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TELEClass: Taxonomy Enrichment and LLM-Enhanced
Hierarchical Text Classification with Minimal Supervision

Anonymous Author(s)

Abstract
Hierarchical text classification aims to categorize each document
into a set of classes in a label taxonomy, which is a fundamental
web text mining task with broad applications such as web content
analysis and semantic indexing. Most earlier works focus on fully
or semi-supervised methods that require a large amount of human
annotated data which is costly and time-consuming to acquire. To
alleviate human efforts, in this paper, we work on hierarchical text
classification with a minimal amount of supervision: using the sole
class name of each node as the only supervision. Recently, large
language models (LLM) have shown competitive performance on
various tasks through zero-shot prompting, but this method per-
forms poorly in the hierarchical setting because it is ineffective to
include the large and structured label space in a prompt. On the
other hand, previous weakly-supervised hierarchical text classifica-
tion methods only utilize the raw taxonomy skeleton and ignore
the rich information hidden in the text corpus that can serve as
additional class-indicative features. To tackle the above challenges,
we propose TELEClass, Taxonomy Enrichment and LLM-Enhanced
weakly-supervised hierarchical text Classification, which combines
the general knowledge of LLMs and task-specific features mined
from an unlabeled corpus. TELEClass automatically enriches the
raw taxonomy with class-indicative features for better label space
understanding and utilizes novel LLM-based data annotation and
generation methods specifically tailored for the hierarchical setting.
Experiments show that TELEClass can significantly outperform
previous strong baselines while also achieving comparable per-
formance to zero-shot prompting of LLMs with drastically less
inference cost.

CCS Concepts
• Information systems→ Data mining; • Computing method-
ologies→ Natural language processing; Classification and
regression trees.
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cation, Taxonomy Enrichment, Large Language Model
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health 
carehair care

medicineshampoo

…

conditioner

…

Class Enriched Key Terms
hair care hair color, curly, dryer

scalp treatment dandruff, Hask Placenta 

shampoo flakes, itching, clean
conditioner moisture, soft hair

Classes

Predicted Classes

Document: Some of the best shampoo on the 
market. Your hair will feel more amazing than ever. 
Scent free so shouldn’t have any allergic reaction. 
Very good for dry/sensitive scalps when you want 
to lay off the heavy-duty stuff.

Taxonomy Enrichment
Label Taxonomy

scalp 
treatment

Large Language 
Model (LLM)

…

Unlabeled 
Text Corpus

Figure 1: An example document tagged with 3 classes. We
automatically enrich each node with class-indicative terms
and utilize LLMs to facilitate classification.
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1 Introduction
Hierarchical text classification, aiming to classify documents into
one or multiple classes in a label taxonomy, is a fundamental task
in web text mining and NLP. Compared with standard text clas-
sification where label space is flat and relatively small (e.g., less
than 20 classes), hierarchical text classification is more challenging
given the larger and more structured label space and the existence
of fine-grained and long-tail classes. Hierarchical text classifica-
tion has broad applications such as web content organization [13],
semantic indexing [25, 29], and query classification [7, 21, 23]. Re-
cent studies also show that hierarchically structured text [14, 42]
and document-level tagging [38] can improve retrieval-augmented
generation for large language models.

The key challenge of hierarchical text classification is how to
understand the large structured label space to distinguish the se-
mantics of similar classes. Most earlier works tackle this task in
fully supervised [9, 24, 56] or semi-supervised settings [5, 20], and
different models are proposed to learn from a substantial amount
of human-labeled data. However, acquiring human annotation is
often costly, time-consuming, and not scalable.

Recently, large language models (LLM) such as GPT-4 [36] and
Claude 3 [2] have demonstrated strong performance in flat text
classification [48]. However, applying LLMs in hierarchical settings
remains challenging [57]. Directly including hundreds of classes in
prompts is ineffective and inefficient, leading to structural informa-
tion loss, diminished clarity for LLMs at distinguishing class-specific
information, and prohibitively expensive inference cost given the
long prompt for each test document.

Along another line of research, Meng et al. [34] propose to train
a moderate-size text classifier by utilizing a small set of keywords or

1
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labeled documents for each class and a large unlabeled corpus. How-
ever, compiling keyword lists for hundreds of classes and obtaining
representative documents for each specific and niche category still
demand significant human efforts. Shen et al. [44] study the hier-
archical text classification with minimal supervision, which takes
the class name as the only supervision signal. Specifically, they
introduce TaxoClass which generates pseudo labels with a textual
entailment model for classifier training. However, this method over-
looks additional class-relevant features in the corpus that could be
helpful for label space understanding. It also suffers from the unre-
liable pseudo label selection because the entailment model is not
trained to compare which class is more relevant to the document.

In this study, we advance minimally supervised hierarchical text
classification by taking the advantage of both LLMs’ text under-
standing ability and task-specific knowledge of the unlabeled text
corpus. First, we tackle the challenge of label space understanding
by enriching the label taxonomy with class-specific terms derived
from two sources: LLM generation and automated extraction from
the corpus. For example, the “conditioner” class in Figure 1 is en-
riched with key terms like “moisture” and “soft hair”, which distin-
guish it from other classes. These terms enhance the supervision
signal by combining knowledge from LLMs and text corpus and
improve the pseudo label quality for classifier training. Second,
we improve LLMs’ ability in hierarchical text classification from
two perspectives: we enhance LLM annotation efficiency and ef-
fectiveness through a taxonomy-guided candidate search and also
optimize LLM-based document generation to create more precise
pseudo data by using taxonomy paths.

Leveraging the above ideas, we introduce TELEClass: Taxonomy
Enrichment and LLM-Enhanced weakly-supervised hierarchical
text Classification. TELEClass consists of four major steps: (1) LLM-
Enhanced Core Class Annotation, where we identify document “core
classes” (i.e., fine-grained classes that most accurately describe the
documents) by first enriching the taxonomy with LLM-generated
key terms and then finding candidate classes with a top-down tree
search algorithm for LLM to select the most precise core classes. (2)
Corpus-Based Taxonomy Enrichment, where we analyze the taxon-
omy structure to additionally identify class-indicative topical terms
through semantic and statistical analysis on the corpus. (3) Core
Class Refinement with Enriched Taxonomy, where we embed docu-
ments and classes based on the enriched label taxonomy and refined
the initially selected core classes by identifying the most similar
classes for each document. (4) Text Classifier Training with Path-
Based Data Augmentation, where we sample label paths from the
taxonomy and guide the LLM to generate pseudo documents most
accurately describing these fine-grained classes. Finally, we train
the text classifier on two types of pseudo labels, the core classes
and the generated data, with a simple text matching network and
multi-label training strategy.

The contributions of this paper are summarized as follows:
• We propose TELEClass, a new method for minimally supervised

hierarchical text classification, which requires only the class
names of the label taxonomy as supervision to train a multi-label
text classifier.

• We propose to enrich the label taxonomy with class-indicative
terms, based on which we utilize an embedding-based document-
class matching method to improve the pseudo label quality.

• We study two ways of adopting large language models to hier-
archical text classification, which can improve the pseudo label
quality and solve the data scarcity issue for fine-grained classes.

• Experiments on two datasets show that TELEClass can signifi-
cantly outperform zero-shot and weakly-supervised hierarchical
text classification baselines, while also achieving comparable
performance to GPT-4 with drastically less inference cost.1

2 Problem Definition
The minimally-supervised hierarchical text classification task aims
to train a text classifier that can categorize each document into
multiple nodes on a label taxonomy by using the name of each
node as the only supervision [44]. For example, in Figure 1, the
input document is classified as “hair care”, “shampoo”, and “scalp
treatment”.

Formally, the task input includes an unlabeled text corpus D =

{𝑑1, . . . , 𝑑 |D | } and a directed acyclic graph (DAG) T = (C,R) as
the label taxonomy. Each 𝑐𝑖 ∈ C represents a target class in the
taxonomy, coupled with a unique textual surface name 𝑠𝑖 . Each edge
⟨𝑐𝑖 , 𝑐 𝑗 ⟩ ∈ R indicates a hypernymy relation, where class 𝑐 𝑗 is a sub-
class of 𝑐𝑖 . For example, one such edge in Figure 1 is between 𝑠𝑖 =

“hair care” and 𝑠 𝑗 = “shampoo”. Then, the goal of our task is to train
a multi-label text classifier 𝑓 (·) that can map a document 𝑑 into a
binary encoding of its corresponding classes, 𝑓 (𝑑) = [𝑦1, . . . , 𝑦 | C | ],
where 𝑦𝑖 = 1 represents that 𝑑 belongs to class 𝑐𝑖 , otherwise 𝑦𝑖 = 0.

We assume the label taxonomy to be a DAG instead of a tree,
because it aligns better with real applications as one node can have
multiple parents with different meanings. It is also more challenging
because the classifier needs to assign a document multiple labels in
different levels and paths.

3 Methodology
In this section, wewill introduce TELEClass consisting of the follow-
ing modules: (1) LLM-enhanced core class annotation, (2) corpus-
based taxonomy enrichment, (3) core class refinement with en-
riched taxonomy, and (4) text classifier training with path-based
data augmentation. Figure 2 shows an overview of TELEClass.

3.1 LLM-Enhanced Core Class Annotation
Inspired by previous studies, we first tag each document with its
“core classes”, which are defined as a set of classes that can describe
the document most accurately [44]. This process also mimics the
process of human performing hierarchical text classification: first
select a set of most essential classes for the document and then
trace back to their relevant classes to complete the labeling. For
example, in Figure 1, by first tagging the document with “shampoo”
and “scalp treatment”, we can easily find its complete set of classes.

In this work, we propose to enhance the core class annotation
process of previous methods with the power of LLMs. To utilize
LLMs for core class annotation, we apply a structure-aware can-
didate core class selection method to reduce the label space for
each document. This step is necessary because LLMs can hardly
comprehend a large, structured hierarchical label space that cannot
be easily represented in a prompt. We first define a similarity score
between a class and a document that will be used in candidate
1Code and datasets are available at: https://bit.ly/4bWz9h9
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Document 𝒊 
I have been fighting with 

itching and flaking for 
years. Tried everything 

that’s on the market, even 
stuff with prescription. 

Nothing has helped in the 
long run …

Unlabeled 
Corpus

Doc ID Initial Core Classes

1 nutrition wellness, food

2 health monitor

… …

𝒊 health care

… …

Label Taxonomy

Sec. 3.1: LLM-Enhanced Core Class Annotation

Class Enriched Key Terms

hair care hair color, curly hair, hair dryer

shampoo flakes, itching, Batiste Dry

conditioner moisture, smooth, soft hair

health care heating pad, massager, allergy 

Sec. 3.2: Corpus-Based Taxonomy Enrichment

Doc ID Refined Core Classes

1 nutrition bar & drink

2 health monitor

… …

𝒊 shampoo, hair care

… …

Sec. 3.3: Core Class Refinement 
with Enriched Taxonomy

Class Similarity 

shampoo 0.75

hair care 0.72

… …

health care 0.4

… …
Key Term Guided 
Representations

Doc 𝒊 Class 𝒋

☓

Class Rankings of Doc 𝑖

Sec. 3.4: Text Classifier 
Training with Path-Based 

Data Augmentation

𝑫𝒄𝒐𝒓𝒆
…

Confident 
Core Classes

𝑫𝒈𝒆𝒏
…

Augmented 
Documents

Query: “create a 
document 

about hair care 
→ conditioner”

Multi-Label Text Classifier

Matching Network

Document 
Encoder

Class 
Embeddings

Doc 𝒊: {beauty, hair care, shampoo}  

LLM

LLM

Figure 2: Overview of the TELEClass framework.

selection. To better capture the semantics, we propose to use LLMs
to generate a set of class relevant keywords to enrich the raw tax-
onomy structure and consolidate the meaning of each class. For
example, “shampoo” and “conditioner” are two fine-grained classes
that are similar to each other. We can effectively separate the two
classes by identifying a set of class-specific terms such as “flakes”
for “shampoo” and “moisture” for “conditioner”. We prompt an LLM
to enrich the raw label taxonomy with a set of key terms for each
class, denoted as𝑇 LLM

𝑐 for the class 𝑐 . To ensure the generated terms
can uniquely identify 𝑐 , we ask the LLM to generate terms that are
relevant to 𝑐 and its parent while irrelevant to siblings of 𝑐 . With
this enriched set of terms for each class, we define the similarity
score between a document 𝑑 and a class 𝑐 as the maximum cosine
similarity with the key terms:

𝑠𝑖𝑚(𝑐, 𝑑) = max
𝑡 ∈𝑇 LLM

𝑐

cos(®𝑡, ®𝑑), (1)

where ®◦ denotes a vector representation by a pre-trained semantic
encoder (e.g., Sentence Transformer [40]).

This newly defined similarity measure is then used for candidate
core class selection. Given a document, we start from the root
node at level 𝑙 = 0, select the 𝑙 + 3 most similar children classes to
the document at level 𝑙 using the similarity score defined above,
and continue to the next level with only the selected classes. The
increasing number of selected nodes accounts for the growing
number of classes when going deeper into the taxonomy. Finally,
all the classes ever selected in this process will be the candidate
core classes for this document, which share the most similarity
with the document according to the label hierarchy. 2

Finally, we instruct an LLM to select the core classes for each
document from the selected candidates, which produces an initial
set of core classes (denoted as C0

𝑖
) for each document 𝑑𝑖 ∈ D.

3.2 Corpus-Based Taxonomy Enrichment
In the previous step, we enrich the raw taxonomy structure with
LLM-generated key terms, which are derived from the general
knowledge of LLMs but may not accurately reflect the corpus-
specific knowledge. Therefore, we propose further enriching the

2Refer to Shen et al. [44] for more details on the tree search algorithm.

classes with class-indicative terms mined from the text corpus.
By doing this, we can combine the general knowledge of LLMs
and corpus-specific knowledge to better enhance the very weak
supervision, which is essential for correctly understanding fine-
grained classes that are hard to distinguish. Formally, given a class
𝑐 ∈ C and its siblings corresponding to one of its parents 𝑐𝑝 ,
𝑆𝑖𝑏 (𝑐, 𝑐𝑝 ) = {𝑐′ ∈ C|⟨𝑐𝑝 , 𝑐′⟩ ∈ R}, c𝑝 ∈ 𝑃𝑎𝑟 (𝑐), we find a set
of corpus-based class-indicative terms of 𝑐 corresponding to 𝑐𝑝 , de-
noted as𝑇 (𝑐, 𝑐𝑝 ) = {𝑡1, 𝑡2, . . . , 𝑡𝑘 }. Each term in𝑇 (𝑐, 𝑐𝑝 ) can signify
the class 𝑐 and distinguish it from its siblings under 𝑐𝑝 .

We first collect a set of relevant documents 𝐷0
𝑐 ⊂ D for each

class 𝑐 , which contains all the documents whose initial core classes
contain 𝑐 or its descendants. Then, inspired by [49, 64], we consider
the following three factors for class-indicative term selection and
adapt them to the hierarchical setting.
• Popularity: a class-indicative term 𝑡 of a class 𝑐 should be fre-

quently mentioned by its relevant documents, which is quantified
by the log normalization of its document frequency,

𝑝𝑜𝑝 (𝑡, 𝑐) = log(1 + 𝑑 𝑓 (𝑡, 𝐷0
𝑐 )), (2)

where 𝑑 𝑓 (𝑡, 𝐷) stands for the number of documents in 𝐷 that
mention 𝑡 .

• Distinctiveness: a class-indicative term 𝑡 for a class 𝑐 should be
infrequent in its siblings, which is quantified as the softmax of
BM25 relevance function [41] over the set of siblings,

𝑑𝑖𝑠𝑡 (𝑡, 𝑐, 𝑐𝑝 ) =
exp(𝐵𝑀25(𝑡, 𝐷0

𝑐 ))
1 +∑𝑐′∈𝑆𝑖𝑏 (𝑐,𝑐𝑝 ) exp(𝐵𝑀25(𝑡, 𝐷0

𝑐′ ))
. (3)

• Semantic similarity: a class-indicative term 𝑡 should also be se-
mantically similar to the class name of 𝑐 , which is quantified as
the cosine similarity between their embeddings derived from a
pre-trained encoder (e.g., BERT [10]), denoted as 𝑠𝑒𝑚(𝑐, 𝑡).

Finally, we define the affinity score between a term 𝑡 and a class 𝑐
corresponding to parent 𝑝 to be the geometric mean of the above
scores, denoted as aff(𝑡, 𝑐, 𝑐𝑝 ).

To enrich the taxonomy, we first apply a phrase mining tool,
AutoPhrase [43], to mine quality single-token and multi-token
phrases from the corpus as candidate terms3. Then, for each class 𝑐
3Our method is flexible with any kinds of phrase mining methods like Gu et al. [19].
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and each of its parents 𝑐𝑝 , we select the top-𝑘 terms with the highest
affinity scores with 𝑐 corresponding to 𝑝 , denoted as𝑇 (𝑐, 𝑐𝑝 ). Then,
we take the union of these corpus-based terms together with the
LLM-generated terms in the previous step to get the final enriched
class-indicative terms for class 𝑐 ,

𝑇𝑐 =
©«

⋃
𝑐𝑝 ∈𝑃𝑎𝑟 (𝑐 )

𝑇 (𝑐, 𝑐𝑝 )ª®¬
⋃

𝑇 LLM
𝑐 . (4)

3.3 Core Class Refinement with Enriched
Taxonomy

With the enriched class-indicative terms for each class, we propose
to further utilize them to refine the initial core classes. In this
paper, we adopt an embedding-based document-class matching
method. Unlike previous methods in flat text classification [51]
that use keyword-level embeddings to estimate document and class
representations, here, we are able to define class representations
directly based on document-level embeddings thanks to the rough
class assignments we created in the core class annotation step (c.f.
Sec. 3.1).

To obtain document representations, we utilize a pre-trained
Sentence Transformer model [40] to encode the entire document,
which we denote as ®𝑑 . Then, for each class 𝑐 , we identify a subset
of its assigned documents that explicitly mention at least one of the
class-indicative keywords and thus most confidently belong to this
class, 𝐷𝑐 = {𝑑 ∈ 𝐷0

𝑐 |∃𝑤 ∈ 𝑇𝑐 ,𝑤 ∈ 𝑑}. Then, we use the average
of their document embeddings as the class representation, ®𝑐 =
1
|𝐷𝑐 |

∑
𝑑∈𝐷𝑐

®𝑑 . Finally, we compute the document-class matching
score as the cosine similarity between their representations.

Based on the document-class matching scores, we make an obser-
vation that the true core classes often have much higher matching
scores with the document compared to other classes. Therefore, we
use the largest “similarity gap” for each document to identify its
core classes. Specifically, for each document 𝑑𝑖 ∈ D, we first get
a ranked list of classes according to the matching scores, denoted
as [𝑐𝑖1, 𝑐

𝑖
2, . . . , 𝑐

𝑖
| C | ], where diff

𝑖 ( 𝑗) := cos( ®𝑑𝑖 , ®𝑐𝑖𝑗 ) − cos( ®𝑑𝑖 , ®𝑐
𝑖
𝑗+1) > 0

for 𝑗 ∈ {1, . . . , |C| − 1}. Then, we find the position 𝑚𝑖 with the
highest similarity difference with its next one in the list. After that,
we treat the classes ranked above this position as this document’s
refined core classes C𝑖 , and the corresponding similarity gap as the
confidence estimation 𝑐𝑜𝑛𝑓𝑖 .

𝑐𝑜𝑛𝑓𝑖 = diff 𝑖 (𝑚𝑖 ), C𝑖 = {𝑐𝑖1, . . . , 𝑐
𝑖
𝑚𝑖
},

𝑚𝑖 = argmax
𝑗∈{1,..., | C |−1}

diff 𝑖 ( 𝑗). (5)

Finally, we select top 75% of documents 𝑑𝑖 and their refined core
classes with the highest confidence scores 𝑐𝑜𝑛𝑓𝑖 , denoted as Dcore.

3.4 Text Classifier Training with Path-Based
Data Augmentation

The final step of TELEClass is to train a hierarchical text classifier
using the confident refined core classes. One straightforward way
is to directly use the selected core classes as a complete set of
pseudo-labeled documents and train a text classifier in a common
supervised way. However, such a strategy is ineffective, because

Algorithm 1: TELEClass
Input: A corpus D, a label taxonomy T , a pretrained text

encoder S, an LLM G.
Output: A text classifier 𝐹 that can classify each document

into a set of classes in T .
1 // LLM-Enhanced Core Class Annotation;
2 for 𝑐 ∈ C do
3 𝑇 LLM

𝑐 ← use G to enrich 𝑐 with key terms;
4 for 𝑑𝑖 ∈ D do
5 C0

𝑖
← use G to select core classes from candidates

retrieved using S and 𝑇 LLM
𝑐 ;

6 // Corpus-Based Taxonomy Enrichment;
7 for 𝑐 ∈ C do
8 𝐷0

𝑐 ← a set of roughly classified documents;
9 for 𝑐𝑝 ∈ 𝑃𝑎𝑟 (𝑐) do
10 𝑇 (𝑐, 𝑐𝑝 ) ← top terms ranked by affinity;
11 𝑇𝑐 ← aggregate corpus-based and LLM-generated terms

Eq. 4;
12 // Core Class Refinement with Enriched Taxonomy;
13 ®𝑑 ← document representation S(𝑑);
14 for 𝑐 ∈ C do
15 𝐷𝑐 ← confident documents by matching 𝑇𝑐 ;
16 ®𝑐 ← average document representation in 𝐷𝑐 ;
17 for 𝑑𝑖 ∈ D do
18 C𝑖 , 𝑐𝑜𝑛𝑓𝑖 ← refined core classes using cos( ®𝑑, ®𝑐) and Eq.

5;
19 Dcore ← confident refined core classes;
20 // Text Classifier Training with Path-Based Data

Augmentation;
21 Dgen ← generate 𝑞 documents for each path using G;
22 𝐹 ← train classifier with Dcore and Dgen;
23 Return 𝐹 ;

the core classes are not comprehensive enough and cannot cover
all the classes in the taxonomy. This is because the hierarchical
label space naturally contains fine-grained and long-tail classes,
and they are often not guaranteed to be selected as core classes due
to their low frequency. Empirically, for the two datasets we use in
our experiments, Amazon and DBPedia, the percentages of classes
never selected as core classes are 11.6% and 5.4%, respectively. These
missing classes will never be used as positive classes in the training
process if we only train the classifier with the selected core classes.

Therefore, to overcome this issue, we propose the idea of path-
based document generation by LLMs to generate a small number of
augmented documents (e.g., 𝑞 = 5) for each distinct path from a
level-1 node to a leaf node in the taxonomy. By adding the generated
documents to the pseudo-labeled data, we can ensure that each class
of the taxonomy will be a positive class of at least 𝑞 documents.
Because we generate a small constant number of documents for
each label path, it also does not affect the distribution of the frequent
classes. Moreover, we use a path instead of a single class to guide
the LLM generation, because the meaning of lower-level classes is
often conditioned on their parents. For example, in Figure 2, a path
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Table 1: Datasets overview.

Dataset # unlabeled train # test # labels

Amazon-531 29,487 19,685 531
DBPedia-298 196,665 49,167 298

“hair care”→ “shampoo” can guide the LLM to generate text about
hair shampoo instead of pet shampoo or carpet shampoo that are
in different paths. To promote data diversity, we make one LLM
query for each path and ask it to generate 𝑞 diverse documents.
We denote the generated documents as Dgen. Appx. A shows the
prompts we used.

Now, with two sets of data, the pseudo-labeled documentsDcore

and LLM-generated documents Dgen, we are ready to introduce
the classifier architecture and the training process.
Classifier architecture.We use a simple text matching network
similar to [44] as ourmodel architecture, which includes a document
encoder initialized with a pre-trained BERT-base model [10] and a
log-bilinear matching network. Class representations are initialized
by class name embeddings (c.f. Sec. 3.2) and are detached from the
encoder model, so only the embeddings will be updated without
back-propagation to the backbone model.
Training process. For each document with refined core classes, we
construct its positive classes as the union of its refined core classes
and their ancestors in the label taxonomy, and its negative classes
are the ones that are not positive classes or descendants of any core
class. This is because the ancestors of confident core classes are also
likely to be true labels, and the descendants may not all be negative
given that the automatically generated core classes are not optimal.
For the LLM-generated documents, we are confident in their labels,
so we simply treat all the classes in the corresponding label path as
positive classes and all other classes as negative.

We train the text-matching model with the standard binary cross-
entropy loss. The loss terms of two sets of data are weighted by
their relative size, |D

core |
|Dgen | . Notice that we do not continue training

the classifier with self-training that is commonly used in previous
studies [34, 44]. Using self-training may further improve the model
performance, which we leave for future exploration. Algorithm 1
summarizes TELEClass.

4 Experiments
4.1 Experiment Setup
4.1.1 Datasets. We use two public datasets in different domains
for evaluation. Table 1 shows the data statistics.
• Amazon-531 [31] consists of Amazon product reviews and a

three-layer label taxonomy of product types.
• DBPedia-298 [28] consists of Wikipedia articles with a three-

layer label taxonomy of its categories.

4.1.2 Compared Methods. We compare the following methods on
the weakly-supervised hierarchical text classification task.
• Hier-0Shot-TC [55] is a zero-shot approach, which utilizes a

pretrained textual entailment model to iterative find the most
similar class at each level for a document.

• GPT-3.5-turbo is a zero-shot approach that queries GPT-3.5-
turbo by directly providing all classes in the prompt.

• Hier-doc2vec [27] is a weakly-supervised approach, which first
trains document and class representations in a same embedding
space, and then iteratively selects the most similar class at each
level.

• WeSHClass [34] is a weakly-supervised approach using a set of
keywords for each class. It first generates pseudo documents to
pretrain text classifiers and then performs self-training.

• TaxoClass [44] is a weakly-supervised approach that only uses
the class name of each class. It first uses a textual entailment
model with a top-down search and corpus-level comparison
to select core classes, which are then used as pseudo training
data. We include both its full model, TaxoClass, and its variation
TaxoClass-NoST that does not apply self-training on the trained
classifier, which is the same as TELEClass.

• TELEClass is our newly proposed weakly-supervised approach
that only uses the class name for each class.

• Fully-Supervised is a fully-supervised baseline that uses the
entire labeled training data to train the text matching network
used in TELEClass.

4.1.3 Evaluation Metrics. Following previous studies [44], we uti-
lize the following evaluation metrics:
• Example-F1 [47], which is also called micro-Dice coefficient,

evaluates the multi-label classification results without ranking,

Example-F1 =
1
|D|

∑︁
𝑑𝑖 ∈D

2 · |Ctrue
𝑖
∩ Cpred

𝑖
|

|Ctrue
𝑖
| + |Cpred

𝑖
|
, (6)

where Ctrue
𝑖

and Cpred
𝑖

denote the set of true labels and the set
of predicted labels for document 𝑑𝑖 ∈ D, respectively.

• Precision at k, or P@k, is a ranking-based metric that evaluates
the precision of top-𝑘 predicted classes,

P@k =
1
𝑘

∑︁
𝑑𝑖 ∈D

|Ctrue
𝑖
∩ Cpred

𝑖,𝑘
|

min(𝑘, |Ctrue
𝑖
|)
, (7)

where Cpred
𝑖,𝑘
⊂ Cpred

𝑖
denotes the top-𝑘 predicted labels if the

evaluated method can generate rankings of classes.
• Mean Reciprocal Rank, or MRR, is another ranking-based

metric, which evaluates the multi-label predictions based on the
inverse of true labels’ ranks within predicted classes,

MRR =
1
|D|

∑︁
𝑑𝑖 ∈D

1
|Ctrue

𝑖
|

∑︁
𝑐 𝑗 ∈Ctrue

𝑖

1

min{𝑘 |𝑐 𝑗 ∈ Cpred
𝑖,𝑘
}
. (8)

4.1.4 Implementation Details. We use Sentence Transformer [40]
all-mpnet-base-v2 as the text encoder for the similarity measure
in Section 3.1 and Section 3.3. We query GPT-3.5-turbo-0125
for LLM-based taxonomy enrichment, core class annotation, and
path-based generation. For corpus-based taxonomy enrichment,
we get the term and class name embeddings using a pre-trained
BERT-base-uncased [10], we select top 𝑘 = 20 enriched terms for
each class (c.f. Section 3.2). We generate 𝑞 = 5 documents with
path-based generation for each class. The document encoder in
the final classifier is initialized with BERT-base-uncased for a fair
comparison with the baselines. We train the classifier using AdamW
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Table 2: Experiment results on Amazon-531 and DBPedia-298 datasets, evaluated by Example-F1, P@k, and MRR. The best
score among zero-shot and weakly-supervised methods is boldfaced. “†” indicates the numbers for these baselines are directly
from previous paper [44]. “—” means the method cannot generate a ranking of predictions and thus MRR cannot be calculated.

Supervision Type Methods Amazon-531 DBPedia-298

Example-F1 P@1 P@3 MRR Example-F1 P@1 P@3 MRR

Zero-Shot Hier-0Shot-TC† 0.4742 0.7144 0.4610 — 0.6765 0.7871 0.6765 —
ChatGPT 0.5164 0.6807 0.4752 — 0.4816 0.5328 0.4547 —

Weakly-Supervised

Hier-doc2vec† 0.3157 0.5805 0.3115 — 0.1443 0.2635 0.1443 —
WeSHClass† 0.2458 0.5773 0.2517 — 0.3047 0.5359 0.3048 —
TaxoClass-NoST† 0.5431 0.7918 0.5414 0.5911 0.7712 0.8621 0.7712 0.8221
TaxoClass† 0.5934 0.8120 0.5894 0.6332 0.8156 0.8942 0.8156 0.8762
TELEClass 0.6483 0.8505 0.6421 0.6865 0.8633 0.9351 0.8633 0.8864

Fully-Supervised 0.8843 0.9524 0.8758 0.9085 0.9786 0.9945 0.9786 0.9826

optimizer with a learning rate 5e-5, and the batch size is 64. The
experiments are run on one NVIDIA RTX A6000 GPU.

4.2 Experimental Results
Table 2 shows the evaluation results of all the compared meth-
ods. We make the following observations. (1) Overall, TELEClass
achieves significantly better performance than other strong zero-
shot and weakly-supervised baselines, which demonstrates the
effectiveness of TELEClass on the hierarchical text classification
task without any human supervision. (2) By comparing with other
weakly-supervised methods, we find that TELEClass significantly
outperforms TaxoClass-ST, the strongest baseline that, like TELE-
Class, does not use self-training. Given that TELEClass uses an
even simpler classifier model than TaxoClass-ST, its superior perfor-
mance shows the substantially better pseudo training data obtained
by combining unlabeled corpus and LLMs. (3) Although LLMs (e.g.,
ChatGPT) show power in many tasks, naïvely prompting it in the
hierarchical text classification task yields significantly inferior per-
formance compared to strong weakly-supervised text classifiers.
This proves the necessity of incorporating corpus-based knowledge
to improve label taxonomy understanding for the hierarchical set-
ting. We conduct a more detailed comparison with LLM prompting
for hierarchical text classification in Section 4.4.

We also study the temporal complexity of TELEClass. We ob-
serve that, on Amazon-531, both TELEClass and the strongest
baseline TaxoClass take around 5 to 5.5 hours. The reason why
TELEClass does not increase the overall temporal complexity is
that TaxoClass needs to run the textual entailment model on each
pair of document and candidate class. On the other hand, the tax-
onomy enrichment step of TELEClass makes it possible to simplify
this process with embedding similarity calculation which saves a
lot of time, while the saved time is budgeted for LLM prompting.

4.3 Ablation Studies
We conduct ablation studies to better understand how each compo-
nent of TELEClass contributes to final performance. Table 3 shows
the results of the following ablations:

• Gen-Only only uses the augmented documents by path-based
LLM generation to train the final classifier.

• TELEClass-NoLLMEnrich excludes the LLM-based taxonomy
enrichment component.

• TELEClass-NoCorpusEnrich excludes the corpus-based tax-
onomy enrichment component.

• TELEClass-NoGen excludes the augmented documents by path-
based LLM generation.
We find that the full model TELEClass achieves the overall best

performance among the compared methods, showing the effec-
tiveness of each of its components. First, both the LLM-based and
corpus-based enrichment modules bring improvement to the per-
formance. Interestingly, we find that they make different levels of
contribution on the two datasets: LLM-based enrichment brings
more improvement on Amazon-531 while corpus-based enrichment
contributes more on DBPedia-298. We suspect the reasons are as fol-
lows. The classes in Amazon-531 are commonly seen product types
that LLM can understand and enrich in a reliable manner. However,
DBPedia-298 contains classes that are more subtle to distinguish,
which can also be shown by the lower performance of zero-shot
LLMprompting onDBPedia compared toAmazon-531 (c.f. ChatGPT
in Table 2). Therefore, corpus-based enrichment can consolidate
the meaning of each class based on corpus-specific knowledge to
facilitate better classification. We also find that path-based LLM
generation consistently improves the model performance while
requiring only a few hundred queries to LLMs. Even Gen-Only
achieves comparable performance to the strong baseline TaxoClass-
NoST, demonstrating the effectiveness of this augmentation step.

4.4 Comparison with Zero-Shot LLM Prompting
In this section, we further compare TELEClass with zero-shot LLM
prompting. Because it is not straightforward to get ranked predic-
tions by LLMs, we only report Example-F1 and P@k as performance
evaluation. Additionally, we report the estimated cost and time for
each method on the entire test set. The inference time is reported in
minutes, and please be aware that this is just a rough estimation as
the actual running time is also dependent on the server condition.

We include the following settings to compare with TELEClass:
6
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Table 3: Performance of TELEClass and its ablations on Amazon-531 and DBPedia-298 datasets. The best score is boldfaced.

Methods Amazon-531 DBPedia-298

Example-F1 P@1 P@3 MRR Example-F1 P@1 P@3 MRR

Gen-Only 0.5151 0.7477 0.5096 0.5357 0.7930 0.9421 0.7930 0.8209
TELEClass-NoLLMEnrich 0.5520 0.7370 0.5463 0.5900 0.8319 0.9108 0.8319 0.8563
TELEClass-NoCorpusEnrich 0.6143 0.8358 0.6082 0.6522 0.8185 0.8916 0.8185 0.8463
TELEClass-NoGen 0.6449 0.8348 0.6387 0.6792 0.8494 0.9187 0.8494 0.8730
TELEClass 0.6483 0.8505 0.6421 0.6865 0.8633 0.9351 0.8633 0.8864

Table 4: Performance comparison of TELEClass and zero-shot LLM prompting. We only report Example-F1 and P@k, because
it is not straightforward to get ranking of classes predicted by LLMs for MRR calculation. We also report estimated costs in US
dollars and running time in minutes for each method on the entire test set. “‡” indicates that we report the performance based
on an estimation from a 1,000-document subset of test data.

Methods Amazon-531 DBPedia-298

Example-F1 P@1 P@3 Est. Cost Est. Time Example-F1 P@1 P@3 Est. Cost Est. Time

GPT-3.5-turbo 0.5164 0.6807 0.4752 $60 240 mins 0.4816 0.5328 0.4547 $80 400 mins
GPT-3.5-turbo (level) 0.6621 0.8574 0.6444 $20 800 mins 0.6649 0.8301 0.6488 $60 1,000 mins
GPT-4‡ 0.6994 0.8220 0.6890 $800 400 mins 0.6054 0.6520 0.5920 $2,500 1,000 mins
TELEClass 0.6483 0.8505 0.6421 <$1 3 mins 0.8633 0.9351 0.8633 <$1 7 mins

• GPT-3.5-turbo: We include all the classes in the prompt and ask
GPT-3.5-turbo model to provide 3 most appropriate classes for a
given document.

• GPT-3.5-turbo (level): We perform level-by-level prompting
using GPT-3.5-turbo. Starting from the root node, we ask the
model to return one most appropriate class for a given document,
and we iteratively prompt the model with the children of the
selected node at each level. This method can only generate a
path in the taxonomy, but in the actual multi-label hierarchical
classification setting, the true labels may not sit in the same path.

• GPT-4: Similar to the first one, we include all the classes in the
prompt and ask GPT-4 to provide 3 most appropriate classes for
a given document. Given the limited budget, we only test it on
randomly sampled 1,000 documents and estimate the cost on the
entire test set.
Table 4 shows the experiment results. We find that TELEClass

consistently outperforms all compared methods on DBPedia, while
on Amazon, TELEClass underperforms GPT-3.5-turbo (level) and
GPT-4 but still being comparable. As for the cost, once trained,
TELEClass does not require additional cost on inference and also
has substantially shorter inference time. Prompting LLMs takes
longer time and can be prohibitively expensive (e.g., using GPT-4),
and the cost will scale up with increasing size of test data. Also,
we find that GPT-3.5-turbo (level) consistently outperforms the
naïve version, demonstrating the necessity of taxonomy structure.
It saves the cost because of the much shorter prompts, but takes
longer time due to more queries made per document.

4.5 Case studies
To better understand the TELEClass framework, we show some
intermediate results of two documents in Table 5, including the

core classes selected by (1) the original TaxoClass [44] method, (2)
TELEClass’s initial core classes selected by LLM, and (3) refined
core classes of TELEClass. Besides, we also include the true labels
of the documents and the taxonomy enrichment results of the
corresponding core class in the table. Overall, we can see that
TELEClass’s refined core class is the most accurate. For example,
for the first Wikipedia article about a library, TaxoClass selects
“village” as the core class, while TELEClass’s initial core class finds
a closer one “building” thanks to the power of LLMs. Then, with
the enriched classes-indicative features as guidance, TELEClass’s
refined core class correctly identifies the optimal core class, which is
“library”. In the other example, TELEClass also pinpoints the most
accurate core class “bathroom aids safety” while other methods can
only find more general or partially relevant classes.

Besides, although TELEClass outperforms the zero-shot LLM
prompting in most cases, there are cases showing the contrary
and here is one example we found from Amazon-531. The product
review is about “glycolic treatment pads” for which GPT correctly
predicts its labels as “beauty” and “skin care”, while TELEClass
predicts it as “health care”. We suspect that the word “treatment”
in the review leads to the error because of the bias of term-based
pseudo-labeling. It is a known issue of keyword-based methods
and some solutions are proposed for the weakly-supervised flat
text classification [12, 62]. We hope our study can motivate more
research to solve this issue in the hierarchical setting.

5 Related Work
5.1 Weakly-Supervised Text Classification
Weakly supervised text classification trains a classifier with lim-
ited guidance, aiming to reduce human efforts while maintaining
high proficiency. Various sources of weak supervision have been
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Table 5: Intermediate results on two documents, including selected core classes by different methods, true labels, and the
corresponding taxonomy enrichment results. The optimal core class in the true labels is marked with ©.

Dataset Document Core Classes by... True Labels Corr. Enrichment

DBPedia

The Lindenhurst Memorial Library (LML) is
located in Lindenhurst, New York, and is one
of the fifty six libraries that are part of the
Suffolk Cooperative Library System ...

TaxoClass: village
TELEClass initial: building
TELEClass refined: library

library©, agent,
educational institution

Class: library
Top Enrichment:
national library,
central library,
collection, volumes...

Amazon

Since mom (89 yrs young) isn’t steady on
her feet, we have placed these grab bars
around the room. It gives her the stability
and security she needs.

TaxoClass: personal care,
health personal care, safety
TELEClass initial: daily living aids,
medical supplies equipment, safety,
TELEClass refined:
bathroom aids safety

health personal care,
medical supplies equipment,

bathroom aids safety©

Class:
bathroom aids safety
Top Enrichment:
seat, toilet, shower,
safety, handles...

explored, including distant supervision [8, 17, 46] like knowledge
bases, keywords [1, 33, 35, 49, 51, 59], and heuristic rules [3, 39, 45].
Later, extremely weakly-supervised methods are proposed to solely
rely on class names to generate pseudo labels and train classifiers.
LOTClass [35] utilizes MLM-based PLM as a knowledge base for
extracting class-indicative keywords. X-Class [51] extracts key-
words for creating static class representations through clustering.
PIEClass [62] employs PLMs’ zero-shot prompting to obtain pseudo
labels with noise-robust iterative ensemble training. MEGClass [26]
acquires contextualized sentence representations to capture topical
information at the document level. WOTClass [50] ranks class-
indicative keywords from generated classes and extracts classes
with overlapping keywords.

5.2 Hierarchical Text Classification
Ahierarchy provides a systematic top-to-down structure with inher-
ent semantic relations that can assist in text classification. Typical
hierarchical text classification can be categorized into two groups:
local approaches and global approaches. Local approaches train
multiple classifiers for each node or local structures [4, 30, 53].
Global approaches, learn hierarchy structure into a single classi-
fier through recursive regularization [18], a graph neural network
(GNN)-based encoder [24, 37, 44, 65], or a joint document label
embedding space [9]. Recent studies also show that LLMs cannot
comprehend the complex hierarchical structure [6, 16, 57].

Weak supervision is also studied for hierarchical text classifica-
tion. WeSHClass [34] uses a few keywords or example documents
per class and pretrains classifiers with pseudo documents followed
by self-training. TaxoClass [44] follows the same setting as ours
which uses the sole class name of each class as the only supervi-
sion. It identifies core classes for each document using a textual
entailment model, which is then used to train a multi-label clas-
sifier. Additionally, MATCH [63] and HiMeCat [61] study how to
integrate associated metadata into the label hierarchy for document
categorization with weak supervision.

5.3 LLMs as Generators and Annotators
Large language models (LLMs) have demonstrated impressive per-
formance in many downstream tasks and are explored to help

low-resource settings by synthesizing data as generators or anno-
tators [11]. For data generation, few-shot examples [52] or class-
conditioned prompts [32] are explored for LLM generation and
the generated data can be used as pseudo training data to further
fine-tune a small model as the final classifier [54]. Recently, Yu et al.
[58] proposed an attribute-aware topical text classification method
that incorporates ChatGPT to generate topic-dependent attributes
and topic-independent attributes to reduce topic ambiguity and in-
crease topic diversity for generation. For data annotation, previous
works utilize LLMs for unsupervised annotation [15], Chain-of-
Thought annotation with explanation generation [22], and active
annotation [60].

6 Conclusion and Future Work
In this paper, we propose a newmethod, TELEClass, for theminimally-
supervised hierarchical text classification task with two major con-
tributions. First, we enrich the input label taxonomy with LLM-
generated and corpus-based class-indicative terms for each class,
which can serve as additional features to understand the classes
and facilitate classification. Second, we explore the utilization of
LLMs in the hierarchical text classification in two directions: data
annotation and data creation. On two public datasets, TELEClass
can outperform existing baselines substantially, and we further
demonstrate its effectiveness through ablation studies. We also con-
duct a comparative analysis of performance and cost for zero-shot
LLM prompting for the hierarchical text classification task.

For future works, first, we plan to generalize TELEClass’s idea
of combining LLMs with data-specific knowledge into other low-
resource text mining tasks with hierarchical label spaces, such as
fine-grained entity typing. Second, in this paper, we mainly focus
on acquiring high-quality pseudo labeled data while only utilizing
the simplest classifier model and objective. It is worth studying
how the proposed method can be further improved with more
advanced network structure and noise-robust training objectives.
Lastly, we also plan to explore how to extend TELEClass into harder
settings like when existing LLMs do not have the knowledge for the
initial annotation (e.g., a private domain), a lower-resource scenario
where the availability of the unlabeled corpus is limited, or a more
complicated label space like an extremely large hierarchical label
space with millions of classes.
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A Prompts for LLM
• LLM-based enrichment for Amazon-531

Instruction: [Target Class] is a product class in Amazon
and is the subclass of [Parent Class]. Please generate 10
additional key terms about the [Target Class] that are rele-
vant to [Target Class] but irrelevant to [Sibling Classes].
Please split the additional key terms using commas.

• LLM-based enrichment for DBPedia-298
Instruction: [Target Class] is an article category of
Wikipedia articles and is the subclass of [Parent Class].
Please generate 10 additional key terms about the [Target
Class] that are relevant to [Target Class] but irrelevant
to [Sibling Classes]. Please split the additional key terms
using commas.

• Core class annotation for Amazon-531
Instruction: You will be provided with an Amazon product
review, and please select its product types from the following
categories: [Candidate Classes]. Just give the category
names as shown in the provided list.
Query: [Document]

• Core class annotation for DBPedia-298
Instruction: You will be provided with a Wikipedia article
describing an entity at the beginning, and please select its
types from the following categories: [Candidate Classes].
Just give the category names as shown in the provided list.
Query: [Document]

• Path-based generation for Amazon-531

Instruction: Suppose you are an Amazon Reviewer, please
generate 5 various and reliable passages following the re-
quirements below:
1. Must generate reviews following the themes of the taxon-
omy path: [Path].
2. Must be in length about 100 words.
3. The writing style and format of the text should be a product
review.
4. Should keep the generated text to be diverse, specific, and
consistent with the given taxonomy path. You should focus
on [The Leaf Node on the Path].

• Path-based generation for DBPedia-298

Instruction: Suppose you are a Wikipedia Contributor,
please generate 5 various and reliable passages following
the requirements below:
1. Must generate reviews following the themes of the taxon-
omy path: [Path].
2. Must be in length about 100 words.
3. The writing style and format of the text should be a
Wikipedia page.
4. Should keep the generated text to be diverse, specific, and
consistent with the given taxonomy path. You should focus
on [The Leaf Node on the Path].
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