectiveness by employing
a Nystrom-based initialization. Specifically, by
sampling r rows and r columns—corresponding
to the rank of LoORA—we efficiently approximate
W through matrix decomposition. The resulting
submatrices are then directly utilized to initialize
the three components of SLoRA, specifically:

* The component is used to initialize the

w
Fw
matrix A in SLoRA.
* The component A}, representing the Moore-
Penrose pseudoinverse of Ayy, is used to ini-
tialize the matrix N in SLoRA.

* The component [AW BW] is used to initial-
ize the matrix B in SLoRA.

While the pseudoinverse can be computed using
singular value decomposition (SVD), the process is
computationally inefficient on GPUs. To overcome
this challenge, we simplify the initialization by di-
rectly employing Ay instead of its pseudoinverse,
thereby reducing computational overhead while
preserving the effectiveness of the initialization.
The diagram of the Nystrom-based initialization is
shown in Figure 3.

By employing this decomposition based on the
Nystrom approximation method, we propose an
initialization strategy for SLoRA, which we term
as NystromLoRA (NLoRA). Additionally, we
explore fine-tuning only the intermediate matrix
while keeping the other two matrices fixed, which
we term IntermediateTune (IntTune).

4 Experiments

The experiments were performed on NVIDIA L20
GPUs. For these experiments, we follow the exper-
imental setting given by (Meng et al., 2024), we



Model Strategy Parameters GSM8K MATH HumanEval MBPP MT-Bench
Full FT 6738M 49.05 7.22 21.34 35.59 491
LoRA 320M 42.30 5.50 18.29 35.34 4.58
LLaMA 2-7B PiSSA 320M 53.07 7.44 21.95 37.09 4.87
SLoRA 323M 56.48 10.68 23.78 42.32 4.85
NLoRA 323M 57.70 9.94 25.00 43.12 4.82
Full FT 7242M 67.02 18.6 45.12 51.38 4.95
LoRA 168M 67.70 19.68 43.90 58.39 4.90
. PiSSA 168M 72.86 21.54 46.95 62.66 5.34
Mistral-7B
SLoRA 16OM 73.01 21.88 47.6 60.3 5.12
NLoRA 16OM 73.92 22.00 44.5 60.3 5.21
Table 1: Experimental results on NLG tasks
Strategy MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B
DeBERTa-v3-base
Full FT 89.90  95.63 89.46 69.19 94.03 9240 8375 91.60
LoRA 90.65 94.95 89.95 69.82 93.87 9199 8520 91.60
PiSSA 90.43  95.87 91.67 72.64 9429 9226 87.00 91.88
SLoRA 90.43 96.10 91.91 70.82 9394 92.11 88.09 91.86
NLoRA  90.74  96.22 91.91 73.41 9445 92.03 88.09 92.14
RoBERTa-large
Full FT 90.2 96.4 90.9 68.0 94.7 92.2 86.6 91.5
LoRA 90.6 96.2 90.9 68.2 94.9 91.6 87.4 92.6
PiSSA 90.7 96.7 91.9 69.0 95.1 91.6 91.0 92.9
SLoRA 90.8 96.8 91.7 68.5 94.9 91.6 90.3 92.7
NLoRA 90.7 96.6 91.9 69.7 95.2 91.6 90.3 92.7

Table 2: Experimental results on NLU tasks

employ the AdamW optimizer with a batch size of
4, a learning rate of 2E-4, and a cosine annealing
schedule with a warmup ratio of 0.03, all while
avoiding weight decay. The parameter lora_alpha
is consistently set equal to lora_r, with lora_dropout
fixed at 0. Adapters are integrated into all linear
layers of the base model, and both the base model
and adapters utilized Float32 precision for com-
putation. We take the convenience to directly cite
the baseline performance values from (Meng et al.,
2024).

In this section, we evaluate the performance
of SLoRA and NLoRA across various bench-
mark datasets. We compare them with the fol-
lowing baselines: (1) Full Fine-tune, which up-
dates all model parameters; (2) LoRA (Hu et al.,
2021), which approximates weight updates with
low-rank matrices while freezing the base model;
and (3) PiSSA (Meng et al., 2024), which initializes
adapters using principal singular components and
freezes residuals while retain LoRA’s architecture.

We evaluate the capabilities of natural language
generation (NLG) using the LLaMA 2-7B (Tou-
vron et al., 2023) and Mistral-7B (Jiang et al., 2023)

models through mathematical reasoning, coding
proficiency, and dialogue tasks. Additionally, natu-
ral language understanding (NLU) tasks were eval-
uated using the GLUE dataset (Wang, 2018) with
DeBERTa-v3-base (He et al., 2021) and RoBERTa-
large (Liu, 2019). Finally, we analyze the empirical
effects of exclusively fine-tuning the intermediate
matrix on both NLU and NLG tasks.

4.1 Experiments on Natural Language
Generation

We conduct experiments using LLaMA 2-7B and
Mistral-7B-v0.1. To evaluate mathematical rea-
soning abilities, we perform fine-tuning using the
MetaMathQA dataset and evaluated their perfor-
mance on GSM8K (Cobbe et al., 2021) and MATH
(Yu et al., 2023). In terms of coding capability, we
perform fine-tuning on the CodeFeedback dataset
(Zheng et al., 2024) and evaluated them using the
HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) benchmarks. To measure session capa-
bilities, the model is fine-tuned on the WizardLM-
Evol-Instruct dataset (Xu et al., 2024) and tested
using the MT-Bench dataset (Zheng et al., 2023).



Strategy Parameters

GSMSK MATH HumanEval

MBPP MT-Bench

42.30
44.28

LoRA 320M
IntTune 4M

5.50
6.86

35.34 4.58
34.40 4.46

18.29
20.70

Table 3: IntTune performance on NLG tasks

Strategy Parameters MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B
LoRA 1.33M 90.65 9495 89.95 69.82 9387 91.99 8520 91.60
IntTune 3.07K 81.93 9220 8529 6538 89.13 85.18 76.90 88.37

Table 4: IntTune performance on NLU tasks

All experiments use a subset of 100K data points.

As shown in Table 1, SLoRA consistently out-
performs LoRA, which is labeled with a blue back-
ground in Table 1, and even outperforms PiSSA
in most tasks. In most cases, NLoRA further en-
hances the performance of SLoRA. Both meth-
ods maintain high parameter efficiency, with only
slight increases in trainable parameters (1.15% for
LLaMA 2-7B and 0.55% for Mistral-7B compared
to LoRA), yet deliver significant performance gains.
On these two models, SLoRA achieves average
improvements of 38.68%, 15.37%, and 5.19%
in mathematical reasoning, coding, and conversa-
tional tasks, respectively, relative to LoRA’s perfor-
mance, while NLoRA achieves improvements of
34.53%, 15.83%, and 5.78% over LoRA.

Although the addition of intermediate matrices
results in additional matrix multiplication opera-
tions, the time overhead increases only slightly
compared to LoRA. In the MetaMathQA dataset,
the training time for SLoRA increases to 27,690.03
seconds, which is an increase of 10.13% compared
to LoRA (25142.26 seconds). The training time for
NLoRA increases to 25,323.34 seconds, which is
almost identical to LoRA’s training time. As for
initialization time, SLoRA incurs only an 11.95%
increase in initialization time compared to LoRA,
while NLoRA adds just 12.66 seconds. Both are
significantly lower than the time cost of PiSSA.
Subsequently, we further discuss the effects under
different ranks (Section 4.4), learning rates (Ap-
pendix C), and optimizers (Appendix D).

4.2 Experiments on Natural Language
Understanding

We also assess the NLU capabilities of ROBERTa-
large and DeBERTa-v3-base on the GLUE bench-
mark. Table 2 summarizes the results of eight tasks

performed using these two base models.

SLoRA demonstrates consistent improvements
over the baseline LoRA across all tasks, as high-
lighted in blue. In addition, SLoRA surpasses
PiSSA in several cases, showcasing the poten-
tial of incorporating an intermediate matrix in
LoRA. NLoRA further enhances the performance
of SLoRA in most tasks, achieving superior results
in tasks such as QNLI, MRPC, and CoLA. For in-
stances where NLoRA does not outperform PiSSA,
NLoRA consistently achieves a lower training loss
in these scenarios, suggesting its potential for fur-
ther optimization and efficient fine-tuning. Details
can be found in Appendix E.

4.3 NLoRA'’s Intermediate Matrix
Fine-Tuning: A Minimalist Approach

To further improve the computational efficiency of
NLoRA, we try to investigate reducing its train-
able parameters without sacrificing much perfor-
mance. Therefore, we propose IntermediateTune
(IntTune), which exclusively fine-tune the inter-
mediate matrix in SFT. To validate the effective-
ness of IntTune, we conduct experiments using
LLaMA-2-7B and DeBERTa-v3-base for NLG and
NLU tasks, respectively. For NLG tasks, we set the
learning rate to 2E-3 while keeping other settings
unchanged. For NLU tasks, the specific parameter
settings are detailed in Appendix E. The results are
shown in Table 3 and Table 4.

For NLG tasks, IntTune achieves competitive
performance, surpassing LoRA on the GSM8K,
MATH, and HumanEval tasks, and attaining com-
parable results on MBPP and MT-Bench. Overall,
the average performance of IntTune across all tasks
exceeds that of LoRA, surpassing LoRA’s average
performance by 7.45%. In terms of computational
efficiency, IntTune significantly reduces the num-



60
-=- Full FT
N LoRA
501 mmm PiSSA
Emm SLORA
mmm NLORA

40 A

30 A

Accuracy(%)

20 A

10 A

2 4 8 16 32 64 128
(a) GSMSK accuracy under various ranks

—=- Full FT
101 mmm LoRA
m PiSSA
mEE SLORA

2 4 8 16 32 64 128
(b) MATH accuracy under various ranks

Figure 4: Compare the performance of different ranks for NLoRA on NLG tasks

Strategy rank=1 rank=2 rank=4 rank=8 rank=16 rank=32 rank=64 rank=128
LoRA 0.22 0.24 3.87 3.10 14.62 12.76 14.70 13.92
PiSSA  8124.14 7980.15 8078.53 7723.19 8141.76 8043.79 8044.24  8068.20
SLoRA 0.26 0.28 3.54 3.02 6.42 15.74 11.29 14.97

NLoRA 5.76 4.53 6.00 7.27 21.37 24.12 25.25 25.32

Table 5: Compare the initialization time(s) of different ranks for NLoRA and LoRA

ber of trainable parameters to 4M, accounting for
only 0.05% of the total model parameters and just
1.13% of LoRA’s trainable parameters. Despite this
substantial reduction, on the MetaMathQA dataset,
the training time is shortened to 85.2% of LoRA’s.
Specifically, LoRA’s training time is 25,142.27s,
IntTune’s training time is reduced to 21,439.26s.
Additionally, IntTune enables GPU memory allo-
cation to decrease as well. The percentage of GPU
memory allocated drops from 80.9% to 72.5%,
with the average memory usage reduced from 36.42
GB to 32.78 GB, a reduction of 9.98%. These re-
sults highlight the method’s potential for improv-
ing performance while optimizing computational
resources, making it particularly suitable for SFT
LLM:s in resource-constrained scenarios.

For NLU tasks, the number of trainable param-
eters was reduced to 3.07K, representing 0.002%
of the total model parameters. Despite this sig-
nificant reduction, the approach achieved 92.61%
of LoRA’s average performance across all tasks.
Specifically, it attained 96.2% of LoRA’s perfor-
mance on SST-2, 94.5% on QNLI, and 96.2% on
STS-B, demonstrating comparable performance
across various GLUE tasks, underscoring its ro-
bustness and effectiveness in diverse scenarios.

These results highlight the effectiveness of Nys-
trom initialization, as IntTune achieves strong per-
formance, especially in NLG tasks where feature
transformation is key. The relatively lower per-

formance in NLU suggests that deeper semantic
understanding may require more trainable parame-
ters, as indicated by the rank-performance trend in
Section 4.4. This suggests room for further adapta-
tion in understanding-based tasks.

4.4 Experiments on Various Ranks

In this section, we examine the impact of progres-
sively increasing the rank of NLoRA and SLoRA
from 1 to 128 to assess their ability to consistently
outperform the baseline across different ranks.
Training is performed on the MetaMathQA dataset
for a single epoch, with validation conducted on
the GSM8K and MATH datasets.

The experimental results are presented in Fig-
ure 4. On the GSMB8K dataset, NLoRA performs
relatively better at higher ranks, surpassing LoRA
by 43.08% and 36.41% at ranks 64 and 128, re-
spectively. SLoRA, on the other hand, exhibits
relatively stronger performance at lower ranks, out-
performing LoRA by 107.45%, 77.31%, 53.54%,
and 76.13% at ranks 1, 2, 4, and 8, respectively.
On the MATH dataset, SLoRA shows a slight over-
all advantage, while NLoRA continues to deliver
strong performance, particularly at higher ranks.
Notably, the improvement of SLoRA is not solely
attributable to parameter count. For example, as
shown in Figure 4, SLoRA with rank 64 (161M pa-
rameters) outperforms LoRA with rank 128 (320M
parameters) on GSM8K. This highlights that the



Strategy Parameters GSM8K MATH HumanEval MBPP MT-Bench
LoRA 320M 42.30 5.50 18.29 35.34 4.58
IntTune(Rank=256) 15SM 49.51 6.62 21.30 33.90 3.59
IntTune(Rank=128) 4M 44.28 6.86 20.70 34.40 4.46
IntTune(Rank=64) 0.9M 37.98 5.56 14.60 34.70 4.55

Table 6: Compare the performance of different ranks for IntTune on NLG tasks

B IntTune (Rank=4)
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Figure 5: Compare the performance of different ranks for IntTune on NLU tasks

gain arises from SLoRA’s structural enhancements,
rather than merely relying on parameter increase.

The initialization time overhead for our methods
and baselines, shown in Table 5. PiSSA initializes
by directly decomposing the pre-trained weight
matrix, resulting in an initialization time that is
largely independent of the rank. The initialization
time of other methods increases with higher ranks
due to rank-dependent computations. Compared
to PiSSA, our method achieves faster initialization,
and although the overhead is slightly higher than
that of LoRA, the gap remains within an acceptable
range. This demonstrates that our method strikes a
favorable balance between initialization efficiency
and downstream performance.

For IntTune, we compared ranks of 64, 128, and
256 in the NLG tasks, following the same experi-
mental setup as shown in Section 4.1. In the NLU
experiments, we evaluated ranks of 4, 8, and 16.
The results of these experiments are presented in
Table 6 and Figure 5. On NLG tasks, IntTune does
not exhibit a strictly increasing performance trend
with higher ranks. Instead, different ranks excel in
different tasks. Specifically, rank 128 and rank 256
achieve 7.45% and 5.62% higher performance than
LoRA on average, both outperforming LoRA over-
all. Meanwhile, rank 64, though slightly lower, still
reaches 93.66% of LoRA’s performance, demon-
strating the feasibility of fine-tuning with even

fewer parameters while maintaining competitive re-
sults. On NLU tasks, the model performance grad-
ually improves with increasing rank. For ranks 4, 8,
and 16, the average performance reaches 86.20%,
92.61%, and 95.80% of LoRA’s performance, re-
spectively, while the number of parameters is only
1.35K, 3.07K, and 9.99K, respectively.

5 Conclusion

This work advances parameter-efficient fine-tuning
strategies for large language models by introducing
SLoRA and NLoRA, along with an exploration of
an intermediate matrix fine-tuning method, IntTune.
SLoRA incorporates a small intermediate matrix,
enhancing expressiveness with minimal parameter
overhead, while NLoRA leverages Nystrom-based
initialization to bypass the computational complex-
ity of SVD, achieving competitive downstream per-
formance. IntTune, by fine-tuning only the inter-
mediate matrix in NLoRA, even boosts average
NLG performance over LoRA while maintaining
high parameter efficiency. Extensive experiments
on NLG and NLU tasks demonstrate the robustness
and adaptability of our methods, providing prac-
tical solutions for optimizing large models under
resource constraints.



Limitations

While our method demonstrates strong perfor-
mance in both NLG and NLU tasks, its applicabil-
ity to ultra-low parameter fine-tuning approaches,
such as IntTune, warrants further exploration. Ad-
ditionally, extending our approach to visual tasks
could provide valuable insights into its generaliza-
tion and versatility across modalities. Furthermore,
integrating SLoRA with advanced LoRA variants
presents a compelling direction for future research
to further enhance fine-tuning efficacy.
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A Detailed Derivation for Nystrom
Approximation

This section provides a detailed derivation of the
Nystrém approximation presented in Section 3, fol-
lowing the approach proposed in (Nemtsov et al.,
2016). Specifically, the quadrature technique is
applied to the sample matrix of W, followed by an
out-of-sample extension to approximate W'.

The basic quadrature technique of the Nystrom
method is used to approximate the Singular Value
Decomposition (SVD) of a matrix. In this context,
no eigen-decomposition is required. Specifically,
denote the matrix W € R™*"™ can be decomposed



as:

®)

o[ B

Fy Cw

where, Ay € R™*" is designated to be the sample
matrix, By € R™*(=") and Fyy € R"=7)%7 rep-
resent the remaining sampled column and row com-
ponents, respectively, and Cyy € R(m—m)x(n—r)
corresponds to the remainder of the matrix W.

The derivation begins with the SVD of Ay, ex-
pressed as:

Aw =UAHT, ©)

where U, H € R"*" are unitary matrices, and A €
R"™ " is a diagonal matrix. Assuming that zero is
not a singular value of Ay, the decomposition can
be further approximated. Accordingly, the matrix
U is formulated as:
U=AyHA. (10)
Let u’, h* € R" represent the i-th columns of U
and H, respectively. Denote u’ = {u{}/_, as the
individual elements of the ¢-th column of U. Using
Eq. (10), each element u; is expressed as the sum:

. 1 & .
u;:YZWUh;. (1)
T ]:1

The elements of Fjy can be used as interpola-
tion weights to extend the singular vector u® to
the k" row of W, where s + 1 < k < n. Let
at = {aj_ .., € R <1 denote a column
vector comprising all the approximated entries.
Each element ﬁ}; is computed as:

~i 1 ¢ i
= > Wiy - B (12)
A ]:1

Thus, the matrix form of @’ is given by @' =
+ Fw - h'. By arranging all the @"’s into a ma-
trix U = [@! 4% ... @"] € R"™*¥", the following
expression is obtained:

U=FyHA". (13)
The Eq. (9) can also be written as H = Aa, UAL
To approximate the right singular vectors of the
out-of-sample columns, a symmetric argument is
applied, yielding:

H = BLUAL. (14)

11

In that case, the full approximations of the left and
right singular vectors of W, represented by U and
H, respectively, are then obtained as follows:

U

H
U= |:FwHA1:| ’

B$VUA1] - (5

~

ii-|
The explicit Nystrom form of M is given by:

W =UAHT
U
_FwHAfl
_ [Aw By

| Fw  FwAj,Bw

] A[HT A'UTBy|

(16)

where A‘TV denotes the pseudo-inverse of W. In

this approximation, W does not modify Ay, By
and Fy but approximates Cyy by FWA?,'VBW.
This approach achieves a matrix approximation
using only the selected rows and columns, effec-
tively capturing the essential structure with reduced
computational complexity.

B Experiments on Various Initializations

For SLoRA, we kept the initialisation of the A
and B matrices the same as for LoRA, and in turn
explored the effect of different methods of initiali-
sation of the intermediate matrices on the results.
Specifically, we experimented with Kaiming initial-
ization and Gaussian initialization on all the NLG
tasks of LLaMA 2-7B, with the same experimental
setup as in Section 4. The performance of the mod-
els under these settings is shown in Table 7. The
results indicate that Kaiming initialization consis-
tently achieves better performance across all tasks.
Gaussian initialization also achieves competitive
results, which demonstrates the robustness of our
method. In our experiments, we use kaiming to
initialize SLoRA.

Tasks Kaiming Gaussian
GSMSK 56.48 56.10
MATH 10.68 9.56
HumanEval 23.78 23.2

MBPP 42.32 40.5
MT-Bench 4.85 3.93

Table 7: Different Initialization on SLoRA



Strategy LR GSMS8K MATH

JE-04 5648  10.68
SE-04 59.51  11.04
SLORA  »E 05 51.02 6.94
SE-05 52.84 836
2E-04 5770  9.94
SE-04 5481  10.60
NLORA  p 05 45.11 6.42
SE-05 5239  7.58

Table 8: Comparasion of different learning rate on
SLoRA and NLoRA

LR GSMS8K MATH

2E-04  43.29 5.74
SE-04  44.20 5.70
2E-03  44.28 6.86
SE-03  40.86 6.08

Table 9: Comparasion of Different Learning Rates on
IntTune

C Experiments on Various Learning
Rates

We evaluated the impact of four learning rates: 2E-
4, 2E-5, 5E-4 and 5E-5 on the model’s performance.
The experimental setup remains the same as de-
scribed earlier. The results of these experiments are
presented in Table 8. Among the evaluated learning
rates, SE-4 achieved the best overall performance.
However, we opted for 2E-4 in our experiments, as
its performance, while slightly lower than that of
5E-4, remained comparable and still exceeded the
original baseline. Moreover, at the learning rate of
2E-4, NLoRA exhibited lower loss and better con-
vergence behavior, making it a more appropriate
choice for our experimental setup.

For the case of fine-tuning only the intermediate
matrix, we tested the performance under different
learning rates. The results indicate that a learning
rate of 2E-3 achieved the best performance. The
result is shown in Figure 9.

D Experiments on Various Optimizers

We experimented with different optimizers on both
NLG and NLU tasks. In addition to the default
AdamW optimizer, we also evaluated the RMSProp
optimizer. Other experimental setups are the same
as Section 4. The experimental results are shown
in Table 10 and Table 11.

On NLG tasks, we observed that the RMSProp
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optimizer further improved the model’s perfor-
mance. However, its performance on NLU tasks
was relatively mediocre. This discrepancy might
stem from the underlying differences in the nature
of NLG and NLU tasks. NLG tasks typically in-
volve generating coherent sequences of text, which
require more stable gradient updates over longer
contexts. RMSProp’s adaptive learning rate mech-
anism, which emphasizes recent gradients, may
help maintain stability and enhance performance
in such scenarios. In contrast, NLU tasks often
involve classification or regression over shorter in-
put sequences, where AdamW’s weight decay and
bias correction might be more effective in avoid-
ing overfitting and ensuring generalization, thus
outperforming RMSProp in these tasks.

E Experimental Settings on NLU

We evaluate the performance on the GLUE bench-
mark, which includes two single-sentence tasks
(CoLA and SST-2), three natural language infer-
ence tasks (MNLI, QNLI, and RTE), and three
similarity and paraphrase tasks (MRPC, QQP, and
STS-B). For evaluation metrics, we report over-
all accuracy (matched and mismatched) for MNLI,
Matthew’s correlation for CoL A, Pearson’s corre-
lation for STS-B, and accuracy for the remaining
datasets.

In DeBERTa-v3-base, SLoRA and NLoRA were
applied to the Wg, Wi, and Wy, matrices, while
in RoBERTa-large, they were applied to the Wy
and Wy, matrices. The experiments for natural lan-
guage understanding (NLU) were conducted using
the publicly available LoRA codebase. For MRPC,
RTE, and STS-B tasks, we initialized RoBERTa-
large with a pretrained MNLI checkpoint. The
rank of SLoRA and NLoRA in these experiments
was set to 8. Optimization was performed using
AdamW with a cosine learning rate schedule. Ta-
ble 12 and Table 13 outline the hyperparameters
used for the GLUE benchmark experiments.

For IntTune, we set both the LoRA rank and
LoRA alpha to 8. The remaining parameter config-
urations are provided in Table 14.



Strategy Parameters GSM8K MATH HumanEval MBPP MT-Bench
LoRA 320M 42.30 5.50 18.29 35.34 4.58
NLoRA 323M 57.70 9.94 25.00 43.12 4.82
NLoRA+RMSProp 323M 58.10 10.82 25.60 43.40 4.99
Table 10: Comparision of Adamw and RMSProp on NLG

Strategy MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

LoRA 90.65 94.95 89.95 69.82 9387 9199 8520 91.60

NLoRA 90.74 96.22 9191 7341 9445 92.03 88.09 92.14

NLoRA+RMSProp 9041 9622 9191 68.61 94.18 92.03 88.09

91.86

Table 11: Comparision of Adamw and RMSProp on NLU

D DeBERTa-v3-base ‘ RoBERTa-large
ataset
LR  BS Epoch LoRA alpha ‘ LR  BS Epoch LoRA alpha
CoLA 3E-04 16 40 16 4E-04 8 20 8
SST-2 5E-04 16 10 8 S5E-04 16 10 8
MRPC 5E-04 32 100 16 2E-04 32 50 16
MNLI 3E-04 32 10 16 3E-04 32 10 16
QNLI 2E-04 32 20 16 6E-04 16 10 8
QQP 6E-04 32 20 8 6E-04 16 10 16
RTE 3E-04 32 40 16 5E-04 32 30 16
STS-B  5E-04 16 10 16 3E-04 16 30 16
Table 12: Hyperparameters of NLoRA on GLUE
Dataset DeBERTa-v3-base | RoBERTa-large
LR BS Epoch LoRA alpha ‘ LR BS Epoch LoRA alpha
CoLA 3E-04 16 40 16 4E-04 8 20 8
SST-2 5E-04 16 10 8 5E-04 16 10 8
MRPC 5E-04 32 100 16 2E-04 32 50 16
MNLI 3E-04 32 10 16 3E-04 32 20 16
QNLI 2E-04 32 20 16 6E-04 16 10 8
QQP 6E-04 32 20 8 6E-04 16 10 16
RTE 3E-04 32 40 16 SE-04 32 30 16
STS-B  5E-04 16 10 16 3E-04 16 30 16

Table 13: Hyperparameters of SLoRA on GLUE
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Dataset LR BS Epoch
CoLA 7E-03 16 40
SST-2  6E-03 32 30
MRPC 4E-03 16 50
MNLI 6E-03 64 20
QNLI 8E-03 64 20

QQP  6E-03 32 20
RTE  6E-03 16 25
STS-B  6E-03 16 60

Table 14: Hyperparameters for IntTune
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