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Abstract
Although large-scale pretrained language mod-001
els (LMs) have achieved significant improve-002
ments on different natural language tasks, their003
fine-tuning still heavily relies on task-specific004
data annotation and is sensitive to adversarial005
evaluation examples. In this work, we propose006
an entailment self-training framework for im-007
proving the accuracy and robustness of unsu-008
pervised few-shot task adaptations for language009
understanding without using any labeled data010
on the target tasks. We pretrain language mod-011
els on the natural language inference (NLI) task,012
and adapt the model to new tasks with coordi-013
nated prompts and pseudo-labels. We find that014
the coordinated prompts, which jointly describe015
the task, serve as an equivalent dimension of the016
training data as human labels that enables learn-017
ing. The proposed method enables task-specific018
fine-tuning without human-generated label. Ex-019
periments on the GLUE and AdvGLUE show020
that the coordinated prompts constantly outper-021
form the no-prompt and single-prompt models022
under the unsupervised few-shot task adapta-023
tion setting. With preliminary logic pretraining024
on the entailment task and self-training, an un-025
supervised few-shot adapted medium LM can026
outperform existing few-shot, large-scale LMs.027

1 Introduction028

Although achieving state-of-the-art performance029

in different natural language understanding (NLU)030

tasks (Devlin et al., 2018; Liu et al., 2019; Yang031

et al., 2019; Clark et al., 2020; He et al., 2020; Joshi032

et al., 2020), large-scale pretrained language mod-033

els still highly depend on human-annotated, task-034

specific training corpora for fine-tuning because035

the self-supervised pretraining objective does not036

incorporate explicit task-related knowledge. As037

a result, state-of-the-art language models are still038

challenged by lack of adequate fine-tuning data and039

difficult evaluation examples crafted by adversarial040

attacks or model-in-loop adversarial data annota-041

tions (Wang et al., 2021; Jin et al., 2020; Bartolo042

et al., 2020; Zang et al., 2019; Garg and Ramakr- 043

ishnan, 2020; Li et al., 2020). 044

While humans can fully understand the nature 045

of a machine learning task, the only way for a 046

pretrained language model to understand a given 047

task is fitting the training data. However, a given 048

training corpus does not necessarily represent the 049

ground-truth description of a task. For example, 050

a sentiment analysis task for understanding audi- 051

ence attitudes toward movies (Socher et al., 2013) 052

might be interpreted as trivially as “matching the 053

keywords good and bad” by an overfit or uncon- 054

verged model. Recent studies have been analyzing 055

the difficulty by measuring the data distribution gap 056

between different tasks, domains, and difficulties 057

(Taori et al., 2020; Carlini et al., 2019; Miller et al., 058

2020; Koh et al., 2021). The different distribution 059

within regular training data and adversarial evalua- 060

tion data leads to the performance decrease under 061

adversarial attack. Similarly, a training corpus con- 062

sisting of a limited number of training examples is 063

not enough for fully representing the distribution of 064

the target task under the few-shot learning setting. 065

In this work, we show that preliminary logic 066

pretraining and self-training based on coordinated 067

task descriptions, namely coordinated prompts, can 068

achieve better unsupervised NLU adaptation per- 069

formance and robustness with medium-sized LMs 070

than existing few-shot medium-sized and large- 071

scale LMs (Gao et al., 2020; Schick and Schütze, 072

2021; Gu et al., 2021; Thoppilan et al., 2022; Wei 073

et al., 2021). We first train an entailment classi- 074

fier model on a natural language inference (NLI) 075

(Williams et al., 2018) corpus, which allows the 076

model to roughly learn if an input discourse is log- 077

ically true or false. For any target tasks where a 078

data distribution gap exists between the training 079

and evaluation splits, we formulate each example 080

in both splits as a logically true / false classifica- 081

tion task to mitigate the distribution gap among 082

the training, evaluation, and NLI corpora. This 083
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formulation enables unsupervised task adaptation084

without any additional processing. Furthermore,085

the entailment model can be further improved with086

a limited number of task-specific unlabeled data087

examples.088

We found that self-training coordinated task089

prompts with pseudo-labels generated by the entail-090

ment classifier itself can significantly outperform091

direct task adaptation. In some tasks, the unsu-092

pervised few-shot method is more effective than093

using human-generated labels given a limited num-094

ber of task-specific data examples. A coordinated095

prompt consists of at least two logically coopera-096

tive suppositions that both describe a given task.097

One of the supposition being true or false entails098

that another supposition must be true or false ac-099

cordingly because of logical restrictions. While no100

human-generated label is provided, we can anno-101

tate the fine-tuning examples with pseudo-labels102

predicted by the pretrained entailment classifier.103

The entailment classifier is then self-trained (Zoph104

et al., 2020; Zou et al., 2019) with the pseudo-105

labels, while the logical relations among the coor-106

dinated prompts are preserved. It is worth noting107

that the regular fine-tuning requires N = |Ctrain|108

human-generated labels, while the label-free fine-109

tuning strategy we propose uses significantly fewer110

task prompts (at least 2) for each task.111

Experiments show that the entailment classi-112

fiers trained with coordinated prompts can con-113

stantly achieve higher unsupervised adaptation per-114

formance than the training the models without task115

descriptions. Furthermore, the self-trained models116

with coordinated prompts can significantly improve117

the performance and robustness of the entailment118

model with a small number of unlabeled fine-tuning119

examples. The main contributions of this work are120

• Enabling task-specific fine-tuning only with121

medium-sized LMs and small corpora, with-122

out human-generated labels, outperforming123

label-dependent few-shot methods and large-124

scale LMs.125

• Reducing the cost of data collection, label126

annotation, and model training / inference.127

2 Related Work128

Pretraining large-scale neural language models in129

a self-supervised manner on large corpora and fine-130

tuning on task-specific training data has been a131

popular method recently for both language under-132

standing (Devlin et al., 2018; Liu et al., 2019; Yang133

et al., 2019; Clark et al., 2020; He et al., 2020; 134

Joshi et al., 2020) and generation (Brown et al., 135

2020; Lewis et al., 2019; Raffel et al., 2019; Zhang 136

et al., 2019). Although achieving state-of-the-art 137

performance in a wide range of tasks, recent studies 138

have found that the pretraining-fine-tuning strategy 139

relies on task-specific data annotation and the per- 140

formance is sensitive to adversarial data examples 141

(Blum and Mitchell, 1998; Wang et al., 2021; Jin 142

et al., 2020; Bartolo et al., 2020; Zang et al., 2019; 143

Garg and Ramakrishnan, 2020; Li et al., 2020). 144

Besides self-supervised pretraining, another 145

strategy to improve models with unlabeled data 146

is self-training (Zoph et al., 2020; Xie et al., 2020b; 147

Noroozi et al., 2018; Zou et al., 2019; He et al., 148

2019; Sachan and Xing, 2018; Shakeri et al., 2020; 149

Bartolo et al., 2021; Luo et al., 2021). Different 150

from pretraining with data augmentation or con- 151

structing task-like pretraining cases (Glass et al., 152

2019), self-training models learn from synthetic 153

task-specific training cases, which can be formu- 154

lated as data-label pairs. (Zoph et al., 2020; Xie 155

et al., 2020b; Noroozi et al., 2018; Zou et al., 156

2019) explored training with additional real data 157

and pseudo-labels, while (He et al., 2019; Sachan 158

and Xing, 2018; Shakeri et al., 2020; Bartolo et al., 159

2021; Luo et al., 2021) introduced training cases 160

consist of both synthetic data and pseudo-labels. 161

Lang et al. (2022) proposed training medium lan- 162

guage models using pseudo-labels generated by 163

large models, for example GPT-3 (Brown et al., 164

2020) and T0 (Sanh et al., 2021). These studies 165

suggest that the self-training methods can improve 166

the performance of weakly-supervised models. 167

Few-shot language understanding has been an 168

important task for both research and application. 169

Current solutions include multitask metric learn- 170

ing (Yu et al., 2018; Gu et al., 2018; Dou et al., 171

2019) and data augmentation (Xie et al., 2020a; 172

Luo et al., 2021; Chen et al., 2020). Another line 173

of research focuses on constructing task descrip- 174

tion prompts and utilizing the power of pretrained 175

language models. Gao et al. (2020); Schick and 176

Schütze (2021); Le Scao and Rush (2021) explored 177

describing language tasks as cloze questions and 178

applied masked language models to fill labeling 179

words. Meng et al. (2020) proposed a self-training 180

method that learns from abundant label descrip- 181

tions. Obamuyide and Vlachos (2018); Yin et al. 182

(2019) applied pretrained entailment classifiers for 183

sequence and relation classification tasks. The mod- 184
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els proposed by these studies can be classified into185

to major classes: input prompting and label inter-186

pretation. The input prompting method utilizes187

the ability of masked word prediction of the lan-188

guage models, while label interpretation method189

provides abundant explanations to labels with addi-190

tional words or in natural language sentences. Both191

methods attempt to shift the data distribution from192

the newly given task to a task that a language model193

has been trained on.194

3 Method195

3.1 Supposition-based NLU196

Entailment in NLP. The term “entailment” has197

been widely used in the area of natural lan-198

guage processing (NLP). Dzikovska et al. (2013);199

Williams et al. (2018) proposed textual entailment200

tasks, RTE and MNLI, that requires a model to201

predict if “text x entails text y” or not. It has been202

widely accepted by the NLP community that the203

entailment relation in these tasks is not a strictly204

defined logical entailment. Instead, “x entails y”205

is interpreted as “if x is true, then y is likely to be206

true.” (Dzikovska et al., 2013). The vague defi-207

nition makes it possible to crowd-source training208

corpora to train models that mimics human percep-209

tions of text relations, for example, it is arguably210

acceptable that “She does not like the movie is211

entailed by her comment: the story is very bor-212

ing” (Socher et al., 2013). The MNLI corpus has213

also been widely used as a secondary pretraining214

resource for other weakly-supervised text classi-215

fication in many recent studies (Obamuyide and216

Vlachos, 2018; Yin et al., 2019; Lang et al., 2022).217

Supposition Classification. Any language task218

has at least one textual task definition, which can219

be formulated as an affirmative or negated suppo-220

sition svt = S(Dt, pi, qi,+/−) as shown in Table221

1, where t is the task, Dt is the textual definition222

of task t, (pi, qi) stands for the i−th input exam-223

ple of task t, and v ∈ {+,−} to indicate if svt is224

affirmative or negated. Computing the truth values225

of the suppositions can imply the target outputs of226

all tasks. For example, if the affirmative supposi-227

tion of the SST-2 task is predicted to be false by228

a model, then the predicted sentiment would be229

negative. In this work, we train models to predict230

the truth values of MNLI suppositions based on the231

human-annotated labels and adapt to other tasks232

with constructed suppositions shown in Table 1.233

Although the definition of entailment in NLI234

Task Inputs Supposition

Affirmative Suppositions (s+t )
MNLI p, h h is likely to be true when p is true.
RTE p, h h is likely to be true when p is true.
QNLI t, q question q can be answered by text t.
QQP q1, q2 q1 and q2 are duplicated questions.

SST-2 x Her attitude towards the movie is
positive given her comment x.

CoLA t sentence t is fluent.

Negated Suppositions (s−t )
MNLI p, h h cannot be true when p is true.
RTE p, h h cannot be true when p is true.
QNLI t, q text t cannot answer question q.
QQP q1, q2 q1 and q2 are different questions.

SST-2 x Her attitude towards the movie is not
positive given her comment x.

CoLA t The grammar of t cannot be accepted.

Table 1: The suppositions constructed based on the
definitions of different GLUE tasks (Wang et al., 2018).

tasks are sometimes vague, the entailment relations 235

among constructed suppositions are strictly logical. 236

If an affirmative supposition is true, than all affir- 237

mative suppositions constructed on the same input 238

example must also be true, and all corresponding 239

negated suppositions must be false. We have the 240

following entailment relation between two supposi- 241

tions s1,v1t , s2,v2t 242

E(s1,v1t , s2,v2t ) =

{
s1,v1t → s2,v2t , v1 = v2

s1,v1t ̸→ s2,v2t , v1 ̸= v2
243

3.2 Prompt Coordination 244

A model trained with a training corpus Ctrain 245

without explicitly encoding the task definition at- 246

tempts to learn implicit task suppositions s∗t im- 247

plied by Ctrain, by mapping training data to human- 248

generated labels. When Ctrain is limited in terms 249

of corpus size and data distribution, s∗t might be bi- 250

ased from the ground-truth task definition, leading 251

to poor validation performance. 252

On the other hand, prompt-tuning methods con- 253

struct textual task descriptions, sometimes as cloze 254

questions. A language model trained with such 255

methods can avoid being too biased away from the 256

ground-truth task definition, since it is already pro- 257

vided as a prompt. However, the problem cannot be 258

completely eliminated because the model can shift 259

the semantics of the template words in the prompts, 260

since they appears in all training cases and their 261

word embeddings might be significantly changed 262

during training. 263

We construct a prompt coordination with two 264

logically cooperative suppositions for each task. 265
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Q1 Q2Prompt 2

Q1 Q2Prompt 1 1 0

0 1

True False

Q1: Who is the author of the book “Harry Potter”？
Q2: Who wrote the “Harry Potter” series?

Affirmative supposition: Q1 and Q2 are duplicate questions.

Negated supposition: Q1 and Q2 have different answers.

Q1Prompt 2

Q1Prompt 1

Affirmative supposition: Q1 and Q2 are duplicate questions.

Affirmative supposition: Q1 and Q2 have the same answer.

Contrastive Prompt Coordination

Paraphrased Prompt Coordination

1 0

1 0

True False

Q2

Q2

Figure 1: Examples of contrastive and paraphrased
prompt coordinations of the QQP task.

For example, we can construct a contrastive prompt266

coordination with one affirmative and one negated267

supposition, or a paraphrased prompt coordination268

with two affirmative suppositions. The selected sup-269

positions must have different or same truth values270

because of the logical presupposition of the con-271

structions. The model for predicting the truth val-272

ues can be trained on the corpora of such construc-273

tions. The constructed prompts and corresponding274

truth values are shown in Figure 1.275

3.3 Self-training276

Under the label-free setting, we fine-tune the lan-277

guage models using pseudo-labels generated by the278

entailment classifier. Since the entailment classifier279

is trained to learn three relations, true, false, and280

neutral, we drop the predicted scores of the neu-281

tral class while generating pseudo-labels for binary282

classification tasks.283

pseudo-label generation. In this work, we con-284

struct two suppositions, s1,v1t,i and s2,v2t,i for each285

data example. Each supposition can be either affir-286

mative or negated. We calculate the pseudo-label287

for data example di = (pi, qi)288

l1i = m(s1,v1t,i ), l2i =

{
l1i , v1 = v2

1− l1i , v1 ̸= v2
289

where m is the pretrained entailment classifier,290

s
j,vj
t,i = S(Dt, pi, qi,+/−) can be either affirma-291

tive or negated. As a result, we can construct two292

supposition-label pairs {(s1,v1t,i , l1i ), (s
2,v2
t,i , l2i )} for293

each data example. We can use the constructed data294

for both fine-tuning and evaluation. We call the con-295

structed supposition pair (s1,v1t,i , s2,v2t,i ) a prompt co-296

ordination. The pair is a paraphrased prompt coor-297

dination if v1 = v2, otherwise a contrastive prompt298

Q1 Q2Prompt 2

Q1 Q2Prompt 1

True False

S1: Q1 and Q2 are duplicate questions.

S2: Q1 and Q2 have different answers.

True False

Duplicate Not
DuplicateLog P(D) Log P(¬D)

Log P(True | S1) Log P(False | S1)

Log P(True | S2) Log P(False | S2)

Figure 2: Example of the label mapping of a prompt
coordination in the QQP task.

coordination. For any dataset Dt = {(pi, qi) | i ≥ 299

0}, we can construct a new dataset consisting of 300

supposition-pseudo-label pairs, 301

D′
t = {(Sj,vj

t,i , lji ) | i ≥ 0, j ∈ [0, k − 1]} (1) 302

where k is the number of suppositions constructed 303

for each data example. We apply k = 2 in this 304

work. The model is trained with the constructed 305

dataset in the same way as fine-tuning with human- 306

generated labels. 307

Confidence-based labeling. Lang et al. (2022) 308

found that dropping data examples with unconfi- 309

dent pseudo-labels benefits the performance of the 310

self-trained DeBERTa (He et al., 2020) model. In 311

this work, we explore the effect of the following 312

labeling strategies: (1) using all pseudo-labels and 313

(2) dropping unconfident pseudo-labels. 314

We measure the confidence of a prediction with 315

its probability P (l∗i |pi, qi) output by the entailment 316

classifier. We sort all data examples based on the 317

confidence of corresponding pseudo-labels, and 318

drop the most unsure predictions. We will compare 319

the performance of using all pseudo-labels and the 320

confidence-based labeling strategies. 321

3.4 Inference 322

The final prediction of a task given a data exam- 323

ple is entailed by the truth value of the constructed 324

supposition. As a result, we can build a mapping 325

between the truth values of the suppositions and 326

the final task predictions according to the task def- 327

inition. An example of the label mapping in the 328

QQP task is shown in Figure 2. In this example, 329

we have the following entailment relations, 330

(s1 = T ↔ s2 = F) → D 331

(s1 = F ↔ s2 = T) → ¬D 332
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where T,F stand for True and False, and D is333

the following proposition, “the label of example334

(Q1, Q2) is duplicate”. As a result, we can calcu-335

late the probability of final labels by336

logP (D|Q1, Q2) = logP (T|s1) + logP (F|s2)337

338
logP (¬D|Q1, Q2) = logP (F|s1) + logP (T|s2)339

4 Experiments340

Datasets. We conduct experiments on popular nat-341

ural language understanding tasks in the GLUE342

(Wang et al., 2018) benchmark, including RTE (Da-343

gan et al., 2005), QNLI (Rajpurkar et al., 2016),344

QQP, SST-2 (Socher et al., 2013), and CoLA345

(Warstadt et al., 2019). We also assess the robust-346

ness of the proposed method against adversarial347

evaluation sets in the AdvGLUE corpus (Wang348

et al., 2021), including Adv-RTE, Adv-QNLI, Adv-349

QQP, and Adv-SST2. The data in AdvGLUE is350

created by adding word-level and sentence-level351

perturbation to the GLUE data, as well as human-352

crafted examples. More details is in Appendix A.353

Hyper-parameters. We train BERT (Devlin et al.,354

2018) and DeBERTa (He et al., 2020) models for355

the language understanding tasks, without using356

larger language models like GPT-3 (Brown et al.,357

2020) and T0 (Sanh et al., 2021) that are used358

for generating pseudo-labels in (Lang et al., 2022).359

We also use the same hyper-parameters across all360

tasks, attempting to avoid the problems mentioned361

in Perez et al. (2021). In the entailment pretraining362

on the MNLI dataset (Williams et al., 2018), we op-363

timize both BERT and DeBERTa models with the364

AdamW optimizer (Loshchilov and Hutter, 2018).365

For all tasks and both models, we set ε = 10−6. In366

the entailment pretraining, we set the weight decay367

weight to 10−5, and the learning rates for BERT368

and DeBERTa are 5e-6 and 3e-6 respectively. Dur-369

ing the self-training step, the learning rate of both370

models on all tasks is 4e-6, and the weight decay371

weight is constantly 10−2. We run the entailment372

pretraining for 2 epochs and the self-training for 6373

epochs. In confidence-based labeling, we drop 1/8374

data with lowest confidence.375

Self-training details. We train BERT-large and376

DeBERTa-large sequence classification models377

provided by Huggingface (Wolf et al., 2020). Both378

models contain a pretrained language model of379

350M trainable parameters and a linear classifica-380

tion head. For each data example in a target task,381

we construct 2 suppositions and generate 1 hard382

pseudo-label for each supposition. We randomly 383

shuffle the constructed datasets before feeding them 384

to the entailment classifiers for fine-tuning. For 385

each task, we randomly select N = 12 · n, n ∈ 386

[1, 10] unlabeled data examples. We train and eval- 387

uate the models for each N with 3 independent 388

runs and calculate the average performance on 2 389

V100 32G GPUs. Our implementation will be 390

open-sourced at https://github.com/xxx/xxx. 391

Baselines. We mainly compare our method with 392

the following baselines, 393

• Direct zero-shot adaptation of pretrained 394

BERT and DeBERTa entailment classifiers 395

with and without supposition construction. 396

• Fine-tuned entailment classifiers with human- 397

generated labels on each tasks under both fully 398

supervised and few-shot settings. 399

• Few-shot medium-sized language models 400

trained with task-specifc labels. 401

• Zero- and Few-shot large-scale language mod- 402

els, including LaMDA-137B (Thoppilan et al., 403

2022) and FLAN-137B (Wei et al., 2021). 404

4.1 Results 405

Direct zero-shot adaptation. We first evaluate the 406

performance of directly applying pretrained entail- 407

ment classifiers on different tasks. We compare 408

models trained with or without supposition con- 409

structions. The performance is shown in Table 2. 410

Tasks RTE QNLI QQP SST2 CoLA

Conc. 74.01 71.61 70.53 84.63 65.77
Supp. 84.48 78.74 79.99 90.14 59.78

Adversarial Evaluation Sets
Conc. 50.62 60.81 47.44 56.08 N/ASupp. 67.9 64.86 64.10 50.68

Table 2: Direct zero-shot adaptation of entailment clas-
sifiers using different data formatting strategies. Conc.
stands for directly concatenating the input texts, and
Supp. stands for constructing suppositions in natural
language and predict the truth values.

411

The improvement of supposition construction is 412

significant on the RTE, QNLI, QQP tasks and their 413

adversarial versions, while the performance gap 414

on SST-2 and CoLA is smaller. Since SST-2 and 415

CoLA are single-sentence tasks, we still need to 416

add label descriptions as additional inputs to run 417

the entailment classifier. The label descriptions 418

can provide additional information as prompts, and 419
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Method GLUE Method AdvGLUE
QNLI QQP RTE SST2 CoLA Avg. QNLI QQP RTE SST2 Avg.

Few-shot (left) and supervised (right) medium LMs (350M) with human-generated labels
PET 61.3 67.6 65.7 91.8 - 71.6 R3F 47.5 40.6 50.1 38.5 44.2
LM-BFF 69.2 69.8 73.9 93.0 21.8 65.4 CTT 49.6 40.7 46.2 39.2 43.9
P-tuning 68.8 67.6 70.8 92.6 60.6 72.1 MT 47.5 41.5 52.5 51.3 48.2
PPT 68.8 67.2 67.9 92.3 - 74.1 BERT 39.8 37.9 40.5 33.0 37.8
UPT 70.1 72.1 68.9 92.9 - 76.0 DeBERTa 57.9 60.4 79.0 57.8 63.8

Few-shot fine-tuning medium entailment LMs (350M) with human-generated labels
BERT10k 58.7 59.6 65.7 74.3 67.4 65.1 / 60.3 42.7 34.6 31.5 42.3
DeBERTa1k 73.4 78.3 76.8 88.7 65.6 76.6 / 62.4 52.6 65.4 49.1 57.4
BERTall 61.5 65.9 76.4 78.4 68.0 66.8 / 61.7 53.4 49.4 39.9 51.1
DeBERTaall 80.2 77.4 88.0 87.1 64.9 77.8 / 67.8 70.5 70.8 49.1 64.6

Few-shot large LMs (137B) with human-generated labels
LaMDA 55.7 58.9 70.8 92.3 - 69.4 / - - - - -
FLAN 63.3 75.9 84.5 94.6 - 79.6 / - - - - -

Self-trained medium LMs (350M) without human-generated labels
BERT10k 70.8 71.6 69.2 81.7 59.5 70.5 / 62.8 64.5 58.4 55.2 60.2
DeBERTa1k 76.7 76.5 75.8 87.5 69.3 77.2 / 71.2 73.1 66.3 54.3 66.2
BERTall 60.0 73.9 78.5 86.9 61.8 72.2 / 55.6 58.9 64.2 56.5 58.8
DeBERTaall 83.5 80.8 86.0 92.7 69.2 82.5 / 73.4 72.7 70.4 56.1 68.1

Table 3: Comparing our unsupervised few-shot method with supervised few-shot baselines on GLUE/AdvGLUE
dev sets. PET, LM-BFF, P-tuning, PPT, and UPT use 16 data-label pairs, LaMDA uses 5, and FLAN uses up to 12
labeled examples. The self-trained models are tuned on 24 unlabeled examples, and the DeBERTaall models use 12
unlabeled training examples. R3F, CTT , and MT are fully supervised methods for robust language understanding.
1k, 10k, and all stands for the number of MNLI training examples used for the training the entailment classifiers.

reduce the performance gap. The suppositions we420

used and more results are shown in Appendix B.421

Self-training. We compare our method with recent,422

strong baseline models on few-shot and robust lan-423

guage understanding respectively. It worth noting424

that baseline methods requires K = |Ctrain| hu-425

man generated labels, while our models uses just 2426

suppositions and no human-generated labels. The427

experiment results are shown in table 3. We found428

that our self-trained DeBERTa model without using429

any human-generated labels performs best in terms430

of the averaged accuracy, and the self-trained BERT431

achieves similar performance as the strong baseline432

models. We compare our model with PET (Schick433

and Schütze, 2021), LM-BFF (Gao et al., 2020),434

P-tuning (Liu et al., 2021), PPT (Gu et al., 2021),435

and UPT (Wang et al., 2022), which are recent436

strong baselines for few-shot language understand-437

ing on the GLUE benchmark. For AdvGLUE, we438

compare with R3F (Aghajanyan et al., 2020), child439

tuning (CT) (Xu et al., 2021), and match tuning440

(MT) (Tong et al., 2022) models. We also compare441

the performance of fully supervised and few-shot442

BERT and DeBERTa classifiers. For the baselines443

that did not report the CoLA performance, we cal-444

culate the averaged performance on the other tasks.445

Table 3 shows that the self-trained BERT446

model achieves competitive performance as few-447

shot learning models without using any human- 448

generated label, and the self-trained DeBERTa- 449

350M model outperforms both large-scale lan- 450

guage models with 137B parameters. on the reg- 451

ular GLUE benchmark. We noticed that the self- 452

training model perform well on the CoLA task, 453

although it is not a pure semantic reasoning task, 454

outperforming LM-BFF by 47% and P-tuning by 455

over 8% (absolute), approaching the fully super- 456

vised DeBERTa performance (69.3% vs 70.5%) 457

(He et al., 2020). The self-trained models also out- 458

perform fully supervised methods on AdvGLUE. 459

For comparison the performance of R3F, CTT , 460

and MT reported in Tong et al. (2022), and the 461

fully supervised BERT and DeBERTa performance 462

in Wang et al. (2021). The self-trained BERT 463

model outperforms all BERT-based baselines (R3F, 464

CTT , MT), and the self-trained DeBERTa models 465

achieved the highest averaged accuracy and outper- 466

forms the fully supervised DeBERTa by 4.8%. 467

We also evaluated BERT10k and DeBERTa1k 468

classifiers, which are trained on 10k and 1k 469

MNLI examples respectively, while BERTall and 470

DeBERTaall use all 390k MNLI training data. The 471

experiment results shows that training the entail- 472

ment classifiers on a small subset of the MNLI train- 473

ing corpus also leads to significant improvement 474

over the label-dependent fine-tuning baselines. 475
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Method GLUE AdvGLUE

QNLI QQP RTE SST2 CoLA Avg. QNLI QQP RTE SST2 Avg.

Few-shot large LMs (137B) with human-generated labels
LaMDA 50.6 34.9 73.3 51.0 - 52.45 - - - - -
FLAN 59.6 72.1 78.3 94.6 - 76.15 - - - - -

Self-trained BERT-340M without human-generated labels
No self-training 58.14 71.25 76.53 85.32 52.63 68.77 59.49 53.85 56.91 56.08 56.58
Single prompt 55.87 71.64 74.24 85.13 52.45 67.87 52.93 47.86 44.03 33.10 44.48

w/ CL 56.03 70.86 76.35 84.71 56.95 68.98 54.73 47.44 43.61 61.78 51.89
Contrastive Coord. 59.89 73.87 78.10 85.09 52.99 68.99 59.91 48.72 47.73 53.15 52.38

w/ CL 59.22 73.24 78.46 85.51 56.30 70.55 59.23 55.55 46.91 64.19 56.47
Paraphrased Coord. 60.02 71.79 76.77 86.20 55.56 70.25 53.60 49.15 58.86 36.26 49.47

w/ CL 55.35 71.86 77.50 86.85 61.84 70.68 60.14 49.57 57.20 62.99 57.48

Self-trained DeBERTa-350M without human-generated labels
No self-training 77.27 79.23 84.48 90.14 59.73 78.17 64.86 66.67 70.37 50.68 63.15
Single prompt 81.12 79.69 85.56 90.64 60.03 79.41 65.77 64.53 67.49 59.66 64.36

w/ CL 81.20 79.62 80.98 91.70 67.24 80.15 68.02 68.02 67.90 49.10 63.26
Contrastive Coord. 79.88 80.93 86.04 92.35 68.62 81.56 73.42 71.79 70.37 53.38 67.24

w/ CL 82.43 80.68 83.27 92.74 69.22 81.67 70.49 70.49 71.19 52.70 62.22
Paraphrased Coord. 83.50 80.37 84.96 90.56 66.67 81.21 72.75 70.94 71.18 58.56 68.38

w/ CL 81.68 80.41 83.61 90.60 69.03 81.07 66.67 66.67 72.84 50.90 64.27

Table 4: Unsupervised adaptation performance of different strategies on GLUE and AdvGLUE corpora using 24
unlabeld data examples. The BERT and DeBERTa models are fine-tuned on the full MNLI training corpus. The
performance of LaMDA (Thoppilan et al., 2022) and FLAN was reported in Wei et al. (2021). In self-training
experiments, CL stands for applying the confidence-based labeling strategy. For each model and prompting strategy,
the training processes on all tasks apply the same hyper-parameters.

4.2 Analysis476

Effect of prompt coordination. We analyze the477

performance of the self-training method with De-478

BERTa and BERT by fine-tuning on 24 unlabeled479

data examples. The results on regular and adver-480

sarial evaluation sets are shown in Table 4. Both481

models are self-trained on 24 unlabeled data exam-482

ples and results are calculated by averaging three483

independent experiments. The experiment results484

show that the self-trained entailment classifiers485

with 350M parameters can significantly outperform486

large-scale language models with 137B parame-487

ters. The DeBERTa model outperforms LaMDA488

(Thoppilan et al., 2022) by 29.04% and FLAN (Wei489

et al., 2021) by 5.34% (absolute). The proposed490

prompt coordination mechanism can improve the491

performance of prompt tuning with pseudo-labels492

on both regular and adversarial evaluation sets and493

constantly outperforms the single-prompt models494

(ST-SP) with both BERT and DeBERTa.495

We found that different models, tasks can be ben-496

efited with either contrastive coordination (CC) or497

paraphrased coordination (PC). The average per-498

formance gap of CC and PC is less that 1% on499

the regular GLUE benchmark, but the performance500

gap on the AdvGLUE benchmark is more signif-501

icant (>1%), suggesting that the PC benefits the502

self-training robustness against adversarial exam- 503

ples. Our experiment results also supports the find- 504

ing in Lang et al. (2022) that the confidence-based 505

labeling (CL) strategy improves the self-training 506

performance. Table 4 shows that applying CL out- 507

performs the base ST-SP method on GLUE with 508

both BERT and DeBERTa models. However, CL 509

does not improve the performance on AdvGLUE 510

with DeBERTa. In the prompt coordination meth- 511

ods, the effect of CL is not constantly positive. 512

We found that the accuracy of BERT+AdvGLUE 513

and DeBERTa+GLUE can be improved by CL, 514

while prompt coordination without CL works better 515

on BERT+GLUE and DeBERTa+AdvGLUE. This 516

suggests that the prompt coordination mechanism 517

is more robust against noisy pseudo-labels. 518

Effect of data size. We have shown that the label- 519

free self-training method achieves equivalent or 520

better performance on different tasks with differ- 521

ent language models, and we would like to an- 522

swer the question: how many labels is enough for 523

a fine-tuned model to outperform a self-trained 524

model? To understand this, we conduct exper- 525

iments on 10 different data size settings, N ∈ 526

{12, 24, 36, 48, 60, 72, 84, 96, 108, 120}. We run 527

3 independent experiments for each setting with 528

the DeBERTa model. 529
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a. QNLI b. QQP c. RTE d. SST2 e. CoLA

f. AdvQNLI g. AdvQQP h. AdvRTE i. AdvSST2 j. Std.

Fine Tuning (FT) Single Prompt (SP) Contrastive Coordination (CC) Paraphrased Coordination (PC)

Pseudo Labeling Acc. SP+CL CC+CL PC+CL

Figure 3: The comparison different fine-tuning and self-training methods, and the confidence-based labeling (CL)
strategy with the DeBERTa model on different sizes of training data. Figures a to i illustrate the performance on
GLUE and AdvGLUE tasks, and Figure j shows the standard deviation of the fine-tuning performance.

The experiment results are illustrated in Figure530

3. Figures 3.a to j summarize the performance531

of different tuning methods, including fine-tuning532

and self-training, with the DeBERTa model using533

training corpora of different sizes. On the GLUE534

tasks, we noticed a trend that when the number of535

training examples is more than 48, the fine-tuning536

performance based on human-generated labels is537

better than label-free, self-training methods. On538

the AdvGLUE tasks, the experiment results show539

that fine-tuning is not significantly better than label-540

free self-training on the given training corpora. Fig-541

ure 3.j shows the standard deviation (Std) of the542

fine-tuning performance. The Std of fine-tuning543

performance on GLUE tasks with smaller trainer544

corpora is significantly higher than larger corpora.545

These facts suggest that when the size of human-546

labeled training data is not enough, the coordinated547

prompts represent the given tasks better than the548

data-label pairs. On AdvGLUE tasks, increasing549

the size of training corpora does not ensure im-550

proved representation of the adversarial tasks, thus551

we do not observe an obvious change of perfor-552

mance Std when more data examples are processed.553

Although Figure 3 shows that contrastive and554

paraphrased coordinations (CC and PC), and the ef-555

fect of confidence-based labeling (CL) strategy con-556

tribute to each task differently, their performance557

gaps vary when the size of the unlabeled training558

data increases. When the data is not enough, the559

performance gap between CC and PC, CL and no560

CL is significant. However, when the models are561

self-trained with more data, the difference becomes 562

less obvious. We also found that the CL mechanism 563

smooth the performance on the CoLA task. 564

Effect of pseudo-labeling accuracy. From Fig- 565

ure 3, we found that there is no necessary relation 566

between the accuracy of pseudo-labeling and the 567

evaluation performance. The QNLI and SST2 tasks 568

show that noisy pseudo-labels can lead to signif- 569

icantly higher evaluation performance, while the 570

AdvGLUE tasks suggest that training with correct 571

labels does not necessarily improve the robustness 572

against adversarial data. 573

5 Conclusion 574

We propose a self-training, prompt coordination 575

method to adapt pretrained entailment classifiers 576

to different natural language understanding tasks 577

by predicting the truth values of constructed task 578

suppositions. By learning to recognize the logical 579

relation between different suppositions, a medium- 580

sized language entailment classifier can outperform 581

zero- and few-shot, medium and large-scale pre- 582

trained language models without using any human- 583

generated labels on natural language understanding 584

tasks. We also found that the coordinated prompts 585

can significantly improve the the robustness of lan- 586

guage models against adversarial evaluation exam- 587

ples. Our results indicate that a preliminary logical 588

learning can significantly improve the efficiency of 589

language model training, by reducing the need of 590

data collection, human annotation, and the model 591

size for achieving the comparable performance. 592
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Limitations593

Our method utilized a pretrained MNLI model and594

adapt it to other domains under few-shot unsuper-595

vised settings. There are two limitations that we596

would like to improve in future work. Firstly, we597

use human-designed suppositions for each task,598

which is less automatic than direct adaptation of599

the models. Secondly, as shown in Fig 3, the self-600

training performance is not as good as fine-tuning601

with human-generated labels when the number602

of training examples increases because the noisy603

pseudo label set. We would like to overcome this604

in the next step.605

Ethics Statement606

We propose a method that can significantly reduce607

the financial and environmental cost of language608

model learning. By reducing the need of data col-609

lection and human labeling, our method can effec-610

tively protect user and data privacy by avoiding611

leaking any information while building the training612

corpora. We found that a medium sized language613

model can achieve similar performance as the state-614

of-the-art large-scale language models, suggesting615

that we can cost less financially and environmen-616

tally during model training and evaluation for com-617

parable performance. However, since we reduced618

the need of human-labeling efforts, the deployment619

of the system might decrease the number of data620

annotation jobs.621
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A Data Details951

In this work, we evaluate our method with the952

GLUE1 and AdvGLUE2 benchmarks. We pretrain953

our models on MNLI, and evaluate on all other Ad-954

vGLUE tasks, AdvQNLI, AdvQQP, AdvRTE, and955

AdvSST2. we also evaluate the models on the reg-956

ular versions of these tasks in GLUE, plus CoLA,957

a non-semantic reasoning task. The statistics of the958

GLUE and AdvGLUE benchmarks are shown in959

Table 5.960

Corpus |Train| |Test| |Adv-Test|

MNLI 393k 20k 1.8k
QNLI 105k 5.4k 0.9k
QQP 364k 391k 0.4k
RTE 2.5k 3k 0.3k
SST2 67k 1.8k 1.4k
CoLA 8.5k 1k -

Table 5: Statistics of the corpora used in this work

1https://gluebenchmark.com/
2https://adversarialglue.github.io/

B Constructed Suppositions 961

In this section, we show the suppositions we ap- 962

plied and present the corresponding unsupervised 963

adaptation performance. For each task, we use 964

three suppositions, s+0 , s−1 , and s+2 , where (s+0 , s
−
1 ) 965

is a pair of contrastive prompt coordination, and 966

(s+0 , s
+
2 ) is a paraphrased prompt coordination. The 967

prompts we used are list as follows, 968

• MNLI 969

s+0 : {x} is entailed by {y}. 970

s−1 : {x} cannot be true when {y} is true. 971

s+2 : {x} is true when {y} is true. 972

• QNLI 973

s+0 : The answer to {x} is entailed by {y}. 974

s−1 : {x} cannot be answered by {y}. 975

s+2 : {x} can be answered by {y}. 976

• QQP 977

s+0 : The answer to {x} is entailed by the an- 978

swer to {y}. 979

s−1 : {x} and {y} are not the same questions. 980

s+2 : {x} and {y} are same questions. 981

• RTE 982

s+0 : {x} is entailed by {y}. 983

s−1 : {x} cannot be true when {y} is true. 984

s+2 : {x} is true when {y} is true. 985

• SST-2 986

s+0 : The movie is good is entailed by {x}. 987

s−1 : I like the movie cannot be entailed by the 988

comment {x}. 989

s+2 : I like the movie is entailed by the com- 990

ment {x}. 991

• CoLA 992

s+0 : The sentence {x} is fluent. 993

s−1 : The grammar of {x} cannot be accepted. 994

s+2 : The grammar of {x} can be accepted.. 995

The zero-shot adaptation results of these prompts 996

on different tasks are shown in Table 6, 7, 8, and 997

9. In our experiments, we use s0 for pseudo label 998

generation, and evaluate the prompt coordination 999

performance of (s+0 , s
−
1 ) and (s+0 , s

+
2 ). 1000

The experiment results show that the 1001

DeBERTa1k model outperforms the BERT10k 1002
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Task Prompt GLUE AdvGLUE

QNLI
s+0 77.27 61.49
s−1 72.14 71.62
s+2 65.86 68.24

QQP
s+0 79.99 64.10
s−1 77.36 56.41
s+2 68.53 55.13

RTE
s+0 84.48 66.67
s−1 84.48 69.14
s+2 53.06 40.74

SST-2
s+0 90.14 42.57
s−1 70.99 40.54
s+2 85.78 47.30

CoLA
s+0 59.73 -
s−1 32.02 -
s+2 58.87 -

Table 6: Zero-shot performance of different prompts on
each task with the DeBERTaall model.

Task Prompt GLUE AdvGLUE

QNLI
s+0 72.23 56.08
s−1 57.04 52.03
s+2 70.82 64.19

QQP
s+0 71.63 69.23
s−1 65.86 64.10
s+2 46.01 41.03

RTE
s+0 73.65 64.20
s−1 67.51 61.73
s+2 53.06 40.74

SST-2
s+0 81.42 47.30
s−1 54.01 49.32
s+2 79.01 52.03

CoLA
s+0 65.20 -
s−1 57.62 -
s+2 48.32 -

Table 7: Zero-shot performance of different prompts on
each task with the DeBERTa1k model.

Task Prompt GLUE AdvGLUE

QNLI
s+0 58.14 59.46
s−1 57.61 54.73
s+2 58.14 62.84

QQP
s+0 71.25 50.00
s−1 58.48 53.85
s+2 65.02 48.72

RTE
s+0 76.53 44.44
s−1 78.34 46.91
s+2 22.38 58.02

SST-2
s+0 85.32 32.43
s−1 49.08 47.56
s+2 81.18 33.11

CoLA
s+0 52.63 -
s−1 47.56 -
s+2 66.83 -

Table 8: Zero-shot performance of different prompts on
each task with the BERTall model.

Task Prompt GLUE AdvGLUE

QNLI
s+0 65.93 62.84
s−1 49.99 47.30
s+2 58.81 48.65

QQP
s+0 63.71 42.31
s−1 71.30 37.18
s+2 31.34 69.23

RTE
s+0 68.23 34.57
s−1 67.87 32.10
s+2 31.05 61.73

SST-2
s+0 80.96 24.32
s−1 50.57 52.03
s+2 80.05 30.41

CoLA
s+0 40.17 -
s−1 49.57 -
s+2 42.47 -

Table 9: Zero-shot performance of different prompts on
each task with the BERT10k model.

model on several tasks and suppositions, sug- 1003

gesting that the BERT model is more likely to 1004

overfit to the supposition templates during the 1005

training. Similar conclusions are also implied by 1006

the self-training experiment results. 1007

C Entailment Pretraining Details 1008

The backbone model of our method is an entail- 1009

ment classifier that reasonably understands both 1010

affirmative and negated suppositions. However, if 1011

we only pretrain the entailment model with one 1012

affirmative prompt, the model will overfit to the 1013

given prompt template and cannot perform well 1014

on other prompts. We evaluate the performance 1015

of unsupervised adaptation using the negated sup- 1016

positions with an entailment model pretrained on 1017

the MNLI corpus only with s+0 . The experiment 1018

results are shown in Table 10.

Task Prompt GLUE AdvGLUE

QNLI s−1 49.19 49.32
QQP s−1 36.54 36.78
RTE s−1 15.52 28.40
SST-2 s−1 48.74 50.00
CoLA s−1 32.02 -

Table 10: Zero-shot performance of different prompts
on each task based on an entailment classifier trained
with a single prompt.

1019

The zero-shot adaptation performance of the 1020

negated suppositions significantly dropped in Table 1021

10. To solve this problem, we train the entailment 1022

classifiers on MNLI using the contrastive prompt 1023

coordination (s+0 , s
−
1 ), which achieves the perfor- 1024
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mance shown in Table 6.1025

D BERT10k and DeBERTa1k Results1026

We showed a subset of experiment results of1027

BERT10k and DeBERTa1k in Table 3. Here we1028

report the full result of both models self-trained1029

with 24 unlabeled training cases In Table 11.1030

14



Method GLUE AdvGLUE

QNLI QQP RTE SST2 CoLA Avg. QNLI QQP RTE SST2 Avg.

Self-trained BERT10k-340M without human-generated labels
No self-training 65.93 63.71 68.23 80.96 40.17 63.80 62.84 42.31 34.57 24.32 41.01
Single prompt 67.86 61.62 72.22 79.43 42.19 64.66 59.46 40.06 40.47 31.08 42.90

w/ CL 65.66 61.58 64.74 80.71 40.08 60.45 58.12 35.47 42.80 31.52 41.97
Contrastive Coord. 70.80 71.60 66.66 81.42 59.51 70.00 59.91 50.43 41.97 55.18 51.87

w/ CL 68.51 69.69 69.19 81.17 49.57 67.63 60.27 50.43 43.21 51.94 56.47
Paraphrased Coord. 68.77 63.50 68.38 81.65 42.12 64.88 61.26 64.53 58.43 33.78 54.50

w/ CL 68.64 64.50 67.87 81.00 39.43 64.29 60.36 56.41 55.14 36.49 52.10

Self-trained DeBERTa1k-350M without human-generated labels
No self-training 72.23 71.63 73.64 81.42 65.20 72.82 56.08 69.23 64.20 47.30 59.20
Single prompt 72.59 70.95 68.71 86.08 67.15 73.10 62.16 65.81 60.49 50.45 59.73

w/ CL 73.72 73.59 69.07 84.94 68.14 73.89 61.71 68.37 60.9 50.45 60.36
Contrastive Coord. 76.65 76.53 74.12 86.62 69.16 76.62 71.17 70.37 65.02 54.05 65.15

w/ CL 76.70 75.98 75.81 87.19 68.71 76.88 67.57 67.52 66.26 54.28 63.91
Paraphrased Coord. 75.10 72.84 70.76 87.54 69.32 75.11 66.44 69.22 64.61 53.61 63.47

w/ CL 73.68 74.02 71.96 87.16 69.13 75.19 67.12 73.08 61.73 53.60 63.88

Table 11: Unsupervised adaptation performance of different strategies on GLUE and AdvGLUE corpora using 24
unlabeled data examples. The BERT model is trained with 10k MNLI examples, and the DeBERTa model is trained
with 1k MNLI examples.
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