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ABSTRACT

Post-stroke language impairments arise from disruptions in neurophysiological
pathways controlling speech production, affecting lexical, semantic, syntactic, and
articulatory-prosodic functions. These deficits extend from impaired cognitive-
motor planning to execution, manifesting as altered vocal fold dynamics that
compromise speech fluency and intelligibility. The high-dimensional and mul-
timodal nature of these impairments poses significant challenges to traditional
assessment methods, necessitating automated solutions that can capture the het-
erogeneity of disfluencies. We present a multimodal framework that integrates
foundation model embeddings with clinically relevant biomarkers for compre-
hensive speech assessment. Leveraging a purpose-built database of 600 post-
stroke patients, we fine-tune Whisper to extract encoder embeddings that cap-
ture pathological speech characteristics. These representations are integrated with
linguistic complexity metrics, physiological glottal parameters, and acoustic fea-
tures through neural networks, enabling biologically informed assessment. Our
model achieves 92.4% classification accuracy in stroke detection, outperforming
feature-based methods, with SHAP analysis validating modality-specific contribu-
tions. We further demonstrate clinical applicability through severity prediction on
Comprehensive Aphasia Test (CAT) scores, achieving an N-RMSE of 0.1299. By
combining speech-derived representations with domain-specific neurophysiologi-
cal markers, this framework provides a scalable approach for automated diagnosis,
severity tracking, and precision rehabilitation in post-stroke language disorders.

1 INTRODUCTION

Speech, as a biological signal, conveys information across multiple levels, from the physical vibra-
tions of the vocal folds to the lexical and semantic structures of language. This multidimensional
nature makes speech a robust biomarker for the evaluation of physiological and cognitive health,
particularly in neurological conditions (Ramanarayanan et al., 2022). However, speech analysis is
inherently complex due to inter-individual variability in vocal tract anatomy, speaking patterns, and
disease-specific manifestations (Stefaniak et al., 2022; Olafson et al, 2024). Effective speech anal-
ysis would require the integration of acoustic features (e.g., fundamental frequency, jitter, shimmer,
formant trajectories) and linguistic measures (e.g., lexical diversity, syntactic complexity, semantic
coherence). Traditional diagnostic tools, such as clinician-rated scales or standardised language tests
(e.g., Boston Diagnostic Aphasia Examination; Roth 2011), though valuable, are limited by their
reliance on subjective interpretation, lack of granularity, and inability to capture subtle, real-time
changes in speech. Additionally, these methods are often costly and resource-intensive, requiring
specialised training and significant time investment, which restricts their scalability and utility in
large-scale or remote clinical settings (Mahmoud et al., 2023; Le et al., 2018; Palmer & Enderby,
2012). These limitations underscore the need for objective, automated, and data-driven speech anal-
ysis tools that can provide quantifiable, reproducible, and clinically actionable insights.

Recently, large-scale foundation models have emerged as a promising approach for medical analysis,
particularly following the introduction of BioBERT (Lee et al., 2020) and ClinicalBERT (Alsentzer
et al., 2019) in early 2019, both of which built upon BERT (Devlin, 2018). The advancements
of these Large Language Models (LLMs) have been instrumental in enhancing foundation models,
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particularly in their capacity to process and generate domain-specific, context-rich language—an es-
sential factor for accurate language analysis in healthcare settings. More recently, multimodal LLMs
such as GPT-4V (Achiam et al., 2023) have demonstrated potential in supporting clinical decision-
making and management, though challenges in regulation and validation remain (Qiu et al., 2024).
Similarly, Me-LLaMA (Xie et al., 2024), a newly developed medical LLM family, has exhibited
superior performance across general and domain-specific medical tasks compared to existing open-
source medical LLMs. Building on these advancements, recent research has explored the application
of Whisper (Radford et al., 2022) specifically on speech disorders, where its pre-trained representa-
tions have demonstrated strong generalisability across diverse clinical contexts (Leung et al., 2024;
Jiang et al., 2024; Li & Zhang, 2024; Sanguedolce et al., 2023; 2024; Lee et al., 2024; Rathod et al.,
2023; Best et al., 2024). Unlike traditional machine learning methods that rely on task-specific
training and extensive labeled datasets, foundation models leverage pre-training on diverse speech
corpora to learn robust representations that generalize well in low-resource scenarios. This is partic-
ularly valuable for medical applications where labeled data is scarce and speech variability is high
due to disease severity and individual differences. However, while these models provide a strong
foundation, they still require domain-specific fine-tuning to capture the nuanced characteristics of
post-stroke speech disorders. The primary challenge remains the scarcity of large, clinically anno-
tated datasets suitable for fine-tuning, limiting generalization across diverse patient populations and
clinical settings.

To address this, we introduce a robust in-house post-stroke speech dataset of ≈ 1000 patients, devel-
oped over the years through a collaboration between different hospitals and our research facilities.
This corpus, specifically designed to capture the inherent variability and complexity of post-stroke
speech patterns, represents a significant step toward bridging the gap between general-purpose foun-
dation models and the demands of clinical applications in speech pathology. Our approach lever-
ages OpenAI Whisper (Radford et al., 2022), a state-of-the-art speech recognition model, to analyse
pathological speech. Whisper’s architecture is particularly well-suited for this task because of its
demonstrated near-human-level accuracy in low-resource settings and robust performance across di-
verse speaking conditions (Radford et al., 2022). The model’s effectiveness stems from extensive
pre-training on 680 000 hours of speech data encompassing varied acoustic conditions, speakers,
and languages. For clinical deployment, we implement a secure fine-tuning pipeline that addresses
the unique challenges of medical data handling. All model adaptations are performed within an
isolated, on-site computing environment, ensuring compliance with privacy regulations while min-
imising external network dependencies. Such approach ensures sensitive patient data throughout the
fine-tuning process. After adaptation, we extract embeddings from the model’s weighted encoder,
capturing high-level representations of pathological speech patterns. These learned representations
are then integrated into our multimodal classification framework alongside clinically relevant fea-
tures - including glottal, linguistic, and acoustic parameters - to enhance diagnostic precision while
maintaining interpretability. This combination leverages both the strengths of foundation models
and the domain expertise encoded in more established clinical metrics.

To validate our framework’s potential as an automated clinical assessment tool, we evaluate its
ability to replicate expert clinical judgment through regression analysis. Specifically, we predict
the scores from Comprehensive Aphasia Test (CAT; Swinburn et al. 2004), a standardised metric
traditionally assigned by speech therapists through time-intensive manual assessment. This regres-
sion task represents a step towards automated clinical decision support, as accurately predicting
CAT scores would enable rapid, objective, and consistent evaluation of speech impairment severity.
This capability, combined with our multimodal classification approach, provides a foundation for
healthcare AI systems that could support the assessment and management of diverse speech and
communication disorders in clinical settings.

2 METHODS

2.1 POST-STROKE SPEECH DATABASE

The database used in this study is an in-house 1 comprehensive corpus of post-stroke speech, devel-
oped for clinical and scientific research aimed at improving Automatic Speech Recognition (ASR)

1To ensure author anonymity, the name, link, ethics and database references will be added after the review
process.
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systems for disordered speech. It includes speech recordings from approximately 6000 healthy con-
trols and 1000 individuals with a history of stroke, collected as part of two longitudinal studies
conducted in collaboration with a leading research institution and an associated national healthcare
network. All participants provided informed consent in accordance with ethical approval prior to
data collection. The speech recordings include picture description tasks based on standard clini-
cal assessments of the Comprehensive Aphasia Test (CAT) and a beach scene picture stimulus we
designed. Additionally, the dataset features detailed orthographic English transcriptions performed
by trained speech pathologists, as well as phonetic transcriptions using the International Phonetic
Alphabet. The labeled dataset used for this study consists of 794 audio recordings from 578 unique
individuals, some of whom participated in multiple recording sessions to capture longitudinal recov-
ery and individual speech pattern variations. In total, the dataset comprises approximately 15 hours
of speech data. The dataset is predominantly male (70.79%), with an average age of 61.96 years at
the time of testing, while female speakers had an average age of 58.52 years. This gender imbal-
ance aligns with global trends indicating a higher incidence of stroke among males (Appelros et al.,
2009). Furthermore, as expected in stroke populations, the age distributions exhibit a left-skewed
pattern.

2.2 DATA PRE-PROCESSING

Before fine-tuning Whisper, data preparation was conducted to support the extraction of embeddings
and linguistic features. To ensure consistency, trained speech therapists handled the transcription
process, resulting in an inter-rater reliability of 73%. The transcriptions followed the standard-
ised Codes for the Human Analysis of Transcripts (CHAT; MacWhinney 2014) and were further
processed using the Computerised Language ANalysis software (CLAN;Conti-Ramsden 1996). A
pre-processing step was applied to remove special symbols used for annotating linguistic errors, in-
cluding those indicating semantic, phonological, and dysfluency-related issues. Additionally, when
neologisms or vocalisations appeared, transcribers provided phonetic representations, which were
later converted into Latin-alphabet phonemes while preserving their original sequence (Perez et al.,
2020).

The transcriptions also included annotations for false starts, filler words (e.g., er, erm), and other
interjections commonly found in dysfluent speech. Since filler words exhibit spelling variations
between American and British English, which could affect Word Error Rate (WER) in automatic
processing, these were normalised to match the conventions used in the Whisper training dataset. To
align transcriptions with corresponding audio files, utterance segmentation was manually marked
by expert transcribers following our established previous methodologies. This ensured that each
segment corresponded to a complete sentence rather than arbitrary fixed-length chunks, reducing the
risk of overfitting during model training. Instances of assessor speech present in the recordings were
also transcribed but subsequently excluded from the training dataset to ensure the model learned
only patient speech.

Since Whisper by default does not process audio recordings exceeding 30 seconds, longer files were
segmented into smaller units while maintaining alignment with their transcriptions. Additionally,
files shorter than 3 seconds posed computational challenges in Fourier transform calculations for
spectrogram generation (Torre & Romero, 2021). Instead of discarding these short recordings, they
were merged with adjacent utterances from the same speaker to preserve valuable data and optimise
training efficiency. All recordings were converted to WAV format, resampled to 16 kHz, encoded
with 16-bit resolution, and downmixed to mono. After pre-processing, the final curated dataset
contained approximately 13 hours of speech data. The data processing pipeline utilised several spe-
cialised tools, including SpeechBrain (Ravanelli et al., 2024), Pydub (Robert et al., 2018), FFmpeg
(Tomar, 2006), and SoX (Barras, 2012).

2.3 FINE-TUNING

Our fine-tuning approach builds on Whisper’s encoder-decoder transformer architecture. The Ope-
nAI model processes acoustic input through an encoder that converts 80-channel log-Mel spectro-
grams into rich representations via two convolutional layers and sinusoidal positional encoding.
These initial features are then refined through transformer blocks that capture long-range depen-
dencies, while the decoder architecture mirrors this structure using learned positional embeddings
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(Radford et al., 2022). To adapt this architecture for pathological speech recognition, we imple-
mented a systematic fine-tuning protocol. The dataset was divided 70% (551 minutes) for training,
18% (141 minutes) for validation, and 12% (94 minutes) for testing. To prevent data leakage and
ensure unbiased evaluation, the test set comprised recordings exclusively from speakers not repre-
sented in the training or validation sets. Whisper’s medium-sized has been selected and all trainable
parameters were tuned, allowing both acoustic and linguistic layers to adapt uniformly to patholog-
ical speech patterns. This full model adaptation approach, with no frozen layers, maximised the
model’s capacity to learn disorder-specific features. Training was conducted with a batch size of
16 per device, employing gradient accumulation for memory efficiency. The optimisation process
utilised the AdamW algorithm with cross-entropy loss minimisation, following a cosine learning
rate schedule initialised at 1 × 10−5 and incorporating a 1000-step warm-up phase. The model
was assessed at intervals of 1000 steps, with the checkpoint corresponding to the lowest WER on
the validation set retained as the best-performing version. Training continued up to a maximum of
6000 steps. To improve computational efficiency, mixed-precision arithmetic (fp16) and gradient
checkpointing were implemented, reducing memory overhead. The fine-tuning process required
approximately 8 hours and was executed using PyTorch (Paszke & Gross, 2019) alongside the Hug-
ging Face Transformers library (Wolf & Debut, 2019), utilizing a single NVIDIA RTX 6000 GPU.
The final evaluation was conducted using the WER, quantifying the discrepancy between Whisper’s
transcriptions and human-annotated ground truth. To establish a performance benchmark, we first
measured WER using the pre-trained Whisper model before comparing it against the fine-tuned
variant 2. Fine-tuning on the dataset significantly improved performance, reducing WER from the
baseline 39.60% to 21.51% on the validation set and from 43.62% to 21.93% on the test set. This
represents a substantial relative reduction, demonstrating the effectiveness of domain-specific adap-
tation. Such fine-tuned model is then used to extract embeddings and linguistic features.

2.4 FEATURE EXTRACTION

To ensure unbiased evaluation, Whisper-derived embeddings and linguistic metrics were extracted
only from the unseen test set used during fine-tuning (94 minutes). This prevents as well data leak-
age, as using the same speech samples from training could artificially inflate performance. Since em-
beddings encode speech characteristics learned during fine-tuning, reusing them from the training set
would exploit prior exposure. Likewise, linguistic features from Whisper’s ASR output might reflect
learned transcription patterns rather than actual speech impairments. To maintain consistency, we
applied the same test-set-only extraction to glottal and acoustic features across all modalities. The
test set was complemented with age-matched healthy speakers (µ = 61.51 years, σ = 10.55 years)
with no history of neurological impairments, which counts 90 minutes of recordings.

Embeddings To extract embeddings, we leverage the fine-tuned Whisper encoder, utilizing the fi-
nal hidden state of its last transformer layer as a compact and informative representation of each
input utterance. The extracted embeddings consist of a 1024-dimensional latent feature vector,
encapsulating both acoustic and linguistic attributes of speech. In the earlier layers, the encoder
captures low-level acoustic features (e.g., pitch, formants, energy), while deeper layers encode in-
creasingly abstract linguistic structures, including phonetic, lexical, and semantic information. The
HuggingFace implementation of Whisper was employed for this process (Wolf & Debut, 2019),
ensuring reproducibility and consistency across feature extraction. These embeddings serve as a
high-dimensional latent representation, providing a data-driven alternative to already established
features. By preserving key speech characteristics in a structured feature space integrating acous-
tic and linguistic cues within a single representation, these embeddings constitute a core modality
within our multimodal classification framework.

Linguistic Features Linguistic features were extracted from Whisper’s ASR output and validated
against manual transcriptions to ensure accuracy and reliability, as established in a previous work.
Using the NLTK library (Bird et al., 2009) for tokenization, part-of-speech tagging, and stopword
identification, the extracted 10 features capture lexical diversity, grammatical complexity, disfluen-
cies, filler word usage, part-of-speech patterns and content richness. Lexical diversity was assessed
using metrics such as total word count, unique words, type-token ratio (TTR), lexical density, and
noun-to-verb ratio, capturing vocabulary richness and accessibility. Grammatical complexity was

2Papers with extensive comparison with benchmarks will later be referenced after acceptance.
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measured through the ratio of function words to total words, indicating syntactic sophistication and
cohesion, while part-of-speech (POS) transitions helped identify syntactic patterns and irregularities.
Disfluencies were quantified by analysing filler words and their frequency, reflecting speech fluency.
Content richness, evaluated through the diversity of content words (e.g., nouns, verbs, adjectives),
provided insights into meaningful communication.

Glottal Features Glottal feature extraction provides a time-domain signal independent of vocal
tract resonances, allowing precise assessment of laryngeal function. The process involved two steps:
(1) isolating voiced segments using the PEFAC algorithm in MATLAB (Gonzalez & Brookes, 2014),
ensuring that only phonation-related portions were analysed, and (2) detecting glottal closure (GCI)
and opening instants (GOI) using the YAGA algorithm (Thomas et al., 2011). Once GCI and GOI
were identified, a set of 80 well established (Kadiri & Alku, 2019; Narendra & Alku, 2018; 2019;
2020; Corcoran et al., 2019) glottal parameters were extracted, categorised into time-domain and
frequency-domain features, through their summary statistics (mean, standard deviation, minimum,
maximum, kurtosis, median, skewness, and range).

The Time-Domain features quantify vocal fold motion over time. The Opening Quotient (OQ) and
Closing Quotient (CQ) measure the proportion of the glottal cycle in which the glottis remains open
or closed, respectively. Speed Quotient (SQ) captures the asymmetry of glottal pulses with devi-
ations indicating irregular vocal fold vibrations, while Amplitude Quotient (AQ) and Normalised
Amplitude Quotient (NAQ; normalised by the fundamental frequency) characterise glottal closure
intensity, aiding in the detection of breathy or pressed phonation. Frequency-Domain features as-
sess spectral properties of glottal vibrations. Harmonic Richness Factor (HRF) evaluates harmonic
energy relative to the fundamental frequency, reflecting the richness of voiced sounds. H1H2 and
H2H4 quantify harmonic amplitude differences, offering insight into vocal fold tension and phona-
tion type. Parabolic Spectrum Parameter (PSP) measures how closely the power spectrum around
each GCI resembles a parabolic shape, providing insights into spectral energy distribution. Peak
Slope (PS) assesses the sharpness of glottal closure, with steeper slopes indicating more abrupt
vocal fold contact, often linked to voice disorders.

Acoustic Features Acoustic parameters were extracted using the openSMILE Python library
(v. 3.0.1), employing the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPSv02;
Eyben et al. 2015). This standardised feature set comprises 88 parameters, selected for their rele-
vance in clinical and paralinguistic speech analysis already widely clinically proven for assessing
pathological speech (Shahin et al., 2019; Barche et al., 2020; Liu et al., 2022; Mawalim et al., 2023;
Kumar et al., 2024). The acoustic feature set encompasses prosodic measures (e.g., F0 stability, jit-
ter, shimmer) to assess pitch and phonatory control, spectral features (e.g., MFCCs, flux) for vocal
resonance and articulatory precision, and energy-related metrics (e.g., loudness, harmonics-to-noise
ratio, pauses) to evaluate fluency and rhythmic disturbances.

2.5 MULTIMODAL ASSESSMENT AND FEATURE ATTRIBUTION

To systematically classify speech patterns associated with neurological impairments, we implement
a multimodal classification neural network integrating acoustic, linguistic, and glottal biomarkers
alongside learned fine-tuned Whisper embeddings. The proposed neural network is a feedforward
model comprising three layers: (1) a fully connected layer with 64 units, Layer Normalization,
LeakyReLU activation, and Dropout (0.4); (2) a second fully connected layer with 32 units, Batch
Normalization, LeakyReLU activation, and Dropout (0.4); and (3) a final output layer with a single
neuron and Sigmoid activation for binary classification between patient and healthy speech samples.
For the loss, we incorporated a weighted variant of the Binary Cross-Entropy (BCE) loss, integrating
Focal Loss and L1 regularization as follows:

L = αt(1− pt)
γLBCE + λ∥θ∥1 (1)

where pt represents the predicted probability for the true class, αt is a dynamically computed
weighting factor that compensates for class imbalance, and γ controls the focusing mechanism,
reducing the loss contribution of easy-to-classify samples and emphasizing harder ones. The term
(1 − pt)

γ adjusts the impact of each sample based on prediction confidence, effectively prioritiz-
ing difficult cases. To further regularize the model, we introduce an L1 norm penalty ∥θ∥1, which
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promotes sparsity in the learned parameters, preventing overfitting and improving generalization.
Data is trained using 5-fold stratified group cross-validation on the training data before defined,
ensuring that speaker-level dependencies are maintained, followed by feature standardisation via
StandardScaler. Training employs also here the AdamW optimiser (lr = 1× 10−5, weight de-
cay = 0.01), gradient clipping (∥∇θ∥ ≤ 1.0), and a ReduceLROnPlateau scheduler that adjusts
the learning rate dynamically based on validation loss. Early stopping (patience = 12) is used to
prevent overfitting. Performance is measured via accuracy, precision, recall and F1-score. Next,
SHapley Additive exPlanations (SHAP) has been employed to assess the contribution of different
speech-derived features to patient classification. KernelSHAP was used to estimate feature attribu-
tions by measuring the impact of perturbing input variables on the model’s predictions. SHAP values
were computed across four feature modalities—acoustic, linguistic, glottal, and embeddings—to de-
termine their relative importance on the best fold of the full multimodal model. We then calculated
the mean absolute SHAP values for each modality, providing a quantitative measure of their influ-
ence on classification outcomes.

To assess the relationship between speech-derived biomarkers and the severity of impairment, we
performed a regression analysis on the patient cohort, using the Comprehensive Aphasia Test (CAT)
score as a measure of speech dysfunction tested by clinicians in hospitals. We trained a severity
regression model, namely a feedforward neural network consisting of a fully connected layer with
32 units and LeakyReLU activation, followed by an output layer for continuous score prediction.
The model was optimised using Huber loss with δ = 2.0, which provides robustness to outliers
while preserving sensitivity to small deviations. Training employed the AdamW optimiser with a
learning rate of 0.02 and weight decay of 0.01, along with a ReduceLROnPlateau scheduler
that adjusted the learning rate dynamically based on validation performance, with a patience of 11
epochs and a minimum learning rate of 5×10−5. Performance was assessed using range normalised
root mean squared error (N-RMSE) to account for variations in score distribution, as well as absolute
error distribution. The model was trained via 5-fold cross-validation and the average over folds is
reported. By creating a severity estimation through the different feature modalities, this analysis
complements the classification framework in order to provide a more fine-grained assessment of
speech deficits.

3 RESULTS

Tab. 1 show the results of the classification of individual and combined modalities. The multimodal
model that combined all features (including embeddings) achieved the highest performance, with
an accuracy of 92.4% and an F1-score of 0.924. Removing embeddings led to a drop in accuracy
(88.6%) and F1-score (0.885), highlighting the importance of learned representations in improving
classification accuracy. Among single modalities, acoustic features proved the most discriminative,
achieving an accuracy of 90.4% and an F1-score of 0.903, followed by glottal modality with 84.6%
of accuracy and a F1 score of 0.846. The embeddings-based classifier showed comparable results
to glottal features (accuracy: 80.5%, F1: 0.803), indicating that even alone learned speech repre-
sentations are able to decently capture key impairments. On the other hand, the linguistic modality
exhibited the most limited performance (accuracy: 66.3%, F1: 0.666), with precision (0.662) and
recall (0.657) suggesting a low power in distinguishing between post-stroke and healthy speech.
Post-classification, the bar chart (Fig. 1) illustrates the relative importance of each feature modality
in the Multimodal with embeddings model, as measured by the mean absolute SHAP values. The
plot reveals that embeddings have the highest mean absolute SHAP values, indicating they play a
crucial role in model predictions. This aligns with their contribution to the performance boost ob-
served in the classification setup, highlighting their ability to encode complex speech patterns and
pathologies effectively. Following embeddings, acoustic features exhibit the second-highest SHAP
values, underscoring their critical role in capturing temporal and spectral characteristics that are
highly indicative of neurological impairments.

Regression analysis of CAT scores demonstrated predictive errors across modalities ranging from
12.99% to 20.23% relative to the CAT points range, showing high overall performance in severity
prediction (Tab. 1). The box plot in Fig. 1 illustrates the distribution of absolute prediction er-
rors across modalities, with individual models showing more variability in errors. The multimodal
approach without embeddings achieved the best performance (Tab. 1) with the lowest N-RMSE
(0.1299) and a compact error distribution, suggesting that established clinical features remain cru-
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Table 1: Results for different feature modalities and multimodal combinations with (w/ Emb.) and
without (w/o Emb.) embeddings, for classifying controls and patients (Classification) and predicting
Comprehensive Aphasia Test (CAT) total scores (Regression).

Modality
Classification Regression

Accuracy F1-score Precision Recall N-RMSE
Embeddings 0.805 0.803 0.804 0.802 0.2023

Glottal 0.846 0.846 0.846 0.844 0.1883
Linguistic 0.663 0.666 0.662 0.657 0.1608
Acoustic 0.904 0.903 0.902 0.902 0.1540

Multimodal w/o Emb. 0.886 0.885 0.882 0.883 0.1299
Multimodal w/ Emb. 0.925 0.925 0.923 0.923 0.1801

Figure 1: (Left) Classification task SHAP relative importance of each feature modality measured by
mean absolute SHAP values. (Right) Regression task boxplot showing the distribution of absolute
prediction errors across the modalities and multimodal combinations with (w/ Emb.) and without
(w/o Emb.) embeddings.

cial for precise severity assessment. Among individual modalities, acoustic features exhibited the
narrowest error range (N-RMSE: 0.1540), reflecting their reliability, followed by linguistic features
(N-RMSE: 0.1608). Interestingly, while embeddings significantly enhanced classification perfor-
mance, their integration in the regression task led to slightly reduced accuracy (N-RMSE: 0.1801 vs
0.1299 without embeddings - t = 4.76, p = 0.008). This underscores the importance of tailoring
feature selection to the specific clinical objective, whether optimizing for diagnostic accuracy or
enhancing severity estimation.

4 DISCUSSION

Our analysis demonstrates the potential of foundation model-derived representations in conjunc-
tion with clinical metrics in post-stroke speech assessment. By combining embeddings that capture
high-level representations, acoustic features that represent fine-grained spectral details, and glot-
tal features that contribute unique motor-related insights, we achieved high classification accuracy.
The importance of embeddings in classification are in keeping with recent work (Syed et al., 2020;
Venugopalan et al., 2021; Bartelds et al., 2022; Neumann et al., 2024), who reported that learned
representations can capture subtle speech biomarkers overlooked by traditional features. Interest-
ingly, while embeddings enhanced classification performance, their reduced accuracy in severity
prediction indicates that foundation models might excel at detecting pathological patterns but re-
quire complementary clinical features for precise severity assessment. This suggests that, though
effective for capturing discriminative patterns in pathology detection, embeddings may struggle to
preserve the fine-grained relationships needed for severity scoring.

Compared to prior advancements in automated speech assessment, our work demonstrates notable
improvements in performance and methodology in classification. While Venugopalan et al. (2021)
achieved 82% accuracy using ASR embeddings for disordered speech classification, we advance
this approach by integrating clinical features for better pathology detection. In the context of stroke
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detection, Ou et al. (2025) validated the superiority of multimodal approaches, reaching 82.6%
accuracy and providing early evidence that integrated features outperform single modalities. Sim-
ilarly, Soltau et al. (2023) achieved 83% accuracy using a Perceiver-based sequence classifier for
neurological speech abnormalities. Particularly relevant to our approach, Zusag et al. (2023) lever-
aged Whisper with the AphasiaBank database to differentiate various types of aphasia from healthy
speech, reaching an F1 score of 90.6%. Our framework’s superior performance (92.4%) builds on
their findings while demonstrating the additional value of integrating clinical features with founda-
tion model representations.

To the best of our knowledge, the prediction of CAT scores from speech, as well as the use of
our metrics, has not been widely explored yet, precluding direct performance comparisons with
existing approaches. Nevertheless, such a multimodal analysis with clinically established features
shows high predictive ability, achieving a 12% error rate across the full CAT score range (0-216
points). This result is particularly noteworthy given that the CAT assessment encompasses multiple
linguistic domains including comprehension, expression, reading, naming, repetition and writing.
Indeed, by predicting such a score we were able to derive predictions for this comprehensive score
using solely audio recordings from the picture description task, suggesting that this focused speech
sample contains rich information about overall language abilities. These results suggest potential
clinical utility in supporting patient monitoring decisions, though further validation studies would
be valuable.

5 FUTURE WORK AND LIMITATIONS

Since our dataset includes additional neurobiological data such as blood samples and MRI scans, fu-
ture work will focus on expanding the multimodal framework to incorporate these modalities. This
integration will enable a deeper investigation into how speech-derived features correlate with neu-
roinflammatory markers, white matter integrity, and structural brain atrophy, offering a more com-
prehensive understanding of neurological impairment. Additionally, we plan to assess the model’s
predictive capabilities also for cognitive decline using the Montreal Cognitive Assessment (MoCA;
Nasreddine et al. 2005), a metric collected alongside CAT scores, to evaluate its ability to capture
broader neurological deficits beyond speech impairment. Given that stroke-induced speech impair-
ments often overlap with symptoms of other neurological conditions (e.g., Parkinson’s disease, mul-
tiple sclerosis), our framework could potentially be adapted to additional disorder profiles. Indeed,
a key limitation of our study is that the model was trained and tested on a single dataset, making its
generalisability to different clinical environments uncertain. Expanding validation to publicly avail-
able datasets such as AphasiaBank (MacWhinney et al., 2011) or DementiaBank (Lanzi et al., 2023)
would enable cross-pathology evaluation and strengthen the model’s robustness. Apart from data,
technical improvements could also enhance model performance; for example, speech enhancement
techniques would have improved a possible resilience to background noise and recording distortions.
Hyperparameter optimisation, alongside alternative architectures and dimensionality reduction ap-
proaches could have improved predictive accuracy and efficiency. Long-term clinical validation
remains essential to ensure model outputs provide meaningful insights for assessment and monitor-
ing. Our ongoing collaboration with an interdisciplinary team—including speech-language therapist
and neurologists—remains central to this process, ensuring technical advancements maintain clini-
cal relevance.

6 CONCLUSION

Our work demonstrates that accurately assessing post-stroke speech impairments requires represen-
tations that go beyond surface-level features, capturing the neurophysiological mechanisms underly-
ing disordered speech while bridging computational modeling with clinically interpretable insights.
The strong performance of this tailored approach underscores its potential to transform clinical as-
sessment, shifting from traditional, labor-intensive methods toward an intelligent fusion of mul-
timodal data streams and foundation models. Just as BERT revolutionized clinical text analysis,
Whisper-based models may mark a significant advancement in speech-based diagnostics, particu-
larly for early screening and severity assessment. By integrating computational models with clinical
expertise in a targeted manner, this research advances the adoption of automated speech analysis as
a viable tool for diagnosing and managing language disorders post-stroke
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MEANINGFULNESS STATEMENT

This work explores the meaningful representation of life through modeling fundamental biological
signals that reflect human cognition, communication, and motor control. Speech serves as a prime
example of such signals, emerging from the interplay of neurological, respiratory, and articulatory
systems. The heterogeneity of post-stroke lesions leads to diverse speech impairments, affecting lan-
guage processing, articulation, and prosody in unique ways. Our multimodal framework captures
this complexity by combining Whisper’s high-level speech representations with clinically grounded
features, enabling the detection of subtle biomarkers that could transform early diagnosis of neuro-
logical conditions.
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