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Abstract

Although large-scale pretrained language mod-
els (LMs) have achieved significant improve-
ments on different natural language tasks, their
fine-tuning still heavily relies on task-specific
data annotation and is sensitive to adversarial
evaluation examples. In this work, we propose
an entailment self-training framework for im-
proving the accuracy and robustness of unsu-
pervised few-shot task adaptations for language
understanding without using any labeled data
on the target tasks. We pretrain language mod-
els on the natural language inference (NLI) task,
and adapt the model to new tasks with coordi-
nated prompts and pseudo-labels. We find that
the coordinated prompts, which jointly describe
the task, serve as an equivalent dimension of the
training data as human labels that enables learn-
ing. The proposed method enables task-specific
fine-tuning without human-generated label. Ex-
periments on the GLUE and AdvGLUE show
that the coordinated prompts constantly outper-
form the no-prompt and single-prompt models
under the unsupervised few-shot task adapta-
tion setting. With preliminary logic pretraining
on the entailment task and self-training, an un-
supervised few-shot adapted medium LM can
outperform existing few-shot, large-scale LMs.

1 Introduction

Although achieving state-of-the-art performance
in different natural language understanding (NLU)
tasks (Devlin et al., 2018; Liu et al., 2019; Yang
etal., 2019; Clark et al., 2020; He et al., 2020; Joshi
et al., 2020), large-scale pretrained language mod-
els still highly depend on human-annotated, task-
specific training corpora for fine-tuning because
the self-supervised pretraining objective does not
incorporate explicit task-related knowledge. As
a result, state-of-the-art language models are still
challenged by lack of adequate fine-tuning data and
difficult evaluation examples crafted by adversarial
attacks or model-in-loop adversarial data annota-
tions (Wang et al., 2021; Jin et al., 2020; Bartolo

et al., 2020; Zang et al., 2019; Garg and Ramakr-
ishnan, 2020; Li et al., 2020).

While humans can fully understand the nature
of a machine learning task, the only way for a
pretrained language model to understand a given
task is fitting the training data. However, a given
training corpus does not necessarily represent the
ground-truth description of a task. For example,
a sentiment analysis task for understanding audi-
ence attitudes toward movies (Socher et al., 2013)
might be interpreted as trivially as “matching the
keywords good and bad” by an overfit or uncon-
verged model. Recent studies have been analyzing
the difficulty by measuring the data distribution gap
between different tasks, domains, and difficulties
(Taori et al., 2020; Carlini et al., 2019; Miller et al.,
2020; Koh et al., 2021). The different distribution
within regular training data and adversarial evalua-
tion data leads to the performance decrease under
adversarial attack. Similarly, a training corpus con-
sisting of a limited number of training examples is
not enough for fully representing the distribution of
the target task under the few-shot learning setting.

In this work, we show that preliminary logic
pretraining and self-training based on coordinated
task descriptions, namely coordinated prompts, can
achieve better unsupervised NLU adaptation per-
formance and robustness with medium-sized LMs
than existing few-shot medium-sized and large-
scale LMs (Gao et al., 2020; Schick and Schiitze,
2021; Gu et al., 2021; Thoppilan et al., 2022; Wei
et al., 2021). We first train an entailment classi-
fier model on a natural language inference (NLI)
(Williams et al., 2018) corpus, which allows the
model to roughly learn if an input discourse is log-
ically true or false. For any target tasks where a
data distribution gap exists between the training
and evaluation splits, we formulate each example
in both splits as a logically true / false classifica-
tion task to mitigate the distribution gap among
the training, evaluation, and NLI corpora. This



formulation enables unsupervised task adaptation
without any additional processing. Furthermore,
the entailment model can be further improved with
a limited number of task-specific unlabeled data
examples.

We found that self-training coordinated task
prompts with pseudo-labels generated by the entail-
ment classifier itself can significantly outperform
direct task adaptation. In some tasks, the unsu-
pervised few-shot method is more effective than
using human-generated labels given a limited num-
ber of task-specific data examples. A coordinated
prompt consists of at least two logically coopera-
tive suppositions that both describe a given task.
One of the supposition being true or false entails
that another supposition must be true or false ac-
cordingly because of logical restrictions. While no
human-generated label is provided, we can anno-
tate the fine-tuning examples with pseudo-labels
predicted by the pretrained entailment classifier.
The entailment classifier is then self-trained (Zoph
et al., 2020; Zou et al., 2019) with the pseudo-
labels, while the logical relations among the coor-
dinated prompts are preserved. It is worth noting
that the regular fine-tuning requires N = |Cipqin|
human-generated labels, while the label-free fine-
tuning strategy we propose uses significantly fewer
task prompts (at least 2) for each task.

Experiments show that the entailment classi-
fiers trained with coordinated prompts can con-
stantly achieve higher unsupervised adaptation per-
formance than the training the models without task
descriptions. Furthermore, the self-trained models
with coordinated prompts can significantly improve
the performance and robustness of the entailment
model with a small number of unlabeled fine-tuning
examples. The main contributions of this work are

* Enabling task-specific fine-tuning only with
medium-sized LMs and small corpora, with-
out human-generated labels, outperforming
label-dependent few-shot methods and large-
scale LMs.

* Reducing the cost of data collection, label
annotation, and model training / inference.

2 Related Work

Pretraining large-scale neural language models in
a self-supervised manner on large corpora and fine-
tuning on task-specific training data has been a
popular method recently for both language under-
standing (Devlin et al., 2018; Liu et al., 2019; Yang

et al., 2019; Clark et al., 2020; He et al., 2020;
Joshi et al., 2020) and generation (Brown et al.,
2020; Lewis et al., 2019; Raffel et al., 2019; Zhang
et al., 2019). Although achieving state-of-the-art
performance in a wide range of tasks, recent studies
have found that the pretraining-fine-tuning strategy
relies on task-specific data annotation and the per-
formance is sensitive to adversarial data examples
(Blum and Mitchell, 1998; Wang et al., 2021; Jin
et al., 2020; Bartolo et al., 2020; Zang et al., 2019;
Garg and Ramakrishnan, 2020; Li et al., 2020).

Besides self-supervised pretraining, another
strategy to improve models with unlabeled data
is self-training (Zoph et al., 2020; Xie et al., 2020b;
Noroozi et al., 2018; Zou et al., 2019; He et al.,
2019; Sachan and Xing, 2018; Shakeri et al., 2020;
Bartolo et al., 2021; Luo et al., 2021). Different
from pretraining with data augmentation or con-
structing task-like pretraining cases (Glass et al.,
2019), self-training models learn from synthetic
task-specific training cases, which can be formu-
lated as data-label pairs. (Zoph et al., 2020; Xie
et al.,, 2020b; Noroozi et al., 2018; Zou et al.,
2019) explored training with additional real data
and pseudo-labels, while (He et al., 2019; Sachan
and Xing, 2018; Shakeri et al., 2020; Bartolo et al.,
2021; Luo et al., 2021) introduced training cases
consist of both synthetic data and pseudo-labels.
Lang et al. (2022) proposed training medium lan-
guage models using pseudo-labels generated by
large models, for example GPT-3 (Brown et al.,
2020) and TO (Sanh et al., 2021). These studies
suggest that the self-training methods can improve
the performance of weakly-supervised models.

Few-shot language understanding has been an
important task for both research and application.
Current solutions include multitask metric learn-
ing (Yu et al., 2018; Gu et al., 2018; Dou et al.,
2019) and data augmentation (Xie et al., 2020a;
Luo et al., 2021; Chen et al., 2020). Another line
of research focuses on constructing task descrip-
tion prompts and utilizing the power of pretrained
language models. Gao et al. (2020); Schick and
Schiitze (2021); Le Scao and Rush (2021) explored
describing language tasks as cloze questions and
applied masked language models to fill labeling
words. Meng et al. (2020) proposed a self-training
method that learns from abundant label descrip-
tions. Obamuyide and Vlachos (2018); Yin et al.
(2019) applied pretrained entailment classifiers for
sequence and relation classification tasks. The mod-



els proposed by these studies can be classified into
to major classes: input prompting and label inter-
pretation. The input prompting method utilizes
the ability of masked word prediction of the lan-
guage models, while label interpretation method
provides abundant explanations to labels with addi-
tional words or in natural language sentences. Both
methods attempt to shift the data distribution from
the newly given task to a task that a language model
has been trained on.

3 Method
3.1 Supposition-based NLU

Entailment in NLP. The term “entailment” has
been widely used in the area of natural lan-
guage processing (NLP). Dzikovska et al. (2013);
Williams et al. (2018) proposed textual entailment
tasks, RTE and MNLI, that requires a model to
predict if “text X entails text y” or not. It has been
widely accepted by the NLP community that the
entailment relation in these tasks is not a strictly
defined logical entailment. Instead, “x entails y”
is interpreted as “if x is true, then y is likely to be
true.” (Dzikovska et al., 2013). The vague defi-
nition makes it possible to crowd-source training
corpora to train models that mimics human percep-
tions of text relations, for example, it is arguably
acceptable that “She does not like the movie is
entailed by her comment: the story is very bor-
ing” (Socher et al., 2013). The MNLI corpus has
also been widely used as a secondary pretraining
resource for other weakly-supervised text classi-
fication in many recent studies (Obamuyide and
Vlachos, 2018; Yin et al., 2019; Lang et al., 2022).
Supposition Classification. Any language task
has at least one textual task definition, which can
be formulated as an affirmative or negated suppo-
sition s = S(Dy, pi, gi, +/—) as shown in Table
1, where t is the task, D; is the textual definition
of task ¢, (pi, ¢;) stands for the i—th input exam-
ple of task ¢, and v € {+, —} to indicate if s} is
affirmative or negated. Computing the truth values
of the suppositions can imply the target outputs of
all tasks. For example, if the affirmative supposi-
tion of the SST-2 task is predicted to be false by
a model, then the predicted sentiment would be
negative. In this work, we train models to predict
the truth values of MNLI suppositions based on the
human-annotated labels and adapt to other tasks
with constructed suppositions shown in Table 1.
Although the definition of entailment in NLI

Task Inputs Supposition
Affirmative Suppositions (s;")
MNLI  p,h his likely to be true when p is true.
RTE p,h h is likely to be true when p is true.
QNLI t,q question q can be answered by text t.
QQP q1, Q2 ¢1 and g2 are duplicated questions.
Her attitude towards the movie is
SST-2  x s
positive given her comment x.
CoLA t sentence t is fluent.
Negated Suppositions (s; )
MNLI  p,h h cannot be true when p is true.
RTE p,h h cannot be true when p is true.
QNLI t,q text t cannot answer question q.
QQP q1, g2 ¢1 and g2 are different questions.
Her attitude towards the movie is not
SST-2  x . .
positive given her comment x.
CoLA t The grammar of t cannot be accepted.

Table 1: The suppositions constructed based on the
definitions of different GLUE tasks (Wang et al., 2018).

tasks are sometimes vague, the entailment relations
among constructed suppositions are strictly logical.
If an affirmative supposition is true, than all affir-
mative suppositions constructed on the same input
example must also be frue, and all corresponding
negated suppositions must be false. We have the
following entailment relation between two supposi-
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3.2 Prompt Coordination

A model trained with a training corpus Chrqin
without explicitly encoding the task definition at-
tempts to learn implicit task suppositions s; im-
plied by Cirq4n, by mapping training data to human-
generated labels. When CY;.4;,, is limited in terms
of corpus size and data distribution, sy might be bi-
ased from the ground-truth task definition, leading
to poor validation performance.

On the other hand, prompt-tuning methods con-
struct textual task descriptions, sometimes as cloze
questions. A language model trained with such
methods can avoid being too biased away from the
ground-truth task definition, since it is already pro-
vided as a prompt. However, the problem cannot be
completely eliminated because the model can shift
the semantics of the template words in the prompts,
since they appears in all training cases and their
word embeddings might be significantly changed
during training.

We construct a prompt coordination with two
logically cooperative suppositions for each task.



Q1: Who is the author of the book “Harry Potter”?
Q2: Who wrote the “Harry Potter” series?

. True  False
Col Prompt C
( Prompt 1 ( Q1 ) ( Q2 ) ) 1 0
Affirmative supposition: Q1 and Q2 are duplicate questions.
( Prompt 2 ( Q1 ) ( Q2 ) ) 0 U

Negated supposition: Q1 and Q2 have different answers.

Paraphrased Prompt Coordination

( Prompt 1 ( Q1 ) ( Q2 ) ) 1 0
Affirmative supposition: Q1 and Q2 are duplicate questions.
( Prompt 2 ( Q1 ) ( Q2 ) ) 1 v

Affirmative supposition: Q1 and Q2 have the same answer.

Figure 1: Examples of contrastive and paraphrased
prompt coordinations of the QQP task.

For example, we can construct a contrastive prompt
coordination with one affirmative and one negated
supposition, or a paraphrased prompt coordination
with two affirmative suppositions. The selected sup-
positions must have different or same truth values
because of the logical presupposition of the con-
structions. The model for predicting the truth val-
ues can be trained on the corpora of such construc-
tions. The constructed prompts and corresponding
truth values are shown in Figure 1.

3.3 Self-training

Under the label-free setting, we fine-tune the lan-
guage models using pseudo-labels generated by the
entailment classifier. Since the entailment classifier
is trained to learn three relations, true, false, and
neutral, we drop the predicted scores of the neu-
tral class while generating pseudo-labels for binary
classification tasks.

pseudo-label generation. In this work, we con-
struct two suppositions, stlzv ! and s?zv 2 for each
data example. Each supposition can be either affir-
mative or negated. We calculate the pseudo-label
for data example d; = (p;, ¢;)

1
li’ V1 = V2

I} =m(sht), 12 =
(t’l) ! 1—[1-1, Ul#vz

1

where m is the pretrained entailment classifier,
sifﬂ = S(Dy, pi,qi,+/—) can be either affirma-
tive or negated. As a result, we can construct two
supposition-label pairs { (s, 1}), (s, 12)} for
each data example. We can use the constructed data
for both fine-tuning and evaluation. We call the con-
structed supposition pair (s%;’ ' sf %) a prompt co-
ordination. The pair is a paraphraéed prompt coor-
dination if v; = w9, otherwise a contrastive prompt

81: Q1 and Q2 are duplicate questions.

(Prompt 1 ( Q1 ) ( Q2 ) )
Log P(True | S4) True | False Log P(False | S)

Log P(D)| Duplicate Du;’:llic::ate Log P(-D)
Log P(True | Sy) True | False Log P(False | S,)

(Prompt 2 ( Q1 ) ( Q2 ) )

S,: Q1 and Q2 have different answers.

Figure 2: Example of the label mapping of a prompt
coordination in the QQP task.

coordination. For any dataset D; = {(p;, q;) | i >
0}, we can construct a new dataset consisting of
supposition-pseudo-label pairs,

Dy ={(S}" ) [i=0,5€0.k=1]} ()

ti 7%

where k is the number of suppositions constructed
for each data example. We apply & = 2 in this
work. The model is trained with the constructed
dataset in the same way as fine-tuning with human-
generated labels.

Confidence-based labeling. Lang et al. (2022)
found that dropping data examples with unconfi-
dent pseudo-labels benefits the performance of the
self-trained DeBERTa (He et al., 2020) model. In
this work, we explore the effect of the following
labeling strategies: (1) using all pseudo-labels and
(2) dropping unconfident pseudo-labels.

We measure the confidence of a prediction with
its probability P(If|p;, ¢;) output by the entailment
classifier. We sort all data examples based on the
confidence of corresponding pseudo-labels, and
drop the most unsure predictions. We will compare
the performance of using all pseudo-labels and the
confidence-based labeling strategies.

3.4 Inference

The final prediction of a task given a data exam-
ple is entailed by the truth value of the constructed
supposition. As a result, we can build a mapping
between the truth values of the suppositions and
the final task predictions according to the task def-
inition. An example of the label mapping in the
QQP task is shown in Figure 2. In this example,
we have the following entailment relations,

(s1=T<so=F)—=D
(SleHSQZT)—)—\D



where T, F stand for True and False, and D is
the following proposition, “the label of example
(Q1,Q2) is duplicate”. As a result, we can calcu-
late the probability of final labels by

logP(D|Q1,Q2) = logP(T|s1) + logP(F|s2)
logP(—D|Q1,Q2) = logP(F|s1) + logP(T|s2)
4 [Experiments

Datasets. We conduct experiments on popular nat-
ural language understanding tasks in the GLUE
(Wang et al., 2018) benchmark, including RTE (Da-
gan et al., 2005), QNLI (Rajpurkar et al., 2016),
QQP, SST-2 (Socher et al., 2013), and CoLA
(Warstadt et al., 2019). We also assess the robust-
ness of the proposed method against adversarial
evaluation sets in the AdvGLUE corpus (Wang
etal., 2021), including Adv-RTE, Adv-QNLI, Adv-
QQP, and Adv-SST2. The data in AdvGLUE is
created by adding word-level and sentence-level
perturbation to the GLUE data, as well as human-
crafted examples. More details is in Appendix A.
Hyper-parameters. We train BERT (Devlin et al.,
2018) and DeBERTa (He et al., 2020) models for
the language understanding tasks, without using
larger language models like GPT-3 (Brown et al.,
2020) and TO (Sanh et al., 2021) that are used
for generating pseudo-labels in (Lang et al., 2022).
We also use the same hyper-parameters across all
tasks, attempting to avoid the problems mentioned
in Perez et al. (2021). In the entailment pretraining
on the MNLI dataset (Williams et al., 2018), we op-
timize both BERT and DeBERTa models with the
AdamW optimizer (Loshchilov and Hutter, 2018).
For all tasks and both models, we set ¢ = 1076. In
the entailment pretraining, we set the weight decay
weight to 1075, and the learning rates for BERT
and DeBERTa are 5e-6 and 3e-6 respectively. Dur-
ing the self-training step, the learning rate of both
models on all tasks is 4e-6, and the weight decay
weight is constantly 1072, We run the entailment
pretraining for 2 epochs and the self-training for 6
epochs. In confidence-based labeling, we drop 1/8
data with lowest confidence.

Self-training details. We train BERT-1large and
DeBERTa-large sequence classification models
provided by Huggingface (Wolf et al., 2020). Both
models contain a pretrained language model of
350M trainable parameters and a linear classifica-
tion head. For each data example in a target task,
we construct 2 suppositions and generate 1 hard

pseudo-label for each supposition. We randomly
shuffle the constructed datasets before feeding them
to the entailment classifiers for fine-tuning. For
each task, we randomly select N = 12 -n,n €
[1,10] unlabeled data examples. We train and eval-
uate the models for each N with 3 independent
runs and calculate the average performance on 2
V100 32G GPUs. Our implementation will be
open-sourced at https://github.com/xxx/xxx.
Baselines. We mainly compare our method with
the following baselines,

* Direct zero-shot adaptation of pretrained
BERT and DeBERTa entailment classifiers
with and without supposition construction.

* Fine-tuned entailment classifiers with human-
generated labels on each tasks under both fully
supervised and few-shot settings.

* Few-shot medium-sized language models
trained with task-specifc labels.

* Zero- and Few-shot large-scale language mod-
els, including LaMDA-137B (Thoppilan et al.,
2022) and FLAN-137B (Wei et al., 2021).

4.1 Results

Direct zero-shot adaptation. We first evaluate the
performance of directly applying pretrained entail-
ment classifiers on different tasks. We compare
models trained with or without supposition con-
structions. The performance is shown in Table 2.

Tasks RTE QNLI QQP SST2 CoLA
Conc. 74.01 171.61 70.53 84.63 65.77
Supp. 84.48 78.74 79.99 90.14 59.78
,,,,,,,,,,,,, Adversarial Evaluation Sets
Conc 50.62 60.81 4744  56.08 N/A
Supp. 679 64.86 64.10 50.68

Table 2: Direct zero-shot adaptation of entailment clas-
sifiers using different data formatting strategies. Conc.
stands for directly concatenating the input texts, and
Supp. stands for constructing suppositions in natural
language and predict the truth values.

The improvement of supposition construction is
significant on the RTE, QNLI, QQP tasks and their
adversarial versions, while the performance gap
on SST-2 and CoLA is smaller. Since SST-2 and
CoLA are single-sentence tasks, we still need to
add label descriptions as additional inputs to run
the entailment classifier. The label descriptions
can provide additional information as prompts, and


https://github.com/xxx/xxx

GLUE AdvGLUE
Method  —GRrT—QQP RTE SST2 ColA Avs. Method —0i1—QQP RTE SST2 Avg
Few-shot (left) and supervised (right) medium LMs (350M) with human-generated labels
CPET 613 676 657 918 - 71.6 R3F 475 406 501 385 442
LM-BFF 69.2 69.8 739 93.0 21.8 654 CTr 49.6 40.7 462 392 43.9
P-tuning 68.8 67.6 708 92.6 60.6 72.1 MT 47.5 41.5 525 513 48.2
PPT 68.8 672 679 923 - 74.1 BERT 39.8 379 405 33.0 37.8
UPT 70.1 72.1 689 929 - 76.0 DeBERTa 57.9 604 79.0 578 63.8
Few-shot fine-tuning medium entailment LMs (350M) with human-generated labels
BERT!0% 58.7 59.6 657 743 67.4 65.1 / 60.3 427 346 315 423
DeBERTa'* 734 783  76.8 88.7 65.6 76.6 / 62.4 526 654 49.1 574
BERT*! 61.5 659 764 784 68.0 66.8 / 61.7 534 494 399 51.1
DeBERTa®!  80.2 774  88.0 87.1 64.9 71.8 |/ 67.8 70.5 708  49.1 64.6
Few-shot large LMs (137B) with human-generated labels
“LaMDA 550 589 708 923 - 694 /oo - -
FLAN 63.3 759 845 946 - 79.6 / - - - - -
Self-trained medium LMs (350M) without human-generated labels

BERT'% 70.8 71.6 692 81.7 59.5 70.5 / 62.8 64.5 584 552 60.2
DeBERTa'*  76.7 76.5 758 875 69.3 712/ 71.2 73.1 66.3 543 66.2
BERT®! 60.0 739 785 869 61.8 722/ 55.6 589 642 565 58.8
DeBERTa*!  83.5 80.8 86.0 927 69.2 825 / 73.4 727 704  56.1 68.1

Table 3: Comparing our unsupervised few-shot method with supervised few-shot baselines on GLUE/AdvGLUE
dev sets. PET, LM-BFF, P-tuning, PPT, and UPT use 16 data-label pairs, LaMDA uses 5, and FLAN uses up to 12
labeled examples. The self-trained models are tuned on 24 unlabeled examples, and the DeBERTa%! models use 12
unlabeled training examples. R3F, CTr, and MT are fully supervised methods for robust language understanding.
1k, 10k, and all stands for the number of MNLI training examples used for the training the entailment classifiers.

reduce the performance gap. The suppositions we
used and more results are shown in Appendix B.

Self-training. We compare our method with recent,
strong baseline models on few-shot and robust lan-
guage understanding respectively. It worth noting
that baseline methods requires K = |Ciyqin| hu-
man generated labels, while our models uses just 2
suppositions and no human-generated labels. The
experiment results are shown in table 3. We found
that our self-trained DeBERTa model without using
any human-generated labels performs best in terms
of the averaged accuracy, and the self-trained BERT
achieves similar performance as the strong baseline
models. We compare our model with PET (Schick
and Schiitze, 2021), LM-BFF (Gao et al., 2020),
P-tuning (Liu et al., 2021), PPT (Gu et al., 2021),
and UPT (Wang et al., 2022), which are recent
strong baselines for few-shot language understand-
ing on the GLUE benchmark. For AdvGLUE, we
compare with R3F (Aghajanyan et al., 2020), child
tuning (CT) (Xu et al., 2021), and match tuning
(MT) (Tong et al., 2022) models. We also compare
the performance of fully supervised and few-shot
BERT and DeBERTa classifiers. For the baselines
that did not report the CoL A performance, we cal-
culate the averaged performance on the other tasks.

Table 3 shows that the self-trained BERT
model achieves competitive performance as few-

shot learning models without using any human-
generated label, and the self-trained DeBERTa-
350M model outperforms both large-scale lan-
guage models with 137B parameters. on the reg-
ular GLUE benchmark. We noticed that the self-
training model perform well on the CoL A task,
although it is not a pure semantic reasoning task,
outperforming LM-BFF by 47% and P-tuning by
over 8% (absolute), approaching the fully super-
vised DeBERTa performance (69.3% vs 70.5%)
(He et al., 2020). The self-trained models also out-
perform fully supervised methods on AdvGLUE.
For comparison the performance of R3F, CTr,
and MT reported in Tong et al. (2022), and the
fully supervised BERT and DeBERTa performance
in Wang et al. (2021). The self-trained BERT
model outperforms all BERT-based baselines (R3F,
CTr, MT), and the self-trained DeBERTa models
achieved the highest averaged accuracy and outper-
forms the fully supervised DeBERTa by 4.8%.

We also evaluated BERT'%* and DeBERTa!”
classifiers, which are trained on 10k and 1k
MNLI examples respectively, while BERT® and
DeBERTa%! use all 390k MNLI training data. The
experiment results shows that training the entail-
ment classifiers on a small subset of the MNLI train-
ing corpus also leads to significant improvement
over the label-dependent fine-tuning baselines.



GLUE AdvGLUE
Method
QNLI QQP RTE SST2 CoLA Avg. QNLI QQP RTE SST2 Avg
Few-shot large LMs (137B) with human-generated labels
LaMDA 506 349 733 5100 - 5245 - - - - -
FLAN 59.6 72.1 78.3 94.6 76.15 - - - - -
Self-trained BERT-340M without human-generated labels
No self-training 5814 7125 7653 8532 5263 6877 59.49 5385 5691 56.08 56.58
Single prompt 5587 71.64 7424 85.13 5245 67.87 5293 47.86 44.03 33.10 4448
w/CL 56.03 70.86 7635 8471 5695 6898 5473 4744 4361 61.78 51.89
Contrastive Coord.  59.89  73.87 78.10 85.09 5299 6899 5991 4872 4773 53.15 5238
w/CL 5922 7324 7846 8551 5630 7055 59.23 5555 4691 64.19 5647
Paraphrased Coord.  60.02  71.79 76.77 86.20 55.56 70.25 53.60 49.15 58.86 3626 4947
w/CL 5535 71.86 7750 86.85 6184 70.68 60.14 49.57 5720 6299 5748
Self-trained DeBERTa-350M without human-generated labels
No self-training 7127 79.23 8448 90.14 5973 7817 6486  66.67 70.37 50.68 63.15
Single prompt 81.12  79.69 8556 90.64 60.03 7941 6577 6453 6749 59.66 64.36
w/CL 8120 79.62 80.98 91.70 6724 80.15 68.02 68.02 6790 49.10 63.26
Contrastive Coord.  79.88  80.93 86.04 9235 68.62 81.56 7342 71.79 7037 5338 67.24
w/CL 8243 80.68 83.27 9274 69.22 81.67 7049 7049 71.19 5270 6222
Paraphrased Coord. 83.50  80.37 8496 90.56 66.67 81.21 7275 7094 71.18 58.56 68.38
w/CL 81.68 8041 83.61 90.60 69.03 81.07 66.67 66.67 7284 5090 6427

Table 4: Unsupervised adaptation performance of different strategies on GLUE and AdvGLUE corpora using 24
unlabeld data examples. The BERT and DeBERTa models are fine-tuned on the full MNLI training corpus. The
performance of LaMDA (Thoppilan et al., 2022) and FLAN was reported in Wei et al. (2021). In self-training
experiments, CL stands for applying the confidence-based labeling strategy. For each model and prompting strategy,
the training processes on all tasks apply the same hyper-parameters.

4.2 Analysis

Effect of prompt coordination. We analyze the
performance of the self-training method with De-
BERTa and BERT by fine-tuning on 24 unlabeled
data examples. The results on regular and adver-
sarial evaluation sets are shown in Table 4. Both
models are self-trained on 24 unlabeled data exam-
ples and results are calculated by averaging three
independent experiments. The experiment results
show that the self-trained entailment classifiers
with 350M parameters can significantly outperform
large-scale language models with 137B parame-
ters. The DeBERTa model outperforms LaMDA
(Thoppilan et al., 2022) by 29.04% and FLAN (Wei
et al., 2021) by 5.34% (absolute). The proposed
prompt coordination mechanism can improve the
performance of prompt tuning with pseudo-labels
on both regular and adversarial evaluation sets and
constantly outperforms the single-prompt models
(ST-SP) with both BERT and DeBERTa.

We found that different models, tasks can be ben-
efited with either contrastive coordination (CC) or
paraphrased coordination (PC). The average per-
formance gap of CC and PC is less that 1% on
the regular GLUE benchmark, but the performance
gap on the AdvGLUE benchmark is more signif-
icant (>1%), suggesting that the PC benefits the

self-training robustness against adversarial exam-
ples. Our experiment results also supports the find-
ing in Lang et al. (2022) that the confidence-based
labeling (CL) strategy improves the self-training
performance. Table 4 shows that applying CL out-
performs the base ST-SP method on GLUE with
both BERT and DeBERTa models. However, CL
does not improve the performance on AdvGLUE
with DeBERTa. In the prompt coordination meth-
ods, the effect of CL is not constantly positive.
We found that the accuracy of BERT+AdvGLUE
and DeBERTa+GLUE can be improved by CL,
while prompt coordination without CL works better
on BERT+GLUE and DeBERTa+AdvGLUE. This
suggests that the prompt coordination mechanism
is more robust against noisy pseudo-labels.

Effect of data size. We have shown that the label-
free self-training method achieves equivalent or
better performance on different tasks with differ-
ent language models, and we would like to an-
swer the question: how many labels is enough for
a fine-tuned model to outperform a self-trained
model? To understand this, we conduct exper-
iments on 10 different data size settings, N €
{12,24, 36,48, 60, 72,84, 96, 108,120}. We run
3 independent experiments for each setting with
the DeBERTa model.
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Figure 3: The comparison different fine-tuning and self-training methods, and the confidence-based labeling (CL)
strategy with the DeBERTa model on different sizes of training data. Figures a to i illustrate the performance on
GLUE and AdvGLUE tasks, and Figure j shows the standard deviation of the fine-tuning performance.

The experiment results are illustrated in Figure
3. Figures 3.a to j summarize the performance
of different tuning methods, including fine-tuning
and self-training, with the DeBERTa model using
training corpora of different sizes. On the GLUE
tasks, we noticed a trend that when the number of
training examples is more than 48, the fine-tuning
performance based on human-generated labels is
better than label-free, self-training methods. On
the AdvGLUE tasks, the experiment results show
that fine-tuning is not significantly better than label-
free self-training on the given training corpora. Fig-
ure 3.j shows the standard deviation (Std) of the
fine-tuning performance. The Std of fine-tuning
performance on GLUE tasks with smaller trainer
corpora is significantly higher than larger corpora.
These facts suggest that when the size of human-
labeled training data is not enough, the coordinated
prompts represent the given tasks better than the
data-label pairs. On AdvGLUE tasks, increasing
the size of training corpora does not ensure im-
proved representation of the adversarial tasks, thus
we do not observe an obvious change of perfor-
mance Std when more data examples are processed.

Although Figure 3 shows that contrastive and
paraphrased coordinations (CC and PC), and the ef-
fect of confidence-based labeling (CL) strategy con-
tribute to each task differently, their performance
gaps vary when the size of the unlabeled training
data increases. When the data is not enough, the
performance gap between CC and PC, CL and no
CL is significant. However, when the models are

self-trained with more data, the difference becomes
less obvious. We also found that the CL mechanism
smooth the performance on the CoLA task.
Effect of pseudo-labeling accuracy. From Fig-
ure 3, we found that there is no necessary relation
between the accuracy of pseudo-labeling and the
evaluation performance. The QNLI and SST2 tasks
show that noisy pseudo-labels can lead to signif-
icantly higher evaluation performance, while the
AdvGLUE tasks suggest that training with correct
labels does not necessarily improve the robustness
against adversarial data.

5 Conclusion

We propose a self-training, prompt coordination
method to adapt pretrained entailment classifiers
to different natural language understanding tasks
by predicting the truth values of constructed task
suppositions. By learning to recognize the logical
relation between different suppositions, a medium-
sized language entailment classifier can outperform
zero- and few-shot, medium and large-scale pre-
trained language models without using any human-
generated labels on natural language understanding
tasks. We also found that the coordinated prompts
can significantly improve the the robustness of lan-
guage models against adversarial evaluation exam-
ples. Our results indicate that a preliminary logical
learning can significantly improve the efficiency of
language model training, by reducing the need of
data collection, human annotation, and the model
size for achieving the comparable performance.



Limitations

Our method utilized a pretrained MNLI model and
adapt it to other domains under few-shot unsuper-
vised settings. There are two limitations that we
would like to improve in future work. Firstly, we
use human-designed suppositions for each task,
which is less automatic than direct adaptation of
the models. Secondly, as shown in Fig 3, the self-
training performance is not as good as fine-tuning
with human-generated labels when the number
of training examples increases because the noisy
pseudo label set. We would like to overcome this
in the next step.

Ethics Statement

We propose a method that can significantly reduce
the financial and environmental cost of language
model learning. By reducing the need of data col-
lection and human labeling, our method can effec-
tively protect user and data privacy by avoiding
leaking any information while building the training
corpora. We found that a medium sized language
model can achieve similar performance as the state-
of-the-art large-scale language models, suggesting
that we can cost less financially and environmen-
tally during model training and evaluation for com-
parable performance. However, since we reduced
the need of human-labeling efforts, the deployment
of the system might decrease the number of data
annotation jobs.
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A Data Details

In this work, we evaluate our method with the
GLUE! and AdvGLUE? benchmarks. We pretrain
our models on MNLI, and evaluate on all other Ad-
vGLUE tasks, AdvQNLI, AdvQQP, AdvRTE, and
AdvSST2. we also evaluate the models on the reg-
ular versions of these tasks in GLUE, plus CoLA,
a non-semantic reasoning task. The statistics of the
GLUE and AdvGLUE benchmarks are shown in
Table 5.

Corpus |[Trainl ITestl |Adv-Testl
MNLI 393k 20k 1.8k
QNLI 105k 54k 09k

QQP 364k 391k 0.4k

RTE 2.5k 3k 0.3k

SST2 67k 1.8k 1.4k
CoLA 8.5k 1k -

Table 5: Statistics of the corpora used in this work

"https://gluebenchmark. com/
2h'ctps ://adversarialglue.github.io/
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B Constructed Suppositions

In this section, we show the suppositions we ap-
plied and present the corresponding unsupervised
adaptation performance. For each task, we use
three suppositions, sar ,s7,and s;, where (sar ,51)
is a pair of contrastive prompt coordination, and
(sar , s;) is a paraphrased prompt coordination. The
prompts we used are list as follows,

e MNLI
sar: {x} is entailed by {yJ}.
51 {x} cannot be true when {y} is true.
s;: {x} is true when {y} is true.
* QNLI
sar: The answer to {x} is entailed by {y3}.
51+ {x} cannot be answered by {y}.
s;: {x} can be answered by {y}.
* QQP
sar : The answer to {x} is entailed by the an-
swer to {yJ}.
51 : {x} and {y} are not the same questions.
s; : {x3} and {y} are same questions.
« RTE
sar: {x} is entailed by {yJ.
51+ {x3} cannot be true when {y} is true.
s;: {x} is true when {y} is true.
e SST-2
sar: The movie is good is entailed by {x}.
s : I'like the movie cannot be entailed by the
comment {x7}.
s3I like the movie is entailed by the com-
ment {x}.
* CoLA
sar : The sentence {x} is fluent.
s1 : The grammar of {x} cannot be accepted.
s;: The grammar of {x} can be accepted..

The zero-shot adaptation results of these prompts
on different tasks are shown in Table 6, 7, 8, and
9. In our experiments, we use sg for pseudo label
generation, and evaluate the prompt coordination

performance of (s§, s7) and (sg, s3).
The experiment results show that the

DeBERTa'* model outperforms the BERT!O%


https://gluebenchmark.com/
https://adversarialglue.github.io/

Task  Prompt GLUE AdvGLUE
sg 7727 61.49
QNLI s, 7214 71.62
sy 65.86  68.24
sy 79.99  64.10
QQP 57 7736 56.41
55 68.53  55.13
sy 84.48  66.67
RTE  s7 84.48  69.14
sy 53.06  40.74
S 90.14 4257
SST-2 57 70.99  40.54
sy 85.78  47.30
S 5973 -
CoLA &7 3202 -
sy 58.87 -

Table 6: Zero-shot performance of different prompts on
each task with the DeBERTa®" model.

Task  Prompt GLUE AdvGLUE
sg 7223  56.08
QNLI 57 57.04  52.03
sy 70.82  64.19
S 7163 6923
QQP sy 65.86  64.10
sy 46.01  41.03
sy 73.65 6420
RTE s, 67.51  61.73
sy 53.06  40.74
sy 8142 4730
SST-2 s, 54.01  49.32
sy 79.01  52.03
sy 6520 -
CoLA sy 5762 -
sy 4832 -

Table 7: Zero-shot performance of different prompts on
each task with the DeBERTa'* model.

Task Prompt GLUE AdvGLUE
sg 58.14  59.46
QNLI 7 57.61  54.73
sy 58.14  62.84
sy 7125 5000
QQP 57 58.48  53.85
55 65.02  48.72
sy 76.53 4444
RTE &7 78.34 4691
sy 2238 58.02
S 8532 3243
SST-2 57 49.08  47.56
sy 81.18  33.11
sy 5263 -
CoLA s 4756 -
sy 66.83 -

Table 8: Zero-shot performance of different prompts on
each task with the BERT*! model.
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Task  Prompt GLUE AdvGLUE
sT 65.93  62.84
QNLI sy 49.99 4730
sy 58.81  48.65
sy 6371 4231
QQP sy 71.30  37.18
5T 31.34  69.23
sy 6823 3457
RTE s 67.87  32.10
sy 31.05  61.73
sy 80.96 2432
SST-2 57 50.57  52.03
sy 80.05 3041
sy 40.17 -
CoLA sy 49.57 -
sy 4247 -

Table 9: Zero-shot performance of different prompts on
each task with the BERT'°* model.

model on several tasks and suppositions, sug-
gesting that the BERT model is more likely to
overfit to the supposition templates during the
training. Similar conclusions are also implied by
the self-training experiment results.

C Entailment Pretraining Details

The backbone model of our method is an entail-
ment classifier that reasonably understands both
affirmative and negated suppositions. However, if
we only pretrain the entailment model with one
affirmative prompt, the model will overfit to the
given prompt template and cannot perform well
on other prompts. We evaluate the performance
of unsupervised adaptation using the negated sup-
positions with an entailment model pretrained on
the MNLI corpus only with s;. The experiment
results are shown in Table 10.

Task  Prompt GLUE AdvGLUE
QNLI  s7 49.19 49.32

QQP s 36.54 36.78

RTE ST 15.52 28.40
SST-2 sy 48.74 50.00
CoLA s7 32.02 -

Table 10: Zero-shot performance of different prompts
on each task based on an entailment classifier trained
with a single prompt.

The zero-shot adaptation performance of the
negated suppositions significantly dropped in Table
10. To solve this problem, we train the entailment
classifiers on MNLI using the contrastive prompt
coordination (s, s ), which achieves the perfor-



mance shown in Table 6.

D BERT'% and DeBERTa'* Results

We showed a subset of experiment results of
BERT'% and DeBERTa'* in Table 3. Here we
report the full result of both models self-trained
with 24 unlabeled training cases In Table 11.
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GLUE AdvGLUE

Method

QNLI QQP RTE SST2 CoLA Avg. QNLI QQP RTE SST2 Avg
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Self-trained BERT'®"-340M without human-generated labels
No self-training 65.93 63.71 6823 80.96 40.17 63.80 62.84 4231 3457 2432 41.01
Single prompt 67.86 61.62 7222 7943 42.19 64.66 59.46 40.06 4047 31.08 42.90

w/CL 6566 6158 64.74 80.71 40.08 6045 58.12 3547 4280 31.52 4197
Contrastive Coord.  70.80  71.60 66.66 8142 59.51 70.00 5991 50.43 4197 5518 51.87
w/CL 6851 69.69 69.19 81.17 49.57 67.63 60.27 5043 4321 5194 5647
Paraphrased Coord.  68.77  63.50 68.38 81.65 42.12 64.88 6126 64.53 5843 33.78 54.50
w/CL 68.64 6450 67.87 81.00 3943 6429 6036 5641 5514 3649 52.10

No self-training 7223 71.63 73.64 81.42 6520 7282 56.08 6923 6420 4730 59.20
Single prompt 72.59 7095 68.71 86.08 67.15 73.10 62.16 65.81 6049 5045 59.73
w/CL 7372 7359 69.07 8494 68.14 73.89 61.71 6837 609 5045 60.36
Contrastive Coord.  76.65  76.53 74.12 86.62 69.16 76.62 71.17 7037 65.02 5405 65.15
w/CL 76,70 7598 7581 87.19 6871 76.88 67.57 67.52 6626 54.28 63.91
Paraphrased Coord.  75.10  72.84 70.76 87.54 69.32 75.11 6644 69.22 64.61 53.61 63.47
w/CL 73.68 7402 7196 87.16 69.13 7519 67.12 73.08 61.73 53.60 63.88

Table 11: Unsupervised adaptation performance of different strategies on GLUE and AdvGLUE corpora using 24
unlabeled data examples. The BERT model is trained with 10k MNLI examples, and the DeBERTa model is trained
with 1k MNLI examples.
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