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Abstract

Learning invariant representations is a fundamen-
tal requirement for training machine learning
models that are influenced by spurious correla-
tions. These spurious correlations, present in
the training datasets, wrongly direct the neural
network predictions resulting in reduced perfor-
mance on certain groups, especially the minority
groups. Robust training against such correlations
requires the knowledge of group membership on
every training sample. This need is impractical
in situations where the data labeling efforts, for
minority/rare groups, are significantly laborious
or where the individuals comprising the dataset
choose to conceal sensitive information pertain-
ing to the groups. On the other hand, the pres-
ence of data collection efforts often results in
datasets that contain partially labeled group in-
formation. Recent works, addressing the problem,
have tackled fully unsupervised scenarios where
no labels for groups are available. We aim to
fill a missing gap in the literature that addresses
a more realistic setting by leveraging partially
available group information during training. First,
we construct a constraint set and derive a high
probability bound for the group assignment to be-
long to the set. Second, we propose an algorithm
that optimizes for a worst-off group assignment
from the constraint set. Through experiments on
image and tabular datasets, we show improve-
ments in the minority group’s performance while
preserving overall accuracy across groups. Our
code is available on https://github.com/

googleinterns/fairness_ssl
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1. Introduction
Neural networks being overly biased to certain groups of the
data is an increasing concern within the machine learning
community (Agarwal et al., 2018). A primary cause for
bias against specific groups is the presence of extraneous
attributes in the datasets that wrongly direct the model re-
sponses (Xie et al., 2017). An inevitable consequence of
such correlations to extraneous attributes is disparities in
performance across different groups. Specifically, if certain
groups form a minority, a model can simply cheat by having
a high overall aggregate accuracy but poor minority group
accuracy (Oakden-Rayner et al., 2020).

Existing works (Arjovsky et al., 2019; Sagawa et al., 2019)
operate in the regime where the number of groups are known
apriori. Further, most works assume a complete knowledge
of the group membership of individual samples. While these
methods have been proven effective, it is not realistic to as-
sume complete access to the group labels. For example, in
a lung cancer detection problem, the label class could con-
tain many unrecognized subgroups such as solid/subsolid
tumors and central/peripheral neoplasms (Oakden-Rayner
et al., 2020). These unrecognized subgroups are difficult to
label and form a minority in the dataset, thereby resulting in
an unbalanced performance across the different subgroups
(Sohoni et al., 2020). In this work, we consider a setting
where a significant portion of the training data is devoid of
group labels. We choose to fill a missing gap in the literature
where several works bifurcate into methods that either are
fully supervised or fully unsupervised.

We answer the question using a framework of distribu-
tionally robust optimization (DRO) (Shapiro et al., 2021;
Namkoong & Duchi, 2016). Prior works that utilize a Max-
imum Mean Discrepancy (MMD) framework exist (Gold-
stein et al., 2022). DRO optimizes for the worst-case train-
ing loss over predefined set of groups and is closely con-
nected to the Rawlsian criterion (Sagawa et al., 2019; Rawls,
2001). Applying DRO to the partial group label setting
poses some challenges: (1) the lack of group label makes
it infeasible to compute the worst-off group loss; (2) opti-
mizing only for the high-loss samples, by considering them
as a worst-off group, discards considerable portion of the
training data thereby impacting the overall performance of
the method; and (3) inferring missing group labels with
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pseudo-label methods is a cause for ethical concerns.

The third challenge above suggests a straightforward way
of handling partial labels wherein we directly estimate the
group label for unlabelled samples. However, this approach
could be harmful in the context of fairness problems be-
cause the estimated labels are susceptible to misuse by a
wrongdoer. For example, when the groups are indicative
of sensitive information such as age or gender, an incorrect
estimation would wrongly designate the demographics of
an individual. Moreover, when it’s desirable to conceal such
sensitive information, a direct estimation of groups would
be violation of privacy. Thus we cautiously avoid building
or utilizing pseudo-label based methods in this paper.

In light of above challenges, we make the following con-
tributions. We propose a method that defines a constraint
set of group assignments and optimize over worst-off as-
signments within the set. We show that the constraint set
encompasses the ground-truth group labels of the unlabeled
data with high probability. Since worst-off assignments do
not directly relate to ground-truth, our approach is safe and
does not violate privacy. As we shall see, our method assigns
high loss samples to groups with low marginal probability
and does not discard any samples. We show experiments on
three imaging datasets and one tabular dataset.

2. Methodology
We revisit the GroupDRO in Section 2.1 and detail our
method, Worst-off DRO, in Section 2.2 and 2.3. In Sec-
tion 2.4, we describe a practical algorithm for optimization.

2.1. Preliminary: Group DRO

Let x∈X ⊂Rd be data descriptors, y ∈Y ⊂{0, 1} be target
labels, and g ∈G ⊂{1, ...,M} be group labels.We assume
training a neural network parameterized by the weights
w that corresponds to a per-sample loss l(x, y;w). Given
data triplets {(xi, yi, gi)}Ni=1, we seek to optimize w for the
Rawlsian criterion (Rawls, 2001; Hashimoto et al., 2018),
which minimizes the loss of the worst-off group, as follows:

min
w

max
g∈G

E
[
l(x, y;w)|g

]
. (1)

Sagawa et al. (2019) proposed a practical algorithm to solve
(1), called Group DRO. This method optimizes a weighted
expected loss across all groups. These weights over the
groups, denoted by q, are drawn from a simplex ∆M . The
objective function LGDRO is as described below,

min
w

max
q∈∆M

M∑
j=1

Group
Weights

qj

[∑N
i=1

Indicator function

1{gi = j} l(xi, yi, w)∑N
i=1 1{gi = j}

]
Per-group average loss

(2)

2.2. Our Approach: Worst-off DRO

In this work, we are interested in training a robust
neural network when group labels are only partially
available. That is, our training dataset consists of
fully-labeled {(xi, yi, g?i )}Ki=1 and task-labeled samples
{(xi, yi,−)}Ni=K+1, where − indicates the missing groups.

As noted in (2), the Group DRO requires group labels of
entire dataset. When some of them are missing, we propose
to optimize for the following objective for LWDRO(C):

min
w

max
q∈∆M

max
{ĝ}∈C

M∑
j=1

qj

[∑N
i=1 1{ĝi = j}l(xi, yi, w)∑N

i=1 1{ĝi = j}

]
(3)

where C is a set of group assignments {ĝi}Ni=1 satisfying
ĝi = g?i ,∀i ≤ K. We call the objective in (3) Worst-off
DRO method; as it optimizes over the worst-off assignments
in a certain constraint set C (more details on C soon).

Note that the Worst-off DRO objective forms an upper
bound to the Group DRO objective evaluated at the ground-
truth group labels if {g?i }Ni=1 ∈C. Under identical parame-
ters w and q, this is rather a straightforward consequence
from the fact that the ground-truths {g?i }Ni=1 falls within the
constraint set C. However, the following lemma generalizes
the upper bound relationship between Worst-off DRO and
Group DRO objectives for all w and q parameters.

Lemma 2.1. Denote LGDRO at a specific w and q as
LGDRO(w,q). Similarly LWDRO(C) at a fixed w and q is
denoted by LWDRO(w,q)(C). When the ground-truth group
assignment {g?i }Ni=1 ∈ C, we have

min
w

max
q∈∆M

LGDRO(w,q) ≤ min
w

max
q∈∆M

LWDRO(w,q)(C) (4)

The proof is in Appendix A.3. For safety-critical appli-
cations, such as learning a fair classifier, it is important
that the optimal objective (i.e., Group DRO with a ground-
truth group assignment) is bounded by the objective used
in optimization as in Lemma 2.1. This is simply because
optimizing the proposed objective guarantees that the cor-
responding lower bound Group DRO is also optimized.

2.3. Reducing Constraint Set with Marginal
Distribution Constraint

Clearly the constraint set plays an important role in connect-
ing Worst-off DRO to Group DRO. We see that Worst-off
DRO can be made closer to Group DRO by further restrict-
ing C as long as C contains the ground-truths. To achieve
this goal, we utilize marginal distribution constraints. These
constraints may be given as a side information or could be
estimated from the small set of partial group labels. Let Cp,ε
be subset of C whose elements {gi}Ni=1 satisfy,
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Algorithm 1 Worst-off DRO Algorithm

1: Input: Fully-labelled dataset {(xi, yi, g?i )}Ki=1, task-
labeled dataset {(xi, yi,−)}Ni=K+1

2: Initialization: learning rates ηw and ηq , Marginal distri-
bution p̄, Permissible variance ε

3: Parameters: Group Weights qj , Worst-off DRO group
assignments ĝ, Neural network parameter w

4: for t = 0, 1, 2, ..., T do
5: {ĝt} ← max{ĝ}∈Cp̄,ε

∑M
j=1 q

t
j

∑
i ĝij l(xi,yi;w

t)∑
i ĝij

where, Cp̄,ε as defined in (10).
6: Gradient descent on w:

wt+1 ← wt − ηw∇w
∑M
j=1 q

t
j

∑
i ĝ
t
ij l(xi,yi;w)∑
i ĝ
t
ij

7: Exponential ascent on q:

qt+1 ← qt exp (ηq∇q
∑M
j=1 qj

∑
i ĝ
t
ij l(xi,yi;w

t+1)∑
i ĝ
t
ij

)

8: end for
9: Output: Trained neural network parameters wT+1

gi = g?i ,∀i ≤ K, (5)

| 1

N

∑N

i=1
1{gi = j} − pj | ≤ ε,∀j ≤M, (6)

where (5) implies that the true group labels are assigned
whenever available, and (6) implies that the data marginal
distribution should be close to the marginal distribution p.
Then, for any marginal distribution p and ε> 0, it is easy to
show LWDRO(Cp,ε)≤LWDRO(C) as Cp,ε⊂C. Moreover,
we will see in Lemma 2.2 that, with high probability, the
constraint set Cp?,ε with the true marginal distribution p?

contains the true group assignment {g?}.
Lemma 2.2. The constraint set Cp?,ε contains the true
group labels {g?i }Ni=1 with high probability:

P ({g?i }Ni=1 ∈Cp?,ε) ≥ 1− 2Me−2Nε2 (7)

The proof is in Appendix A.3. As in (7), the probability
of the constraint set containing the true group labels gets
closer to 1 by allowing a larger variance (ε) from the true
marginals. For fixed ε> 0, the probability gets closer to 1 as
we increase the number of unlabeled data (N ). Finally, this
implies that LWDRO(Cp?,ε) is an upper bound to LGDRO:

LGDRO ≤
w.h.p

LWDRO(Cp?,ε) ≤ LWDRO(C)

In practice, however, the true marginal distribution p? may
not be available. For our setting where group labels are
partially available, with an assumption that group labels
are missing completely at random (MCAR) (Rubin, 1976),
the true marginal distribution could be estimated from the
labelled subset. This again allows us to formulate a con-
straint set that contains the ground-truth group assignment

with high probability. Let p̄ be the estimate of the marginal
distribution from {(xi, yi, g?i )}Ki=1.

Lemma 2.3. The constraint set Cp̄,δ+ε contains the true
group labels {g?i }Ni=1 with high probability:

P ({g?i }Ni=1 ∈Cp̄,δ+ε) ≥ 1− 2Me−2Nε2 − 2Me−2Kδ2

(8)

Proof in Appendix A.3. Here, δ accounts for estimation
error from the true marginals p?.

2.4. A Practical Optimization Algorithm

We are interested in solving the optimization problem
LWDRO(Cp,ε). Unfortunately, the inner maximization prob-
lem with respect to the group assignments {ĝ} in (3) is chal-
lenging as variables are discrete and the objective cannot
be decomposed due to the marginal distribution constraint.
Thus, we propose to use a soft group assignments. Specif-
ically, for each sample, we retain a soft group assignment
ĝi ∈∆M , and optimize the Worst-off DRO objective over
the constraint set Cp̄,ε as defined below:

min
w

max
q∈∆M

max
{ĝ}∈Cp̄,ε

M∑
j=1

qj

[∑N
i=1 ĝij l(xi, yi, w)∑N

i=1 ĝij

]
(9)

Cp̄,ε =

{
{ĝi}Ni=1

∣∣∣ ĝi ∈∆M ,∀i≤N,
ĝi(g?i ) = 1,∀i≤K,
| 1
N

∑N
i=1 ĝij − p̄j | ≤ ε,∀j≤M

}
(10)

The first condition ensures that the assignments form a prob-
ability simplex, second one assures consistency with la-
beled data, and the third one validates the data marginal
distribution follows the provided distribution. The third
constraint also provides for a mitigation strategy when p̄ is
misspecified (likely when data is not MCAR). We alternate
optimization over w, q and {ĝ} as shown in Algorithm 1.

Next, we will see how the worst-off assignments computed
by the algorithm look to be. For simplicity, consider the
case ε = 0 and K = 0, (i.e., no group-labelled samples).
Denoting qj∑N

i ĝij
=

Nqj
p̄j

in (9) as θj and l(xi, yi, w) as li,
we can re-write the maximization over {ĝij} as,

max
{ĝij}∈Cp̄,ε=0

N,M∑
i=1,j=1

ĝij × θj × li (11)

The constraints ensure
∑N
i=1 ĝij = N p̄j and

∑M
i=j ĝij =

1, ĝij ≥ 0 for all i ≤ N and j ≤ M respectively. The
linear program (11) sets the highest mass on ĝij for i and j
that maximize θj and sample loss li. A large θj represents
groups with a high group weight qj and low marginal prob-
ability p̄j , characteristic of a worst-off group. In summary,
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Table 1: Quantitative Results. The labelled samples are about 10% of total samples. For baselines, we consider an ERM, Unsup DRO
(Hashimoto et al., 2018), Group DRO (Partial) for partly labelled Group DRO (Sagawa et al., 2019) method, Group DRO (Oracle) for the
fully supervised model. Our method Worst-off DRO improves the minority group’s accuracy (min) while maintaining a similar overall
accuracy (avg) relative to baselines. The accuracies are computed on the test set and are an average over three random runs.

Waterbirds CMNIST Adult CelebA

min avg min avg min avg min avg

Group DRO (Oracle) 82.9±0.5 92.0±0.0 49.7±0.6 75.3±0.3 82.0±0.9 87.5±0.9 79.6±1.3 94.3±0.3

ERM 59.7±1.0 87.4±0.1 12.7±1.5 79.3±0.5 67.9±1.1 92.0±0.3 44.8±3.0 94.9±0.1

Unsup DRO 64.8±0.9 88.2±0.1 9.6±1.4 79.5±0.6 67.6±1.7 92.1±0.2 38.9±1.8 95.5±0.0

Group DRO (Partial) 44.0±1.3 81.0±1.3 35.5±0.8 75.6±0.2 67.0±0.3 90.4±0.3 39.6±4.5 95.0±0.1

Worst-off DRO 65.4±1.0 89.2±0.2 39.4±1.1 77.0±0.4 71.3±0.2 90.8±0.1 48.7±2.1 95.0±0.1
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Figure 1: Ablation experiments on Waterbirds dataset: (a) Group DRO (Partial) and Worst-off DRO algorithms improve the minority
group accuracies as the number of group labels are increased. Also, the Worst-off DRO method has relatively higher accuracy values than
Group DRO. (b) Evaluations for different hyper-parameter choices are plotted for Worst-off DRO and Group DRO (Partial) methods.
Worst-off DRO models are concentrated in the top-right corner of the plots. This is desirable indicating high accuracies across the two
metrics. (c) The progression of q−values (see Algorithm 1) is plotted for each group. The q−values for the minority groups increases
gradually while those of the majority groups reduce. A high q−value indicates that the corresponding group receives a higher weight
relative to other groups (minority group indicated by ∗). (d) The marginal constraint is gradually relaxed by increasing the ε parameter.
Models with ε ≤ 0.01 have similar performance. Accuracies start to drop when increasing ε beyond 0.01.

high loss samples are assigned to groups with high group
weights and low marginal probabilities.

3. Experiments
We test the efficacy of our method on image and tabular
datasets1. We use Waterbirds (Sagawa et al., 2019), Group
CMNIST (Arjovsky et al., 2019), Group Adult (Dua et al.,
2017), and CelebA (Liu et al., 2015). We compare our
method against ERM, Unsup DRO (Hashimoto et al., 2018)
and Group DRO. We consider a variant of Group DRO that
only uses samples with group labels at train time. We call
the method Group DRO (Partial), to contrast with fully-
labelled counterpart, Group DRO (Oracle). Our quantitative
results in Table 1 show that the minority group accuracy is

1CMNIST and Adult datasets differ from their previous instan-
tiations in (Creager et al., 2021). These datasets are used to assess
the group-robustness criterion, hence same pre-defined groups are
used in both training and testing. More details in Appendix A.11

higher relative to the baselines for Worst-off DRO method2.
Moreover, the average accuracy across all the groups is
within a 2% window for all the methods.

Ablation Experiments. In Figure 1a, we show that the mi-
nority group accuracy increases with more labelled samples.
More labels provides two benefits. Firstly, the standard de-
viation of errors in estimating the marginal probabilities re-
duces (Wasserman, 2004) ( ≈

√
# samples rate). Secondly,

labelled groups reinforce an accurate evaluation of the Rawl-
sian objective in (2). In Figure 1b, we plot the minority/aver-
age group accuracies for different hyper-parameter choices.
Due to distributional differences amongst the groups, a mild
tradeoff exists between the two accuracy measures. Ev-
idently, the top-right regions in the plot are desirable, at
which the Worst-off DRO models are positioned. Next, in
Figure 1c, we plot group weights (q−values) in the train-
ing phase. The plots show a high q−value on the minor-

2Minor differences, in Group DRO accuracies, due to using
random sampling (unlike weighted sampling in (Sagawa et al.,
2019)). Weighted sampling is noisy when group labels are missing.
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ity groups indicating that the loss values on them are up-
weighted relative to other groups. Lastly, Figure 1d de-
scribes experiments where the constraint set size is gradually
increased by varying the ε parameter of Cp̄,ε. Increasing ε
parameter accommodates the case where p̄ is misspecified.

4. Conclusion
We present Worst-off DRO, an invariant learning method for
partially labelled datasets. Worst-off DRO extends Group
DRO by optimizing the loss against the worst-off group
assignments in a constraint set. By reducing the constraint
set with the marginal distribution, we reduce the optimiza-
tion parameter space while maintaining the objective to be
an upper bound to that of the Group DRO with true group
assignments. By harnessing both labeled and unlabeled data
in terms of group, we demonstrate in experiments that the
Worst-off DRO outperforms both ERM, UnsupDRO, which
do not make use of available group labels, as well as the
Group DRO (Partial), which does not use unlabeled data.
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A. Appendix
A.1. Ethics Statement

Machine Learning (ML) models that perform poorly on a minority group or environment have raised a lot of concerns
within the AI community and broader society in recent years. To democratize ML in real world, learning ML models that
perform robustly across groups or environments has become an important venue of research. The proposed Worst-off DRO
is a versatile method that could be employed to train an invariant classifier across groups even when the group information is
available only for the portion of the data. This is a rather practical scenario as the group information could be missing for
various reasons during the data collection. We further emphasize the importance of theoretical result showing the objective
of Worst-off DRO being an upper bound to that of Group DRO with complete group information for safety-critical ML
applications.

A.2. Reproducibility

We write our experimental code from scratch using PyTorch library (Paszke et al., 2019). Due to its similarity, our
implementation may closely follow that of Group DRO (Sagawa et al., 2019).3 One of the key differentiation of Worst-off
DRO is the inner maximization solver for the worst-off group assignments {ĝ}, which we elaborate the exact code using
CVXPY solver (Diamond & Boyd, 2016) in Algorithm 2 of Appendix. Additional implementation details, including the
neural network architectures, as well as value for hyperparameters including the learning rate, weight decay, batch size,
number of training epochs, and algorithm-specific parameters are summarized in Table 2 and Section A.8 and A.11.

A.3. Proof of Lemmas

Lemma A.1. Denote LGDRO at a given w and q parameters as LGDRO(w,q). Similarly LWDRO(C) at a fixed w and q as
LWDRO(w,q)(C). When the ground-truth group assignment {g?i }Ni=1 ∈ C, we have

min
w

max
q∈∆M

LGDRO(w,q) ≤ min
w

max
q∈∆M

LWDRO(w,q)(C) (12)

Proof. Under the case {g?i }Ni=1 ∈ C, due to the max over C, we have

LGDRO(w,q) ≤ LWDRO(w,q)(C) ∀w, q (13)

Define q∗WDRO = arg maxq∈∆MLWDRO(w,q)(C) and q∗GDRO = arg maxq∈∆M LGDRO(w,q).
From the above definitions, we have,

LWDRO(w,q)(C) ≤ LWDRO(w,q∗WDRO)(C) (14)

Moreover,

LGDRO(w,q∗GDRO) ≤ LWDRO(w,q∗GDRO)(C) from (13) (15)

LWDRO(w,q∗GDRO)(C) ≤ LWDRO(w,q∗WDRO)(C) from (14) (16)

=⇒ LGDRO(w,q∗GDRO) ≤ LWDRO(w,q∗WDRO)(C) (17)

Minimizing (17) over w, we obtain,

min
w

max
q∈∆M

LGDRO(w,q) ≤ min
w

max
q∈∆M

LWDRO(w,q)(C)

Lemma A.2. The constraint set Cp?,ε contains the true group labels {g?i }Ni=1 with high probability:

P ({g?i }Ni=1 ∈Cp?,ε) ≥ 1− 2Me−2Nε2

3https://github.com/kohpangwei/group_DRO

https://github.com/kohpangwei/group_DRO


Submission and Formatting Instructions for ICML 2022

Proof. The probability of the true group assignment {g?i }Ni=1 in the constraint set Cp?,ε is written as follows:

P ({g?i }Ni=1 ∈Cp?,ε) = P
(∣∣p?j − 1

N

∑N

i=1
1{g?i = j}

∣∣≤ ε ∀j) ≥ 1− 2Me−2Nε2 (18)

where (18) holds true from the Hoeffding’s inequality.

Lemma A.3. The constraint set Cp̄,δ+ε contains the true group labels {g?i }Ni=1 with high probability:

P ({g?i }Ni=1 ∈Cp̄,δ+ε) ≥ 1− 2e−2Nε2 − 2e−2Kδ2

Proof. Using Hoeffding’s inequality, we can show that the estimation error of the marginal distribution is bounded by δ
with high probability as follows:

P (|p?j − p̄j | ≤ δ) = P
(∣∣p?j − 1

K

∑K

i=1
1{g?i = j}

∣∣ ≤ δ) ≥ 1− 2e−2Kδ2

(19)

Furthermore, we show using Hoeffding’s inequality that

P
(∣∣p?j − 1

N

∑N

i=1
1{gi = j}

∣∣ ≤ ε) ≥ 1− 2e−2Nε2 (20)

P
(∣∣p̄j − 1

N

∑N

i=1
1{gi = j}

∣∣≤ δ + ε
)

(21)

≥ P
({∣∣p?j − p̄j∣∣ ≤ δ} ∩ {∣∣p?j − 1

N

∑N

i=1
1{gi = j}

∣∣ ≤ ε}) (22)

≥ P
(∣∣p?j − p̄j∣∣ ≤ δ)+ P

(∣∣p?j − 1

N

∑N

i=1
1{gi = j}

∣∣ ≤ ε)− 1 (23)

≥ 1− 2e−2Kδ2

− 2e−2Nε2 (24)

where (22) is due to that the intersection of events and is a subset of an event in (21). Then, (23) is derived using union
bound. Now, the probability of the true group assignment {g?i }Ni=1 in the constraint set Cp̄,δ+ε is written as follows:

P ({g?i }Ni=1 ∈Cp̄,δ+ε) = P
(∣∣p̄j − 1

N

∑N

i=1
1{gi = j}

∣∣≤ δ + ε ∀j
)

(25)

= 1− P
( M⋃
j=1

∣∣p̄j − 1

N

∑N

i=1
1{gi = j}

∣∣>δ + ε
)

(26)

from union bound, we get, (27)

≥ 1−
M∑
j=1

P
(∣∣p̄j − 1

N

∑N

i=1
1{gi = j}

∣∣>δ + ε
)

(28)

from (23), we have (29)

≥ 1− 2Me−2Kδ2

− 2Me−2Nε2 (30)

A.4. Notes on the Optimization Procedure

When using CVXPY to solve for the Worst-off DRO assignments, we simplify the problem by replacing the data marginal
distribution

∑N
i=1 ĝij in the denominator of (10) to p̄j , thus providing us with a convex optimization problem. The code for

the solver is available in Algorithm 2.
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Figure 2: Increasing the labelled samples - Average Group Accuracy. We plot the average group accuracies as a function
of labelled samples. These accuracies remain fairly similar as the count of labelled samples grows.

Table 2: Grid search for Table 1. The range of values for each hyper-parameter is listed. A grid search over these hyper-parameters is
conducted to identify the best performing model. Models outside these range values were observed to be either unstable or not converging.
Model selection is done based on NVP (novel validation procedure) where first the models, with higher overall accuracies, are selected.
From the top five such performing models, the one with the highest minority group accuracy is picked.

Waterbirds CMNIST

Learning Rate 0.0001, 0.00001, 0.000001 Learning Rate 0.001, 0.0001, 0.00001
Weight Decay 1.5, 1.0, 0.1 Weight Decay 0.01, 0.001, 0.0001

ηUDRO 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 ηUDRO 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3
ηGDRO 0.1, 0.01, 0.001 ηGDRO 0.01, 0.001, 0.0001
ηWDRO 0.1, 0.01, 0.001 ηWDRO 0.01, 0.001, 0.0001

Adult CelebA

Learning Rate 0.001, 0.0001, 0.00001 Learning Rate 0.0001, 0.00001, 0.000001
Weight Decay 0.01, 0.001, 0.0001 Weight Decay 1.0, 0.1, 0.01

ηUDRO 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 ηUDRO 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3
ηGDRO 0.01, 0.001, 0.0001 ηGDRO 0.1, 0.01, 0.001
ηWDRO 0.01, 0.001, 0.0001 ηWDRO 0.1, 0.01, 0.001

A.5. An example of worst-off assignments

Using three samples, we provide an example of the worst-off assignments made by our algorithm,

Example A.4. Consider three samples with loss values l1 > l2 > l3 and two predefined groups. Assume the marginal
probabilities p̄1 = 0.6 and p̄2 = 0.4. Without loss in generality, assume q1

p̄1
> q2

p̄2
. With constraint Cp̄,ε=0 and solving for

Worst-off DRO objective results in the following group assignments, {ĝt} =

(
1 0
0.8 0.2
0 1

)
. Here, the ith row indicates the

assignment given to sample li.

The group assignments can be derived by identifying a {ĝ} that satisfies the constraints
∑N
i=1 ĝi1 ≤ N p̄1 and

∑N
i=1 ĝi2 ≤

N p̄2, where N = 3, p̄1 = 0.6 and p̄1 = 0.4, and correspondingly maximizes Worst-off DRO objective. The above example
informs us that group assignments depend on the magnitude of loss values in addition to the group weights and marginal
probabilities. As indicated in the paper, we find that high loss samples are assigned to groups with high group weights and
low marginal probabilities, characteristic of a worst-off group.

Marginal constraints form a key ingredient of our algorithm as per the above example. Without the marginal constraints, the

group assignments {ĝt} =

(
1 0
1 0
1 0

)
. That is, the assignments would have been made independent of the loss values and

sparsely restricted to the group with large qj
p̄j

value.
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Table 3: Hyperparamter choices for Table 1. We list the hyper-parameters selected using the NVP procedure (see Section 3) after
performing grid-search. Learning rate and weight decay are an important set of parameters that influences the minority group performance.
Each baseline has it’s algorithm-specific hyper-parameter such as step-size of the simplex weights in Group DRO (ηGDRO), the loss
threshold in Unsup DRO (ηUDRO) and the step size for the group weights in Worst-off DRO (ηWDRO). The symbol “-” for batchsize in
CMNIST experiments indicate the use of full-batch data for training.

Dataset Method Architecture Learning Rate Weight Decay Batch Size # Epochs Other params

Waterbirds ERM ResNet50 0.0001 0.1 128 300 -
Waterbirds Unsup DRO ResNet50 0.0001 0.1 128 300 η=0.3
Waterbirds Group DRO-(Oracle) ResNet50 0.00001 1.0 128 300 η=0.001
Waterbirds Group DRO-(Partial) ResNet50 0.00001 0.1 128 300 η=0.001
Waterbirds Worst-off DRO ResNet50 0.00001 1.0 128 300 η=0.001
CMNIST ERM MLP(390,390) 0.001 0.01 - 500 -
CMNIST Unsup DRO MLP(390,390) 0.00001 0.001 - 500 η=0.4
CMNIST Group DRO-(Oracle) MLP(390,390) 0.0001 0.001 - 500 η=0.001
CMNIST Group DRO-(Partial) MLP(390,390) 0.001 0.01 - 500 η=0.001
CMNIST Worst-off DRO MLP(390,390) 0.0001 0.01 - 500 η=0.0001

Adult ERM MLP(64,32) 0.0001 0.001 128 200 -
Adult Unsup DRO MLP(64,32) 0.0001 0.001 128 200 η=0.3
Adult Group DRO-(Oracle) MLP(64,32) 0.0001 0.001 128 200 η=0.0001
Adult Group DRO-(Partial) MLP(64,32) 0.0001 0.01 128 200 η=0.001
Adult Worst-off DRO MLP(64,32) 0.00001 0.001 128 200 η=0.0001

CelebA ERM ResNet50 0.0001 0.01 128 50 -
CelebA Unsup DRO ResNet50 0.0001 0.01 128 50 η=0.6
CelebA Group DRO-(Oracle) ResNet50 0.00001 0.1 128 50 η=0.1
CelebA Group DRO-(Partial) ResNet50 0.00001 0.01 128 50 η=0.1
CelebA Worst-off DRO ResNet50) 0.00001 0.1 128 50 η=0.001

A.6. Discussion on Unsupervised DRO methods

In this section, we contrast Worst-off DRO method against Unsup DRO (Hashimoto et al., 2018) and CVaR DRO (Levy
et al., 2020). CVaR DRO (Levy et al., 2020) is a coherent risk measure (Rahimian & Mehrotra, 2019) that optimizes over
a certain fixed-sized sub-populations within the training dataset. In essence, CVaR DRO is alike Unsup DRO where the
size of the sub-population is controlled by a threshold on the loss value. In both CVaR DRO and Unsup DRO, the size of
the selected sub-population needs to be close to the size of the smallest group as identified in Section 3.2.2 of (Liu et al.,
2021). Such a requirement demands wider hyper-parameter search space for α/η parameters that control the size of the
sub-populations. Our experiments justify this need, Table 2 of Appendix A.8 shows that the search space of Unsup DRO
is twice relative to Worst-off DRO in order to attain comparable average group accuracies. Clearly, a wider search space
contributes to a harder model selection procedure. Moreover, scenarios where extensive search is not possible (eg, small
validation set/dataset regimes) could result in incorrect/unstable model selection. From the perspective of the methodology,
CVaR DRO / Unsup DRO train only on the highest loss samples while discarding the remaining samples. In contrast,
Worst-off DRO does not discard any sample rather downweights/upweights as per the worst-off group assignment. This
property aids in maintaining a high overall accuracy besides reaching good minority group accuracy.

A.7. Discussion on MAR case

The δ gap in Lemma 2.3 captures the error in misspecification of p̄ in relation to p?. When p̄ is misspecified due to the data
being Missing at Random (MAR) rather than MCAR (Missing Completely at Random), a solution could be to estimate
the propensity of missingness from other features; then use inverse propensity weighting to get a consistent estimate of
the fraction of samples in each group as discussed in (Zhao & Udell, 2020). Alternatively, if provided with the knowledge
of the data-generation process, the core effort in extending our method simply involves using off-the-shelf estimators to
characterize the probability distributions (see (Mohan & Pearl, 2014) for example.
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Algorithm 2 Group Assignment Solver using CVXPY library

import cvxpy as cp
import numpy as np

class Solver(object):
def __init__(self, n_controls, bsize, marginals, epsilon, labeled=None):
"""Group assignment solver.

Arguments:
n_controls: An integer for the number of groups.
bsize: An integer for the batch size.
marginals: A 2D array for the marginal distribution.
epsilon: A float for the variance.
labeled: A tuple for labeled data indices and their value.

"""
self.X = cp.Variable((bsize, n_controls))
self.l = cp.Parameter((bsize, 1))
self.p = cp.Parameter((n_controls, 1), value=marginals)
self.q = cp.Parameter(n_controls)
if labeled is not None:
labeled_idx, labeled_value = labeled

counts = cp.sum(self.X, axis=0, keepdims=True)

obj = ((self.l.T @ self.X) / self.p.T) @ self.q
constraints = [self.X >= 0,

cp.sum(self.X, axis=1, keepdims=True) == np.ones((bsize, 1)),
cp.abs(cp.sum(self.X, axis=0, keepdims=True) / bsize - self.p.T) <= epsilon]

if labeled is not None:
constraints += [self.X[labeled_idx] == labeled_value]

self.prob = cp.Problem(cp.Maximize(obj), constraints)

def cvxsolve(self, losses, weights):
"""Solver.

Arguments:
losses: A 2D array for loss values.
weights: A 1D array for group weights q.

Returns:
A 2D array for soft group assignments.

"""
self.l.value = losses
self.q.value = weights
self.prob.solve()
return self.X.value

A.8. Hyper-parameter Tuning

Hyper-parameters were selected for each algorithm by performing an NVP procedure (see Section 3). The best performing
model was identified on the validation set associated with each dataset. All the measures were computed and averaged over
three random runs. A list of all the hyper-parameters that were tuned for are available in Table 2. The final hyper-parameters
selected for each method can be viewed from Table 3.

A.9. Additional ablation experiments

In this section, we extend the ablation experiments presented in the main paper. Specifically, results over all four datasets is
provided in Figures 3,4,5. As we see in the plots, all the datasets exhibit similar behaviour across the ablation experiments.

A.10. Ablation study on increasing the constraint set size.

We conduct experiments on Worst-off DRO method for different values of the ε parameter in the set {0, 0.001, 0.01, 0.1, 1}.
The test set accuracies on the minority group and average group are reported in Figure 6. Increasing the ε value also increases
the constraint set size because the marginal constraint is gradually relaxed. Figure 6 shows that the both minority group
accuracy and average group accuracy values reduce with increase in ε value beyond 0.1 threshold. The accuracy values for
ε ≤ 0.01 are comparable. A similar trend holds on other datasets as well.
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Figure 3: Increasing the labelled samples. Minority group accuracies are plotted at different counts of the labelled samples. Both,
Group DRO (Partial) and Worst-off DRO algorithms improve the minority group accuracies with more training labels. Also, the Worst-off
DRO method has higher accuracy values than Group DRO method. The average group accuracies are shown in the Appendix Figure 2.
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Figure 4: Minority Group vs. Average Accuracy. Evaluations for different hyper-parameter choices are plotted for Worst-off DRO
and Group DRO (Partial) methods. Models from Worst-off DRO training are concentrated in the top-right corner of the plots. This is
desirable indicating a high accuracies across the two metrics. For model selection from among the possible choices, we adopt the NVP
procedure (see Section 3).
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Figure 5: Progression of group weights. The evolution of q−values (see Algorithm 1) is plotted for each group. The q−values for the
minority groups increases gradually while those of the majority groups reduce. A high q−value indicates that the corresponding group
receives a higher weight relative to other groups. In the plots, minority group is indicate by a ∗ on q.

A.11. More details on the datasets

A.11.1. WATERBIRDS

The dateset, used in (Sagawa et al., 2019), comprises of 4795 images of birds from the CUB dataset (Welinder et al., 2010)
and the backgrounds taken from the Places dataset (Zhou et al., 2017). Each image in the dataset has a background of
land or water. The target labels are either “landbirds” or “waterbirds”. In this dataset the groups “landbirds” on water and
“waterbirds” on land form a minority. A ResNet50 model, pre-trained with ImageNet weights, has been used for training in
experiments on this dataset. No data augmentation has been applied for any of the Algorithms.
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Figure 6: Varying the ε parameter in the constraints. The marginal constraint is gradually relaxed by increasing the ε
parameter. The accuracies in the plots are computed on the test sets. Performance of the models with ε ≤ 0.01 are similar,
however, the accuracies drop when increasing ε beyond 0.01 threshold.

A.11.2. GROUP CMNIST

CMNIST, derived from an MNIST (LeCun et al., 1998), is a digit recognition dataset where each image is colored either red
or green. Digits < 5/ ≥ 5 are considered as label 0/1. We consider three groups in our experiments. In the first two groups,
label 0 images are predominantly colored red and vice versa. In the third group, which forms a minority, we switch coloring
such that the label 1 images are predominantly colored red. Specifically, for the first two groups, the color id is sampled by
flipping the target label with probabilities 0.2 and 0.1 respectively, while the third group with probability 0.9. Both training
and testing sets contain three groups. The overall setup for generating a given group is similar to (Arjovsky et al., 2019).
However, unlike (Arjovsky et al., 2019) the training and testing phases share the set of three pre-defined groups so as to
evaluate for group-robustness criterion.

A.11.3. GROUP ADULT

We use a semi-synthetic version of the Adult dataset (Dua et al., 2017) for this experiment. Similar to (Lahoti et al., 2020),
we consider race and sex as the four demographic groups. The target label is income > 50K$. Similar to the CMNIST
dataset, each group has a different correlation strength to the target label. For the purposes of the experiment, we exaggerate
these spurious correlations caused by group membership close to (Creager et al., 2021). However, distinct from (Creager
et al., 2021), the training and testing phases share same set of groups. For samples with group label as Afican-American, we
undersample examples with probability P (y = 1 | group) = 0.06 whereas for the non African-American group labels, we
oversample examples with probability P (y = 1 | group) = 0.94.

A.11.4. CELEBA

CelebA (Liu et al., 2015) is a dataset containing about 200k celebrity faces curated from the internet. Similar to (Sagawa
et al., 2019), we aim to predict the target attribute Blond Hair that is spuriously correlated to the Gender attribute. The
minority group in this dataset are the images with attributes (blond, male). For this dataset, the official train-val-test splits as
recommended by (Liu et al., 2015) has been used. Similar to the Waterbirds experiments, a pre-trained ImageNet-based
ResNet50 model has been used for the implementations.

A.12. Related work

Group Robust Optimization. Methods in the literature handling robustness to extraneous attributes can be broadly
categorized into two classes. The first class, domain generalization methods (Arjovsky et al., 2019; Mahajan et al., 2021;
Moyer et al., 2018), aim at learning representations invariant to a predefined set of extraneous attributes or groups. The goal
is to be able to generalize to unseen domains or environments in the testing phase. On the other hand, the second class of
methods, called as the group robust methods (Oakden-Rayner et al., 2020; Sagawa et al., 2019; Liu et al., 2021), seek to
improve the worst-off or the minority group performance within the set of pre-defined groups. Here the training and testing
phases share the same set of groups. Our approach falls into the second class of methods.

Robust Optimization with Demographics. When group information is known at train time, Group DRO (Hu et al., 2018;
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Sagawa et al., 2019) or Invariant Risk Minimization (IRM) (Arjovsky et al., 2019) could be employed to improve the
performance over multiple groups. Specifically, Group DRO proceeds by minimizing the loss of the group with the largest
loss, while IRM enforces a shared predictor across multiple environments to be optimal.

Robust Optimization without Demographics. Several works have focused on developing methods that remove the
dependence on the group labels. (Hashimoto et al., 2018) proposed to minimize the loss of the samples with losses larger
than a certain threshold. (Lahoti et al., 2020) developed an adversarial re-weighting scheme that assigns large weight to high
loss samples. Recently, (Liu et al., 2021) proposed a simple yet effective two-stage approach called Just-Train-Twice (JTT)
that trains a model by upweighting samples with high losses from the initial ERM model. Lastly, EIIL (Creager et al., 2021)
also proposed a two-stage method where in the first stage the group or environment labels are inferred and in the second
stage a Group DRO or an IRM optimization is employed on inferred labels.

Drawbacks of two-stage methods. While two-stage methods, like JTT (Liu et al., 2021) and EIIL (Creager et al., 2021),
have demonstrated significant improvements in minority group accurcies, they bear few drawbacks in relation to single-stage
methods. Firstly, two-stage methods introduce additional set of hyper-parameters. For example, it’s crucial for JTT to tune
for the number of epochs in its first stage. Similarly, several hyper-parameters are introduced in EIIL method especially in
optimizing the EI objective and in identifying a pre-trained reference model. Secondly, in a two-stage model, a failed first
stage leads to an unsuccessful second stage. This is because the errors from the first stage are propagated to the later stages.
For example, a first stage model could fail in JTT due to model overfitting, and likewise an inaccurate group inference in the
EIIL method may block second-stage invariant learning besides raising ethical issues on pseudo-label misuse. In summary,
efforts to reduce a two-stage model to a single-stage method are beneficial and, as we shall see shortly, our proposal fits in
class of single stage methods.


