
SpeakStream: Streaming Text-to-Speech with Interleaved Data

Anonymous submission to Interspeech 2025

Abstract1

There has been an increasing integration of speech front-2

ends and large language models (LLM) with end-to-end mod-3

els but cascaded models that stream LLM outputs to text-to-4

speech (TTS) systems remain surprisingly under-explored de-5

spite their simplicity. Using traditional TTS to convert LLM6

outputs to audio, however, poses a technical problem because7

entire utterances are needed to generate stylistic audio. In this8

paper we present a streaming TTS (SpeakStream) that can gen-9

erate audio incrementally from streaming text using a decoder-10

only architecture. The model is trained using next-step predic-11

tion loss on force-aligned, interleaved text-speech data. During12

inference SpeakStream generates speech incrementally while13

absorbing streaming text, making it suitable for cascaded con-14

versational AI agents where an LLM streams text to a TTS sys-15

tem. Our experiments show that SpeakStream matches batch16

TTS quality while enabling streaming capabilities.17

Index Terms: text-to-speech, speech synthesis, streaming18

1. Introduction19

Recent years have witnessed a surge of interest in speech inter-20

faces for large language models (LLMs). While substantial re-21

search has focused on end-to-end models where LLMs directly22

generate tokenized audio [1, 2], studies indicate that cascaded23

models—which stream text from LLMs to text-to-speech (TTS)24

systems—consistently outperform end-to-end approaches [3].25

A primary challenge in cascaded models is reducing la-26

tency from two sources: (1) waiting for the LLM to generate27

a complete text segment (e.g. sentence) and (2) waiting for the28

TTS system to generate audio. Although some autoregressive29

TTS models [4, 5] can generate audio incrementally, most sys-30

tems [4,6–12] require complete text segments before producing31

audio—introducing significant latency that compromises inter-32

active applications.33

To address text-waiting latency, recent approaches [13, 14]34

have explored partial text context windows to balance respon-35

siveness and quality. However, these streaming methods often36

struggle with long-range dependencies and require careful tun-37

ing of text-speech alignment [13, 15]. Furthermore, the separa-38

tion between text encoding and speech generation processes can39

lead to suboptimal context utilization, particularly when model-40

ing prosody across sentence boundaries.41

To overcome these limitations, we propose Speak-42

Stream—a novel decoder-only architecture that enables stream-43

ing TTS through interleaved text-speech modeling. Our ap-44

proach offers three key advantages: (1) unified context mod-45

eling across modalities, (2) elimination of explicit alignment46

mechanisms during inference, and (3) efficient computation47

through kv-caching. We use a force-aligner to temporally align48

text and speech segments during training, creating interleaved 49

text-speech sequences. The transformer decoder learns to pre- 50

dict the next speech segment conditioned on the current text 51

segment, previous speech segments, and previous text seg- 52

ments. This creates a coherent, unified context that captures 53

both modalities, allowing the model to maintain complete in- 54

formation about previously generated speech while processing 55

incoming text. 56

By training SpeakStream using an autoregressive loss on 57

the interleaved data, we can handle streaming input naturally 58

without complex architectural modifications or explicit context 59

management schemes. Our decoder-only design enables the 60

model to use kv-cache to store all historical context, ensuring 61

efficient inference with low latency. This eliminates the need 62

for traditional encoder-decoder structures, resulting in a sim- 63

pler, more efficient architecture while maintaining high-quality 64

speech synthesis. Our empirical results demonstrate Speak- 65

Stream’s effectiveness: automatic evaluation shows it achieves 66

the lowest error rate across all latency configurations, while hu- 67

man evaluators rate its coherence comparable to non-streamed 68

systems like RichTTS [4]. By deploying SpeakStream to a 69

MacBook, we show it achieves 50ms TTS latency, making it 70

suitable for real-time interactive applications. 71

2. Related Work 72

Traditional TTS systems [7–11] process complete text to gen- 73

erate complete audio. However, the rise of conversational AI 74

demands reduced latency through dual streaming capabilities, 75

i.e., streaming text input and streaming audio output. 76

Dual Streaming TTS mimics how humans read aloud a text 77

stream as it unfolds. Modeling this behavior with neural net- 78

works presents several challenges. First, when synthesizing 79

speech streamingly, creating smooth transitions between au- 80

dio chunks while avoiding artifacts is difficult. Autoregressive 81

speech generation offers a promising solution, as demonstrated 82

in models such as RichTTS [4] and VALL-T [16]. 83

Another significant challenge is that TTS models with text 84

encoders struggle to handle streaming text input. These models 85

typically need to re-encode the text sequence when new con- 86

tent arrives—a limitation affecting FastSpeech2’s transformer 87

encoder, Tacotron’s LSTM encoder, and E3 TTS’s BERT [17] 88

encoder. All these architectures face difficulty synthesizing nat- 89

ural speech with limited context. 90

[14] uses non-attentive Tacotron [18] for speech generation 91

by distilling from a non-streaming TTS with limited access to 92

future context. However, their architecture demonstrates lim- 93

ited zero-shot capability. [13] upgraded LiveSpeech [5] from 94

full-text audio synthesis to text-chunk synthesis. However, their 95

model encounters misalignment issues between speech gener- 96



ation and text chunks. Although they introduce a CTC-ASR97

model to generate graphemes and guide chunk generation, this98

approach complicates the overall architecture and potentially99

introduces train-test mismatching issues.100

Transducer-based TTS approaches [19] offer improved101

alignment design, but their application in dual-streaming set-102

tings remains under-explored.103

In this work, we propose SpeakStream, a decoder-only104

dual-streaming TTS model. By training a decoder-only trans-105

former model with interleaved speech-text sequences, Speak-106

Stream can store all generated chunks in its key-value cache,107

providing complete context without information loss. By pre-108

dicting EOS tokens as chunk boundaries, our model avoids mis-109

alignment issues and eliminates the need for CTC aligners dur-110

ing inference. Furthermore, by controlling the interleaving win-111

dow size, our model can attend to both current and future text112

chunks, ensuring minimal latency until the first audio chunk113

while maintaining smooth transitions for subsequent chunks.114

Concurrently, [15] also found that decoder-only TTS mod-115

els are suitable for dual-streaming synthesis. Unlike our model,116

they interleave text and speech with a fixed ratio rather than us-117

ing alignment information, which could lead to complicated at-118

tention patterns when there are large variations in speaking rate.119

Further it might be difficult to precisely tie the streaming audio120

to the corresponding input text, which can be useful in interac-121

tive applications where a conversational agent is interruptible.122

3. Method123

Our approach enables streaming text-to-speech by introducing124

an interleaved representation of text and speech tokens in a125

decoder-only architecture. The model processes these inter-126

leaved sequences to generate speech output with low latency.127

This section describes our model architecture, token represen-128

tations, interleaving schemes, and inference method.129

3.1. Text and Speech Representation130

Text Token Representation: We use character-level em-131

beddings to capture fine-grained linguistic features. In this132

way, each word wt consists of x character embeddings133

ct1 , ct2 , · · · , ctx .134

Speech Token Representation: We adopt the dMel [4] tok-135

enization approach, which discretizes mel-filterbank channels136

into discrete intensity bins. This simple yet effective discretiza-137

tion method preserves both acoustic and semantic information,138

making it ideal for our streaming synthesis task. For each word139

wt, its corresponding audio chunk st consists of y dMel em-140

beddings ft1 , ft2 , · · · , fty .141

3.2. SpeakStream Model142

SpeakStream is built upon a vanilla transformer decoder archi-143

tecture similar to RichTTS [4]. Compared to RichTTS, the key144

difference is how SpeakStream constructs the transformer input145

sequence. In RichTTS [4], the input to the model is:146

[wbos, w1, · · · , wt, weos, sbos, s1, · · · , st, seos]
147

where wbos and weos are the beginning and end text embeddings,148

sbos and seos are the beginning and end speech embeddings. t is149

the number of words.150

SpeakStream, on the other hand interleaves the sequence151

above by inserting speech between text. A simplified illustra-152

tion of the input to SpeakStream is:153

Figure 1: SpeakStream Architecture.

[T1, A1, T2, A2, · · · , Tx, Ax]

Ti = wi, Ai = sbos, si, seos, x = t
154

where text and speech are interleaved one by one. To establish 155

precise temporal correspondence between words and speech 156

frames, we utilize the A3T’s alignment mechanism [6]. 157

By training a decoder-only transformer model on such in- 158

terleaved sequences, SpeakStream learns to synthesize the cur- 159

rent speech segment Ai conditioned on the current text segment 160

Ti, previous speech segments A<i, and previous text segments 161

T<i. Compared to existing streaming solutions that synthesize 162

each text chunk independently, SpeakStream offers several ad- 163

vantages: 164

1. Each speech segment Ai is conditioned on the complete 165

speech history A<i, ensuring acoustic coherence and con- 166

sistency; 167

2. Each speech segment Ai is conditioned on the complete text 168

history T<i, maintaining semantic precision; 169

3. With access to comprehensive speech and text history, our 170

model achieves high-quality streaming synthesis even with 171

short text segments Ti, enabling lower latency; 172

4. The model’s kv-cache architecture efficiently maintains all 173

historical context during inference, significantly reducing 174

computational overhead and enabling fast generation; 175

5. The model eliminates the need for a force aligner during in- 176

ference by predicting the EOS token for each speech segment 177

and processing text segments accordingly. 178

3.3. Interleaving Schemes 179

There is a trade-off between latency and accuracy of stream- 180

ing TTS. To lower the latency, the length of each Ti should be 181

short. However, given the existence of polyphonic words, the 182

speech synthesis of certain words must consider not only the 183

preceding words but also the subsequent words in the context 184

sequence. Therefore, T<=i should have additional words be- 185

yond Ai’s corresponding words to maintain synthesis accuracy. 186

To address this trade-off, we design two interleaving 187

schemes, with each scheme having multiple variants by adjust- 188



ing the text window length m and speech hop length n, where189

1 ≤ n ≤ m and m ≥ 1. This ensures the first n words of Ti190

correspond to Ai, while the remaining (m− n) words provide191

future context.192

Scheme 1

[T1, A1, T2, A2, · · · , Tx, Ax]

Ti = wn(i−1)+1, · · · , wmin(t,n(i−1)+m)

Ai = sbos, sn(i−1)+1, · · · , smin(t,n·i), seos, x =

⌈
t

n

⌉
Example (m=3, n=2, t=8):

[w1, w2, w3, sbos, s1, s2, seos, w3, w4, w5, sbos, s3, s4, seos,

w5, w6, w7, sbos, s5, s6, seos, w7, w8, sbos, s7, s8, seos]

193

As shown in Scheme 1, we repeat text tokens to ensure the194

first n words of Ti correspond to Ai, while the remaining (m−195

n) words provide future context.196

Scheme 2

[T1, A1, T2, A2, · · · , Tx, Ax, Ax+1, · · · , Ay]

Ti =

{
w1, · · · , wm i = 1

wn(i−2)+m+1, · · · , wmin(t,n(i−1)+m) i > 1

Ai = sbos, sn(i−1)+1, · · · , smin(t,n·i), seos

x =

⌈
t−m

n

⌉
+ 1, y =

⌈
t

n

⌉
Example (m=3, n=2, t=8):

[w1, w2, w3, sbos, s1, s2, seos, w4, w5, sbos, s3, s4, seos,

w6, w7, sbos, s5, s6, seos, w8, sbos, s7, s8, seos]
197

Scheme 2 maintains the same (m−n) contextual words but198

avoids token repetition, creating a more compact representation199

at the cost of more complex attention patterns.200

3.4. Streaming Inference201

During inference, our model enables true streaming generation202

through an autoregressive process that maintains the interleaved203

structure. Given a streaming text sequence, the model:204

1. Waits until receiving the first segment of text words and gen-205

erates their corresponding dMel tokens, which are converted206

into waveforms in tandem, using a streaming Mel-to-wave207

vocoder;208

2. Uses both the generated speech features and the next segment209

of text words as context for generating the next speech seg-210

ment;211

3. Repeats this process until the entire text is synthesized.212

The simplicity of dMel tokenization allows our model to gener-213

ate high-quality speech in a streaming fashion without the com-214

plexity of managing multiple token types or separate acoustic215

and semantic representations. The primary latency in our sys-216

tem comes from accumulating the first segment of text words,217

making the granularity parameter m a direct control for the218

latency-quality trade-off.219

4. Experiments 220

4.1. Setup 221

We conduct experiments using the LJSpeech [21] dataset, 222

which consists of single-speaker English audio recordings 223

at 22kHz with read speech from LibriVox. Following 224

RichTTS [4], our model comprises 36 layers of transformer de- 225

coder with 258M parameters. The dMel feature is exactly the 226

same as [4] with 25ms hop length, 16 bins, and ParallelWave- 227

GAN vocoder [22]. The baseline models are RichTTS [4] and 228

XTTS [20], which are trained on complete text and audio pairs. 229

We also train multiple n-gram versions of RichTTS, where the 230

models are trained with short segments. For TTS evaluation, we 231

utilize WhisperX (“base.en”) [23, 24] to transcribe our gener- 232

ated speech into text and calculate the Word Error Rate (WER). 233

4.2. Main Results 234

Our main results are presented in Table 1. The experiments 235

show that directly applying RichTTS to streaming segments 236

significantly degrades generation quality, with WER exceeding 237

68% for unigram word synthesis. 238

XTTS performs even worse, with WER exceeding 222% 239

for unigram word synthesis. Upon investigating its generation, 240

we find that XTTS hallucinates words and phonemes, leading to 241

high insertion errors. Although these two models perform well 242

in full text synthesis, with WER below 4%, they are not suit- 243

able for streaming synthesis. For RichTTS trained with short 244

segments, the WER is significantly reduced, but it still remains 245

above 60% for unigram word synthesis. In contrast, Speak- 246

Stream achieves WER around 7% for unigram word synthesis, 247

and below 5% when more context is provided. Importantly, 248

SpeakStream’s performance is comparable to RichTTS’s full 249

text synthesis when m = 5 and n = 1. This result demonstrates 250

that SpeakStream can achieve high-quality streaming synthesis 251

with interleaved text and speech inputs. 252

For SpeakStream, Scheme 1 (S1) interleaving consistently 253

outperforms Scheme 2 (S2). This performance difference stems 254

from the varying speech durations of each Ai, which impacts 255

S2 more substantially than S1. With S1, the model can easily 256

locate the n corresponding words in Ti adjacent to Ai, while 257

the remaining (m−n) words provide supplementary pronunci- 258

ation context. In contrast, S2 requires more complex attention 259

patterns as Ai’s corresponding words are separated by variable- 260

length gaps determined by Ai−1’s duration. Based on these 261

findings, we adopt S1 as SpeakStream’s interleaving scheme for 262

subsequent analysis. 263

The results reveal that configurations where m = n yield 264

higher WER, indicating that additional text tokens enhance seg- 265

ment synthesis quality. Performance improves notably when 266

(m − n) > 1. As expected, increasing m generally improves 267

performance by providing richer context. The optimal configu- 268

ration occurs at m = 5, n = 1, achieving 3.38 WER, compa- 269

rable to RichTTS’s non-streaming performance. However, per- 270

formance deteriorates beyond m = 5 due to the (m− n) word 271

repetition creating excessively long text sequences, suggesting 272

that overly large context windows don’t necessarily improve ac- 273

curacy for SpeakStream. 274

4.3. Human Evaluation 275

We conducted a human evaluation to assess the quality of syn- 276

thesized speech from different streaming models. We ran- 277

domly sampled 100 segments from the LJSpeech dev set and 278

asked human evaluators to rate the naturalness and coherence 279



Table 1: WER of SpeakStream with Scheme 1 (S1) and Scheme 2 (S2) evaluated by WhisperX ASR (base.en). The WER of groudtruth
audio is 2.09.

Hop n=1 Hop n=2 Hop n=3 Hop n=4 Hop n=5 Hop n=6 ∞

XTTS-V2 [20] 222.28 45.01 30.92 28.97 17.13 15.28 3.67
RichTTS [4] 68.18 30.20 20.30 16.81 13.07 10.55 3.28
ngram-RichTTS 60.4 26.58 21.04 12.06 6.64 7.76 3.28

SpeakStream S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2
Window m=1 7.47 - - - - - -
Window m=2 4.50 5.26 7.18 - - - - -
Window m=3 3.99 6.88 4.19 5.11 4.78 - - - -
Window m=4 3.88 6.16 3.80 5.09 4.36 5.35 5.21 - - -
Window m=5 3.38 5.59 3.61 6.09 3.65 4.82 4.73 4.59 4.52 - -
Window m=6 4.26 6.20 3.61 4.36 3.93 4.52 4.36 6.14 4.86 4.95 4.30 -

Table 2: Human evaluation results for synthesized speech natu-
ralness and coherence (Mean and standard deviation).

NonStreaming Streaming (m=4) Streaming (m=6)

Naturalness
GroundTruth 4.4 ± 0.1 - -
RichTTS 3.8± 0.1 2.2± 0.1 2.5± 0.1
XTTS 3.9± 0.1 2.1± 0.1 2.5± 0.1
SpeakStream - 3.7 ± 0.1 3.5 ± 0.1

Coherence
GroundTruth 4.2 ± 0.0 - -
RichTTS 3.9± 0.1 2.3± 0.1 2.2± 0.1
XTTS 4.1± 0.1 1.8± 0.1 2.7± 0.1
SpeakStream - 3.9 ± 0.1 3.8 ± 0.1

Table 3: Latency (ms) of SpeakStream with S1, tested with Apple
Silicon (15-inch, M3, 24GB, 2024).

SpeakStream TTS Vocoder Total

Window m=1 51±14 326±61 402±55

Window m=2 51±17 353±101 430±104

Window m=3 64±19 395±140 494±166

Window m=4 50±13 426±192 501±192

Window m=5 63±13 513±235 600±230

of each segment on a scale of 1 to 5. Each segment was eval-280

uated by 7 random annotators. We report the average scores281

and standard deviations for each model. We evaluated 4-gram282

and 6-gram versions of RichTTS and XTTS, corresponding to283

(m = 4, n = 2) and (m = 6, n = 2) configurations of Speak-284

Stream. The results are shown in Table 2.285

We observed that non-streaming TTS results are similar be-286

tween RichTTS and XTTS, with XTTS slightly outperforming287

RichTTS in both naturalness and coherence. However, when288

applied in streaming settings, XTTS’s performance drops sig-289

nificantly, especially in coherence. For streaming models, sur-290

prisingly, human evaluators rated SpeakStream as coherent as291

non-streaming RichTTS, suggesting that SpeakStream success-292

fully maintains coherence despite the model’s streaming nature.293

4.4. Latency Analysis294

We conducted latency analysis of SpeakStream with streaming295

text input and streaming audio output. Our implementation fea-296

tures sequential word input to the TTS model, while the stream-297

ing output pipeline consists of streaming frame generation from298

TTS, streaming waveform synthesis from the vocoder, and real-299

time audio player. We implemented the complete system using300

MLX [25] and deployed it on a 15-inch MacBook Air 2024 with 301

M3 Apple Silicon (24GB RAM). For evaluation, we randomly 302

sampled 25 sentences from the LibriSpeech [26] dev-clean set 303

and measured the performance of SpeakStream models trained 304

with configuration S1, n=1. We report three latency metrics: 305

1. Total latency: Time elapsed between the TTS model receiv- 306

ing its first word and the audio player outputting the first 307

waveform chunk. 308

2. Vocoder latency: Time elapsed between the vocoder receiv- 309

ing its first frame input and generating the first waveform. 310

3. TTS latency: Time elapsed between the TTS model receiv- 311

ing its first word and generating its first frame. 312

Note, we are interested not in time when the first waveform 313

outputted but rather in time of the first spoken phoneme. We 314

observe < 50ms additional latency for the first spoken phoneme 315

to be produced by SpeakStream. Also, it should be noted that 316

this paper primarily focuses on reducing TTS latency. In real 317

conversational agents, the token generation time should also be 318

considered; however, since this depends on the LLM’s size and 319

inference infrastructure, we use word count rather than millisec- 320

onds to measure this component. 321

Our results in Table 3 demonstrate that SpeakStream 322

achieves low latency, requiring only around 50ms to generate 323

the first frame. Also, SpeakStream only waiting m words be- 324

fore it starts the generation process. This efficiency remains 325

consistent across all configurations. The total response time 326

ranges from 0.4 to 0.6 seconds, which is also favorable for in- 327

teractive applications. The primary bottleneck is the vocoder 328

latency, as our implementation uses ParallelWaveGAN [22], 329

which requires 10 frames before generating audio output. Re- 330

cent streaming vocoder [27] should improve latency in this sce- 331

nario – we leave this for future exploration. 332

5. Conclusion 333

We presented SpeakStream, a decoder-only streaming TTS sys- 334

tem that enables real-time speech synthesis through interleaved 335

text-speech modeling. Our extensive experiments demonstrate 336

that SpeakStream successfully bridges the quality gap between 337

streaming and non-streaming TTS systems, achieving WER 338

comparable to full-text synthesis while operating in a streaming 339

fashion. The system’s ability to maintain coherence across seg- 340

ments, as confirmed by human evaluations, makes it a promis- 341

ing solution for interactive applications where both responsive- 342

ness and naturalness are critical. Future work could explore ex- 343

tending this approach to multi-speaker settings, larger datasets, 344

and cross-lingual applications. 345



6. References346

[1] Z. Borsos, R. Marinier, D. Vincent, E. Kharitonov, O. Pietquin,347

M. Sharifi, D. Roblek, O. Teboul, D. Grangier, M. Tagliasacchi348

et al., “Audiolm: a language modeling approach to audio gener-349

ation,” IEEE/ACM transactions on audio, speech, and language350

processing, vol. 31, pp. 2523–2533, 2023.351

[2] A. Défossez, L. Mazaré, M. Orsini, A. Royer, P. Pérez, H. Jégou,352

E. Grave, and N. Zeghidour, “Moshi: a speech-text foundation353

model for real-time dialogue,” arXiv preprint arXiv:2410.00037,354

2024.355

[3] T. A. Nguyen, B. Muller, B. Yu, M. R. Costa-Jussa, M. Elbayad,356

S. Popuri, C. Ropers, P.-A. Duquenne, R. Algayres, R. Mavlyu-357

tov et al., “Spirit-lm: Interleaved spoken and written language358

model,” Transactions of the Association for Computational Lin-359

guistics, vol. 13, pp. 30–52, 2025.360

[4] H. Bai, T. Likhomanenko, R. Zhang, Z. Gu, Z. Aldeneh, and361

N. Jaitly, “dmel: Speech tokenization made simple,” arXiv362

preprint arXiv:2407.15835, 2024.363

[5] T. Dang, D. Aponte, D. Tran, and K. Koishida, “Livespeech: Low-364

latency zero-shot text-to-speech via autoregressive modeling of365

audio discrete codes,” arXiv preprint arXiv:2406.02897, 2024.366

[6] H. Bai, R. Zheng, J. Chen, M. Ma, X. Li, and L. Huang,367

“A3T: Alignment-aware acoustic and text pretraining for368

speech synthesis and editing,” in Proceedings of the 39th369

International Conference on Machine Learning, ser. Proceedings370

of Machine Learning Research, K. Chaudhuri, S. Jegelka,371

L. Song, C. Szepesvari, G. Niu, and S. Sabato, Eds., vol. 162.372

PMLR, 17–23 Jul 2022, pp. 1399–1411. [Online]. Available:373

https://proceedings.mlr.press/v162/bai22d.html374

[7] E. Casanova, J. Weber, C. D. Shulby, A. C. Junior, E. Gölge, and375

M. A. Ponti, “Yourtts: Towards zero-shot multi-speaker tts and376

zero-shot voice conversion for everyone,” in International Con-377

ference on Machine Learning. PMLR, 2022, pp. 2709–2720.378

[8] Z. Du, Q. Chen, S. Zhang, K. Hu, H. Lu, Y. Yang, H. Hu,379

S. Zheng, Y. Gu, Z. Ma et al., “Cosyvoice: A scalable multi-380

lingual zero-shot text-to-speech synthesizer based on supervised381

semantic tokens,” arXiv preprint arXiv:2407.05407, 2024.382

[9] Y. Gao, N. Morioka, Y. Zhang, and N. Chen, “E3 tts: Easy383

end-to-end diffusion-based text to speech,” in 2023 IEEE Auto-384

matic Speech Recognition and Understanding Workshop (ASRU).385

IEEE, 2023, pp. 1–8.386

[10] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu,387

“Fastspeech 2: Fast and high-quality end-to-end text to speech,”388

arXiv preprint arXiv:2006.04558, 2020.389

[11] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss,390

N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio et al.,391

“Tacotron: Towards end-to-end speech synthesis,” arXiv preprint392

arXiv:1703.10135, 2017.393

[12] OpenAI. (2024) Text-to-speech guide. [Online]. Available:394

https://platform.openai.com/docs/guides/text-to-speech395

[13] T. Dang, D. Aponte, D. Tran, T. Chen, and K. Koishida, “Zero-396

shot text-to-speech from continuous text streams,” arXiv preprint397

arXiv:2410.00767, 2024.398

[14] A. Dekel, S. Shechtman, R. Fernandez, D. Haws, Z. Kons, and399

R. Hoory, “Speak while you think: Streaming speech synthe-400

sis during text generation,” in ICASSP 2024-2024 IEEE Inter-401

national Conference on Acoustics, Speech and Signal Processing402

(ICASSP). IEEE, 2024, pp. 11 931–11 935.403

[15] Y. Yang, Z. Ma, S. Liu, J. Li, H. Wang, L. Meng, H. Sun, Y. Liang,404

R. Xu, Y. Hu et al., “Interleaved speech-text language models405

are simple streaming text to speech synthesizers,” arXiv preprint406

arXiv:2412.16102, 2024.407

[16] C. Du, Y. Guo, H. Wang, Y. Yang, Z. Niu, S. Wang, H. Zhang,408

X. Chen, and K. Yu, “Vall-t: Decoder-only generative trans-409

ducer for robust and decoding-controllable text-to-speech,” arXiv410

preprint arXiv:2401.14321, 2024.411

[17] M. V. Koroteev, “Bert: a review of applications in natu- 412

ral language processing and understanding,” arXiv preprint 413

arXiv:2103.11943, 2021. 414

[18] J. Shen, Y. Jia, M. Chrzanowski, Y. Zhang, I. Elias, H. Zen, and 415

Y. Wu, “Non-attentive tacotron: Robust and controllable neural 416

tts synthesis including unsupervised duration modeling,” arXiv 417

preprint arXiv:2010.04301, 2020. 418

[19] M. Kim, M. Jeong, B. J. Choi, D. Lee, and N. S. Kim, “Transduce 419

and speak: Neural transducer for text-to-speech with semantic to- 420

ken prediction,” in 2023 IEEE Automatic Speech Recognition and 421

Understanding Workshop (ASRU). IEEE, 2023, pp. 1–7. 422

[20] E. Gölge and The Coqui TTS Team, “Coqui TTS: A deep 423

learning toolkit for Text-to-Speech, battle-tested in research and 424

production,” 1 2021. [Online]. Available: https://www.coqui.ai 425

[21] K. Ito and L. Johnson, “The lj speech dataset,” https://keithito. 426

com/LJ-Speech-Dataset/, 2017. 427

[22] R. Yamamoto, E. Song, and J.-M. Kim, “Parallel wavegan: A fast 428

waveform generation model based on generative adversarial net- 429

works with multi-resolution spectrogram,” in ICASSP 2020-2020 430

IEEE International Conference on Acoustics, Speech and Signal 431

Processing (ICASSP). IEEE, 2020, pp. 6199–6203. 432

[23] M. Bain, J. Huh, T. Han, and A. Zisserman, “Whisperx: 433

Time-accurate speech transcription of long-form audio,” INTER- 434

SPEECH 2023, 2023. 435

[24] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and 436

I. Sutskever, “Robust speech recognition via large-scale weak su- 437

pervision,” in International Conference on Machine Learning. 438

PMLR, 2023, pp. 28 492–28 518. 439

[25] A. Hannun, J. Digani, A. Katharopoulos, and R. Collobert, 440

“MLX: Efficient and flexible machine learning on apple silicon,” 441

2023. [Online]. Available: https://github.com/ml-explore 442

[26] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib- 443

rispeech: an asr corpus based on public domain audio books,” 444

in 2015 IEEE international conference on acoustics, speech and 445

signal processing (ICASSP). IEEE, 2015, pp. 5206–5210. 446

[27] R. Shi, A. Bär, M. Sach, W. Tirry, and T. Fingscheidt, “Non- 447

causal to causal ssl-supported transfer learning: Towards a high- 448

performance low-latency speech vocoder,” in 2024 18th Inter- 449

national Workshop on Acoustic Signal Enhancement (IWAENC). 450

IEEE, 2024, pp. 359–363. 451


	 Introduction
	 Related Work
	 Method
	 Text and Speech Representation
	 SpeakStream Model
	 Interleaving Schemes
	 Streaming Inference

	 Experiments
	 Setup
	 Main Results
	 Human Evaluation
	 Latency Analysis

	 Conclusion
	 References

