Scaling Generative Verifiers For Natural Language
Mathematical Proof Verification And Selection

Sadegh Mahdavi' -2 Branislav Kisacanin'-3, Shubham Toshniwal', Wei Du', Ivan Moshkov'
George Armstrong', Renjie Liao?', Christos Thrampoulidis>', Igor Gitman'f

INVIDIA, 2University of British Columbia, 3Institute for Al R&D of Serbia

Abstract

Large language models have achieved remarkable success on final-answer mathe-
matical problems, largely due to the ease of applying reinforcement learning with
verifiable rewards. However, the reasoning underlying these solutions is often
flawed. Advancing to rigorous proof-based mathematics requires reliable proof
verification capabilities. We begin by analyzing multiple evaluation setups and
show that focusing on a single benchmark can lead to brittle or misleading conclu-
sions. To address this, we evaluate both proof-based and final-answer reasoning to
obtain a more reliable measure of model performance. We then scale two major
generative verification methods (GenSelect and LL.M-as-a-Judge) to millions of
tokens and identify their combination as the most effective framework for solu-
tion verification and selection. We further show that judgement prompt choice
significantly affects judging performance, but reinforcement learning can reduce
this sensitivity. However, despite improving proof-level metrics, reinforcement
learning does not enhance final-answer precision, indicating that current models
often reward stylistic or procedural correctness rather than mathematical validity.
Our results establish practical guidelines for designing and evaluating scalable
proof-verification and selection systems.

1 Introduction

Large Language Models (LLMs) have achieved remarkable progress in mathematical reasoning tasks,
reaching near-saturation on high-school competition benchmarks such as MATH [6] and AIME [15].
This success is driven in large part by the simplicity of evaluating final-answer problems: correct-
ness can be checked automatically, either through string matching or with lightweight equivalence
checks [16]]. This makes such tasks well-suited for reinforcement learning with verifiable rewards
(RLVR) [17] [17]], enabling steady improvements in model performance.

Closer inspection, however, reveals a major gap: LLMs often arrive at correct answers through flawed
reasoning [5]]. For advancing towards harder competitions such as the IMO or USAMO, where
solutions require rigorous proofs rather than just final answers, reliable proof verification becomes
essential. Unlike final answers, verifying natural-language proofs is inherently more complex,
requiring deeper understanding of logical structure and mathematical argumentation. Developing
reliable verification methods in this context could enable RLVR-style approaches to improve proof
generation, analogous to their success with final-answer tasks. This could involve building absolute
verification systems that determine whether a proof is correct, providing precise reward signals
for policy-gradient RL approaches such as GRPO [17], or designing selection and verification
mechanisms that leverage test-time computation to improve over standard pass@ 1 methods, with
outputs usable for self-improvement or expert iteration [24} 4]

Due to the success of LLMs in acting as verifiers [25) 9], we focus on LLM-based generative
verification methods. Particularly, our contributions are as follows: We start by establishing a robust

*Work done during internship at NVIDIA. fCorresponding Authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

evaluation setup which shows that existing datasets have significant limitations. In addition to that,
we explore various prompting options including instruction variation as well as adding rubrics. We
then explore different ways to scale test-time compute, namely ensembling, scaling the number of
parallel judgements [18,[27] and performing GenSelect [20]. Combining all this together we arrive at
a state-of-the-art proof judge method and confirm its effectiveness by applying it on both final answer
problems to select the best solution as well as on proof problems to select the best proof.

2 Related Work

Test-Time Scaling for Mathematical Reasoning. It has been shown that test-time scaling improves
performance on mathematical reasoning tasks. From early results on sampling multiple trajectories
from LLMs and majority-voting-based methods [21]] to more recent breakthroughs such as long
reasoning [8]], which scale the length of the chain-of-thought in the model. More recent approaches
involve generating multiple solutions and selecting the best one using a judge model via a generative
verifier [[11} 20} 3]], or iteratively refining solutions using feedback from a judge model [13]. Here,
we build upon GenSelect [20]], and LLM-as-a-Judge ideas and combine them to achieve even higher
performance on mathematical reasoning tasks, particularly the proof-based ones.

Mathematical Reasoning Beyond Final Answers. Recent research has focused on advancing
mathematical reasoning beyond simply producing final answers. Datasets such as PRM80OK [[10]
and ProcessBench [20] pioneered the training and evaluation of large language models (LLMs)
on process-level errors, moving past traditional final-answer-based assessment. More recently,
efforts have targeted proof-based and challenging mathematical problems, including those from the
International Mathematical Olympiad (IMO). Mahdavi et al. [14] evaluated state-of-the-art LLMs
on proof-based tasks, revealing common pitfalls such as overgeneralization from limited examples,
circular reasoning, and fabricating non-existent theorems. Dekoninck et al. [3]] further contributed to
this area by introducing new benchmarks for the rigorous evaluation of LLMs for the verification
and selection of proofs, concluding that LLLMs have approached human-level performance in the
evaluation of proofs.

Reward Models for Hard-to-Verify Tasks. In contrast to tasks with easily verifiable answers,
proof verification in natural language is an inherently challenging task, even for humans. Recent
works have explored training reward models to tackle such hard-to-verify tasks. While there is no
publicly available work on training reward models for proof verification, there have been various
works in other domains such as open-ended writing. The current mainstream approach is to train
generative verifiers or use off-the-shelf LLMs to judge the correctness or ranking of model-generated
solutions, and use the verifiers to guide the generation of better solutions. Team et al. [19] use a
self-critique-based approach to generate responses and act as its own critique to judge the response
given a predefined rubric for the task. Lu [12]] also use a self-critique approach to rank the generated
model responses of the underlying LLM for open-ended writing tasks. These rankings are then used
to produce rewards for training a reward model, which is then used to further finetune the LLM using
reinforcement learning.

3 Method

We first explain the datasets we use, and our test-time scaling approach, then, we justify different
prompts, alternative test-time scaling methods, and variable choices via ablation studies.

3.1 Scaling test-time compute

Choosing the evaluation set carefully is crucial. We describe the datasets we use for training and
evaluation. We find that the choice of evaluation set is crucial for developing and benchmarking proof
judgment models. We identify two sources of challenge in building a reliable evaluation set. First,
human label noise can be significant, making it difficult to obtain large-scale reliable ground truth
judgment labels. Second, model and problem imbalances in the dataset may lead models to exploit
spurious correlations to achieve high accuracy without genuinely understanding the mathematical
content of the proofs. For instance, we show that a text embedding-based multilayer perceptron (MLP)
trained on the training set of the Open Proof Corpus (OPC) dataset outperforms Claude-Sonnet-4 by
more than 5% (see Appendix [A]for more details). In this paper, we mainly experiment with three
datasets:

Challenge-19 Results
; n ns | n; | Acc (%
T Jud 7 > | | | o
: peagl X 64 | 1 | - | 8881
: . 128 | 1 | — | 9144
7 , :) 256 | 1 | - | 92.10
: DA : 10 N /Judge 0 r score = -
7 P;zof Co/ \ z Discarded. 128 | 16 | 32 | 91.44
i ; 256 | 16 | 32 | 96.05
7 : R 512 | 16 | 32 | 94.07
7 e) maj@512 82.23
: : n]g Q ! ‘
- pass@1 | 47.07
| duaon gy SCOTE o AIME 2025 Results
2 Chosen np | ns | ny | Acc (%)
L] 128 1 | - | 975
~ 128 | 16 | 32 100
maj@128 | 97.08
pass@1 | 9126

Figure 1: Left: Overview of our proposed test-time scaling method for proof selection. Given a
question, we first generate n,, candidate proofs by sampling from a language model. Then we run
a knockout GenSelect tournament to select the best proof among the candidates using the same
language model to select the top n, proofs. We estimate the correctness score of each proof using
LLM-as-A-Judge by sampling n; judgements for each proof. Finally, we select the proof with the
highest average correctness score as the final proof to solve the problem. Right: The tables show
accuracy results for different configurations of our method on GPT-OSS-120B, averaged across 8
seeds on AIME-2025 and Challenge-19 (a set of challenging final-answer problems from HMMT,
AIME, and CMIMC) combining LLM-as-a-Judge with GenSelect performs substantially better than
GenSelect alone, or majority voting.

* A collection of proofs from USAMO 2025, IMO 2025, and IMC 2025, with human-labeled
judgements from MathArena [2], as well as Gemini and OpenATI’s solutions to the IMO 2025. The
majority of the proofs are graded by at least two human graders, or are officially accepted solutions.
Although this dataset has the highest label reliability, it may still suffer from the imbalanced issue
mentioned earlier

We select 19 most challenging problems from AIME 2024, HMMT 2024, and CMIMC 2025
with integer final answers, and use them to construct a balanced evaluation set (calling the dataset
Challenge-19). We only keep the problems for which GPT-OSS-120B [[1] with high-reasoning
mode generates at least one correct final answer and has a solve rate lower than 70%. Then, we
generate an equal number of correct-final-answer and incorrect-final-answer solutions for each
problem using GPT-OSS-120B and Qwen3-235B-A22-Thinking-2507. The solutions in this dataset
are particularly useful since we can monitor the precision of a judge on this dataset. That is, if a
judge predicts a proof to be correct, precision computes how likely is it that the proof has the correct
final answer. Monitoring precision allows us to distinguish between judges that rely primarily on
superficial features (e.g., stylistic cues) versus those that genuinely assess the mathematical content.
Because of its balanced construction, this final-answer dataset provides a robust benchmark for
precision-based evaluation.

* The pass@n subset from the Open-Proof-Corpus dataset consisting of 60 problems with 8 proofs
per problem generated by the OpenAl o4-mini model. The task is to select the best proof among 8
generated proofs.

Test-Time Scaling via GenSelect Tournaments and LLM-as-a-Judge. Given the success of
generative verifiers via pairwise comparison [20, 3], and the sucess of LLM-as-a-Judge [22| 25| 18],
we propose to combine both methods to further scale the performance of proof selection at test time.

First, we generalize the GenSelect and LLM-as-a-Judge frameworks into a unified two-stage process.
Given a problem, we first generate n, candidate proofs by temperature sampling from a language
model. Then we run a knockout GenSelect tournament to select top ns proofs among the candidates
using the same language model. Finally, we run LLM-as-a-Judge to estimate the correctness score of
each proof by sampling n; judgements for each proof, and select the proof with the highest average
correctness score as the final proof to solve the problem.

Figure[T|illustrates our proposed method and accuracy results for different configurations on GPT-OSS-
120B. We find that this combined method significantly outperforms majority voting, and consistently
matches or outperforms GenSelect [20]. Notably, we achieve 100% accuracy on AIME-2025 across
all 8 runs with different random seeds using GPT-OSS-120B.

3.2 Ablation studies

LLM-as-a-Judge Prompt Ablation. We evaluate three prompts for LL.M-as-a-Judge: a general-
purpose prompt adapted from ProcessBench [26], and two proof-specific prompts from OpenProof-
Corpus [3] and a Gemini Agent [[7]. To standardize their outputs, we only modify the formatting to use
XML tags, leaving the prompt content unchanged. We refer to these prompts as General Summary,
OPC, and GIMO. Figure [2] (right) reports majority @5 results on both proof-level and final-answer
judgements. The results show that prompt choice has a substantial impact on LLM-as-a-Judge perfor-
mance: General Summary achieves high recall but low precision, GIMO achieves high precision but
low recall, and OPC strikes a balance between the two. Based on this trade-off, we adopt OPC as the
default prompt in our main experiments.

RL eliminates prompt variation. Given the high variation in the performance of different prompts,
we experiment with using RL to fine-tune a language model to be a better judge. We use the OPC
training set to train a Qwen3-30B-A3B-Thinking-2507 model using Group Policy Optimization
(GRPO) [17] with a binary reward, measuring whether the model judgment matches the ground
truth judgement. Figure[2]shows the training curve of the RL training with different prompts. We
observe that RL training significantly improves the performance on all the prompts and eliminates the
variation in performance across OPC and GIMO prompts. Although the OPC prompt initially exhibits
lower performance compared to the GIMO prompt, RL training leads to convergence to similar results.

RL does not improve final-answer precision, despite improving all the proof metrics. While we
observe that RL improves performance on the proof judgement (Figure[2Right), it does not improve
the precision on the final-answer problems. We hypothesize that the proof performance gain is likely
due to the model being able to identify incorrect style of proofs such as missing justifications rather
than truly reasoning about the mathematical content of the proofs. This will likely require scaling up
the training data with challenging problems, as well as scaling up the reinforcement learning training
to larger number of steps to gain more significant gains on the mathematical content judgement.

Adding rubric does not significantly improve performance. We evaluate whether including a
ground-truth rubric in the prompt during verification improves the model’s ability to judge proofs
and enables more effective auto-labeling. Overall, adding the rubric does not lead to a substantial
performance gain in proof judgment, except for improvement in final-answer precision (see Figure 2]
Right). Surprisingly, models trained without a rubric outperform those trained with one on proof-
based judgment, even though they underperform on the OPC validation curves shown in Figure [2]
Our best-performing model is, in fact, trained without a rubric but evaluated with a rubric at test time.

Ensembling different judges does not outperform the best single judge. As an alternative scaling
strategy, we evaluate ensembles formed by averaging the correctness scores of different judges
(i.e., combining half the scores from one judge and half from another). We test this approach on
the OPC-pass@n proof selection task and find that ensembling generally fails to surpass the best
individual judge. The only exception occurs when one judge is a model trained on the OPC dataset
with reinforcement learning (see Figure [3]in the Appendix), which we attribute to adaptation to
in-distribution training data.

See Appendix [C] for more ablation studies on the number of sampled judgements,and the impact of
different base models.

| Proofs | Final Answers*

GRPO Validation Curves Prompt
| Prec Rec F1 | Prec Rec

0.86 _\/\\ AT~ 4 General Summary 18.28 99.89 3091 | 58.21 74.86

g vl GIMO 57.58 87.06 69.28 | 64.85 15.53
508 OPC 22.88 99.96 37.23 | 60.41 6743
K082 OPC (Rubric) 2446 99.89 39.30 | 92.25 7745
5 080 —e— GIMO OPC RL 54.03 9457 68.75 | 62.59 17.18
g —=— OPC GIMO RL 49.66 95.81 6540 | 66.29 22.65
Sos it — 8};% gi (Rubric) | 39.72 9898 56.69 | 98.15 5002
0.76 OPC + Rubric (GT-Proof »Rubric) 39.09 98.64 5599 | 98.12 49.06

0 20 40 60 m 80 100 120 140 160 OPC RL

Training Steps (No-Rubric_+Rubric) 59.74 95.09 73.35 | 99.31 21.27

Figure 2: Left: Training curves for RL training of Qwen3-30B-A3B-Thinking-2507 on the OPC
dataset. (1) Different prompts converge to similar performance after RL training. (2) Including the
ground-truth proof or rubric in the prompt improves validation performance by 2—3%. (3) Training
with both rubric and ground-truth proof achieves comparable performance. Right: Majority @5
results for the Math Proof Judge evaluation using Qwen3-30B-A3. See Table[]in the Appendix for
full results, additional models, and prompt ablations. *For final-answer problems, precision and recall
are computed based solely on the correctness of the final answer.

4 Conclusion

In this work, we addressed the critical challenge of verifying and selecting natural-language mathe-
matical proofs using LLMs. We showed a unified test-time scaling approach that combines GenSelect
tournaments with LLM-as-a-Judge evaluation performs the best at scale. We made a surprising
finding: while reinforcement learning eliminates prompt variation and improves proof-level met-
rics, it does not improve final-answer precision, suggesting current approaches may rely more on
recognizing stylistic features rather than deep mathematical understanding.

Future Directions. An important direction for future work is to focus on problems at the frontier
of current LLMSs’ solving capabilities. By carefully selecting such challenging problems and rigor-
ously labeling them, we aim to create high-quality benchmarks that drive further improvements in
proof-judgment and problem-solving models. We also plan to leverage RL to further scale up the
performance of LLM-based judges and solvers, as well as explore other scaling methods such as
process supervision, where intermediate reasoning steps are supervised rather than the final outcome.

References

[1] Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus,
Rahul K Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-0ss-20b model
card. arXiv preprint arXiv:2508.10925, 2025.

[2] Mislav Balunovié, Jasper Dekoninck, Ivo Petrov, Nikola Jovanovi¢, and Martin Vechev.
Matharena: Evaluating llms on uncontaminated math competitions, February 2025. URL
https://matharena.ai/.

[3] Jasper Dekoninck, Ivo Petrov, Kristian Minchev, Mislav Balunovic, Martin Vechev, Miroslav
Marinov, Maria Drencheva, Lyuba Konova, Milen Shumanov, Kaloyan Tsvetkov, et al. The
open proof corpus: A large-scale study of llm-generated mathematical proofs. arXiv preprint
arXiv:2506.21621, 2025.

[4] Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing and
proving. arXiv preprint arXiv:2502.00212, 2025.

[5] Jiaxing Guo, Wenjie Yang, Shengzhong Zhang, Tongshan Xu, Lun Du, Da Zheng, and Zengfeng
Huang. Right is not enough: The pitfalls of outcome supervision in training llms for math
reasoning. arXiv preprint arXiv:2506.06877, 2025.

[6] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
CoRR, abs/2103.03874, 2021. URL https://arxiv.org/abs/2103.03874.

https://matharena.ai/
https://arxiv.org/abs/2103.03874

[7] Yichen Huang and Lin F Yang. Gemini 2.5 pro capable of winning gold at imo 2025. arXiv
preprint arXiv:2507.15855, 2025.

[8] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

[9] Shalev Lifshitz, Sheila A Mcllraith, and Yilun Du. Multi-agent verification: Scaling test-time
compute with multiple verifiers. arXiv preprint arXiv:2502.20379, 2025.

[10] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

[11] Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and Juanzi Li. Pairjudge rm: Perform
best-of-n sampling with knockout tournament. arXiv preprint arXiv:2501.13007, 2025.

[12] Xun Lu. Writing-zero: Bridge the gap between non-verifiable problems and verifiable rewards.
arXiv preprint arXiv:2506.00103, 2025.

[13] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534-46594,
2023.

[14] Hamed Mahdavi, Alireza Hashemi, Majid Daliri, Pegah Mohammadipour, Alireza Farhadi,
Samira Malek, Yekta Yazdanifard, Amir Khasahmadi, and Vasant Honavar. Brains vs. bytes:
Evaluating 1lm proficiency in olympiad mathematics. arXiv preprint arXiv:2504.01995, 2025.

[15] OpenAl. Gpt-5 system card. Technical report, OpenAl, 2025. URL https://cdn.openai.
com/gpt-5-system-card.pdf. Accessed: 2025-09-19.

[16] ByteDance Seed, Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang,
Chengyi Wang, Xiangpeng Wei, Wenyuan Xu, et al. Seedl. 5-thinking: Advancing superb
reasoning models with reinforcement learning. arXiv preprint arXiv:2504.13914, 2025.

[17] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[18] Wenlei Shi and Xing Jin. Heimdall: test-time scaling on the generative verification. arXiv
preprint arXiv:2504.10337, 2025.

[19] Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

[20] Shubham Toshniwal, Ivan Sorokin, Aleksander Ficek, Ivan Moshkov, and Igor Gitman. Gense-
lect: A generative approach to best-of-n. arXiv preprint arXiv:2507.17797, 2025.

[21] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022.

[22] Chenxi Whitehouse, Tianlu Wang, Ping Yu, Xian Li, Jason Weston, Ilia Kulikov, and Swar-
nadeep Saha. J1: Incentivizing thinking in llm-as-a-judge via reinforcement learning. arXiv
preprint arXiv:2505.10320, 2025.

[23] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chen Zhang, Chuanqi Tan, Daxin Jiang, Dongdong Zhang,
Fandong Meng, Fuli Luo, Guolin Ke, Hang Yan, Hao Tian, Hong Chen, Hongbin Zhang,
Hongyi Yuan, Huanbo Luan, Hui Liu, Jiayi Wang, Jidong Zhai, Jindong Chen, Jinhui Liu,
Jingiu Sun, Jiong Cai, Jizhou Huang, Jun Xie, Junyang Lin, Kai Chen, Lei Li, Lei Wang, Liang
Wang, Lianxin Jiang, Linjun Shou, Liyang Lu, Lu Chen, Lu Wang, Mengdi Wang, Ming Gong,

https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf

Ming Yan, Ming Zhou, Nan Duan, Pengcheng Shi, Qian Liu, Qiang Qu, Qiangian Dong, Qiang
Wang, Qingsong Wen, Qun Liu, Renjie Zheng, Ruofei Zhang, Rui Wang, Shuming Ma, Shuo
Ren, Shuxin Zheng, Songlin Hu, Tao Yu, Tianyu Liu, Tong Xiao, Wei Li, Wei Wang, Wenbin
Jiang, Wenhao Huang, Wenxuan Wang, Xiaodong Liu, Xiaofei Sun, Xiaohui Yan, Xiaojun Wan,
Xiaolei Wang, Xiaoyan Zhu, Xin Jiang, Xing Xie, Xinyan Xiao, Xipeng Qiu, Xu Tan, Xuefeng
Bai, Xuejun Ma, Xun Wang, Yan Gao, Yang Liu, Yanghua Xiao, Yanyan Lan, Yao Meng,
Yaqing Wang, Yichong Xu, Yifan Wang, Yihong Chen, Yiming Cui, Yining Wang, Yiqun Liu,
Yixuan Su, Yongbin Li, Yongfeng Zhang, Yongxin Lian, Yu Bai, Yu Sun, Yuan Yao, Yuanhang
Zhang, Yucheng Wang, Yufan Jiang, Yujie Zhang, Yujing Wang, Yunchang Yang, Yunzhi Yao,
Zhenzhong Lan, Zhiwei Zhao, Zhiwu Lu, Zhiye Liu, Zhiwei Wang, Zhiyuan Liu, Zihang Jiang,
and Zixuan Zhang. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025. URL
https://arxiv.org/abs/2505.09388.

[24] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476-15488, 2022.

[25] Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
Agarwal. Generative verifiers: Reward modeling as next-token prediction. arXiv preprint
arXiv:2408.15240, 2024.

[26] Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng
Liu, Jingren Zhou, and Junyang Lin. ProcessBench: Identifying process errors in mathematical
reasoning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
Pilehvar, editors, Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1009—1024, Vienna, Austria, July 2025. Association
for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.50.
URL https://aclanthology.org/2025.acl-1long.50/,

[27] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595-46623, 2023.

A Pitfalls of imbalanced evaluation set

We demonstrate that when an evaluation set is imbalanced (due to model choice or problem hardness
imbalance), even simple heuristics can cause large variations in measured performance. As a case
study, we consider the training and test sets of the Open-Proof-Corpus (OPC) [3]]. Using the training
set, we train a simple two-layer Multi-Layer Perceptron (MLP) binary classifier on text embeddings
of (problem, proof) pairs. The embedding model is a small Qwen3-0.6B [23] embedding model.
Using this setup, we achieve 75.34% accuracy on the OPC test set.

To further illustrate this phenomenon, we implement a simple heuristic: classify a proof as incorrect
if it contains the word “triangle,” correct if it contains the phrase “---,” and incorrect otherwise.
Surprisingly, this heuristic achieves 65.07% accuracy on the test set, outperforming Qwen3-8B and
GPT-4.1. Its success stems from the fact that LLMs often generate incorrect geometry proofs, so
predicting all geometry proofs as incorrect already yields high accuracy. Moreover, OpenAl thinking
models tend to produce more correct proofs than other LLMs, and they use “---""to separate different
proof sections. Consequently, despite having no real understanding of proof correctness, this heuristic
attains high accuracy due to test-set imbalance.

A similar issue has been observed by Shi and Jin [18]] in the context of training judge models for
final-answer judgement. They show that providing RL training sets composed entirely of correct
or incorrect problems leads to lower performance than using sets where each model produces both
correct and incorrect answers. While their observation pertains to training, we find that analogous
effects occur on validation sets of the judge as well.

Finally, we observe that GPT-OSS-120 achieves 87.67% accuracy on the OPC test set (maj8), whereas
the estimated human error rate on this set is 9.6% [3]]. This discrepancy indicates that the OPC test
set is not suitable for evaluating strong proof graders. Consequently, in the main experiments, we
only use the training set to train a weaker model, Qwen3-30B-A3, as a proof grader.

https://arxiv.org/abs/2505.09388
https://aclanthology.org/2025.acl-long.50/

0.344

0.334

Accuracy
°
&
I

Accuracy

o
w
et

0.30¢,
0.31
1 3 5 7 9 11 13 1517 19 21 23 25 27 29 31 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Number of Judgements (n)) Number of Judgements (n;)
n=4 n=5
0.40 Sy .,...:3 0.42
> 038 /Z,:’m >, 040
) J 19
© ©
5 E
] 0 0.38
£ 036 4
0.36
0.344¢
0.34
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Number of Judgements (n)) Number of Judgements (n))
n=6 n=7
0.46
0.44
e N
0.42 e’
5 z
& .40 et e
=1 =1
O A [
v O
< <
0.38
0.36
0.344
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Number of Judgements (n)) Number of Judgements (n))
n=8
0.48

gpt-oss 120B

Qwen3-8B OPC RL

Qwen3-32B Step Agent

Qwen3-235B-A22B-Thinking

gpt-oss 120B + Qwen3-8B OPC RL

Qwen3-32B Step Agent + gpt-oss 120B

gpt-oss 120B + Qwen3-235B-A22B-Thinking
Qwen3-32B Step Agent + Qwen3-8B OPC RL
Qwen3-235B-A22B-Thinking + Qwen3-8B OPC RL
Qwen3-32B Step Agent + Qwen3-235B-A22B-Thinking

0.46 1

0.44

fHHe

Accuracy
o
=
S

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Number of Judgements (n))

Figure 3: LL.M-as-a-Judge performance on selecting the best proof among 8 generated proofs from
OPC pass@n subset. Higher number of judgements leads to better performance, plateauing around
20-30 judgements. Furthermore, ensembling multiple models does not lead to any performance
gain, and often the result does not exceed the strongest LLM, except for ensembling an 8B model
trained with RL on the training set of OPC. We suspect that the improvement comes from the fact
that the 8B model trained with RL is trained on the same distribution as the test set, and therefore is
complementary to other LLMs.

Table 1: Benchmarking LLMs as proof graders. All LLM numbers are taken from Dekoninck et al.
[3]]. We observe that a simple MLP classifier and a simple heuristic can outperform many LLMs.

Judge pass@1
Human 90.4
Gemini-2.5-Pro 85.4
OPC-R1-8B 83.8
OpenAI-O4-Mini 83.8
OpenAI-O3 83.1
Gemini-2.5-Flash 82.7
Qwen3-235B-A22 81.8
DeepSeek-R1 80.9
MLP Classifier 75.3
Qwen3-30B-A3 74.0
DeepSeek-R1-Qwen3-8B 70.7
Claude-4-Sonnet 70.6
Format Heuristic 65.07
Qwen3-8B 64.4
GPT-4.1 61.4
Baseline 53.2

Table 2: List of challenging final-answer problems from HMMT, AIME, and CMIMC used in the
Challenge-19 dataset. All problems have an integer final answer.

Index Problem ID

1 CMIMC 2025 P5

2 CMIMC 2025 P7

3 CMIMC 2025 P18

4 CMIMC 2025 P34

5 AIME 2024 P7

6 AIME 2024 P14

7 AIME 2024 P26

8 HMMT Nov 2024 HMIC 1

9 HMMT Nov 2024 Guts 19

10 HMMT Nov 2024 Theme 7

11 HMMT Nov 2024 Theme 9

12 HMMT Feb 2024 Guts 28

13 HMMT Feb 2024 Guts 29

14 HMMT Feb 2024 Combinatorics 1
15 HMMT Feb 2024 Combinatorics 4

16 HMMT Feb 2024 Combinatorics 9
17 HMMT Feb 2024 Combinatorics 10
18 HMMT Feb 2024 Algebra 10

19 HMMT Feb 2025 Team 4

B Experimental Details

For all the models in this work, we allocate a 100K completion length, and use the recommended
sampling parameters by the model providers. For GPT-oss models, we sample with temperature 1.0
and top-p 1.0, for Qwen models, we sample with temperature 0.6, top-p 0.95 and top-k 20. For other
models, we use temperature of 0.7 and topp 0.95.

C Further Ablation Experiments

GenSelecting judgements improves absolute judgement performance. We further experiment
with scaling the inference time compute through GenSelect on the list of judgements to improve

absolute judgement performance. That is, given a problem, a proof, and n; judgements, we use
GenSelect to select the best judgement among the n; judgements and use that judgement to evaluate
the proof. We run this genselect for n; seeds and report the majority @5 results in Table@ We observe
improvements in precision and F1 for both GPT-OSS-120 and Qwen3-30B-A3-Thinking, while recall
drops slightly. However, when incorporating GenSelect into proof-selection (i.e., selecting the best
proof among candidates), we observe no performance improvement. This suggests that GenSelect is
particularly beneficial for absolute judgement selection, where choosing a threshold is not possible,
but does not provide gains in the proof-selection setting.

Table 3: GPT-OSS-120 and Qwen3-30B-A3-Thinking evaluation. We report precision, recall, and F1
for proof problems, and precision for final-answer problems.

Model Judgement Proof Problems \ Final-Answer Problems
Precision Recall F1 \ Precision
GPT-0OSS-120 LLM-as-Judge 46.28 99.17 63.10 86.18
GPT-OSS-120 Judge GenSelect 54.46 91.21 68.19 90.13
Qwen3-30B-A3-Thinking LLM-as-Judge 22.08 9996 37.23 60.41
Qwen3-30B-A3-Thinking Judge GenSelect 30.65 94.49 46.29 66.26

Table 4: Majority @5 Results for Math Proof Judge Evaluation, averaged across 32 seeds.

p | Proofs | Final Answers
rompt
| Precision Recall F1 Avg Tokens | Precision Recall Avg Tokens
Qwen3-30B-A3B-Thinking-2507
General Summary 1828 +£0.28 99.89 + 045 30.91 + 041 8587 5821 +£1.37 74.86 £2.19 11813
GIMO 57.58 £2.30 87.06+2.95 69.28 +2.09 8503 64.85 £5.88 15.53 £2.39 10025
Gemini 1 56.01 +£1.95 88.72+2.34 68.65+ 1.87 8664 62.04 £459 17.14+1.83 10352
Gemini 2 54.69 +2.53 88.98 +231 67.70 £2.17 8779 6531 +£3.97 1855+ 1.74 10716
OPC 22.88+0.57 99.96 +£0.26 37.23+0.76 6327 6041 £1.52 6743 £2.30 8609
OPC (Rubric) 2446 £0.51 99.89 +045 39.30+0.67 6046 9225+ 144 7745+225 10211
Prompt 1 (Ablation) 19.43 +0.30 100.00 32,54 +£0.42 7276 5823 +£1.40 7839 +1.70 9793
Prompt 2 (Ablation) 20.68 +0.35 100.00 34.27 +0.49 6856 59.21 £1.21 73.08 +1.91 9323
Prompt 3 (Ablation) 21.99 +£ 047 99.36 +£0.97 36.01 +0.65 7774 6142 +132 7627 +1.92 10994
Prompt 4 (Ablation) 23.77 £0.46 99.96 +0.26 38.41 £ 0.60 6634 6032+ 190 64.41+2.73 8995
Prompt 5 (Ablation) 16.65+0.21 99.96 +£0.26 28.54 £0.32 7757 56.64 +£1.17 81.63 £1.98 11123
Prompt 5 (Rubric) 22274038 9653+ 1.15 36.18+0.55 5999 98.54 £0.64 9476 +£1.35 11273
Prompt 6 (Rubric) 2728 £0.69 99.02+ 1.15 4277 +0.88 5656 95.21 £1.68 74.61 £2.77 10182
OPC RL 5403+ 1.81 9457 +244 6875+ 1.76 5271 62.59 £3.59 17.18 £ 1.50 6070
OPC RL (Rubric) 39.72+1.06 9898 +1.32 56.69 + 1.15 5380 98.15£0.68 50.02 £ 2.60 8238
OPC RL (Train GT Proof, eval Rubric) | 39.09 + 1.24 98.64 +1.25 55.99 + 1.38 5362 98.12 £ 1.28 49.06 £ 2.67 8216
OPC RL (Train w/o rubric, eval rubric) | 59.74 +2.53 95.09 £2.33 73.35+227 4997 9931 +£1.59 2127 +£195 6897
GIMO RL 49.66 £1.50 9581 +£221 6540+ 1.52 6008 66.29 +£3.47 22.65+ 1.87 7041
GPT-0SS-120B
General Summary 41.82+144 9547+1.73 58.15+1.57 17443 86.32+2.53 52.67 +£2.31 30709
GIMO 94.11 £3.26 45.09 +3.07 60.90 +2.96 15599 94.60 £ 12.18 2.00 £ 1.41 24512
Gemini 1 96.22 +£2.78 5426 +3.95 69.29 +3.24 12933 83.50 +£26.90 1.84 +1.09 21280
Gemini 2 94.82 +£3.08 55.13+4.36 69.62+3.62 12977 85.78 +£19.59 2.86 +£1.33 22172
OPC 46.28 £1.24 99.17 £1.08 63.10 £ 1.22 16807 86.18 +2.53 50.29 + 1.89 32529
OPC (Rubric) 4432 +£1.29 99.89+045 61.39+1.25 10502 99.61 £0.79 49.22 £2.70 16848
Prompt 1 (Ablation) 47.65+140 9796+ 1.12 64.10+ 1.38 11267 82.23 £2.38 37.84 +242 24112
Prompt 2 (Ablation) 46.99 £0.94 98.04 £1.36 63.52+0.97 10616 81.56 +2.47 3335+1.59 21565
Prompt 3 (Ablation) 4829 +£1.39 9721 +£1.15 64.52+1.34 10468 83.16 £2.07 34.88 +1.98 21268
Prompt 4 (Ablation) 46.12+£1.00 98.83 £1.30 62.88 +1.07 11388 8175+ 1.78 39.06 +2.30 20479
Prompt 5 (Ablation) 4455 +121 99.58 £0.78 61.56 + 1.21 12478 8522+ 1.88 49.12 +2.00 24336
Prompt 5 (Rubric) 4736 +£1.25 89.51+1.74 6193 +1.29 4587 100.00 67.39 +2.87 13153
Prompt 6 (Rubric) 46.47 £1.18 9834 +129 63.11+1.26 9273 99.81 £0.57 50.76 £2.33 16418
GLM-4.5-Air
General Summary 20.49 £ 0.56 94.53 +1.86 33.68 £0.82 16168 62.01 £1.92 60.65 +2.82 20373
GIMO 54.63+3.16 83.89+3.50 66.13+3.04 11006 70.35 £ 6.45 20.75 £2.65 13866
OPC 2090 £0.49 9589+ 1.72 3432+0.71 13331 67.88 £2.14 66.02 £2.74 19184

10

D Prompts

OPC Prompt

You are judging the correctness of an LLM—generated proof for a math problem.
Input:

Your input will consist of the following components:

— sxProblem Statements: A mathematical problem that the proof is attempting to solve.

— xxProof Solutions:: The proof that you need to evaluate. This proof may contain errors, omissions, or
unclear steps. The proof was generated by another language model, which was given the following
instructions:

<model_prompt>

— You are creating a proof, not a proof outline. Each step should be carefully explained and documented.

If not properly explained, the judge will assume that you cannot explain it, and therefore decrease
your grade.

— You can use general theorems and lemmas, but only if they are well-known. As a rule of thumb: if the
result has a name and is famous enough to have a Wikipedia page or something similar to describe
it, it is allowed. Any result from papers that would not be taught in high school or low—level
bachelor courses in mathematics should not be used. Any use of such results will immediately give
you a zero grade.

— Do not skip computation steps in your proof. Clearly explain what transformations were done and why

they are allowed in each step of a calculation.

— You should use correct LaTeX notation to write equations and mathematical symbols. You should
encompass these equations in appropriate symbols ("\\(" and "\\)" for inline math, "\[" and "\\]" for
block math) to enhance the clarity of your proof. Do not use any unicode characters.

— Your proof should be self—contained.

— If you are not sure about a specific step, or do not know how to prove an intermediate result, clearly
state this. It is much preferable to indicate your uncertainty rather than making incorrect statements

or claims.

</model_prompt>

How the solution should be graded:

A solution should be considered correct even if it would earn 5+/7 points in a standard grading format.
Examples of small penalties worth 1 point are if the solution:

— Makes a small computational mistake that can be easily fixed

— Misses an edge case which can be easily proven/disproven

— Skips over a step that follows without much reasoning or manual work

Depending on the severity and the context, you may also not penalise a given error. On the other hand, a
solution should be marked as incorrect if:

— It marks a step as trivial, if it is not immediately obvious with little reasoning why this would be the
case.

— It omits algebra—heavy computational steps, regardless of whether or not it has outlined the
methodology. Skipping shorter computations should be permitted.

— Generalizes over a pattern without rigorously describing the pattern, or without proving any relevant
properties.

— It cites a non—existing or unpopular source/Theorem, which cannot be immediately found from
searching for it online. Thus, any theorems that can be immediately found and have a Wikipedia
article are allowed.

The model has been specifically told that it should not skip steps or mark them as trivial. Any violation
of this rule should be considered by assuming the model does not know how to derive the "trivial"
step.

Scoring instructions

If you believe the proof is correct, end your analysis with the following two tags:

<summary>One—paragraph summary explaining why the proof is correct</summary>

<judgement>Judgement: Yes</judgement>.

If you believe the proof is incorrect, end your analysis with the following two tags:

11

<summary>One—paragraph summary explaining why the proof is incorrect</summary>
<judgement>Judgement: No</judgement>.

Problem Statement:
{problem}

Model Solution:
{proof}

General Summary Prompt

[Instructions]

I will provide a math problem along with a solution. Your task is to review each step of the solution in
sequence, analyzing, verifying, and critiquing the reasoning in detail. You need to provide the
analyses and the conclusion in the following format:

= When you analyze each step, you should use proper verification, recalculation, or reflection to indicate
whether it is logically and mathematically valid. Please elaborate on the analysis process carefully.

= If an error is detected in any step, you should describe the nature and cause of the error in detail, and
suggest how to correct the error or the correct approach. Once a step is found to contain any error,
stop further analysis of subsequent steps and provide your judgement.

* If no error is detected in any step, you should provide your judgement.

[Format]

After your analysis and conclusion, your response MUST follow this exact format:

For correct solutions, you must end your response with:

<summary>One—paragraph summary explaining why the solution is correct</summary>
<judgement>Judgement: Yes</judgement>

For incorrect solutions, you must end your response with:

<summary>One—paragraph summary explaining why the solution is incorrect</summary>
<judgement>Judgement: No</judgement>

[Problem]

{problem}

[Solution]

{proof}

GIMO Prompt

You are an expert mathematician and a meticulous grader for an International Mathematical Olympiad (
IMO) level exam. Your primary task is to rigorously verify the provided mathematical solution. A
solution is to be judged correct #xonly if every step is rigorously justified.x* A solution that arrives

at a correct final answer through flawed reasoning, educated guesses, or with gaps in its arguments
must be flagged as incorrect or incomplete.

Instructions

#%]. Core Instructions:
* Your sole task is to find and report all issues in the provided solution. You must act as a sxverifierss,
NOT a solver. #xDo NOT attempt to correct the errors or fill the gaps you find. s

12

+ You must perform a sxstep—by—step: check of the entire solution. This analysis will be presented in a
wxDetailed Verification Logs:, where you justify your assessment of each step: for correct steps, a
brief justification suffices; for steps with errors or gaps, you must provide a detailed explanation.

#%2. How to Handle Issues in the Solution::
When you identify an issue in a step, you MUST first classify it into one of the following two categories
and then follow the specified procedure.

wa. Critical Error: s
This is any error that breaks the logical chain of the proof. This includes both =:logical fallaciess: (e.
g., claiming that ‘A>B, C>D* implies ‘A—-C>B-D°) and *=factual errorss: (e.g., a calculation
error like ‘2+3=6°).
sxProcedure: s
« Explain the specific error and state that it =xinvalidates the current line of reasoning::.
* Do NOT check any further steps that rely on this error.
x You MUST, however, scan the rest of the solution to identify and verify any fully independent
parts. For example, if a proof is split into multiple cases, an error in one case does not
prevent you from checking the other cases.

= x:xb. Justification Gap:s:
This is for steps where the conclusion may be correct, but the provided argument is incomplete, hand—
wavy, or lacks sufficient rigor.
skProcedure:s
+ Explain the gap in the justification.
+ State that you will #xassume the step’s conclusion is trues: for the sake of argument.
« Then, proceed to verify all subsequent steps to check if the remainder of the argument is sound.

#%3. Output Formats
Your response MUST be structured into three XML sections with the tags: <summary>, <
detailed_verification>, and <judgement>.

wka. Summary s

Wrap this section within <summary>...</summary> tags.

This section MUST be at the very beginning of your response. It must contain two components:

+ sxFinal Verdict: A single, clear sentence declaring the overall validity of the solution. For
example: "The solution is correct," "The solution contains a Critical Error and is therefore
invalid," or "The solution’s approach is viable but contains several Justification Gaps."

* xxList of Findings*#: A bulleted list that summarizes *xevery=* issue you discovered. For each
finding, you must provide:

= wxLocation:#* A direct quote of the key phrase or equation where the issue occurs.
wx]ssue:xx A brief description of the problem and its classification (+*Critical Errors or s
Justification Gaps).

xxb. Detailed Verification Logs
Wrap this section within <detailed_verification>...</detailed_verification> tags.
Following the summary, provide the full, step—by—step verification log as defined in the Core
Instructions. When you refer to a specific part of the solution, s#*quote the relevant text: to
make your reference clear before providing your detailed analysis of that part.

wkc. Judgementss
This section MUST be at the very end of your response. For correct solutions, you must end your
response with EXACTLY:
<judgement>Judgement: Yes</judgement>
For incorrect solutions, you must end your response with EXACTLY:
<judgement>Judgement: No</judgement>

xxExample of the Required Summary Formats:
«This is a generic example to illustrate the required format. Your findings must be based on the actual

solution provided below.:

<summary>
#xFinal Verdict:** The solution is #*invalid+* because it contains a Critical Error.

13

=xList of Findings: s
* xxLocation:++ "By interchanging the limit and the integral, we get..."
sx]ssue:sx Justification Gap — The solution interchanges a limit and an integral without providing
justification, such as proving uniform convergence.
* xxLocation:** "From $A > B$ and $C > DS, it follows that $A—-C > B-D$"
wx]ssue:s* Critical Error — This step is a logical fallacy. Subtracting inequalities in this manner is
not a valid mathematical operation.
</summary>

Problem

{problem}

Solution

{proof}

Verification Task Reminder

Your task is to act as an IMO grader. Now, generate the <summary>, the <detailed_verification>, and the
<judgement> for the solution above. In your log, justify each correct step and explain in detail any
errors or justification gaps you find, as specified in the instructions above. End your response with

the required XML tags.

14

	Introduction
	Related Work
	Method
	Scaling test-time compute
	Ablation studies

	Conclusion
	Pitfalls of imbalanced evaluation set
	Experimental Details
	Further Ablation Experiments
	Prompts

