
Adversarial Cheap Talk

Chris Lu 1 Timon Willi 1 Alistair Letcher 2 Jakob Foerster 1

Abstract

Adversarial attacks in reinforcement learning
(RL) often assume highly-privileged access to the
victim’s parameters, environment, or data. In-
stead, this paper proposes a novel adversarial
setting called a Cheap Talk MDP in which an
Adversary can merely append deterministic mes-
sages to the Victim’s observation, resulting in a
minimal range of influence. The Adversary can-
not occlude ground truth, influence underlying
environment dynamics or reward signals, intro-
duce non-stationarity, add stochasticity, see the
Victim’s actions, or access their parameters. Ad-
ditionally, we present a simple meta-learning al-
gorithm called Adversarial Cheap Talk (ACT) to
train Adversaries in this setting. We demonstrate
that an Adversary trained with ACT still signifi-
cantly influences the Victim’s training and testing
performance, despite the highly constrained set-
ting. Affecting train-time performance reveals a
new attack vector and provides insight into the
success and failure modes of existing RL algo-
rithms. More specifically, we show that an ACT
Adversary is capable of harming performance by
interfering with the learner’s function approxima-
tion, or instead helping the Victim’s performance
by outputting useful features. Finally, we show
that an ACT Adversary can manipulate messages
during train-time to directly and arbitrarily control
the Victim at test-time. Project video and code are
available at https://sites.google.com/
view/adversarial-cheap-talk.

1. Introduction
Learning agents are often trained in settings where adver-
saries are not able to influence underlying environment dy-
namics or reward signals, but may influence part of the

1FLAIR, University of Oxford 2aletcher.github.io. Correspon-
dence to: Chris Lu <christopher.lu@eng.ox.ac.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

agent’s observations. For instance, adversaries can alter and
place objects, such as interactive billboards, that will appear
in the background of self-driving car datasets. Similarly,
adversaries may append arbitrary tags to content that will
be used to train recommender systems. In financial mar-
kets, adversaries can alter the state of the order-book by
submitting orders far from the mid. While these features
are ‘useless’ from an information-theoretic point of view, it
is common practice in end-to-end deep learning to include
them as part of the input and let the model learn which
features matter. For instance, Vischer et al. (2021) showed
that many features in common RL environments are unnec-
essary for solving the task. Furthermore, self-driving cars
typically do not omit useless parts of the visual input but
instead learns to ignore them through training. Because they
are unimportant, influencing these features often does not
require highly-privileged access to the environment. Surpris-
ingly, this paper demonstrates that an actor can still heavily
influence the behaviour and performance of learning agents
by controlling information only in these ‘useless’ channels,
without knowledge of the agent’s parameters or training
state.

Most past work in adversarial RL assumes highly-privileged
access to the victim. For example, many attacks assume
the ability to arbitrarily perturb all of the features in the
victim’s observation space (Huang et al., 2017; Kos and
Song, 2017) or access to a pre-trained victim’s parameters
(Gleave et al., 2020; Wang et al., 2022). Not only is access
to these features often unrealistic in practical settings, they
also enable trivial attacks. By perturbing observations, an
Adversary can obscure relevant information, such as the
ball in a Pong game, rendering the task unsolvable. By
accessing a pretrained victim’s weights, the Adversary can
unsurprisingly generate out-of-distribution inputs that the
victim has not observed (Gleave et al., 2020). Finally, most
of these attacks only cause the victim’s policy to fail, instead
of allowing the adversary to arbitrarily control the victim’s
behaviour (Gu et al., 2017; Kiourti et al., 2020; Salem et al.,
2020; Ashcraft and Karra, 2021; Zhang et al., 2021).

We show that an Adversary with extremely limited access
can arbitrarily control the performance and behaviour of
learning agents. To do this, we propose a novel minimum-
viable setting called Cheap Talk MDPs. Adversaries are
only allowed to modify ‘useless’ features that are appended

1

https://sites.google.com/view/adversarial-cheap-talk
https://sites.google.com/view/adversarial-cheap-talk

Adversarial Cheap Talk

to the Victim’s observation as a deterministic function of the
current state. These features represent parts of an agent’s
observations that are unrelated to rewards or transition dy-
namics. In particular, our model applies to Adversaries
adding tags to content in recommender systems, or renting
space on interactive billboards, or submitting orders far out
of the money in financial markets. The setting is minimal
in that Adversaries cannot use these features to occlude
ground truth, influence environment dynamics or reward
signals, inject stochasticity, introduce non-stationarity, see
the Victim’s actions, or access their parameters.

Cheap Talk MDPs are formalised in Section 4, and we
further justify minimality by proving in Proposition 1 that
Adversaries cannot influence tabular Victims whatsoever in
Cheap Talk MDPs. In particular, it follows that Adversaries
can only influence Victims by interfering with their function
approximator.

Despite these restrictions, we show that Adversaries can still
heavily influence agents parameterised by neural networks.
In Section 5, we introduce a new meta-learning algorithm
called Adversarial Cheap Talk (ACT) to train the Adversary.
With an extensive set of experiments, we demonstrate in
Section 6 that an ACT Adversary can manipulate a Victim
to achieve a number of outcomes:

1. An ACT Adversary can prevent the Victim from solv-
ing a task, resulting in low rewards during training.
We provide empirical evidence that the Adversary suc-
cessfully sends messages which induce catastrophic
interference in the Victim’s neural network.

2. Conversely, an ACT Adversary can learn to send useful
messages that improve the Victim’s training process,
resulting in higher rewards during training.

3. Finally, we introduce a training scheme that allows the
ACT Adversary to directly and arbitrarily control the
Victim directly at test-time.

2. Related Work
2.1. Test-Time Adversarial Attacks

Most work investigating adversarial attacks on deep RL sys-
tems focuses on attacks at test-time, i.e. those that attack
a fully trained, static policy. Huang et al. (2017), Kos and
Song (2017), and Zhang et al. (2021) investigate adversarial
attacks that influence test-time performance by directly per-
turbing the observation space. Unlike in Cheap Talk MDPs,
such perturbations can influence the underlying dynamics
by obscuring relevant information. Gleave et al. (2020) and
Wang et al. (2022) investigate adversarial attacks that influ-
ence test-time performance of reinforcement learning agents
that were trained in self-play. In contrast to our method, the

adversarial agents can directly interact with the environment
and the victim agent. The aforementioned test-time attacks
largely work by generating perturbations that push the obser-
vations out of the Victim’s training distribution. In contrast,
in Cheap Talk MDPs, the Victim trains directly with the
static adversarial features; thus, by definition, the Adver-
sary cannot generate out-of-distribution or non-stationary
inputs.

2.2. Train-Time Adversarial Attacks

In contrast to train-time adversarial attacks in RL, in test-
time adversarial attacks the Adversary interacts with a learn-
ing victim. Pinto et al. (2017) simultaneously trains an
adversary alongside a reinforcement learning agent to robus-
tify the victim’s policy. Unlike in this work, the adversary is
able to directly apply perturbation forces to the environment.
We make further comparisons in Section 6.1. Backdoor
attacks in reinforcement learning aim to introduce a vulner-
ability during train-time, which can be triggered at test-time.
Kiourti et al. (2020) and Ashcraft and Karra (2021) assume
the adversary can directly and fully modify the victim’s
observations and rewards in order to discretely insert a back-
door that triggers on certain inputs. This is unlike Cheap
Talk MDPs, in which only ‘useless’ parts of the observa-
tions can be modified. Wang et al. (2021) considers the
multi-agent setting where the adversary inserts a backdoor
using its behaviour in the environment. Unlike in this work,
the adversary can influence the underlying environment dy-
namics. Furthermore, each of these backdoor attacks simply
cause the victim to fail when triggered. In contrast, we use
the backdoor to fully control the victim.

2.3. Failure Modes in Deep Reinforcement Learning

Previous works have shown that using neural networks as
function approximators in reinforcement learning often re-
sults in multiple failure modes due to the non-stationarity of
value function bootstrapping (van Hasselt et al., 2018). In
particular, works have shown that catastrophic interference
(Bengio et al., 2020) and capacity loss (Lyle et al., 2022)
often occur, even within a single episode of an environment
(Fedus et al., 2020). Song et al. (2020) shows that deep
reinforcement learning algorithms can often overfit to spuri-
ous correlations in the observation space. By appending to
the observation space, we learn to induce the observational
failure modes described in these works.

2.4. Opponent Shaping / Cheap Talk

Our method is closely related to the field of opponent shap-
ing. Originally, most opponent shaping algorithms assumed
white-box access to their opponents to shape the flow of
the opponent’s gradient (Foerster et al., 2018; Letcher et al.,
2019a;b; Willi et al., 2022). Instead, Lu et al. (2022) intro-

2

Adversarial Cheap Talk

duce a method to shape opponents without white-box access.
However, they still deploy an agent to interact directly in
the environment. In contrast, we propose a method to shape
other agents without having to interact in the environment,
solely by appending messages through a cheap talk channel.
Cheap talk channels (Crawford and Sobel, 1982) in deep
reinforcement learning have been used to learn emergent
communication (Foerster et al., 2016) and to solve coor-
dination problems (Cao et al., 2018). To the best of our
knowledge, this paper is the first to use a cheap talk channel
(and only a cheap talk channel) to shape the behaviour of
learning agents.

3. Background
3.1. Reinforcement Learning

A Markov decision process (MDP) consists of a tuple
D = ⟨S,A,P,R, γ⟩, where S denotes the state space, A
represents the action space, P : S×A×S 7→ [0, 1] denotes
the state transition probability function, R : S × A 7→ R
is the reward function and γ ∈ [0, 1) denotes the discount
factor. At every timestep t, an agent samples an action from
its stochastic policy at ∼ πθ (· | st), where at ∈ A, st ∈ S
and θ denotes the policy parameterisation. The agent then re-
ceives a reward based on the action taken in the current state:
rt = R (st, at). Finally, a new state is sampled according
to the transition function st+1 ∼ P (· | st, at), resulting
in a trajectory τθ := ((s0, a0, r0) , (s1, a1, r1) , . . .). The
agent’s goal is to maximise its expected discounted return
under policy πθ:

J(θ) = Eπθ

[∞∑
t=0

γtrt

]
. (1)

3.2. Evolution Strategies

Evolution Strategies (Salimans et al., 2017, ES) is a
derivative-free optimisation method. Let F : Rd → R
be some function we want to optimise over. Instead of
optimising F (x) directly, we first blur the objective to

Eϵ∼N(0,Id)[F (x+ σϵ)] ,

where σ is a hyper-parameter dictating the amount of Gaus-
sian noise we add. This is useful because

∇xEϵ∼N(0,Id)[F (x+ σϵ)] = Eϵ∼N(0,Id)

[ϵ
σ
F (x+ σϵ)

]
,

which allows us to optimise a non-differentiable function
using gradient descent techniques in a highly scalable man-
ner. In settings such as Meta-RL, ES allows us to optimise
objectives that would be challenging to tackle using meta-
gradients. In particular, taking meta-gradients through the
entire training trajectory of an RL agent would require tak-
ing a meta-gradient through thousands of updates, which is
often cumbersome or intractable (Metz et al., 2021).

4. Problem Setting
The setting we propose is of two agents interacting in a
Cheap Talk MDP ⟨S,A,P,R, γ,M, f,J ⟩, which is effec-
tively an MDP with an augmented state space, whereby
features (messages) from a Cheap Talk channel M are ap-
pended to the states of the original MDP. We refer to the
agent which observes the augmented state as the Victim, with
transition and reward functions P,R assumed to be indepen-
dent from M. Formally, this means that P(· | s,m, a) =
P(· | s,m′, a) and R(s,m, a) = R(s,m′, a) for all mes-
sages m,m′ ∈ M. The agent appending the message is
called the Adversary, and is endowed with a deterministic
policy f : S → M to append messages m = f(s) and an
objective function J to optimise (details below).

The Victim is a standard reinforcement learning agent, se-
lecting actions according to its policy at ∼ πθ(· | s, f(s)),
where a ∈ A, s ∈ S. The Victim optimises its policy πθ
with respect to parameters θ in order to maximise its ex-
pected return J as defined in Equation 1.

By contrast, the Adversary may only act by modifying the
cheap talk channel features fϕ(s) at s at every step, where
fϕ : S → M is a deterministic policy (function) of the cur-
rent state and ϕ are the Adversary’s parameters. These pa-
rameters may only be updated between full training/testing
episodes of the Victim; the function remains static during
episodes to avoid introducing non-stationarity and thus re-
strict the Adversary’s range of influence. The Adversary’s
objective function J may be picked arbitrarily, and need
not be differentiable if it is optimised using ES.

In our train-time experiments we focus on the fully-
adversarial setting where objectives are zero-sum, J = −J ,
and the allied setting where objectives are equal, J = J . In
test-time experiments we use an entirely different objective,
such as reaching for an arbitrary circle in Reacher (see Fig-
ure 4c). This incentivises the Adversary to manipulate the
Victim into maximising J , even if this comes at the cost of
the Victim’s original objective J .

4.1. Minimality of Cheap Talk MDPs

To justify our introductory claim that Cheap Talk MDPs
only allow for a minimal range of influence, we first prove
that Adversaries cannot influence Victims whatsoever in the
tabular setting, irrespective of the Victim’s learning algo-
rithm. It follows that Adversaries can only attack Victims
by interfering with their function approximator.
Proposition 1. In any Cheap Talk MDP, the policy of a
tabular Victim is independent from its Adversary provided
uniform initialisation along M, namely π0(· | si,mj) =
π0(· | si,mj′) ∀ j, j′.

Proof (Sketch). The main intuition is that policy updates for

3

Adversarial Cheap Talk

different states do not interfere with each other in tabular
settings. Assuming uniform initialisation and noticing that
the only states encountered in the environment are of the
form (s, f(s)), we deduce that the Victim’s policy updates
are independent from the Adversary’s choice of function f .
Formal proof in Appendix A.1.

We also prove more generally that Adversaries cannot pre-
vent Victims with optimal convergence guarantees to con-
verge to optimal rewards, even in non-tabular settings. They
may however still harm the Victim by slowing down their
convergence rate significantly.
Proposition 2. A Victim which is guaranteed to converge
to optimal policies in MDPs will also converge to optimal
policies in Cheap Talk MDPs, with an expected return equal
to the optimal return for the corresponding no-channel MDP.

Proof (Sketch). Cheap Talk MDPs are just MDPs with aug-
mented state spaces and transition / reward functions; a
Victim will therefore converge regardless. Optimality of
the expected return follows from the Bellman equation and
independence of transition and reward functions from Ad-
versaries. Formal proof in Appendix A.2.

Finally, we further justify minimality in Appendix A.3 by
elaborating informally on the Adversaries’ range of influ-
ence. We also discuss the possibility of further weakening
Cheap Talk MDPs and conclude that all such variations
either bring no advantage or reduce to regular MDPs.

5. Method

Algorithm 1 Train-time ACT

1: Set c = ±1 for allied / adversarial
2: Initialise Adversary parameters ϕ
3: for m = 0 to M do
4: Sample ϕn ∼ ϕ+ σϵn with ϵn ∼ N (0, I)
5: for n = 0 to N do
6: Initialise Victim parameters θ
7: rewards = []
8: for e = 0 to E do
9: s = env.reset()

10: while not done do
11: a ∼ πθ(· | s, fϕn(s))
12: r, s, done = env.step(a)
13: rewards.append(r)
14: end while
15: Update θ with PPO to maximise J
16: end for
17: Jn = c · sum(rewards)/len(rewards)
18: end for
19: Update ϕ using ES to maximise J
20: end for

5.1. Meta-Training Procedure

Our method, Adversarial Cheap Talk (ACT), treats the prob-
lem setting as a meta-learning problem. The Adversary’s
parameters ϕ are only updated after a full training (and
testing) run of the Victim’s parameters θ. In other words,
ϕ is static during the whole training run (inner loop) of θ
and only gets updated once the inner loop completes, which
prevents the introduction of non-stationarity. In the outer
loop, we optimise the Adversary’s objective J with respect
to ϕ using ES as a black-box optimisation technique. De-
tails, including the Cheap Talk channel sizes and the Victims
hyperparameters can be found in Appendix E.

5.2. Train-Time Influence

When influencing train-time performance, we set J to be the
agent’s mean reward throughout its entire training trajectory.
We consider both “Adversarial” and “Allied” versions of
ACT, whereby Adversaries try to minimise or maximise J
respectively (J = ±J). Pseudocode is provided in Algo-
rithm 1, where E is the number of Victim training episodes
and N is the ES population size.

5.3. Test-Time Manipulation

When manipulating test-time behaviour, the goal of the Ad-
versary is to use the cheap talk features to maximise some
arbitrary objective J during the Victim’s test-time; however,
the Adversary may also communicate messages during the
Victim’s training. Note that J can be any objective, includ-
ing minimising or maximising the Victim’s return. Because
the train-time and test-time behaviour of the Adversary dif-
fer significantly, we parameterise them separately (as ϕ and
ψ respectively), but optimise them jointly.

As an example, consider the Reacher environment (see 4c),
where the Victim is trained to control a robot arm to reach
for the blue circle. During the Victim’s training, the train-
time Adversary (parameterised by ϕ) manipulates the cheap
talk features to encode spurious correlations in the Victim’s
policy. At test-time, the test-time Adversary (parameterised
by ψ) manipulates the cheap talk features to take advantage
of the spurious correlations and control the Victim to have
it reach for the yellow circle instead (the Adversary’s objec-
tive J). More concisely, the train-time Adversary wants to
create a backdoor to make the Victim susceptible to manipu-
lation at test-time. The test-time Adversary wants to use this
backdoor to control the Victim. The train-time and test-time
Adversaries (ϕ and ψ) are co-evolved trained end-to-end to
maximise J . While such optimisation would be difficult for
gradient-based methods due to the long-horizon nature of
the problem, ES is agnostic to the length of the optimisation
horizon.

Note that the test-time Adversary ψ only gets a single shot

4

Adversarial Cheap Talk

(a) (b) (c)

Figure 1. Visualisations of the training curves of the Victim across different Adversaries for (a) Cartpole, (b) Pendulum, and (c) Reacher.
Error bars denote the standard error across 10 seeds of Victims trained against a single trained Adversary.

(a) (b)

Figure 2. (a) Visualisations of the training curves of the Victim in Breakout-Minatar, a higher-dimensional environment, against different
Adversaries. (b) Comparing ACT to RARL. Eventually, the Victim learns to overcome the RARL adversary.

to maximise J at the end of the Victim’s training and does
not have access to (and thus cannot train against) the test-
time parameters of the Victim θ′. To describe this formally,
let T (θ | ϕ) denote the distribution induced by the inner
loop training with the train-time Adversary ϕ over Victim
θ. Then, in each meta-episode, the test-time Adversary
ψ interacts with an unseen sample θ′ of the distribution
over trained Victims θ′ ∼ T (· | ϕ). In Section 6, we
show that the distribution T (θ | ϕ) has non-trivial variance,
suggesting that it is difficult to train against. Moreover, in
Figure 6 (Section 6), we provide empirical evidence that
the train-time Adversary learns to reduce the variance of
T (θ | ϕ) to help the test-time Adversary. Pseudocode is
provided in Algorithm 2, Appendix B.

6. Experiments and Results
We evaluate ACT on three simple gym environments: Cart-
pole, Pendulum, and Reacher (Brockman et al., 2016). We
also evaluate ACT on Minatar Breakout (Young and Tian,
2019; Lange, 2022b) to test ACT’s ability to scale to higher-
dimensional environments. The Victim is trained with Prox-
imal Policy Optimisation (Schulman et al., 2017, PPO). The
Adversary is trained using ES (Salimans et al., 2017).

We train thousands of agents per minute on a single V100
GPU by vectorising both the PPO algorithm itself and the
environments using Jax (Bradbury et al., 2018). This allows
us to JIT-compile the full training pipeline and perform end-
to-end deep RL training completely on GPUs. We adapt the
environment implementations from Brockman et al. (2016)
and Lenton et al. (2021) and use the ES implementation from
Lange (2022a). This compute setup allows us to efficiently
perform outer-loop ES on the full training trajectories of
inner-loop PPO agents. For example, in Cartpole, we can
simultaneously train 8192 PPO agents at a time on a single
V100 GPU. Over 1024 generations of ES, this results in
training 8,388,608 PPO agents from scratch in 2 hours on
4 V100 GPUs. The longest training time, which was the
test-time Reacher setting, took 20 hours to train 1024 gener-
ations on 4 V100 GPUs. We include videos of the Victim’s
performance alongside visualisations of the Adversary’s
outputs at this site.

Training details are provided in Appendix E. We include
further ablations where we apply our method to perturbation-
based settings and to ‘useless’ features described in Vischer
et al. (2021) instead of Cheap Talk MDPs in Appendix H.

5

https://sites.google.com/view/adversarial-cheap-talk/home

Adversarial Cheap Talk

(a) (b) (c)

Figure 3. Visualisations of the cosine distance between gradient updates on different environment segments in cartpole. We collected
each Victim’s experience buffer before the agents converge in training and split each into 10 bins, ordered by the time-step within the
environment. We then calculate the gradient update the agents perform on each of these bins. This is the technique used in Fedus et al.
(2020). For the adversary (a), gradient updates on the early timesteps in an environment interfere with gradient updates on the ending
timesteps. For the ally (c), they are positively correlated.

6.1. Train-Time Influence

Figure 1 and Figure 2a show the results of training Victims
alongside four different Adversaries.

1. Ally: meta-trained to maximise the Victim’s mean re-
ward throughout training.

2. Adversary: meta-trained to minimise the Victim’s
mean reward throughout training.

3. Random Adversary: randomly initialise and fix the
Adversary’s parameters ϕ using LeCun Uniform ini-
tialisation (LeCun et al., 2012).

4. Zeroes Adversary: appends only zeroes as messages.

Ally. The Ally manages to assist the Victim to learn and
converge faster – this is likely done by appending useful
features of the environment. We present further analysis in
Appendix C Figure 7b.

Adversary. The Victims trained alongside the Adversaries
are vastly outperformed by the baselines, even though the
Adversary cannot change the dynamics of the underly-
ing MDP, and cannot add non-stationarity or stochasticity.
Moreover, since Adversaries cannot influence tabular Vic-
tims by Proposition 1, this must be accomplished through
learnt interference with the Victim’s function approxima-
tor. We hypothesise that the Adversary may be inducing
catastrophic interference within the environment, which
was observed by Fedus et al. (2020) in Atari 2600 games.
They show that features useful in the early phases of an
environment episode can interfere with learning features
for performing well in the later phases of an episode. We

perform the analysis done in Fedus et al. (2020) in Figure 3
to confirm this hypothesis in the Adversarial setting. Mean-
while, we show that the opposite effect occurs in the Allied
setting: the gradient updates are positively correlated, sug-
gesting that the gradient updates at different timesteps aid
each other.

We also compare our evolutionary meta-optimisation pro-
cedure to Robust Adversarial Reinforcement Learning
(RARL) (Pinto et al., 2017) in Figure 2b, which updates
the adversary’s parameters online using reinforcement learn-
ing. In both settings, the Adversary can only communicate
over the cheap talk channel; however, RARL is given a
larger range of influence. Firstly, RARL introduces non-
stationarity since it is updated online during the opponent’s
learning. Secondly, RARL is parameterised by a stochastic
policy, meaning that it can inject stochasticity into the en-
vironment. Thirdly, RARL is able to train directly against
the Victim’s policy online, unlike ACT which cannot view
the Victim’s policy or actions. However, RARL ultimately
underperforms ACT in the adversarial setting since it does
not consider the long-term evolution of the Victim’s pol-
icy. Thus, the Victim learns to simply ignore the cheap talk
channel.

6.2. Test-Time Manipulation

In test-time manipulation, the Adversary’s objective is to
maximise the score of the goal-conditioned objectives de-
scribed in Figure 4 at test-time. The Adversary needs to
learn to introduce a backdoor during train-time and use the
backdoor during test-time to fully control the Victim as ex-
plained in Section 5.3. To better understand the capability of
our model, we investigate four different Adversary-Victim
settings, which serve as ablations to study the individual and

6

Adversarial Cheap Talk

(a) (b) (c)

Figure 4. Visualisations of our goal-conditioned environments (a) In Cartpole, the Adversary’s target is a randomly selected point on
the x-axis (the yellow box). (b) In Pendulum, the Adversary’s goal is a randomly selected angle (the yellow pole). (c) In Reacher, the
Adversary’s goal is a random point, (the yellow circle). The Victim’s goal is the blue circle. Videos of this setting can be found here.

(a) (b) (c)

Figure 5. Training curves of the different agents in (a) Goal-Conditioned Cartpole (b) Goal-Conditioned Pendulum (c) Goal-Conditioned
Reacher. The ablations show that the train- and test-time Adversary learn near-optimal performance in comparison to the oracles. Error
bars denote the standard error of the mean across 10 seeds of Victim trained against a single trained Adversary.

joint performance of the train- and test-time Adversaries.

1. Test-Time Adversary ψ with Train-Time Adversary
ϕ: This is the algorithm described in 2. First, we train a
Victim θ alongside a train-time Adversary ϕ. We then
evaluate the return of the test-time Adversary ψ ac-
cording to the goal-conditioned return. Both the train-
and test-time Adversaries are trained using ES. The
test-time Adversary ψ only gets a single shot against a
Victim and is thus represented by a horizontal line in
Figure 5.

2. Test-Time Oracle ψ∗ with Train-Time Adversary ϕ:
First, we optimise the Victim θ by training it alongside
the above train-time Adversary ϕ. Then, instead of
ES, we use PPO to train the test-time Adversary ψ∗

against the Victim θ. Unlike the test-time Adversary,
the oracle ψ∗ is allowed to train against the pretrained
and fixed Victim θ to maximise its returns, as described
in Algorithm 3 in Appendix B.

3. Test-Time Oracle ψ∗ with Random Train-Time Ad-
versary ϕrandom: First, we obtain a Victim θ by train-
ing it alongside a random train-time Adversary, ϕrandom,
with randomly initialised and fixed parameters. Next,
we use PPO to train the test-time Adversary ψ∗ to
maximise the goal-conditioned return.

4. Direct Oracle: In this baseline, there is no cheap talk
or Victim. We simply train a PPO agent to maximise
the goal-conditioned return J . It can observe the full
state and directly output actions in the environment.

All results are shown in Figure 5. We can compare (1) and
(4) to measure how effective the train-time Adversary ϕ and
test-time Adversary ψ are at achieving the maximal possible
return jointly. As Figure 5 shows, the train- and test-time
Adversaries perform near-optimally.

By comparing (2) and (3), we can observe how effective
ϕ is at shaping θ. In reacher, we can see that the test-time

7

https://sites.google.com/view/adversarial-cheap-talk/home

Adversarial Cheap Talk

(a) (b)

(c) (d)

Figure 6. We train 10 different Victims alongside the Learned ϕ (a & c), and 10 different Victims alongside a randomly generated ϕ (b &
d) in the Pendulum environment. (a) and (b) show the mean of the policy output across the 10 Victims as we vary the value of the message
in a fixed randomly selected state. The policies trained with the learned ϕ achieve a much wider range of outputs. (c) and (d) show the
variance of the policy output across the 10 Victims. The policies trained with the learned ϕ display very little variance.

Oracle ψ∗ cannot achieve the maximum performance with
a random train-time Adversary.

We compare (1) and (2) to see how effective the test-time
Adversary ψ is exploiting a given Victim θ. ψ achieves
near-optimal performance even though it has never trained
against the specific Victim θ or had access to its parameters.
In Figure 6 we show that this is possible because the train-
time Adversary ϕ not only maximises the range of outputs
that the cheap talk achieves, but it also does so in a consistent
and low-variance way.

7. Conclusion & Future Work
In this paper, we propose a novel, minimum-viable, adver-
sarial setting for RL agents, where the Adversary can only
influence the Victim over messages, and can only do so with
a deterministic function that only depends on the current
state. By training an Adversary with adversarial cheap talk

(ACT), we show that appending to the observations of a
learning agent, even with strong constraints, is sufficient to
drastically improve or decrease a learning agent’s train-time
performance or introduce a backdoor to control the learning
agent at test time completely. Furthermore, we provide an
in-depth analysis of the behaviour of our Adversaries.

As RL models become more widespread, we believe practi-
tioners should consider this new class of minimum viable
attacks. We propose using domain knowledge to filter out
potentially controllable information as the first defence mea-
sure. Identifying these channels without domain knowledge
is challenging: While there has been past work in identifying
task-irrelevant features in reinforcement learning (Vischer
et al., 2021), ACT features still contain task-relevant in-
formation since they are functions of the state. To defend
against the test-time Adversary, one can detect when the
input goes out-of-distribution (Lin et al., 2017). More work
is needed to build more robust and practical defences.

8

Adversarial Cheap Talk

References
C. Ashcraft and K. Karra. Poisoning deep reinforce-

ment learning agents with in-distribution triggers. arXiv
preprint arXiv:2106.07798, 2021.

E. Bengio, J. Pineau, and D. Precup. Interference and gener-
alization in temporal difference learning. In Proceedings
of the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning
Research, pages 767–777, 2020.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas,
S. Wanderman-Milne, and Q. Zhang. JAX: composable
transformations of Python+NumPy programs, 2018.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba. Openai gym,
2016.

K. Cao, A. Lazaridou, M. Lanctot, J. Z. Leibo, K. Tuyls,
and S. Clark. Emergent communication through nego-
tiation. In 6th International Conference on Learning
Representations, 2018.

V. P. Crawford and J. Sobel. Strategic information transmis-
sion. Econometrica, 50(6):1431–1451, 1982.

W. Fedus, D. Ghosh, J. D. Martin, M. G. Bellemare, Y. Ben-
gio, and H. Larochelle. On catastrophic interference
in atari 2600 games. arXiv preprint arXiv:2002.12499,
2020.

J. Foerster, R. Y. Chen, M. Al-Shedivat, S. Whiteson,
P. Abbeel, and I. Mordatch. Learning with opponent-
learning awareness. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent
Systems, pages 122–130, 2018.

J. N. Foerster, Y. M. Assael, N. de Freitas, and S. White-
son. Learning to communicate with deep multi-agent
reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, volume 29, pages 2137–2145,
2016.

A. Gleave, M. Dennis, C. Wild, N. Kant, S. Levine, and
S. Russell. Adversarial policies: Attacking deep rein-
forcement learning. In 8th International Conference on
Learning Representations, 2020.

T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain. arXiv preprint arXiv:1708.06733, 2017.

S. H. Huang, N. Papernot, I. J. Goodfellow, Y. Duan, and
P. Abbeel. Adversarial attacks on neural network policies.
In 5th International Conference on Learning Representa-
tions, Workshop Track Proceedings, 2017.

P. Kiourti, K. Wardega, S. Jha, and W. Li. Trojdrl: Evalua-
tion of backdoor attacks on deep reinforcement learning.
In 57th ACM/IEEE Design Automation Conference, pages
1–6, 2020.

J. Kos and D. Song. Delving into adversarial attacks on deep
policies. In 5th International Conference on Learning
Representations, Workshop Track Proceedings, 2017.

R. T. Lange. evosax: Jax-based evolution strategies, 2022a.

R. T. Lange. gymnax: A JAX-based reinforcement learning
environment library, 2022b. URL http://github.
com/RobertTLange/gymnax.

Y. LeCun, L. Bottou, G. B. Orr, and K. Müller. Ef-
ficient backprop. In G. Montavon, G. B. Orr, and
K. Müller, editors, Neural Networks: Tricks of the Trade
- Second Edition, volume 7700 of Lecture Notes in
Computer Science, pages 9–48. Springer, 2012. doi:
10.1007/978-3-642-35289-8\ 3. URL https://doi.
org/10.1007/978-3-642-35289-8_3.

D. Lenton, F. Pardo, F. Falck, S. James, and R. Clark. Ivy:
Templated deep learning for inter-framework portability.
arXiv preprint arXiv:2102.02886, 2021.

A. Letcher, D. Balduzzi, S. Racanière, J. Martens, J. N.
Foerster, K. Tuyls, and T. Graepel. Differentiable game
mechanics. J. Mach. Learn. Res., 20:84:1–84:40, 2019a.

A. Letcher, J. N. Foerster, D. Balduzzi, T. Rocktäschel, and
S. Whiteson. Stable opponent shaping in differentiable
games. In 7th International Conference on Learning
Representations, 2019b.

Y. Lin, M. Liu, M. Sun, and J. Huang. Detecting adversarial
attacks on neural network policies with visual foresight.
CoRR, abs/1710.00814, 2017. URL http://arxiv.
org/abs/1710.00814.

C. Lu, T. Willi, C. Schroeder de Witt, and J. Foerster. Model-
free opponent shaping. arXiv preprint arXiv:2205.01447,
2022.

C. Lyle, M. Rowland, and W. Dabney. Understanding and
preventing capacity loss in reinforcement learning. arXiv
preprint arXiv:2204.09560, 2022.

L. Metz, C. D. Freeman, S. S. Schoenholz, and T. Kach-
man. Gradients are not all you need. arXiv preprint
arXiv:2111.05803, 2021.

L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta. Robust
adversarial reinforcement learning. In D. Precup and Y. W.
Teh, editors, Proceedings of the 34th International Con-
ference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, volume 70 of Proceedings of

9

http://github.com/RobertTLange/gymnax
http://github.com/RobertTLange/gymnax
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
http://arxiv.org/abs/1710.00814
http://arxiv.org/abs/1710.00814

Adversarial Cheap Talk

Machine Learning Research, pages 2817–2826. PMLR,
2017. URL http://proceedings.mlr.press/
v70/pinto17a.html.

A. Salem, R. Wen, M. Backes, S. Ma, and Y. Zhang. Dy-
namic backdoor attacks against machine learning models.
arXiv preprint arXiv:2003.03675, 2020.

T. Salimans, J. Ho, X. Chen, and I. Sutskever. Evolution
strategies as a scalable alternative to reinforcement learn-
ing. arXiv preprint arXiv:1703.03864, 2017.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

X. Song, Y. Jiang, S. Tu, Y. Du, and B. Neyshabur. Ob-
servational overfitting in reinforcement learning. In 8th
International Conference on Learning Representations,
2020.

H. van Hasselt, Y. Doron, F. Strub, M. Hessel, N. Sonnerat,
and J. Modayil. Deep reinforcement learning and the
deadly triad. arXiv preprint arXiv:1812.02648, 2018.

M. A. Vischer, R. T. Lange, and H. Sprekeler. On lottery
tickets and minimal task representations in deep rein-
forcement learning. CoRR, abs/2105.01648, 2021. URL
https://arxiv.org/abs/2105.01648.

L. Wang, Z. Javed, X. Wu, W. Guo, X. Xing, and D. Song.
BACKDOORL: backdoor attack against competitive re-
inforcement learning. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence,
pages 3699–3705, 2021.

T. T. Wang, A. Gleave, N. Belrose, T. Tseng, J. Miller,
M. D. Dennis, Y. Duan, V. Pogrebniak, S. Levine, and
S. Russell. Adversarial policies beat professional-level
go ais. arXiv:2211.00241v1 [cs.LG], 2022.

T. Willi, J. Treutlein, A. Letcher, and J. Foerster. COLA:
consistent learning with opponent-learning awareness.
arXiv preprint arXiv:2203.04098, 2022.

K. Young and T. Tian. Minatar: An atari-inspired testbed
for thorough and reproducible reinforcement learning
experiments. arXiv preprint arXiv:1903.03176, 2019.

H. Zhang, H. Chen, D. S. Boning, and C. Hsieh. Ro-
bust reinforcement learning on state observations with
learned optimal adversary. In 9th International Con-
ference on Learning Representations, ICLR 2021, Vir-
tual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. URL https://openreview.net/forum?
id=sCZbhBvqQaU.

10

http://proceedings.mlr.press/v70/pinto17a.html
http://proceedings.mlr.press/v70/pinto17a.html
https://arxiv.org/abs/2105.01648
https://openreview.net/forum?id=sCZbhBvqQaU
https://openreview.net/forum?id=sCZbhBvqQaU

Adversarial Cheap Talk

A. Minimality of Cheap Talk MDPs
A.1. Proof of Proposition 1

Proposition 1. In any Cheap Talk MDP, the policy of a tabular Victim is independent from its Adversary provided uniform
initialisation along M, namely π0(· | si,mj) = π0(· | si,mj′) ∀ j, j′.

Proof. In a Cheap Talk MDP ⟨S,A,P,R, γ,M, f,J ⟩, a tabular Victim arbitrarily orders states as {s1, . . . , sd} and
messages as {m1, . . . ,mk}, where d = |S| and k = |M|, and stores policies πt(· | si,mj) at time t of the learning process
for all i ∈ [d], j ∈ [k]. The argument follows identically for value functions. Assuming uniform initialisation along the M
axis means that

π0(· | si,mj) = π0(· | si,mj′)

for all j, j′ ∈ [k]. Now consider any two Adversaries f, g and their influence on two copies of the same Victim V,W with
respective policies π, χ. The only states encountered in the environment are of the form (s, f(s)) and (s, g(s)) respectively,
so Victims only update the corresponding policies

πt(· | si, f(si)) and χt(· | si, g(si)) .

We prove by induction that these quantities are equal for all t. The base case holds by uniform initialisation along M;
assume the claim holds for all fixed 0 ≤ t ≤ T . The Victims update their policies at time T + 1 according to the same
learning rule, as a function of the transitions and returns under current and past policies πt and χt respectively. Transitions
take the form (s, f(s), a, s′, f(s′)) for V and (s, g(s), a, s′, g(s)) for W , which have identical probabilities and returns
because

πt(a | si, f(si)) = χt(a | si, g(si)) ;
P(s′, f(s′) | s, f(s), a) = P(s′, g(s′) | s, g(s), a) ;

R(s, f(s), a) = R(s, g(s), a)

by inductive assumption and independence of P,R from M. This implies that the Victims’ policies πT (· | si, f(si)) =
χT (· | si, g(si)) are updated identically to

πT+1(· | si, f(si)) = χT+1(· | si, g(si))

as required to complete induction. Note that this would not necessarily hold in non-tabular settings, where updating
parameters θ of the function approximator for some state (si, f(si)) may alter the policy on some other state (sj , f(sj)). It
now follows that trajectories τ = (sk, f(sk), ak)k for V and ω = (sk, g(sk), ak)k for W have identical probabilities and
hence produce identical returns

Eτ∼πt [R(τ)] = Eω∼χt
[R(ω)]

at any timestep t of the learning process, concluding independence from Adversaries.

A.2. Proof of Proposition 2

Proposition 2. A Victim which is guaranteed to converge to optimal policies in MDPs will also converge to optimal
policies in Cheap Talk MDPs, with an expected return equal to the optimal return for the corresponding no-channel MDP.

Proof. By assumption, the Victim is guaranteed to converge to an optimal policy π̄ in any given Cheap Talk MDP
⟨S,A,P,R,M, f,J , γ⟩, since a Cheap Talk MDP is itself an MDP with an augmented state space S ×M and augmented
transition/reward functions that are defined to be independent from M. Now π̄ naturally induces a policy π on the no-channel
MDP, given by π(· | s) := π̄(· | s, f(s)), and in particular Q(s, a) = Q̄(s, f(s), a) by independence of transitions and
rewards from M. Optimality of π follows directly from the Bellman equation

Q(s, a) = Q̄(s, f(s), a) = Es′∼P(·|s,a),r∼R(·|s,a)

[
r + γmax

a′∈A
Q̄(s′, f(s′), a′)

]
= Es′∼P(·|s,a),r∼R(·|s,a)

[
r + γmax

a′∈A
Q(s′, a′)

]
.

11

Adversarial Cheap Talk

Now trajectories τ̄ = (sk, f(sk), ak)k and τ = (sk, ak)k have identical probability and return under π and π̄ respectively,
so the Victim has expected return

Eτ̄∼π̄ [R(τ̄)] = Eτ∼π [R(τ)]

which is the optimal expected return of the original no-channel MDP.

A.3. Further Informal Discussion

Consider a Cheap Talk MDP ⟨S,A,P,R, γ,M, f,J ⟩. For a fixed training / testing run of the Victim on the MDP, the
Adversary outputs a message f(s) at each step according to a fixed deterministic function f : S → M. Below we elaborate
informally on the claims that Adversaries cannot (1) occlude the ground truth, (2) influence the environment dynamics /
reward functions, (3) see the Victim’s actions or parameters, (4) inject stochasticity, or (5) introduce non-stationarity.

(1) The message is appended to the state s and the Victim acts with full visibility of the ground truth (state) s according to
its policy: a ∼ π(· | s, f(s)).

(2) The transition and reward functions P,R are defined to be independent from M. Formally we have P(· | s,m, a) =
P(· | s,m′, a) for all m,m′ ∈ M (similarly for R), so the Adversary’s choice of message m = f(s) cannot influence
P or R.

(3) f : S → M is defined as a function of S only, so the Adversary cannot condition its policy based on the Victim’s
actions or parameters (i.e. it cannot see or influence them).

(4) f is a deterministic function, so π(· | s, f(s)) is a distribution only on actions A. The transition and reward functions
are independent from f , so they are distributions only on state-action pairs S ×A. It follows that the Adversary injects
no further stochasticity into the MDP.

(5) f is static for a fixed training / testing run, so st = st′ implies f(st) = f(st′) for all timesteps t, t′ in the run. It follows
that any given Victim policy π is stationary, namely π(· | st, f(st)) = π(· | st′ , f(st′)) for all st = st′ . Since P and
R are stationary (as defined by a standard MDP) and independent from M, their stationarity is also preserved.

Finally, we discuss the possibility of further weakening components of a Cheap Talk MDP, and conclude that all such
variants (A-E) bring no advantage or reduce to regular MDPs.

(A) Removing the channel M or the policy f : S → M would result in the Victim being completely independent from the
Adversary, so no adversarial influence could be exerted whatsoever.

(B) Restricting the capacity of M to a certain number of bits would further restrict an Adversary’s range of influence, so
one could say that the truly minimum-viable setting is to impose a set of size |M| = 1. However, cheap talk is still
cheap talk when varying capacity, and there is no reason to arbitrarily restrict the size to 1 if we are to apply our setting
to complex environments likely requiring more than a single bit of communication to witness interesting results.

(C) Not allowing Adversaries to see states, namely removing S as inputs to f , yields a function f : {0} → M which
always outputs the same messagef(0) = m ∈ M. This is equivalent to the previous restriction of imposing a set M of
size 1, since in this case any function f : S → M would have to output the unique element f(s) = m for all input
states s.

(D) The Adversary must have some objective function J in order for an adversarial setting to make sense – removing it
would remove the Adversary’s reason to exist, since it would have no incentive to learn parameters that influence the
Victim according to some goal.

(E) Restricting the function class of objectives J is a valid minimisation of the setting, but simply restricts our interest
in the setting itself. The setting should at the very least allow for adversarial objectives of the form J = ±J , as we
consider in the train-time setting. In test-time, our aim is to show how Adversaries can exert arbitrary control over
Victims despite cheap talk restrictions, and we therefore consider more general objective functions.

12

Adversarial Cheap Talk

B. Pseudocode

Algorithm 2 Test-time ACT

1: Initialize train-time ACT parameters ϕ
2: Initialize test-time ACT parameters ψ
3: for m = 0 to M do
4: Sample ϕn ∼ ϕ+ σϵn where ϵ1, ..., ϵN ∼ N (0, I)
5: Sample ψn ∼ ψ + σϵn where ϵ1, ..., ϵN ∼ N (0, I)
6: for n = 0 to N do
7: Initialize policy params θ
8: rewards = []
9: for e = 0 to E do

10: s = env.reset()
11: while not done do
12: m = fϕn(s)
13: s̄ = [s, m]
14: a ∼ πθ(· | s̄)
15: r, s = env.step(a)
16: end while
17: Update θ using PPO to maximise its return J
18: end for
19: for i = 0 to I do
20: g = env.getgoal()
21: s = env.reset()
22: while not done do
23: m = fψn(s, g)
24: s̄ = [s, m]
25: a ∼ πθ(· | s̄)
26: r, s, done = env.step(a)
27: rGt = RG(s, a, g)
28: scores.append(rGt)
29: end while
30: end for
31: J = sum(scores)/I
32: end for
33: Update ϕ and ψ using ES to maximise goal-conditioned objective J
34: end for

13

Adversarial Cheap Talk

Algorithm 3 Test-time Oracle PPO ACT

1: Initialize train-time ACT parameters ϕ
2: Obtain trained ϕ, θ from Algorithm 2
3: Initialize test-time ACT parameters ψ∗

4: for i = 0 to I do
5: s = env.reset()
6: while not done do
7: m ∼ πψ∗(· | s)
8: s̄ = [s, m]
9: a ∼ πθ(· | s̄)

10: r, s, done = env.step(a)
11: rSt = RS(s, a)
12: rewards.append(rSt)
13: end while
14: Update ψ∗ using PPO to maximise J
15: end for

14

Adversarial Cheap Talk

Algorithm 4 Test-time Random Shaper

1: Initialize train-time ACT parameters ϕrandom
2: Initialize policy params θ
3: rewards = []
4: for e = 0 to E do
5: s = env.reset()
6: while not done do
7: m = fϕrandom(s)
8: s̄ = [s, m]
9: a ∼ πθ(· | s̄)

10: r, s = env.step(a)
11: end while
12: Update θ using PPO to maximise J
13: end for
14: Initialize test-time ACT parameters ψ∗

15: for i = 0 to I do
16: s = env.reset()
17: while not done do
18: m ∼ πψ∗(· | s)
19: s̄ = [s, m]
20: a ∼ πθ(· | s̄)
21: r, s = env.step(a)
22: rSt = RS(s, a)
23: rewards.append(rSt)
24: end while
25: Update ψ∗ using PPO to maximise J
26: end for

15

Adversarial Cheap Talk

C. Ablations

(a) (b)

Figure 7. (a) Ablations on the different number of cheap talk dimensions for the Adversary in Cartpole. We find that for a low-dimensional
environment like Cartpole, the Adversary does not achieve much marginal improvement from increasing the number of channels,
suggesting that there may be some limit to the amount that it can harm performance. (b) Comparing the ally with an Adversary that
outputs pre-trained logits in Cartpole. We find that the allied ACT still performs better, implying that it is outputting features that are
more useful than logits from a pre-trained policy. Error bars denote the standard error across 10 seeds of a Victim trained against a single
meta-trained Adversary.

16

Adversarial Cheap Talk

D. Pendulum Ablation

Figure 8. Interestingly, it seems like random network features improved performance in Pendulum. To make sure this was not due to
network initialisation effects, we ran an ablation where we removed the cheap talk channel. It achieves about the same performance as a
channel with zeros, which implies that the performance difference is not due to network initialisation.

17

Adversarial Cheap Talk

E. Hyperparameter Details
We report the hyperparameter values used for each environment in our experiments. Our PPO implementation uses
observation normalisation (a common design choice for PPO), which means that the attack is invariant to the range of values
outputted over the cheap talk channel.

Table 1. Important parameters for the Cartpole environment
Parameter Value
State Size 4
message Size 2
message Range -2π, 2π
Number of Environments 4
Maximum Grad Norm 0.5
Number of Updates 32
Update Period 256
Outer Discount Factor γ 0.99
Number of Epochs per Update 16
PPO Clipping ϵ 0.2
General Advantage Estimation λ 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.01
Learning Rate 0.005
Population Size 1024
Number of Generations 2049
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 2
IA Size of Actor Hidden Layers 32
IA Number of Critic Hidden Layers 2
IA Size of Critic Hidden Layers 32
IA Activation Function Tanh
Number of Rollouts 4

18

Adversarial Cheap Talk

Table 2. Important parameters for the Pendulum environment
Parameter Value
State Size 3
message Size 2
message Range -2π, 2π
Number of Environments 16
Maximum Grad Norm 0.5
Number of Updates 128
Update Period 256
Outer Discount Factor γ 0.95
Number of Epochs per Update 16
PPO Clipping ϵ 0.2
General Advantage Estimation λ 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.005
Learning Rate 0.02
Population Size 768
Number of Generations 2049
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 1
IA Size of Actor Hidden Layers 32
IA Number of Critic Hidden Layers 1
IA Size of Critic Hidden Layers 32
IA Activation Function Tanh
Number of Rollouts 4

19

Adversarial Cheap Talk

Table 3. Important parameters for the Reacher environment
Parameter Value
State Size 10
message Size 4
message Range -2π, 2π
Number of Environments 32
Maximum Grad Norm 0.5
Number of Updates 256
Update Period 128
Outer Discount Factor γ 0.99
Number of Epochs per Update 10
PPO Clipping ϵ 0.2
General Advantage Estimation λ 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.0005
Learning Rate 0.004
Population Size 128
Number of Generations 2049
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 2
IA Size of Actor Hidden Layers 128
IA Number of Critic Hidden Layers 2
IA Size of Critic Hidden Layers 128
IA Activation Function ReLU
Number of Rollouts 4

20

Adversarial Cheap Talk

Table 4. Important parameters for the Minatar environments
Parameter Value
State Size 400
message Size 32
message Range -2π, 2π
Number of Environments 64
Maximum Grad Norm 0.5
Number of Updates 1024
Update Period 256
Outer Discount Factor γ 0.99
Number of Epochs per Update 32
PPO Clipping ϵ 0.2
General Advantage Estimation λ 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.01
Learning Rate 3e-4
Population Size 128
Number of Generations 256
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 2
IA Size of Actor Hidden Layers 256
IA Number of Critic Hidden Layers 2
IA Size of Critic Hidden Layers 256
IA Activation Function ReLU
Number of Rollouts 1

21

Adversarial Cheap Talk

F. RARL Hyperparameter Details

Table 5. RARL Cartpole Parameters
Parameter Value
State Size 4
message Size 2
message Range -2π, 2π
Maximum Grad Norm 0.5
Total Number of Adversary and Learner Updates 100
Number of Learner Update Steps per Adversary Update 8
Number of Adversary Update Steps per Learner Update 8
Update Period 256
Outer Discount Factor γ 0.99
Number of Epochs per Update 16
PPO Clipping ϵ 0.2
General Advantage Estimation λ 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.01
Learning Rate 0.005
Population Size 1024
Number of Generations 2049
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 2
IA Size of Actor Hidden Layers 32
IA Number of Critic Hidden Layers 2
IA Size of Critic Hidden Layers 32
IA Activation Function Tanh
Number of Rollouts 16

22

Adversarial Cheap Talk

G. Extra Visualisations

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. We train 10 different Victims alongside the Learned ϕ (left column), and 10 different Victims alongside a randomly generated ϕ
(right column) in the Pendulum environment. We show the mean of the policy output across the 10 Victims as we vary the value of the
message in multiple randomly selected states. The learned ϕ consistently generates similar policy outputs across different states with
respect to the cheap talk channel, implying that the learned ϕ shapes the Victim in a consistent way.

23

Adversarial Cheap Talk

H. Additive Perturbations

(a) (b) (c)

Figure 10. Visualisations of the training curves of the Victim across different Adversaries for (a) Cartpole, (b) Pendulum, and (c) Reacher.
Error bars denote the standard error across 10 seeds of Victims trained against a single trained Adversary. In this setting, the Adversary
adds the perturbation to the input rather than appending. Note that this allows the Adversary to conflate states and influence the optimal
policy. Thus, the Adversary can harm performance far more.

(a)

Figure 11. Visualisations of the training curves of the Victim across different Adversaries for Cartpole. Error bars denote the standard
error across 10 seeds of Victims trained against a single trained Adversary. In this setting, the Adversary adds the perturbation to the
useless features identified in (Vischer et al., 2021) rather than appending. It achieves similar performance to the cheap talk channel attacks.

24

Adversarial Cheap Talk

I. Frequently Asked Questions
Q: How does the Adversary know which channels don’t influence the underlying environment?

The Adversary does not need to know which channels don’t influence the environment. The attacks in this paper are effective
regardless of whether or not the features are useless. The cheap talk channels are intended to represent the worst-case
scenario for the Adversary. Indeed, if the Adversary is able to influence important and useful channels, it is able to execute
far more effective attacks. We show this in Appendix H Figure 10, where the Adversary, instead of appending to the
observation, adds to it.

Q: Why would the Victim allow the Adversary to append to its observation? Isn’t that easily detectable?

The idea is not that a system designer would add a cheap-talk channel to their system but rather that such cheap-talk
channels naturally occur in many real-world scenarios. We mention some real-world situations in the introduction (e.g. the
recommender systems or financial models). However, practitioners currently also train with useless features in existing RL
environments. Interestingly, Vischer et al. (2021) has found that even the simple CartPole environment only requires two of
the four features to learn the optimal policy.

We simulate these settings by appending to the observation; however, we could just as easily perturb the “useless”
observations and expect similar results. We perturb the aforementioned useless features in CartPole and show the results in
Appendix H Figure 11.

Q: What is the incentive for the attacker to be stationary?

In real-world attacks, it would be far easier to implement a stationary adversary since it would just be a static function of
the rest of the state. To implement a non-stationary attack, the adversary would need to know at what stage in training the
victim is and at what point the training started.

Furthermore, we think the stationary adversarial attack is more relevant for studying curious failure modes in RL in general.
This is a common perspective taken in adversarial attacks in machine learning since most popular attacks are impractical.

25

