
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMPUTER AGENT ARENA: TOWARD HUMAN-
CENTRIC EVALUATION AND ANALYSIS OF COMPUTER-
USE AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

As Computer-Use Agents (CUAs) proliferate and grow increasingly capable, eval-
uation has become more challenging: static, manually curated benchmarks are
narrow in domain, contamination-prone, and environment-heavy, and they diverge
substantially from user-driven, real-world evaluation. We present COMPUTER
AGENT ARENA, an open-source platform for head-to-head CUA evaluation and a
dynamic methodology that converts human preferences into structured feedback
in realistic environments. The system (i) simulates real-world computer use via
cloud-hosted, diverse, and dynamic environment initializations and customizations;
(ii) ensures authentic, fair comparison by faithfully reproducing open-source CUAs
and executing anonymously in matched, controlled environments; and (iii) extends
evaluation beyond pairwise preference and correctness to capability- and behavior-
oriented signals. Across 2,201 high-quality votes over 12 agents—spanning multi-
app interactions, ambiguous instructions, and open-ended queries—we observe
striking ranking reversals relative to static benchmarks. Further analysis shows
that overall correctness mainly drives human preference; beyond that, agent-human
interaction and self-correction boost user preference, even when overall task com-
pletion is comparable. Our error analysis reveals agent behavior errors, such as
long-horizon memory and fine-grained action failures that static benchmarks fail to
evaluate. We also contrast pure GUI agents with universal digital agents capable of
tool use and coding, and discuss the trade-offs of these different design philoso-
phies. We open source the full platform, collected dataset, and code of COMPUTER
AGENT ARENA to support future research on the evaluation and development of
CUA.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) and Vision-Language Models (VLMs) have
demonstrated significant potential for building Computer-Use Agents (CUAs) (Anthropic, 2025c;
OpenAI, 2025d; Qin et al., 2025; Guo et al., 2025; Team et al., 2025). Such agents can perform
various computer-use tasks, from web browsing to professional applications (Xu et al., 2024b; Xie
et al., 2024a; Li et al., 2025a; Drouin et al., 2024; Wang et al., 2025). These systems are increasingly
positioned for real-world deployment, making human-centric evaluation grounded in user preferences,
safety, and reliability in open-ended settings a prerequisite rather than an afterthought.

Currently, CUA evaluations predominantly rely on static online and offline benchmarks (Xie et al.,
2024a; Zhou et al., 2024; Xue et al., 2025; He et al., 2024; Xie et al., 2025b) containing human-
written computer tasks with manually designed reward functions. However, these benchmarks
are increasingly unable to accurately assess CUA capabilities and systematically neglect human-
and real-world-centric evaluation. The static and limited task domain and evaluation environment
leave them vulnerable to contamination/overfitting and unable to capture real-world dynamism and
open-ended objectives. They also ignore personalization (different users value different outcomes
and interaction styles), underestimate safety/privacy risks, and lack robustness to environment drift
(software updates, network variability, unseen apps). Finally, their design often trades off authenticity
for reproducibility, offering little guidance on fair head-to-head comparisons or scalable human-
centric feedback collection.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

User

Computer A

Computer B

Computers
with scenarios① Choose OS

Computer A

Computer B

④ Observe anonymized agents’ execution

Agent A Agent B

+ Step-wise feedback with 👍/ 👎

Correct or not?

Which one is better?
A is better

B: Yes / NoA: Yes / No

B is better Tie

Safe or not ……

User

 ⑤ Evaluate

Preset startup desktop & initial apps

App

Website

Coding Professional

more…

Customize the initial desktop

Upload Local File

Chrome Open URL

Github Clone Repo

Open GDrive FileMouse

Keyboard
Fully Operable!

…

② Setup the initial desktop environment

User

Upload “CV.pdf” on
the desktop to Slack
and send it to the
“Jobs” channel

③ Write your task
prompt

Agent A : GPT-4o (20240806)

Agent B : Claude 3.5 Sonnet (20241022)

⑥ Agent identities revealed post-evaluation

Figure 1: COMPUTER AGENT ARENA evaluation workflow: Users select an operating system
(Windows/Ubuntu) and initialize the environment via preset or custom scripts. Two anonymized
CUAs execute tasks simultaneously in parallel virtual machines, with their recorded visual trajectories
presented for user evaluation. User preferences and correctness judgments are collected to generate
global agent rankings.

To address these limitations, we introduce COMPUTER AGENT ARENA, a novel evaluation frame-
work allowing evaluating CUAs on authentic computer tasks from real users and assessing agent
performance through direct human feedback. To ensure diversity and authenticity, we deploy a
cloud-hosted VM infrastructure with hundreds of prebuilt setups (e.g., preopened apps/web pages
and files) and support user-defined initializations and customizations to mimic realistic computer
use. To ensure fair comparison, two anonymous CUAs execute the user-proposed instruction in
parallel within identical environments, rendering a side-by-side execution trajectory for pairwise
evaluation. The accumulated preferences converge to a stable leaderboard through Bradley–Terry
ranking model (Bradley & Terry, 1952), following the Chatbot Arena (Chiang et al., 2024). In
parallel, optional step-wise evaluations of grounding errors, privacy violations, and self-correction
behaviors are also collected to comprehensively evaluate CUAs capabilities.

We collected 2,201 filtered, high-quality votes from 1,058 users across 12 CUA models. The resulting
leaderboard diverges sharply from static benchmarks—most notably, several top performers on
OSWORLD (Xie et al., 2024b) are inverted in our setting. Through analysis, we find this divergence
stems from (i) a broader, more heterogeneous task distribution and environment and (ii) human-centric
evaluation criteria that emphasize process quality in realistic environments. We first did rigorous
error study identifies systematic failure modes that static suites underexpose: (1) tool-integrated
agents, despite excelling on scripted benchmarks, often underperform in real-user tasks due to
tool-selection and tool-use errors; (2) long-horizon memory lapses and plan drift; (3) insufficient
information seeking and underuse of clarification; and (4) fine-grained grounding/action-precision
errors. Beyond agent performance, preference analysis from a human-centric perspective shows that
users evaluate the execution process, not just outcomes: agents earn preference through thoughtful
planning, meaningful partial progress, error recovery, responsiveness, and judicious CALL_USER
queries, even when full completion is not achieved. These effects are especially salient in open-ended
or subjective tasks, where correctness is inherently ambiguous and closely tied to process quality.
Together, the findings surface alignment signals beyond outcome correctness and clarify why agents
can both fail more often and still (or fail to) earn human preference.

In summary, COMPUTER AGENT ARENA establishes a human-centric methodology for evaluat-
ing computer-use agents by converting real-world tasks and real-user preferences into structured

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

signals and stable rankings. Our rigorous error study diagnoses current agent shortcomings (e.g.,
tool-selection/use errors, long-horizon memory failures and plan drift, and fine-grained action errors),
while our human-centric preference analysis identifies what users actually care about in deploy-
ment—process quality, responsiveness, judicious clarification queries, recovery from errors, and
privacy awareness. Beyond revealing ranking reversals relative to scripted benchmarks, we open-
source the platform, reference implementations, and a large, multimodal, human-labeled preference
dataset to facilitate CUA research. Rather than replacing benchmark-driven evaluation, our work
provides a complementary human-centric lens that should not be overlooked in agent design and
deployment.

2 COMPUTER AGENT ARENA SYSTEM DESIGN

We design the COMPUTER AGENT ARENA evaluation system as shown in Figure 1. In this section,
we detail the platform infrastructure, agent execution interface, and the ranking system that transforms
pairwise evaluations into a global leaderboard.

2.1 PLATFORM IMPLEMENTATION

Scalable online CUA evaluation requires infrastructure that (i) elastically serves many concurrent
sessions, (ii) presents diverse, realistic software and web contexts, and (iii) guarantees fair comparison
by running agents in matched environments. COMPUTER AGENT ARENA meets these requirements
with a cloud-based stack that exposes fully interactive desktops to general users via a web interface.

Scalable. We extend OSWorld (Xie et al., 2024b) by packaging a standardized AMI and deploying it
on AWS EC2 behind a dedicated backend service. The service provides on-demand provisioning of
preconfigured virtual machines (VMs), parallel allocation for crowd evaluations, and low-latency
startup through a managed pool. Each session streams a native desktop via a VNC window in the
browser, enabling real-time interaction without client-side installation (Figure 1, Step (1)).

Diverse and open-domain. To replicate authentic computer use, we curated 600+ distinct initializa-
tions spanning both software and the web. Concretely, we sample popular sites from SimilarWeb and
expand coverage through popular subdomains; we install mainstream applications from Microsoft
Store and Snapcraft; and we preload 100+ heterogeneous files (e.g., .docx, .py) to instantiate
realistic workflows (Figure 1, Step (2)). To reduce overfitting to fixed contexts, file-system contents
are periodically refreshed. To further support customization, we provide quick-start tools that let users
configure environments with minimal friction—e.g., uploading files, pre-opening specific websites,
cloning GitHub repositories, and applying initialization recipes (packages, datasets, browser profiles)
in one click. These initializations and user-defined customizations keep scenarios flexible and aligned
with real user needs.

Fair. For head-to-head comparisons, two anonymized CUAs are instantiated in identical environ-
ments: same AMI, software versions, initialization recipe, and seeded configuration. The backend
records an environment fingerprint (AMI ID, package hashes, and initialization spec) with each
trial to support reproducibility checks. Agents execute in parallel to avoid temporal drift; their
full trajectories are captured via built-in OBS services and rendered as synchronized replays on the
evaluation interface. Users then submit pairwise preferences and structured labels (e.g., correctness,
safety, efficiency), producing comparable feedback across matched conditions (Figure 1, Step 4).

Observable and user-friendly. All interactions are logged at step level (screens, actions, timestamps)
and compiled into visual summaries for rater inspection. The browser-based workflow lowers the
barrier for non-technical participants while preserving a native desktop experience, enabling scalable,
diverse, and fair human-centric evaluation at crowd scale.

2.2 AGENT IMPLEMENTATION

CUAs interact with computers through a unified action space and API service to ensure cross-model
compatibility (Xu et al., 2024c; Bai et al., 2025; Guo et al., 2025; Xu et al., 2024b; Zhang et al.,
2025; Wang et al., 2025). At each timestep, the agent receives a 1280×720 desktop screenshot and
outputs a structured function call representing actions such as mouse movement, clicks, keyboard
typing, scrolling, or special signals (DONE, FAIL, CALL_USER). Each session begins with a natural

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

language instruction and proceeds as a trajectory of state–action pairs until termination, with full
action specifications in Appendix B.3. For model integration, we adopt official frameworks when
available (e.g., OpenAI Operator (OpenAI, 2025d), Claude 3.7 Sonnet (Anthropic, 2025c)) and
otherwise use a standardized baseline agent that handles screenshot ingestion, prompting, function-
call formatting, and environment interaction. This unified pipeline isolates model behavior and
ensures fair comparison under identical constraints, including fixed step limits, response windows,
and access to prior CoT outputs. To ensure fairness and reproducibility, all open-source CUAs
are instantiated verbatim from public repository, released checkpoints, default system prompts and
tools, inference parameters (e.g., temperature, max-tokens), and tool schemas—so that differences in
outcomes reflect model behavior rather than integration variance. This unified pipeline isolates the
model, equalizes interfaces and resources, and enables apples-to-apples comparison under identical
environments. The details of implemented CUA models are listed in Section 3.1.

2.3 AGENT RANKINGS

Each evaluation in COMPUTER AGENT ARENA results in a pairwise preference vote: two anonymized
CUAs execute the same task in identically initialized cloud computers, and the user selects the better-
performing agent or declares a tie. Following prior work on human preference evaluation (Chiang
et al., 2024; Chi et al., 2025; Li et al., 2025b; Guertler et al., 2025), we aggregate these votes into a
global leaderboard using an Elo ranking system derived from the Bradley–Terry model (Bradley &
Terry, 1952).

Let xi = (mL
i ,m

R
i) ∈ [M]2 denote the agent pair in comparison i, and yi ∈ {1, 0, 1

2} the correspond-
ing user preference. Each agent m is assigned a strength parameter βm, and the probability that the
left agent wins is modeled as:

Pr(mL ≻ mR) =
exp(βmL)

exp(βmL) + exp(βmR)
.

We optimize the log-likelihood of all votes to estimate β, and convert scores to the standard Elo scale
via:

Em = 400 log10(e
βm) + 1000.

To ensure leaderboard stability, we compute 95% confidence intervals via bootstrap and rank agents
by the lower bound of their interval. The Appendix C shows full optimization and leaderboard
details.

3 EXPERIMENTS

We present our experimental setup and leaderboard results, followed by analysis of task distribution,
data validation and cross-benchmark comparisons.

3.1 EXPERIMENTAL SETUP

Agent Models and Sampling. We evaluate 12 publicly accessible CUAs spanning three representa-
tive groups. (i) Proprietary computer-use agents with strong benchmark performance: Claude 4
Sonnet (Anthropic, 2025b), Claude 3.7 Sonnet (Anthropic, 2025a), UI-TARS-1.5 (Qin et al., 2025),
Operator (OpenAI, 2025d), and Claude 3.5 Sonnet (New) (Anthropic, 2024). (ii) Open-source CUAs:
OpenCUA-32B (Wang et al., 2025), Qwen 2.5 VL 72B (Bai et al., 2025), and CoAct-1 (Song et al.,
2025); notably, CoAct-1 is a universal digital agent integrating API tool calls and code execution. (3)
General foundation models. We additionally include strong general-purpose multimodal models not
previously tested in this setting (e.g., GPT-5 (OpenAI, 2025b), GPT-4.1 (OpenAI, 2025a), OpenAI
o4-mini (OpenAI, 2025c), and Gemini 2.5 Pro (Google DeepMind, 2025)). All agents follow the
unified protocol in Section 2.2 and are sampled with uniform probability during evaluation. For
quality control, agents with <10% correctness in their first 100 votes are removed to preserve data
quality and user experience.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Crowdsourcing Evaluation We collected evaluation data from two sources: (1) public users on
the COMPUTER AGENT ARENA platform and (2) paid crowd workers on Prolific (Peer et al., 2021),
a high-quality crowdsourcing platform. Prolific participants were pre-screened for prior experience
with LLM tools (e.g., ChatGPT, Claude) with details in Appendix B.3.1. All users had to submit real
computer-use tasks and evaluate anonymized agent trajectories via pairwise preference judgments
and other labels. To ensure that the resulting evaluations reflect realistic usage patterns, we recruited
annotators from diverse demographic backgrounds, spanning multiple countries, educational levels,
and professions, detailed statistics are reported in Appendix B.3.1.

Data Filtering To ensure data quality, we applied post-hoc filtering to remove duplicate instructions,
off-topic queries (e.g., math problems, chit-chat), and tasks incompatible with GUI-based execution.
For further validation of annotation consistency, we conducted an inter-annotator agreement study,
sampling 100 human-labeled trajectories from the dataset and assigning them to three different
annotators for independent labeling. Krippendorff’s α scores were calculated for each label type,
yielding values of = 0.72 for preferences, = 0.78 for correctness, = 0.68 for safety, and = 0.70 for
efficiency. These results demonstrate a moderate-to-strong level of agreement among annotators,
confirming the reliability and consistency of our labeled data. Full details of the filtering procedure,
including these consistency results, are provided in Appendix B.3.2.

3.2 MAIN RESULTS

Rank Model Elo Votes Correct Rate
1 Claude Sonnet 4 1167 416 52.0%
2 Claude 3.7 Sonnet 1140 507 52.3%
3 UI-TARS-1.5 1092 533 49.9%
4 Operator 1064 511 37.4%
5 CoAct-1∗ 1043 110 41.8%
6 OpenCUA∗ 1023 109 38.5%
7 Claude 3.5 Sonnet 1023 425 35.8%
8 GPT-5∗ 1002 108 34.3%
9 o4-mini 895 266 15.4%

10 Qwen 2.5 VL 72B Instruct 895 504 15.9%
11 GPT-4.1 837 432 8.6%
12 Gemini 2.5 Pro 829 377 11.8%

(a) COMPUTER AGENT ARENA leaderboard with Elo
scores, vote counts, and correctness rates.

Claude Sonnet 4

Claude 3.7 Sonnet

UI-TARS-1.5

Operator
CoAct-1

OpenCUA
Claude 3.5 Sonnet

GPT-5
o4-mini

Qwen 2.5 VL 72B Instruct

GPT-4.1
Gemini 2.5 Pro

800

900

1000

1100

1200

CUA Model

El
o

S
co

re

(b) Bootstrapped Elo scores with 95% confidence in-
tervals.

Figure 2: Model performance on COMPUTER AGENT ARENA based on 2,201 pairwise user votes.
(a) presents the leaderboard; (b) shows bootstrapped Elo score distributions. (∗ denotes models with
limited votes; results will be updated in later versions.)

We collected a total of 3,418 evaluation votes, including 1,773 from public users and 1,645 from
Prolific participants. After filtering invalid submissions and removing low-performing models, we
retained 2,201 high-quality preference votes for analysis. In total, the platform engaged 1,058 unique
users, comprising 821 Prolific participants and 237 public users.

Leaderboard Results. Figure 2 shows the COMPUTER AGENT ARENA leaderboard based on over
2,201 pairwise votes from 1,058 users across 12 CUA models. Claude Sonnet 4 and Claude 3.7 Sonnet
dominate the rankings with a clear Elo margin, followed by UI-TARS-1.5 and OpenAI Operator.
In contrast, general-purpose models like GPT-5 and Gemini 2.5 Pro rank lower, suggesting that
strong multimodal capabilities do not necessarily translate to robust computer-use performance. We
also compare the COMPUTER AGENT ARENA leaderboard with four public benchmarks: OSWorld,
WebArena (Zhou et al., 2024), WebVoyager (He et al., 2024) and Online-Mind2Web (Xue et al.,
2025). Figure 3a summarizes how existing models rank across all five leaderboards.

Statistical Validation We validate that observed model differences are not artifacts of sampling
variance using three complementary tests (details in Appendix D). Bootstrapped Elo scores provide
narrow 95% confidence intervals. Permutation tests, implemented by repeatedly shuffling preference
labels to form a null distribution, confirm that pairwise win-rate differences are highly significant
(p < 0.01) with medium-to-large effect sizes (Cohen’s d > 0.5). Power analysis, conducted by

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

CAA
OSWorld

WebVoyager

Online-Mind2Web

Claude Sonnet 4

Claude 3.7 Sonnet

Operator

UI-TARS1.5

Claude 3.5 Sonnet

1 1

2 3 3 3

3 4 1 2

4 2 2 1

5 5 4 4

Cross-Benchmark Rank Differences

1

2

3

4

5

6

Rank

(a) Relative ranks of 12 models across COMPUTER
AGENT ARENA and four public benchmarks. Green =
higher (better); red = lower; blank = not evaluated.

Out-of-domain In-domain

960

980

1000

1020

1040

1060

1080

E
lo

 S
co

re

Claude 3.7 Sonnet
UI-TARS-1.5

Operator

Claude 3.5 Sonnet (New)

Qwen 2.5 VL 72B Instruct

Gemini 2.5 Pro (Experimental)

o4-mini

OSWorld Ablation: Out vs. In-domain Tasks

(b) Elo scores on COMPUTER AGENT ARENA after
splitting 1,000 tasks into OSWorld-In-domain (left)
and OSWorld-OOD (right) subsets.

Figure 3: (a) Cross-benchmark comparison highlights rank inversions among top CUAs. (b) Ablation
confirms rankings shift once evaluation moves away from OSWorld templates.

simulating effect detection under varying sample sizes, shows that with typical data (>200 votes
per model pair) the probability of detecting medium effects (∆Elo ≈ 50) exceeds 0.9. Together,
these results demonstrate that the ranking gaps reported in Figures 10b, 11a, and 5 are statistically
significant and robust.

Task distribution strongly affects leaderboard rankings, revealing the fragility of static bench-
marks. To examine how task distribution influences agent rankings, we perform an ablation study
on the COMPUTER AGENT ARENA dataset. Using GPT-4o as a semantic classifier, we sampled 1,000
user-submitted tasks as either in-domain or out-of-domain. After manual verification, we recompute
Elo scores for each subset separately. As shown in Figure 3b, leaderboard orders shift markedly:
while Claude 3.7 Sonnet remains on top, models like UI-TARS-1.5 rise under in-domain tasks. These
findings highlight that static benchmarks often overestimate agent performance by overfitting to
narrow task distributions. In contrast, COMPUTER AGENT ARENA captures a broader task landscape
through crowd-sourced inputs, which is a more reliable reflection of model robustness in real-world
usage.

4 ANALYSIS

We analyze COMPUTER AGENT ARENA from four perspectives: task diversity, user preference,
agent behavior, and error study. This allows us to characterize how CUAs are evaluated in real-world
scenarios and to identify key divergences from static benchmarks.

4.1 TASK ANALYSIS

Tasks in COMPUTER AGENT ARENA feature broader semantic and domain coverage than prior
benchmarks. We analyze the semantic and linguistic characteristics of task instructions across
COMPUTER AGENT ARENA, OSWORLD, WEBARENA, and WEBVOYAGER. As shown in Figure 9a,
a PCA projection indicates that COMPUTER AGENT ARENA occupies a broader and less clustered
semantic space, suggesting greater topical diversity. We further compare instruction-level features,
including instruction length, open-endedness, unigram perplexity, and reference-trajectory length.
Figure 9b shows that COMPUTER AGENT ARENA tasks are shorter on average (mean ≈ 17 words)
yet substantially more ambiguous—reflected by nearly double the perplexity—and more likely to
lack a canonical ground-truth answer. This pattern reflects a key trend: real users frequently issue
concise but underspecified queries, which require agents to infer implicit intent and reason iteratively
rather than converge on a fixed end state.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

PCA Projection of Task Instructions

ComputerAgentArena
OSWorld
WebArena
WebVoyager

(a) PCA projection of task instructions across bench-
marks.

CAA OSWorld WebVoyager WebArena
0

20

40

60

80

100

W
or

ds
 C

ou
nt

Instruction Length

CAA OSWorld WebVoyagerWebArena0

200

400

600

800

Op
en

-e
nd

ed
 Ta

sk
s (

co
un

t)

Open-ended Tasks

CAA OSWorld WebVoyagerWebArena0

500

1000

1500

2000

Pe
rp

le
xi

ty
 (u

ni
gr

am
 L

M
)

Instruction Perplexity

CAA OSWorld WebVoyager0

5

10

15

Av
g.

 Tr
aj

ec
to

ry
 L

en
gt

h
(s

te
ps

)

Average Trajectory Length

(b) Instruction-level statistics, where "CAA" denotes
COMPUTER AGENT ARENA.

Figure 4: Comparison of task distributions across four CUA benchmarks. Figure (a) shows the
semantic projection of task instructions via PCA, highlighting coverage differences. Figure (b)
shows instruction length, open-endedness, perplexity, and trajectory length across benchmarks, with
COMPUTER AGENT ARENA ("CAA") exhibiting higher ambiguity and longer interaction sequences.

4.2 USER PREFERENCE ANALYSIS

0 1 2 3 4+

Number of Queries

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

Figure 5: Win rate grouped by number of
CALL_USER queries. Moderate query-
ing (1–2 times) leads to higher user pref-
erence, while excessive or no querying
lowers win rate.

We analyze behavioral features and outcome labels from
COMPUTER AGENT ARENA to identify the factors that
truly shape user preferences.

Correctness is a leading predictor user preference,
while execution length and latency have negligible im-
pact. Building on the prior observation that users value
coherent execution, we next quantify how correctness and
efficiency metrics correlate with user preference. Leverag-
ing explicit correctness labels from our evaluation pipeline,
we observe a strong linear relationship between model cor-
rectness and win rate (Figure 11a), indicating that task
success is the most influential factor in shaping user judg-
ments. To isolate the effect of execution efficiency, we
analyze sessions where both agents were marked “correct”
and compare their step counts and average latencies. As
shown in Figure 11b, neither factor shows a consistent influence on user preference—users do not sys-
tematically prefer faster or shorter executions when outcome quality is held constant. Overall, these
results suggest that while concise or responsive behavior may offer slight advantages, correctness
remains the dominant signal guiding user preferences in current CUA systems.

User preferences are shaped more by turn-level completeness rather than by final state. We
conduct a quantitative case study of 100 selected cases to better understand why top-performing
agents diverge in real-world evaluation. Our analysis reveals that, unlike static benchmarks which
assess agents solely based on final states, users on COMPUTER AGENT ARENA often base their
preferences on holistic execution quality. As illustrated in Example 2 in Appendix J, agents that fail
to complete the task may still be preferred if they demonstrate clear intent understanding, partial
progress, or thoughtful error recovery and self-correction attempts. This preference is especially
evident in open-ended tasks with no unique solution, where users value adaptive and coherent
behavior over rigid outcome success. These findings highlight the importance of evaluating how an
agent performs, not just what it accomplishes, emphasizing the need for turn-level assessment in
realistic human–agent evaluation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Agent-human interaction improves agent preference, while excessive queries hinder perfor-
mance. Beyond execution correctness, human–agent interaction plays a key role in shaping pref-
erences. Unlike prior benchmarks that treat CUAs as fully autonomous systems (Xie et al., 2024a;
Zhou et al., 2024), COMPUTER AGENT ARENA enables an explicit human–agent interface via
the CALL_USER action (Sec. 2.2). Figure 5 shows that moderate querying—typically one or two
calls—correlates with the highest win rates, whereas both zero and excessive queries are associated
with lower user preference. This inverted U-shaped pattern suggests that users value well-timed
clarification, especially for underspecified tasks, yet tend to penalize over-reliance on human input.
These results indicate that effective interaction is not merely about asking questions, but about
demonstrating autonomy and judgment—traits users increasingly expect from capable CUAs.

4.3 TOOL-INTEGRATED VS. PURE GUI CUAS

Recent CUA work emphasizes tool-augmented architectures that invoke code interpreters or APIs
to improve success on structured tasks. Although such agents often surpass GUI-only models on
scripted benchmarks, our human-centric evaluation reveals a different pattern in real use. For example,
CoAct-1 (Song et al., 2025)—a tool- and coding-integrated agent based on OpenAI o3 (OpenAI,
2025c)—reports state-of-the-art results on OSWORLD-VERIFIED (60.1% success), yet exhibits
substantially lower performance in COMPUTER AGENT ARENA, particularly on non-technical tasks.
This contrast underscores a benchmark–real-world gap: scripted suites tend to reward deterministic
tool pipelines, whereas real user instructions are often underspecified and not always tool-benefiting.

The evaluation results of CoAct-1 show two salient characteristics in our evaluation: (1) On tasks natu-
rally suited to tooling (e.g., code debugging, technical workflows), CoAct-1 is competitive—especially
among tech-savvy raters. (2) On general-purpose tasks, tool selection frequently misfires, producing
errors invisible in the GUI replay and leading to lower user preference. Notably, its successful trajec-
tories are very short (mean ≈ 3 steps), suggesting that tool calls can solve narrow problems efficiently
but generalize poorly across open-ended tasks. We trace the gap to two factors: (i) Tool-selection
bias, where agents over-invoke coding tools on tasks better served by direct GUI actions; (ii) Error
amplification, where tool calls produce opaque, non-surfaced failures that undermine interpretability
and user trust.

Our findings indicate that adding more tools to CUAs does not inherently translate into better
real-world performance; misapplied tooling can degrade both accuracy and user satisfaction. Two
implications follow: (1) Tool definition and selection matter. Future designs should develop
adaptive policies that decide when, what, and how to invoke tools—including abstaining, clarifying
with the user, or falling back to direct GUI actions. (2) Mind the benchmark–real-world gap.
Benchmarks that overweight tool-centric pipelines risk misrepresenting user needs. By exposing
these discrepancies, COMPUTER AGENT ARENA offers a lens to study tool-use strategies and their
usability impact in open-ended environments.

4.4 ERROR ANALYSIS

While quantitative metrics such as Elo and correctness provide a global view of model performance,
they cannot reveal the nuanced behavioral failures that limit agent usability in realistic settings. A
key advantage of COMPUTER AGENT ARENA is that human preference annotations surface diverse
error modes that scripted benchmarks fail to capture. Many failed trajectories stem from common
issues such as grounding errors (e.g., mis-clicking a button) and planning errors (e.g., lacking a
clear execution strategy), which reflect base model limitations and can be mitigated with training.
Beyond these expected cases, however, we identify three insightful error types that are subtler, more
detrimental, and harder to expose with scripted tasks:

• Long-horizon memory failures. In tasks requiring long-horizon context or repetitive
workflows, CUAs often lose track of key information after many steps (e.g., converting
multiple files or compiling season-long statistics). Even state-of-the-art models such as
Claude 4 Sonnet frequently drift or forget intermediate goals.

• Information awareness. Real-world queries are often underspecified, omitting details
such as file paths or intention slots. Purely GUI-based agents typically issue speculative
commands rather than clarifying uncertainties, leading to compounding errors. By contrast,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

models like Claude 4 Sonnet and Operator effectively invoke CALL_USER to resolve
ambiguity, underscoring the importance of interactive mechanisms.

• Fine-grained action failures. Even when intent is clear, execution breaks down due to fine-
grained control errors, including mishandled scrolling, clicks on non-interactive elements,
or faulty text editing (e.g., appending instead of replacing). These mistakes, sitting between
planning and grounding, often derail entire tasks and highlight the need for new training
signals on low-level action precision.

Together, these categories show how COMPUTER AGENT ARENA functions as a systematic error
discovery pipeline. By surfacing nuanced failure modes beyond correctness, our analysis provides
actionable insights for improving memory, uncertainty handling, and fine-grained grounding in future
CUAs.

5 RELATED WORK

Computer-Use Agent Benchmarks Recent advancements have fostered diverse benchmarks and
evaluation frameworks for assessing computer-use agents. Within GUI agent contexts, evaluations
mainly target scenarios involving web navigation (Zhou et al., 2024; Deng et al., 2023; Koh et al.,
2024; Drouin et al., 2024) and computer-use (Xie et al., 2024a; Bonatti et al., 2024; Davydova et al.,
2025; Xie et al., 2025a). OS-level benchmarks, such as OSWorld-Verified (Xie et al., 2024a; 2025b)
and Windows Agent Arena (Bonatti et al., 2024), provide rule-based evaluations of desktop agents
performing various GUI tasks. Recent works like AgentCompany (Xu et al., 2024a), AndroidWorld
(Rawles et al., 2024), Online-Mind2Web (Xue et al., 2025), AgentNetBench (Wang et al., 2025) ex-
tend evaluations toward longer horizons, leveraging interactive and multi-modal scenarios. Although
these frameworks have significantly contributed toward standardized assessments, they remain largely
script-based and static. Our platform, COMPUTER AGENT ARENA, further expands upon these ideas
by crowd-sourcing authentic user-defined tasks and emphasizing dynamic, human-centric evaluations
of computer-use agents.

Human-centric Evaluation Human preference evaluation has become increasingly significant for
tasks lacking clearly defined ground truths, such as dialogue agents and interactive applications. Plat-
forms like Chatbot Arena (Chiang et al., 2024) popularized large-scale, pairwise human comparisons
for evaluating language models, using Bradley–Terry–based Elo ranking systems. This paradigm was
subsequently adapted to domains like programming assistants (Copilot Arena (Chi et al., 2025)), large
audio models (Li et al., 2025b), and text-based gaming agents (TextArena (Guertler et al., 2025)).
These arenas highlight the value of integrating human judgment into model assessment, enabling
nuanced distinctions that conventional benchmarks or scripted evaluations might overlook. Despite
their success, existing preference-based platforms primarily focus on isolated, context-independent
interactions without grounding evaluations within users’ real environments. By bridging the gap
between evaluation and deployment, our platform lays the groundwork for more ecologically valid
assessments and provides a foundation for future research on agents operating in the wild.

6 CONCLUSION

We present COMPUTER AGENT ARENA, a human-centric framework for evaluating Computer-
Use Agents (CUAs) that enables scalable, diverse, authentic, and fair head-to-head comparisons in
realistic, dynamic environments. We collect 2,201 filtered, high-quality votes across specialized CUA
models and general-purpose foundation models on diverse, open-ended tasks, uncovering insights
that static, scripted suites overlook. In particular, our error study surfaces systematic shortcomings
of current CUAs (e.g., tool-selection/use errors, long-horizon memory and plan drift, fine-grained
action/grounding issues), while our human preference analysis shows that users value process quality,
agent-human interaction, recovery from errors, and privacy awareness. We open-source the evaluation
platform, reference agent implementations, and a large, multimodal, human-labeled preference dataset
to facilitate future research on CUAs. Ultimately, we underscore the centrality of a human-centric
perspective for AI agent design and deployment in real-world use.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work involves the collection of human preference data through both public participation and paid
crowdworkers. All participants provided informed consent prior to participation: public users agreed
to the consent form before using the COMPUTER AGENT ARENA platform, and paid annotators
recruited via Prolific were required to read and accept an explicit consent statement before starting
tasks. Paid annotators interacted only through anonymized accounts, and no personally identifiable
information was collected or stored. For the final dataset release, we applied a sensitive data filtering
process to remove submissions containing personal or inappropriate content, ensuring that all data
remain anonymized and privacy-preserving.

We acknowledge that crowdsourced data may contain demographic and cultural biases. To assess
fairness, we conducted a demographic study of annotators, which confirmed a broad distribution
across countries, education levels, and professional backgrounds (Appendix B.3.1).

The dataset and platform are released solely for academic research purposes. They are intended
to advance evaluation methodology and alignment for computer-use agents, and must not be used
for surveillance, discriminatory decision-making, or other potentially harmful applications. This
study was conducted in accordance with institutional ethical guidelines, and all authors confirm
compliance with the ICLR Code of Ethics. We declare that there are no conflicts of interest or external
sponsorships influencing this work.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility and transparency of our work. All code for the
COMPUTER AGENT ARENA platform, including frontend, backend, evaluation logic, and ranking
scripts, will be released under an open-source license. To guarantee consistent runtime environments,
we additionally provide pre-built Amazon Machine Images (AMIs) for both Windows and Ubuntu,
and a plug-and-play agent hub for integrating external models and enabling third-party leaderboard
participation (Sec. 2.2 and Appendix B.2). Detailed descriptions of data filtering, annotation protocols,
and demographic studies are provided in Appendix B.3.2 and Appendix B.3.1, ensuring transparency
in data collection and quality control. We also report evaluation cost and throughput analyses in
the Appendix H, confirming that the framework is both affordable and scalable for community use.
Together, these efforts provide a reproducible end-to-end pipeline for benchmarking, training, and
behavioral diagnostics of computer-use agents in realistic environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude computer use. https://www.anthropic.com/news/
3-5-models-and-computer-use, 2024. Accessed: 2025-05-03.

Anthropic. Claude 3.7 sonnet and claude code. Technical report, Anthropic, Feb 2025a. URL
https://www.anthropic.com/news/claude-3-7-sonnet. Online; accessed 2025-
09-25.

Anthropic. Introducing claude 4, may 2025b. URL https://www.anthropic.com/news/
claude-4. Accessed 23 June 2025.

Anthropic. Claude’s extended thinking. https://www.anthropic.com/research/
visible-extended-thinking, 2025c. Accessed: 2025-05-03.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqiang
Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
CoRR, abs/2502.13923, 2025.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Fender C. Bucker, Lawrence Jang, and Zack Hui.
Windows agent arena: Evaluating multi-modal os agents at scale. ArXiv preprint, 2024. URL
https://api.semanticscholar.org/CorpusID:272600411.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39:324, 1952. URL https://api.semanticscholar.
org/CorpusID:125209808.

Canonical Ltd. Snap store — install linux apps using snaps, May 2025. URL https://
snapcraft.io/store. Snapcraft.io Snap Store home page, accessed 10 May 2025.

Wayne Chi, Valerie Chen, Anastasios Nikolas Angelopoulos, Wei-Lin Chiang, Aditya Mittal, Naman
Jain, Tianjun Zhang, Ion Stoica, Chris Donahue, and Ameet Talwalkar. Copilot arena: A platform
for code llm evaluation in the wild, 2025. URL https://arxiv.org/abs/2502.09328.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena:
An open platform for evaluating llms by human preference, 2024. URL https://arxiv.org/
abs/2403.04132.

Mariya Davydova, Daniel Jeffries, Patrick Barker, Arturo Márquez Flores, and Sinéad Ryan. Os-
universe: Benchmark for multimodal gui-navigation ai agents, 2025. URL https://arxiv.
org/abs/2505.03570.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091–28114, 2023.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados, and
Alexandre Lacoste. Workarena: How capable are web agents at solving common knowledge work
tasks?, 2024. URL https://arxiv.org/abs/2403.07718.

Google DeepMind. Gemini 2.5 pro: Our most advanced reasoning model, 2025.
Available at https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/.

Leon Guertler, Bobby Cheng, Simon Yu, Bo Liu, Leshem Choshen, and Cheston Tan. Textarena,
2025. URL https://arxiv.org/abs/2504.11442.

11

https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/research/visible-extended-thinking
https://www.anthropic.com/research/visible-extended-thinking
https://api.semanticscholar.org/CorpusID:272600411
https://api.semanticscholar.org/CorpusID:125209808
https://api.semanticscholar.org/CorpusID:125209808
https://snapcraft.io/store
https://snapcraft.io/store
https://arxiv.org/abs/2502.09328
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2505.03570
https://arxiv.org/abs/2505.03570
https://arxiv.org/abs/2403.07718
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://arxiv.org/abs/2504.11442

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
Jianyu Jiang, Jiawei Wang, Jingji Chen, Jingjia Huang, Kang Lei, Liping Yuan, Lishu Luo, Pengfei
Liu, Qinghao Ye, Rui Qian, Shen Yan, Shixiong Zhao, Shuai Peng, Shuangye Li, Sihang Yuan, Sijin
Wu, Tianheng Cheng, Weiwei Liu, Wenqian Wang, Xianhan Zeng, Xiao Liu, Xiaobo Qin, Xiaohan
Ding, Xiaojun Xiao, Xiaoying Zhang, Xuanwei Zhang, Xuehan Xiong, Yanghua Peng, Yangrui
Chen, Yanwei Li, Yanxu Hu, Yi Lin, Yiyuan Hu, Yiyuan Zhang, Youbin Wu, Yu Li, Yudong
Liu, Yue Ling, Yujia Qin, Zanbo Wang, Zhiwu He, Aoxue Zhang, Bairen Yi, Bencheng Liao,
Can Huang, Can Zhang, Chaorui Deng, Chaoyi Deng, Cheng Lin, Cheng Yuan, Chenggang Li,
Chenhui Gou, Chenwei Lou, Chengzhi Wei, Chundian Liu, Chunyuan Li, Deyao Zhu, Donghong
Zhong, Feng Li, Feng Zhang, Gang Wu, Guodong Li, Guohong Xiao, Haibin Lin, Haihua Yang,
Haoming Wang, Heng Ji, Hongxiang Hao, Hui Shen, Huixia Li, Jiahao Li, Jialong Wu, Jianhua
Zhu, Jianpeng Jiao, Jiashi Feng, Jiaze Chen, Jianhui Duan, Jihao Liu, Jin Zeng, Jingqun Tang,
Jingyu Sun, Joya Chen, Jun Long, Junda Feng, Junfeng Zhan, Junjie Fang, Junting Lu, Kai Hua,
Kai Liu, Kai Shen, Kaiyuan Zhang, Ke Shen, Ke Wang, Keyu Pan, Kun Zhang, Kunchang Li,
Lanxin Li, Lei Li, Lei Shi, Li Han, Liang Xiang, Liangqiang Chen, Lin Chen, Lin Li, Lin Yan,
Liying Chi, Longxiang Liu, Mengfei Du, Mingxuan Wang, Ningxin Pan, Peibin Chen, Pengfei
Chen, Pengfei Wu, Qingqing Yuan, Qingyao Shuai, Qiuyan Tao, Renjie Zheng, Renrui Zhang,
Ru Zhang, Rui Wang, Rui Yang, Rui Zhao, Shaoqiang Xu, Shihao Liang, Shipeng Yan, Shu Zhong,
Shuaishuai Cao, Shuangzhi Wu, Shufan Liu, Shuhan Chang, Songhua Cai, Tenglong Ao, Tianhao
Yang, Tingting Zhang, Wanjun Zhong, Wei Jia, Wei Weng, Weihao Yu, Wenhao Huang, Wenjia
Zhu, Wenli Yang, Wenzhi Wang, Xiang Long, XiangRui Yin, Xiao Li, Xiaolei Zhu, Xiaoying Jia,
Xijin Zhang, Xin Liu, Xinchen Zhang, Xinyu Yang, Xiongcai Luo, Xiuli Chen, Xuantong Zhong,
Xuefeng Xiao, Xujing Li, Yan Wu, Yawei Wen, Yifan Du, Yihao Zhang, Yining Ye, Yonghui Wu,
Yu Liu, Yu Yue, Yufeng Zhou, Yufeng Yuan, Yuhang Xu, Yuhong Yang, Yun Zhang, Yunhao Fang,
Yuntao Li, Yurui Ren, Yuwen Xiong, Zehua Hong, Zehua Wang, Zewei Sun, Zeyu Wang, Zhao Cai,
Zhaoyue Zha, Zhecheng An, Zhehui Zhao, Zhengzhuo Xu, Zhipeng Chen, Zhiyong Wu, Zhuofan
Zheng, Zihao Wang, Zilong Huang, Ziyu Zhu, and Zuquan Song. Seed1.5-vl technical report,
2025. URL https://arxiv.org/abs/2505.07062.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models,
2024. URL https://arxiv.org/abs/2401.13919.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks, 2024. URL https://arxiv.org/abs/
2401.13649.

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use,
2025a. URL https://arxiv.org/abs/2504.07981.

Minzhi Li, William Barr Held, Michael J Ryan, Kunat Pipatanakul, Potsawee Manakul, Hao Zhu, and
Diyi Yang. Mind the gap! static and interactive evaluations of large audio models, 2025b. URL
https://arxiv.org/abs/2502.15919.

Microsoft Corporation. Microsoft store — download apps, games & more for windows pc,
May 2025. URL https://apps.microsoft.com/home?hl=en-US&gl=US. Microsoft
Store home page, accessed 10 May 2025.

OpenAI. Introducing gpt-4.1 in the api. Technical report, OpenAI, Apr 2025a. URL https:
//openai.com/index/gpt-4-1/. Online; accessed 2025-09-25.

OpenAI. Introducing gpt-5. Technical report, OpenAI, Aug 2025b. URL https://openai.
com/index/introducing-gpt-5/. Online; accessed 2025-09-23.

OpenAI. Introducing openai o3 and o4-mini. Technical report, OpenAI, Apr 2025c. URL https:
//openai.com/index/introducing-o3-and-o4-mini/. Online; accessed 2025-09-
25.

OpenAI. Operator, 2025d. URL https://openai.com/research/operator.

12

https://arxiv.org/abs/2505.07062
https://arxiv.org/abs/2401.13919
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2504.07981
https://arxiv.org/abs/2502.15919
https://apps.microsoft.com/home?hl=en-US&gl=US
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/research/operator

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Eyal Peer, David Rothschild, Zak Evernden, Andrew Gordon, and Ekaterina Damer. Mturk, prolific
or panels? choosing the right audience for online research. SSRN Electronic Journal, 01 2021. doi:
10.2139/ssrn.3765448.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng,
Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng
Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui interaction
with native agents, 2025. URL https://arxiv.org/abs/2501.12326.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry,
Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A dynamic benchmarking
environment for autonomous agents, 2024. URL https://arxiv.org/abs/2405.14573.

Similarweb Ltd. Similarweb: Ai-powered digital data intelligence solutions, May 2025. URL
https://www.similarweb.com/. Corporate website, accessed 10 May 2025.

Linxin Song, Yutong Dai, Viraj Prabhu, Jieyu Zhang, Taiwei Shi, Li Li, Junnan Li, Silvio Savarese,
Zeyuan Chen, Jieyu Zhao, Ran Xu, and Caiming Xiong. Coact-1: Computer-using agents with
coding as actions, 2025. URL https://arxiv.org/abs/2508.03923.

Alex Tamkin, Miles McCain, Kunal Handa, Esin Durmus, Liane Lovitt, Ankur Rathi, Saffron Huang,
Alfred Mountfield, Jerry Hong, Stuart Ritchie, Michael Stern, Brian Clarke, Landon Goldberg,
Theodore R. Sumers, Jared Mueller, William McEachen, Wes Mitchell, Shan Carter, Jack Clark,
Jared Kaplan, and Deep Ganguli. Clio: Privacy-preserving insights into real-world ai use, 2024.
URL https://arxiv.org/abs/2412.13678.

Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. arXiv preprint arXiv:2504.07491,
2025.

Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole
Guo, Yiheng Xu, Chen Henry Wu, Zhennan Shen, Zhuokai Li, Ryan Li, Xiaochuan Li, Junda Chen,
Boyuan Zheng, Peihang Li, Fangyu Lei, Ruisheng Cao, Yeqiao Fu, Dongchan Shin, Martin Shin,
Jiarui Hu, Yuyan Wang, Jixuan Chen, Yuxiao Ye, Danyang Zhang, Dikang Du, Hao Hu, Huarong
Chen, Zaida Zhou, Haotian Yao, Ziwei Chen, Qizheng Gu, Yipu Wang, Heng Wang, Diyi Yang,
Victor Zhong, Flood Sung, Y. Charles, Zhilin Yang, and Tao Yu. Opencua: Open foundations for
computer-use agents, 2025. URL https://arxiv.org/abs/2508.09123.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024a.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. ArXiv preprint, 2024b. URL https:
//arxiv.org/abs/2404.07972.

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
Xinyuan Wang, Yuhui Xu, Zekun Wang, Yiheng Xu, Junli Wang, Doyen Sahoo, Tao Yu, and
Caiming Xiong. Scaling computer-use grounding via user interface decomposition and synthesis,
2025a. URL https://arxiv.org/abs/2505.13227.

Tianbao Xie, Mengqi Yuan, Danyang Zhang, Xinzhuang Xiong, Zhennan Shen, Zilong Zhou, Xinyuan
Wang, Yanxu Chen, Jiaqi Deng, Junda Chen, Bowen Wang, Haoyuan Wu, Jixuan Chen, Junli
Wang, Dunjie Lu, Hao Hu, and Tao Yu. Introducing osworld-verified. xlang.ai, July 2025b. URL
https://xlang.ai/blog/osworld-verified.

13

https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2405.14573
https://www.similarweb.com/
https://arxiv.org/abs/2508.03923
https://arxiv.org/abs/2412.13678
https://arxiv.org/abs/2508.09123
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2505.13227
https://xlang.ai/blog/osworld-verified

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su,
Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou, and Graham
Neubig. Theagentcompany: Benchmarking llm agents on consequential real world tasks, 2024a.
URL https://arxiv.org/abs/2412.14161.

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, and
Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. arXiv preprint
arXiv:2412.09605, 2024b.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv
preprint arXiv:2412.04454, 2024c.

Tianci Xue, Weijian Qi, Tianneng Shi, Chan Hee Song, Boyu Gou, Dawn Song, Huan Sun, and Yu Su.
An illusion of progress? assessing the current state of web agents. arXiv preprint arXiv:2504.01382,
2025. URL https://arxiv.org/abs/2504.01382.

Chaoyun Zhang, Shilin He, Liqun Li, Si Qin, Yu Kang, Qingwei Lin, and Dongmei Zhang. Api
agents vs. gui agents: Divergence and convergence, 2025. URL https://arxiv.org/abs/
2503.11069.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents. In International Conference on Learning
Representations, 2024.

14

https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2504.01382
https://arxiv.org/abs/2503.11069
https://arxiv.org/abs/2503.11069

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

TABLE OF CONTENTS IN APPENDIX

A LLM Usage Statement 16

B System Details 16

B.1 Platform Implementation Details . 16

B.2 Initial Setup Details . 17

B.3 Agent Implementation Details . 18

B.3.1 Crowd-sourcing Data Collection Details 24

B.3.2 Evaluation Data Filtering Procedure . 25

C Elo Ranking Method 25

D Statistical Validation of Rankings 26

D.1 Bootstrap Confidence Intervals . 26

D.2 Permutation Tests and Effect Sizes . 26

D.3 Power Analysis . 27

D.4 Inter-Annotator Agreement (IAA) . 27

D.5 Noise Sensitivity Analysis . 27

D.6 Step-Limit Ablation Study . 27

D.7 Conclusion . 27

E Analysis Details 27

E.1 Setup Distribution Analysis. 27

E.2 Generalization Analysis . 28

E.3 OSWORLD Ablation Study . 29

E.4 Task Distribution Analysis Details . 30

E.5 Instruction and Trajectory Metric Computation 31

E.6 Setup Distribution Analysis. 32

E.7 Topic Clustering Details . 32

F Agent Behavior Analysis Details 33

G Software and Infrastructure Resources 34

H Reproducibility and Cost Analysis 34

I Additional Results 34

J Case Study Analysis 34

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

We provide a disclosure of how LLMs were used in the preparation of this work. LLMs were
employed as a general-purpose assistive tool in the following ways:

• Writing support and refinement: LLMs were used to assist with phrasing, grammar
checking, and stylistic polishing of the manuscript to improve clarity and readability. All
technical content, claims, and arguments were conceived, verified, and finalized by the
authors.

• Data analysis assistance: LLMs were occasionally used to help with exploratory data
analysis (e.g., generating Python code snippets for statistical tests, summarizing results of
bootstrapping or agreement studies), with all outputs verified and validated by the authors.

LLMs were not used for the ideation of research questions, experimental design, or the generation
of novel scientific claims. All conceptual contributions, dataset collection, experiments, and final
interpretations are the sole responsibility of the authors. We emphasize that LLMs are not contributors
or authors, and that the authors take full responsibility for the correctness and integrity of all content
reported in this paper.

B SYSTEM DETAILS

B.1 PLATFORM IMPLEMENTATION DETAILS

Figure 6: User interface of the COMPUTER AGENT ARENA platform. Users are presented with two
side-by-side VNC desktops representing anonymized CUA executions. Task instructions appear at
the top, while trajectory replays and voting options are shown below.

To support scalable evaluation of CUAs under realistic conditions, we extend the OSWorld image and
build a private Amazon Machine Image (AMI) deployed on AWS EC2. This AMI serves as the base
environment for launching on-demand virtual machines. Upon receiving a task execution request
from the frontend, our backend service either allocates two pre-warmed instances or dynamically
launches new EC2 instances depending on current load. Each evaluation session involves two such
virtual machines to facilitate parallel execution and pairwise comparison.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

For real-time human interaction, we enable WebSocket Secure (WSS) communication to expose
VNC (Virtual Network Computing) interfaces. These interfaces are embedded in the frontend using
an iframe-based VNC viewer, allowing users to directly observe and interact with the virtual desktop
in real time. This mechanism ensures a high-fidelity, low-latency connection, even under concurrent
usage. To ensure performance robustness, the infrastructure supports multi-region deployment and
load balancing, which minimizes cold start latency and improves responsiveness during high-traffic
periods.

Figure 6 provides a visual overview of the COMPUTER AGENT ARENA evaluation interface. On
the frontend, we implement the entire user interface in React and TypeScript. We leverage built-in
OBS (Open Broadcaster Software) services installed within the VM to record agent trajectories.
Specifically, we capture key frames before and after each agent-issued action (e.g., mouse click,
keystroke, scroll) and compile these frames into animated .gif files. These gifs are rendered
sequentially on the user interface to form an interpretable execution timeline. Each frame is annotated
with overlays (e.g., bounding boxes for clicks, keyboard icons for typing) to help users understand
the agent’s interaction logic at each step.

Figure 7: Evaluation form interface shown after users review the agent trajectories. Users select a
preferred agent (or tie), mark correctness labels for each agent, and can optionally provide comments.

To support pairwise evaluation, the two anonymous agent trajectories are rendered side-by-side. When
agents invoke the CALL_USER action during execution, the frontend renders a user-facing message
box to present the agent’s clarification query. After watching the side-by-side execution trajectories,
users are directed to the evaluation form (Figure 7). This form collects pairwise preference judgments
by asking users to indicate which agent performed better or whether both agents were equally good
or bad. Additionally, users assign correctness labels to each agent (Correct, Partially Correct, or
Wrong), allowing for fine-grained accuracy analysis. Optional text fields also enable users to explain
their decisions or report abnormal behavior. All evaluation artifacts, including task metadata, screen
recordings, and user responses, are logged for subsequent analysis and benchmarking.

B.2 INITIAL SETUP DETAILS

To ensure realistic diversity across evaluation environments and reduce duplication, we implement a
structured pipeline for configuring initial virtual machine states. Following the design philosophy of
OSWorld (Xie et al., 2024a), we predefine a large number of environment setups through scripted
configuration files. When a user initiates an evaluation session, the backend randomly selects
and applies one of these predefined scripts to both virtual machines, ensuring a synchronized and
comprehensive starting state.

Website Configuration. We curate a diverse pool of popular websites by crawling the top 100
high-traffic domains from SimilarWeb (Similarweb Ltd., 2025). After manual filtering to exclude
login-gated or geoblocked domains, we expand the pool by collecting up to 10 subdomains per
top-level site. These subdomains are injected into the browser history or opened as startup tabs
within the VM, providing agents with richer content structures and deeper navigation targets during
execution.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 1: Summary of Initial Environment Setup Components

Category Source Example Types Count
Websites SimilarWeb Wikipedia, YouTube, GitHub 89
Subdomains Manual Expansion en.wikipedia.org, studio.youtube.com 472
Applications Microsoft Store & Snapcraft LibreOffice, VLC, VS Code 12
Files Synthetic Corpus .docx, .xlsx, .pptx, .pdf, .py, .md 97

Application Configuration. To simulate realistic usage patterns, we preload the virtual machines
with over 20 frequently used desktop applications. These are sourced from the Microsoft App
Store (Microsoft Corporation, 2025) and Snapcraft (Canonical Ltd., 2025), spanning categories such
as document editing, media playback, messaging, and terminal utilities. Each application is installed
system-wide and accompanied by prewritten startup scripts to ensure reproducibility across instances.

File System Setup. We populate the virtual machine file system with over 100 heterogeneous
files, covering common formats such as .docx, .xlsx, .pptx, .pdf, .py, and .md. These files
simulate a working desktop environment and provide agents with realistic artifacts to manipulate
during task execution. To avoid agent overfitting, we update the file content monthly and apply
randomized filenames and folder structures at each session launch.

User Customization Interfaces. Beyond static setups, we implement a suite of “quick-start” APIs
that allow users to tailor the VM environment. Specifically:

• upload_file allows users to upload local files directly to both VMs.

• open_websites enables users to preload specific URLs into browsers.

• clone_repo automates the cloning of GitHub repositories via a single command.

These tools enhance fidelity and flexibility in modeling users’ native computing environments, making
the evaluation experience more aligned with realistic desktop usage scenarios.

B.3 AGENT IMPLEMENTATION DETAILS

Interaction Protocol. We model the agent-computer interaction as a sequential decision process:

(I, ⟨s0, a0⟩, ⟨s1, a1⟩, . . . , ⟨st, at⟩) (1)

Here, I is the initial task instruction provided by the user; si is the screenshot of the desktop at step i;
ai is the action taken by the agent at that step. The agent conditions its decisions on I , the current
observation st, and a history buffer of n past state-action pairs (n = 5 by default), allowing limited
memory and context tracking.

Observation. Each observation st is a full-color PNG screenshot of the entire virtual desktop,
captured at a fixed resolution of 1280×720. These raw pixels are encoded and sent to the agent model
without any additional metadata or structured UI representations.

We do not provide DOM trees, accessibility layers, or pre-parsed UI elements, due to their inherent
latency and inconsistency across software stacks. By enforcing a vision-only interface, we ensure
that agents are robust to general GUI variation and layout changes.

Action Space. Our platform adopts a structured action format modeled after the PyAutoGUI API.
The action space includes:

• Mouse Interactions: click(x, y), double_click(x, y), move(x, y),
scroll(amount)

• Keyboard Interactions: type(text), press(key), hotkey([key1, key2,
...])

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• Meta Actions: DONE (terminate when task is complete), FAIL (terminate if task is un-
achievable), CALL_USER (request user feedback or clarification)

All actions are serialized into a JSON-compatible function-call format that supports easy logging,
replay, and debugging.

Action Execution Workarounds. To ensure consistent and reliable agent behavior across diverse
operating systems and software environments, we introduce two key code-level workarounds that
address common compatibility and reliability issues in action execution.

On some systems, the pyautogui.write and typewrite functions suffer from unpredictable
behavior—especially for non-English input or special characters. To improve compatibility and
ensure multi-language text entry behaves consistently, we transform these commands into clipboard-
based pasting operations. Specifically, we use the pyperclip module to set clipboard contents
and then simulate a ctrl+v hotkey to inject the text. The original clipboard contents are saved and
restored to minimize side effects. The transformation logic is shown below:

def workaround_pyautogui_write(original_code: str) -> str:
import re
lines = original_code.splitlines(keepends=True)
pattern = re.compile(

r'^(\s*)pyautogui\.(write|typewrite)\s*\(\s*(["\'])(.*?)\3\s*(.*)\)\s*$'
)
has_write = any(pattern.match(line) for line in lines)
if has_write:

transformed_lines = ["import pyperclip\n",
"original_clipboard = pyperclip.paste()\n\n"]

for line in lines:
match = pattern.match(line)
if match is None:

transformed_lines.append(line)
else:

indent, _, _, text, _ = match.groups()
transformed_lines.append(f"{indent}pyperclip.copy({repr(text)})\n")
transformed_lines.append(f"{indent}time.sleep(0.2)\n")
transformed_lines.append(f"{indent}pyautogui.hotkey('ctrl','v')\n")
transformed_lines.append(f"{indent}pyperclip.copy(original_clipboard)\n")

return "".join(transformed_lines)
return original_code

def workaround_pyautogui_scroll(original_code: str) -> str:
import re
lines = original_code.splitlines(keepends=True)
pattern =

re.compile(r'^(\s*)pyautogui\.scroll\s*\(\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\)\s*$')↪→
has_scroll = any(pattern.match(line) for line in lines)
if has_scroll:

transformed_lines = ["import pyautogui\n"]
for line in lines:

match = pattern.match(line)
if match is None:

transformed_lines.append(line)
else:

indent, clicks, x, y = match.groups()
transformed_lines.append(f"{indent}pyautogui.moveTo({x}, {y})\n")
transformed_lines.append(f"{indent}pyautogui.scroll({clicks})\n")

return "".join(transformed_lines)
return original_code

Listing 1: PyAutoGUI Workaround

In certain environments, pyautogui.scroll behaves inconsistently when used with three ar-
guments (e.g., scroll(clicks, x, y)), especially on Windows or within virtual desktops.
To ensure coordinate-aware scroll behavior works uniformly, we split the scroll into two atomic
operations: first, moving the mouse to the intended location, then performing the scroll. The adjusted
transformation is shown below:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

These workarounds enable robust agent behavior under diverse conditions and reduce errors arising
from OS-specific inconsistencies. The transformation logic is applied automatically to all agent-
generated code prior to execution within the virtual environment.

Execution Interfaces. Agents interact with the virtual machine through two API calls:

• get_observation()→ Returns a base64-encoded PNG screenshot
• step(action)→ Executes the given action.

The interface is stateless and HTTP-based, allowing deployment across different VM backends and
containerized setups.

Model Integration. We support two modes of model integration:

1. Official Agent Implementation: For models such as OpenAI Operator or Claude-Sonnet-
CU, the agent logic is implemented and maintained by the model provider. We interface with
their inference server and wrap the input/output into our standardized protocol, translating
their tool calls into a unified action format.

2. Baseline Agent Implementation: For open-source models or checkpoints without official
implementations, we offer a default baseline wrapper. This wrapper is designed to handle
screenshot ingestion, instruction prompting, function call parsing, step-wise planning, and
tool-use execution across Ubuntu and Windows environments. The logic also includes
configurable termination criteria, retry-on-failure, and error reflection.

All logs, actions, screenshots, and intermediate CoTs are saved for every session to support evaluation
and visualization. The framework is open-sourced and modular, allowing easy integration of new
models.

Baseline Prompt Implementation. The default inference prompt used in our platform is structured
as follows:

System Prompt for Baseline Agent - Ubuntu

You are an agent performing desktop tasks as instructed, with
knowledge of computers and internet access. Your tool calls will
control mouse and keyboard actions on a computer.

Task Parameters:
- **Instruction**: {task_instruction}
- **Resolution**: {resolution}
- **Platform**: Ubuntu
- **System Password**: 'password' (for sudo rights if needed)

Ubuntu-Specific Instructions:
- **Desktop Path**: `/home/user/Desktop`

Observation Information:
Each step provides an observation that includes a screenshot with

these characteristics:
- If previous mouse actions didn't achieve the expected result, do

not repeat them, especially the last one - adjust the coordinate
based on the new screenshot

- Do not predict multiple clicks at once. Base each action on the
current screenshot; do not predict actions for elements or
events not yet visible in the screenshot.

- Launching applications may take some time to appear on the
desktop. If the screenshot indicates that the correct
application has already been clicked, do not click it again-wait
for it to open instead.

Tool Call Information:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

You are provided with computer-use tools which are defined in the
tools clearly, you can use them to perform the task.

- REQUIRED: Accurate Positioning - Base each click/move/drag as
precisely as possible on the screenshot coordinates. Use visual
cues to approximate the exact location of the target.

- REQUIRED: Wait between multiple actions.

Response Structure:
- Current observation analysis
- Results of any previous actions
- Any adjustments needed based on feedback
- The tool call you will use

Requirements:
- YOU MUST USE THE PROVIDED TOOLS IN EVERY RESPONSE TO PERFORM THE

TASK IN COMPUTER. ONLY SKIP TOOL IF YOU HAVE FINISHED THE TASK.
- You are a computer-use agent - please keep executing on the

computer until the user's query is completely resolved, before
ending your turn and yielding back to the user. Only terminate
your turn when you are sure that the problem is solved.

- You MUST plan extensively before each function call, and reflect
extensively on the outcomes of the previous function calls. DO
NOT do this entire process by making function calls only, as
this can impair your ability to solve the problem and think
insightfully.

The system prompt implementation for Windows platform is similar to the Ubuntu platform, only
replacing ’Platform-Specific Instructions’.

System Prompt for Baseline Agent - Windows

You are an agent performing desktop tasks as instructed, with
knowledge of computers and internet access. Your tool calls will
control mouse and keyboard actions on a computer.

Task Parameters:
- **Instruction**: {task_instruction}
- **Resolution**: {resolution}
- **Platform**: Windows

Windows-Specific Instructions:
- **Desktop Path**: `C:\\Users\\Administrator\\Desktop`
- **Open Terminal Command**: `Win+R`, then type `cmd` and press `

Enter`
- **Application Launch**: Desktop applications require a double-

click to open

Observation Information:
Each step provides an observation that includes a screenshot with

these characteristics:
- If previous mouse actions didn't achieve the expected result, do

not repeat them, especially the last one - adjust the coordinate
based on the new screenshot

- Do not predict multiple clicks at once. Base each action on the
current screenshot; do not predict actions for elements or
events not yet visible in the screenshot.

- Launching applications may take some time to appear on the
desktop. If the screenshot indicates that the correct
application has already been clicked, do not click it
a g a i n wait for it to open instead.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Tool Call Information:
You are provided with computer-use tools which are defined in the

tools clearly, you can use them to perform the task.
- REQUIRED: Accurate Positioning - Base each click/move/drag as

precisely as possible on the screenshot coordinates. Use visual
cues to approximate the exact location of the target.

- REQUIRED: Wait between multiple actions.

Response Structure:
- Current observation analysis
- Results of any previous actions
- Any adjustments needed based on feedback
- The tool call you will use

Requirements:
- YOU MUST USE THE PROVIDED TOOLS IN EVERY RESPONSE TO PERFORM THE

TASK IN COMPUTER. ONLY SKIP TOOL IF YOU HAVE FINISHED THE TASK.
- You are a computer-use agent - please keep executing on the

computer until the u s e r s query is completely resolved, before
ending your turn and yielding back to the user. Only terminate

your turn when you are sure that the problem is solved.
- You MUST plan extensively before each function call, and reflect

extensively on the outcomes of the previous function calls. DO
NOT do this entire process by making function calls only, as
this can impair your ability to solve the problem and think
insightfully.

Function Call Tools Definition for Baseline Agent

tools = {
"type": "function",
"function": {
"name": "desktop_automation",
"description": "Perform desktop automation actions like mouse

movements, clicks, keyboard input, and more.",
"parameters": {

"type": "object",
"properties": {

"action": {
"type": "string",
"enum": [

"key",
"hold_key",
"type",
"mouse_move",
"left_mouse_down",
"left_mouse_up",
"left_click",
"left_click_drag",
"right_click",
"middle_click",
"double_click",
"triple_click",
"scroll",
"wait",
"fail",
"done",
"call_user"

],

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

"description": "The action to perform. Available
actions include keyboard input, mouse movements,
clicks, and system operations. call_user is

used to call the user for further query."
},
"coordinate": {

"type": "array",
"items": {

"type": "integer"
},
"description": "The (x, y) pixel coordinates for

mouse actions. Required for mouse_move and
left_click_drag and scroll actions"

},
"duration": {

"type": "integer",
"description": "Duration in seconds for hold_key

and wait actions."
},
"scroll_amount": {

"type": "integer",
"description": "Number of 'clicks' to scroll.

Required for scroll action."
},
"scroll_direction": {

"type": "string",
"enum": ["up", "down", "left", "right"],
"description": "Direction to scroll. Required for

scroll action."
},
"start_coordinate": {

"type": "array",
"items": {

"type": "integer"
},
"description": "Starting (x, y) coordinates for

drag actions. Required for left_click_drag."
},
"text": {

"type": "string",
"description": "Text input for type, key, and

hold_key actions. Can also be used with click or
scroll actions to hold down keys while

performing the action."
}

},
"required": ["action"]

}
}

}

Agent Sampling To ensure a meaningful and balanced evaluation of CUA performance, we curated
a pool of 12 models from two categories: (1) public CUA implementations that have reported results
on existing computer-use benchmarks, and (2) general-purpose vision-language models (VLMs)
with sufficient instruction-following capabilities, included to assess their zero-shot utility in realistic
computer environments.

During each evaluation session, we sample two agents uniformly at random from the available pool.
To prevent sampling bias, newly added agents are temporarily upweighted until their total vote count
reaches parity with existing models. This ensures fair exposure in pairwise comparisons and stabilizes
Elo ranking calculations.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

To safeguard the quality of user experience and filter out underperforming models, we apply a
lightweight correctness-based screening policy: if any model receives fewer than 10% correctness
ratings over a window of 100 user votes, it is automatically retired from the pool and excluded
from further evaluation. This policy mainly targets general VLMs lacking GUI grounding, whose
performance may be unreliable in visual desktop environments.

Through this hybrid sampling and filtering strategy, we maintain both the diversity and reliability of
agent comparisons while preserving fairness across the evaluation process.

B.3.1 CROWD-SOURCING DATA COLLECTION DETAILS

Consent and Ethical Compliance Before participating, all users—both Prolific-based and pub-
lic—were required to review and agree to a digital consent form that outlined the nature and scope of
data collection. The consent form clearly specified:

• The purpose of the study: to evaluate AI agents in realistic computer-use scenarios.

• The types of data collected: task instructions, screenshots, agent actions, user votes, and
optional comments.

• The intended use of the data: for academic research and potential release under a permissive
license (e.g., CC-BY 4.0).

• Voluntary participation and withdrawal: participants could exit at any time without providing
a reason, and without loss of compensation or access.

• Anonymity and privacy: participants were instructed not to include any personally identifi-
able information in their submissions.

All study procedures were reviewed and deemed exempt by our institutional ethics board. For the
public deployment, the terms of service shown on the platform homepage served as a binding usage
agreement. The ToS reiterated the research purpose, prohibited inappropriate use, and informed users
that submitted data may be reused under open academic licenses.

Evaluation Crowdsourcing To collect human preference data for evaluating CUAs, we deployed
our study on two channels: (1) unpaid public users on the COMPUTER AGENT ARENA platform, and
(2) paid participants recruited via the Prolific platform (Peer et al., 2021), a reputable crowdsourcing
service widely used for academic research.

For the Prolific-based study, we designed a structured evaluation task in which participants were
asked to: (i) submit real-world computer-use tasks they personally care about, and (ii) evaluate
anonymized trajectories from two competing agents using a pairwise preference interface. Before
starting, all participants were required to review and agree to a digital consent form clearly describing
the purpose of the study, data collected (task instructions, votes, optional comments), and their right
to withdraw at any time without penalty.

Participants were pre-screened through Prolific’s internal filters to ensure prior familiarity with large
language models (e.g., ChatGPT, Claude), ensuring informed judgments. In accordance with the
Prolific platform’s fair pay policy, we paid all participants with the price of £6/hour, which meets or
exceeds the legal minimum payment requirement on the platform.

In parallel, unpaid users accessing the public version of COMPUTER AGENT ARENA were offered
free usage of the platform and invited to contribute evaluation data on a voluntary basis. These users
also interacted with the same anonymized evaluation interface and followed the same task submission
and voting protocols.

In total, we collected 682 valid evaluation votes from Prolific, contributed by 481 unique participants
who successfully completed at least one voting task. These users spanned a range of demographic
backgrounds and were geographically distributed across English-speaking regions. Their contribu-
tions accounted for approximately one-third of the final evaluation dataset and provided a reliable
baseline of high-quality, vetted user judgments.

To quantify the resulting diversity, we conducted a post-task demographic survey of our Prolific
annotators, with the following results:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• Participants spanned 20+ countries across North America, Europe, and Asia
• 47% held a bachelor’s degree or higher, with the rest covering high school and associate-level

education
• Employment status included full-time (32%), part-time (21%), and student (26%) popula-

tions
• Age distribution was broad (mean ≈ 33.2 years, SD ≈ 9.6)
• Ethnic backgrounds included White (54%), Asian (13%), and Black (8%)

These findings suggest that our annotator pool reflects a wide range of real-world user perspectives.
We believe the resulting benchmark captures realistic and representative computer-use behaviors
across a broad population.

B.3.2 EVALUATION DATA FILTERING PROCEDURE

To ensure the reliability and relevance of the evaluation data, we performed a multi-stage post-hoc
filtering process combining automated heuristics with manual review. The goal was to retain only
high-quality, executable, and task-relevant sessions for leaderboard ranking and agent behavior
analysis.

Automated Filtering We first applied a set of automatic filters to remove:

• Duplicate or near-duplicate task instructions, based on normalized string matching and
embedding similarity using SentenceTransformers (cosine similarity > 0.98).

• Off-topic or irrelevant queries, such as:
– Non-computer-use tasks (e.g., “What is 2 + 2?”, “Tell me a joke”)
– Chit-chat or open-ended dialogue prompts
– Content requesting hallucinated data (e.g., “Give me a fake email address”)

• Tasks incompatible with GUI-based execution, including those requiring internet accounts,
payment, or system-level changes (e.g., rebooting).

Manual Review To further improve data quality, we conducted a manual verification pass over the
filtered dataset:

• 3 human reviewers (including one of the authors) independently reviewed randomly
sampled evaluation sessions (totaling ∼600) to ensure task executability and validity.

• Sessions with technical problems—such as browser rendering failures, agent output trunca-
tion, or corrupted trajectory logs—were flagged and removed.

• Votes with both agent outputs missing, or showing formatting artifacts (e.g., empty responses,
code-only dumps without interaction), were discarded.

Resulting Dataset After filtering, we retained 2,201 high-quality pairwise votes, each associated
with a valid computer-use task and two successfully executed agent trajectories.

C ELO RANKING METHOD

To construct a dynamic and interpretable leaderboard based on human preference votes, we adopt an
Elo-style ranking system grounded in the Bradley–Terry model (Bradley & Terry, 1952), as widely
used in other pairwise evaluation settings (Chiang et al., 2024; Chi et al., 2025).

Each evaluation session results in a comparison outcome between two anonymized agents mL
i and

mR
i . We denote the i-th pairwise comparison result as:

xi = (mL
i ,m

R
i), yi ∈ {1, 0, 1

2},

where yi = 1 indicates the left agent wins, 0 the right wins, and 1
2 denotes a tie (including both “tie”

and “tie (both bad)” responses, which make up roughly 33% of all votes).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

We assign each agent m a real-valued strength score βm, and model the win probability of the left
agent as:

Pr(mL
i ≻ mR

i) =
exp(βmL

i
)

exp(βmL
i
) + exp(βmR

i
)
.

We then compute β ∈ RM by maximizing the (regularized) log-likelihood over all recorded votes:

L(β) =
n∑

i=1

log Pr(yi | xi;β),

where ties are modeled as the average of the two win probabilities.

For interpretability, we convert the strength scores to standard Elo ratings via:

Em = 400 log10(e
βm) + 1000,

such that all agents begin with an Elo score of 1000 and adjust as more evidence accumulates.

To stabilize the leaderboard and report uncertainty, we compute 95% confidence intervals using
bootstrapping (1,000 resamples over vote logs). Agents are ranked by the lower bound of their Elo
confidence interval to ensure conservative movement and mitigate volatility when differences are not
statistically significant.

To better contextualize the Elo leaderboard results, we include several supplementary visualizations
that capture vote distribution, model correctness, and head-to-head performance dynamics. As
shown in Figure 14, each CUA model received a reasonably balanced number of votes, with newly
added models temporarily boosted in sampling frequency to ensure coverage. Figure 15 reports the
user-assessed correctness rate for each agent, reflecting how often their outputs were deemed valid
across all tasks.

To examine inter-model interactions in more detail, Figure 16 presents a pairwise heatmap of vote
counts between agent pairs, illustrating the evaluation density across matchups. Building on this,
Figure 17 shows the empirical win rates between agents, highlighting not just the aggregate strength
but also performance asymmetries in specific matchups—for instance, some models consistently
outperform certain others while struggling elsewhere.

Lastly, Figure 18 visualizes the pairwise win probabilities predicted from our fitted Elo model, offering
a smooth, interpretable estimate of how likely each agent is to win in head-to-head comparisons.
These analyses collectively validate the robustness of our ranking method and reveal fine-grained
interaction patterns that go beyond overall Elo scores.

D STATISTICAL VALIDATION OF RANKINGS

To ensure that the ranking differences reported in COMPUTER AGENT ARENA are robust and not
artifacts of sampling variance or annotator subjectivity, we conducted a series of statistical validation
experiments. Below we detail the methodology, results, and conclusions.

D.1 BOOTSTRAP CONFIDENCE INTERVALS

We applied bootstrap resampling (1,000 iterations) over the collected pairwise preference votes. Elo
scores were recomputed in each resample, and we report bias-corrected and accelerated (BCa) 95%
confidence intervals. These intervals, visualized in Figure 2b, quantify uncertainty in model rankings.
Notably, top-ranked models (e.g., Claude Sonnet 4 vs Claude 3.7 Sonnet) maintain non-overlapping
intervals, supporting the reliability of observed differences.

D.2 PERMUTATION TESTS AND EFFECT SIZES

To evaluate whether observed pairwise win-rate differences could arise by chance, we performed
permutation tests with 5,000 random shuffles of preference labels. This generated a null distribution
of Kendall’s τ correlations and pairwise win rates. The observed global ranking achieved τ = 1.0
compared to a null mean of 0.004 (std 0.276), yielding p = 2 × 10−4. In addition, we conducted

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

two-sided z-tests on all model pairs using bootstrap-estimated Elo and standard errors. After
Holm–Bonferroni correction, 95% comparisons remained significant at α = 0.05. We also report
effect sizes using Cohen’s d, which consistently indicated medium-to-large effects in the most critical
comparisons (e.g., Claude 3.7 Sonnet vs GPT-4.1).

D.3 POWER ANALYSIS

We performed a power analysis to assess whether the collected number of votes is sufficient to detect
meaningful effects. Assuming a conservative medium effect size (∆ Elo = 50, corresponding to 57%
win rate), our dataset with n = 1, 661 votes provides ≈ 0.90 power to detect differences at α = 0.05.
This analysis confirms that the study is well-powered for medium effects, though smaller differences
between closely-ranked models may require additional votes.

D.4 INTER-ANNOTATOR AGREEMENT (IAA)

To quantify annotation reliability, we randomly sampled 100 trajectories and had them independently
labeled by three annotators for multiple attributes: preferences, correctness, safety, and efficiency.
Agreement was measured using Krippendorff’s α:

• Preferences: α = 0.72

• Correctness: α = 0.78

• Safety: α = 0.68

• Efficiency: α = 0.70

These results indicate moderate-to-strong agreement even for open-ended GUI tasks, validating the
consistency of human judgments.

D.5 NOISE SENSITIVITY ANALYSIS

To examine robustness under noisy annotations, we randomly perturbed 10–30% of votes and
recomputed Elo scores. Kendall’s τ correlation with the original ranking remained high: τ = 0.87
(10% noise), τ = 0.76 (20%), and τ = 0.61 (30%). This suggests that rankings remain stable under
moderate subjectivity, though extreme noise can affect closely ranked models.

D.6 STEP-LIMIT ABLATION STUDY

Since agent trajectories are capped at 50 steps, we investigated whether this limit biases rankings
against long-horizon strategies. We truncated 100 pairwise trajectories to the first 15 steps and
recollected votes from three annotators. The recomputed Elo scores correlated with the original
ranking at ρ = 0.71 (Spearman), indicating moderate sensitivity to trajectory depth. This suggests
that step limits may underrepresent agents with strong long-term planning ability.

D.7 CONCLUSION

Together, these analyses provide convergent evidence that our reported ranking differences are
statistically significant, robust to sampling variance, and supported by consistent human judgments.
While sensitivity analyses highlight areas for future work—particularly around closely ranked models
and long-horizon tasks—the overall findings are reliable within the current evaluation design.

E ANALYSIS DETAILS

E.1 SETUP DISTRIBUTION ANALYSIS.

To better understand how real users define computer-use tasks, we analyzed the distribution of initial
environment setups selected on COMPUTER AGENT ARENA. The most frequently chosen setups
involved Chrome browsers, LibreOffice applications, and custom file uploads. A closer inspection of
Chrome-based sessions further reveals that users commonly visited domains related to web search

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Chrome
45.5%

Uploaded Fil
e

14.8%

Li
br

eO
ff
ic

e
14

.1
%

Google W
orks

pace

7.93%

Se
tti
ng
s

5.
11
%

VS
Co
de

3.
42
%

G
IM
P

2.
92
%

W
in

do
w

s
Pa

in
t

2.
61

%

V
LC

1.97%

PD
F

1.66%

Chrome Uploaded File
LibreOffice Google Workspace
Settings VSCode
GIMP Windows Paint
VLC PDF

(a) distribution of user-selected
environment setups.

amazon.com

google.com

github.com

ikea.com

apple.com

espn.com

yelp.com

huggingface.co

arxiv.org

ebay.com

twitch.tv

kaggle.com

bbc.com
nytimes.com

leetcode.com

stackoverflow.com

airbnb.com

nba.com

codesandbox.io

nike.com

0

50

100

150

50

100

150

count

Domain Distribution for Chrome URLs

Top-Level Domains
C
ou

nt

(b) Top domain categories accessed under Chrome setups.

Figure 8: User behavior analysis on COMPUTER AGENT ARENA. (a) Environment setup distribution.
(b) Domain categories in web browsing tasks.

(e.g., Google, Bing), e-commerce (e.g., Amazon, eBay), and technical resources (e.g., GitHub, Stack
Overflow). These patterns indicate that real users tend to evaluate CUAs on utility-driven work-
flows—such as web browsing, information retrieval, and document editing—rather than on creative
or leisure-oriented applications, which highlights a practical focus in current CUA expectations: users
prioritize performance in high-frequency, productivity-centric tasks, while evaluation in casual or
exploratory domains remains underexplored.

E.2 GENERALIZATION ANALYSIS

Clau
de

 4
So

nn
et

Clau
de

 3.
7 S

on
ne

t

UI-TA
RS-1

.5

Ope
rat

or

Clau
de

 3.
5 S

on
ne

t

Qwen
 2.

5 V
L 7

2B

Gem
ini

2.5
 Pr

o

GPT-
4.1

o4
-m

ini
0.0

0.1

0.2

0.3

0.4

0.5

Ge
nS

co
re

0.552
0.530

0.406

0.266

0.148

0.092

0.012 0.008 0.006

Agent Generalization Score

(a)

0.0 0.1 0.2 0.3 0.4 0.5

GenScore (Generalization Score)

850

900

950

1000

1050

1100

1150

Ar
en

a
Sc

or
e

Claude 4 SonnetClaude 3.7 Sonnet

UI-TARS-1.5

Operator

Claude 3.5 Sonnet

Qwen 2.5 VL 72B

Gemini 2.5 Pro

GPT-4.1

o4-mini

Correlation: 0.949***
p-value: 0.0001

GenScore vs Arena Score Correlation

(b)

Figure 9: Generalization across topics. (a) Bar plot of GenScore for the top agents (sorted
descending). A higher GenScore indicates both strong mean correctness and low variance across
task categories. (b) Scatter of GenScore versus the arena-wide Elo-based Arena Score; we observe a
strong correlation (r = 0.949, p = 0.0001), suggesting that success on the crowdsourced platform
tightly tracks an agent’s cross-domain generalization ability.

While Elo captures pairwise preferences, it does not tell us whether a CUA is consistently good
across heterogeneous task types. Because COMPUTER AGENT ARENA crowdsources tasks from real
users, the resulting distribution is highly diverse (Sec. 10a). An agent that overfits a few niches will
underperform in the arena as a whole. We therefore introduce a generalization score (GenScore) that
rewards both high accuracy and uniformity across topic categories.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Using the topic taxonomy derived by our clustering pipeline (Fig. 10a), we compute, for each agent a
and topic t ∈ T , a correctness rate

ra,t =
correct tasks of a in t

total tasks of a in t
.

GenScore definition. Let ra = {r̂a,t}t∈T be the smoothed rate vector of agent a across K = |T |
topics. We compute:

µa =
1

K

∑
t

r̂a,t,

σa =

√
1

K

∑
t

(r̂a,t − µa)2, CVa =
σa

µa
,

HMa =
K∑

t 1/r̂a,t
,

ma = min
t

r̂a,t.

We then define
GenScorea = HMa ×max

(
0, 1− CVa

)
× ma

µa
.

This multiplicative form (i) uses HM to punish low-performing topics, (ii) rewards uniformity through
(1− CV), and (iii) explicitly guards the worst-case via ma/µa.

Figure 9a shows GenScore for top agents; Fig. 9b visualizes its relationship with the platform-wide
Elo-based Arena Score. We observe a strong Pearson correlation (r = 0.949, p = 0.0001) between
GenScore and Arena Score. This suggests that success on COMPUTER AGENT ARENA is tightly
linked to an agent’s ability to generalize across many real-world task types, rather than excelling in
a small subset. Concretely, models such as Claude 4 Sonnet and Claude 3.7 Sonnet achieve both
high mean correctness and low variance across topics, yielding the highest GenScores. In contrast,
lower-ranked models show not only lower average correctness but also high dispersion—indicating
pronounced weaknesses on certain categories (e.g., spreadsheet or document-editing tasks).

COMPUTER AGENT ARENA’s crowdsourcing pipeline naturally yields a broad, utility-driven task
mix, agents are implicitly required to be robust generalists. GenScore makes this requirement
explicit and provides a compact diagnostic: models that score well on the platform also maintain
balanced performance across categories. Going forward, we argue that reporting such generalization
metrics—alongside global Elo—better reflects what users actually need from CUAs in the wild.

CUA performance varies substantially by task category, with open-ended tasks amplifying
model differences. To examine task-specific performance, we cluster user-submitted instructions
into six semantic categories using the Cilo pipeline (Tamkin et al., 2024). We then recompute Elo
scores per category across all models (Figure 10), and observe substantial Elo margins depending
on task type. Open-ended categories like Information Retrieval and Content Creation yield the
largest performance gaps, Conversely, while more deterministic categories like UI Navigation and
OS Operations yield tighter Elo differences. These findings underscore the importance of evaluating
CUAs across a broad spectrum of task types. Uniform benchmark scores may obscure large model
disparities that only emerge under complex, interactive, and underspecified conditions—precisely the
kinds of tasks real users often submit.

E.3 OSWORLD ABLATION STUDY

To examine the impact of task distribution on agent performance, we randomly sampled 1,000 user-
submitted tasks from COMPUTER AGENT ARENA and used GPT-4o-mini to classify them according
to semantic similarity to OSWorld. We prompted the model with a binary choice prompt comparing
each task to a curated set of OSWorld exemplars. As shown in Table 2, only 20.7% of tasks were
deemed in-domain, while the majority (79.3%) were classified as out-of-domain, highlighting the
broader topical spread of real user inputs in COMPUTER AGENT ARENA.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Information
Retrieval

42.2%

Content
Creation

31.1%
UI

Technical &
Domain-Specific

11.7%

Navigation
6.9%

OS Operations
8.2%

Online Information
Retrieval

Online Shopping
Assistance

Online Media Search

Multilingual Online Actions

Image Editing
Requests

Spreadsheet
Creation

Presentation
Design Tasks

Document Editing
Instructions

Spreadsheet Formatting Tasks Coding and Development Environment
VLC Media Player Assistance

Task and
Event Management

Desktop Customization

Document and
File Management

Hierarchical Task Category Distribution

(a) Hierarchical topic clusters of user-submitted tasks.

Information Retrie
val

Content Creation

Technical and Domain-Specific

UI Navigation

OS Operations

Miscellaneous

950

975

1000

1025

1050

1075

1100

E
lo

 S
co

re

Claude 3.7 Sonnet
Claude Sonnet 4
UI-TARS-1.5
Claude 3.5 Sonnet
Operator
Qwen 2.5 VL 72B

(b) Elo scores of models across task categories.

Figure 10: Analysis of task taxonomy and model performance by category. Figure (a) shows a
sunburst visualization of hierarchical task categories derived via topic modeling. Figure (b) presents
model Elo scores grouped by task type, illustrating how task taxonomy amplifies performance
differences across CUAs.

Table 2: Task distribution by semantic similarity to OSWorld (based on GPT-4o-mini classification).

Category Count Percentage
In-Domain Tasks (similar to OSWorld) 207 20.7%
Out-of-Domain Tasks (diverse / open-ended) 793 79.3%

Total 1,000 100.0%

OSWorld Ablation Study Classification Prompt

Compare the following task with the set of tasks from OSWorld.

Task to analyze: "{task}"

Here is a whole set of OSWorld tasks:
{osworld_task_examples}

Rate the similarity of the task to analyze with the OSWorld tasks
on a scale:

1 - Similar (the task is very similar to some of the tasks in
OSWorld, maybe just a little different)

2 - Not similar (the task is different from tasks in OSWorld)

Provide only the number 1, 2 as your answer.

E.4 TASK DISTRIBUTION ANALYSIS DETAILS

To compare task distributions across benchmarks, we sample task instructions from COMPUTER
AGENT ARENA, OSWorld (Xie et al., 2024a), WebVoyager (He et al., 2024), and WebArena (Zhou
et al., 2024). We embed all instructions using the text-embedding-3-small model and project
them into a two-dimensional space via Principal Component Analysis (PCA) to visualize semantic
coverage. This highlights the broader and less clustered semantic spread of real user instructions in
COMPUTER AGENT ARENA.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Claude 3.7 Sonnet

Claude Sonnet 4

UI-TARS-1.5

Operator

Claude 3.5 Sonnet

Qwen 2.5 VL 72B Instruct

o4-mini
Gemini 2.5 Pro

GPT-4.1

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

10.0%

20.0%

30.0%

40.0%

50.0%

Win Rate

C
or

re
ct

 R
at

e

(a) Scatter plot of agent win rate and correctness rate.

50 40 30 20 10 0 10 20
Step Difference (+ means winner took MORE steps)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

D
en

si
ty

Mean: -1.15

Step Difference Distribution (Winner minus Loser, Both Correct)

50 40 30 20 10 0 10
Time Difference in seconds (+ means winner took MORE time)

0.00

0.02

0.04

0.06

0.08

D
en

si
ty

Mean: -1.93

Time Difference Distribution (Winner minus Loser, Both Correct)

(b) Distribution of step and latency differences for agent
pairs with both marked correct.

Figure 11: User preference analysis based on agent behavior. Figure (a) shows a positive correlation
between correctness rate and user win rate across agents. Figure (b) illustrates that differences
in trajectory length and response latency do not significantly affect user preference in correctness
controlled settings.

E.5 INSTRUCTION AND TRAJECTORY METRIC COMPUTATION

To compare the complexity and ambiguity of user instructions across benchmarks, we compute four
metrics uniformly for all tasks: instruction length, proportion of open-ended tasks, unigram perplexity,
and average trajectory length.

Instruction Length. We tokenize each task instruction using standard whitespace and punctuation
rules and count the number of tokens. The results are aggregated to compute the average instruction
length per benchmark.

Open-Ended Task Detection. To estimate the proportion of open-ended or subjective tasks, we
employ a GPT-4o-mini classifier using the following prompt:

Open-ended Task Classification Prompt

You are an expert at analyzing computer-use task instructions to
determine if they are open-ended or subjective tasks.

A task is considered open-ended or subjective if:
1. It has multiple valid solutions or approaches
2. The success criteria are not strictly objective
3. It requires creative or subjective judgment
4. The outcome can vary based on personal interpretation
5. the answer cannot be evaluated by a simple rule-based judgement

Please analyze the given task instruction and respond in JSON
format with:

{
"is_open_ended": true/false,
"confidence": 0-1,
"explanation": "brief explanation of your reasoning"

}

For each task, we collect the binary open-endedness decision and compute the share of positive cases
within each benchmark.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Unigram Perplexity. We use a smoothed unigram model to measure the lexical ambiguity of task
instructions. The corpus-wide token distribution is first collected, and perplexity for each instruction
is computed as:

Perplexity(x) = exp

(
− 1

N

N∑
i=1

log Pr(wi)

)

where Pr(wi) =
count(wi)+1

total+V , with V denoting the vocabulary size. Higher perplexity indicates more
unpredictable and context-dependent language, suggesting more ambiguous or under-specified input.

Trajectory Length. For COMPUTER AGENT ARENA, we compute the trajectory length of each
agent-task interaction as the number of executed steps (actions). We include only trajectories marked
as correct by human evaluators. For OSWorld and WebVoyager, we extract golden trajectory lengths
as reported in their official benchmarks. WebArena is excluded from this comparison due to its lack
of standardized trajectory ground-truth.

E.6 SETUP DISTRIBUTION ANALYSIS.

(a) distribution of user-selected
environment setups. (b) Top domain categories accessed under Chrome setups.

Figure 12: User behavior analysis on COMPUTER AGENT ARENA. (a) Environment setup distribution.
(b) Domain categories in web browsing tasks.

To better understand how real users define computer-use tasks, we analyzed the distribution of initial
environment setups selected on COMPUTER AGENT ARENA. The most frequently chosen setups
involved Chrome browsers, LibreOffice applications, and custom file uploads. A closer inspection of
Chrome-based sessions further reveals that users commonly visited domains related to web search
(e.g., Google, Bing), e-commerce (e.g., Amazon, eBay), and technical resources (e.g., GitHub, Stack
Overflow). These patterns indicate that real users tend to evaluate CUAs on utility-driven work-
flows—such as web browsing, information retrieval, and document editing—rather than on creative
or leisure-oriented applications, which highlights a practical focus in current CUA expectations: users
prioritize performance in high-frequency, productivity-centric tasks, while evaluation in casual or
exploratory domains remains underexplored.

E.7 TOPIC CLUSTERING DETAILS

To investigate how model performance varies by task type, we apply unsupervised topic modeling to
group user-submitted instructions into semantic categories.

Following the Clio pipeline (Tamkin et al., 2024), we first encode all task instructions using Sentence-
BERT embeddings. These embeddings are then projected using PCA for dimensionality reduction.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

We perform initial coarse-grained clustering with KMeans, using the Elbow Method to select the
optimal cluster count based on within-cluster variance. To refine results, we apply agglomerative
hierarchical clustering over the KMeans centroids using Ward’s linkage method, which enables the
construction of a dendrogram for topic hierarchy visualization.

Each final cluster is then manually reviewed to assign interpretable labels. This process results in a
six-category taxonomy:

• Information Retrieval (e.g., search, browse, summarize web content)
• Content Creation (e.g., writing, editing, preparing slides)
• Technical and Domain-Specific Tasks (e.g., code debugging, finance tools)
• UI Navigation (e.g., click, type, scroll workflows)
• OS Operations (e.g., file renaming, screenshot, task switching)

This hierarchical clustering approach provides a flexible way to capture semantic variation across
real user instructions, allowing us to conduct category-specific evaluations and better understand the
strengths and weaknesses of different CUAs across diverse task profiles.

(a) Impact of repeated action ratio on performance. (b) Impact of reflection frequency on performance.

Figure 13: Relationship between agent behavior patterns and performance metrics.

F AGENT BEHAVIOR ANALYSIS DETAILS

To better understand how users perceive different agent behaviors, we analyze two specific patterns
observable from execution trajectories: repetition and reflection.

Repetition Ratio. We define the repetition ratio as the proportion of actions within a trajectory
that belong to contiguous segments of near-identical steps. Specifically, we scan the action sequence
(a1, a2, . . . , aT) and mark segments where three or more consecutive actions share high structural
and parametric similarity—e.g., repeated scrolls or identical clicks. Repetition often reflects failure
to adapt or unclear intent from the model.

Reflection Frequency. We count the number of steps whose Chain-of-Thought (CoT) outputs
contain introspective or self-corrective language (e.g., “think”, “retry”, “mistake”, “adjust”). These
steps are labeled as reflective, indicating the model is engaging in self-monitoring or explicit reasoning
before issuing commands.

Regression Analysis. For both behavioral metrics, we perform linear regression against model
win rate and correctness. Repetition negatively correlates with user preference and correctness,
confirming that users tend to penalize agents that exhibit stuck or redundant behavior. Conversely,
reflection is positively associated with both outcomes, suggesting that agents that appear deliberate
and thoughtful are better received, even if they do not fully solve the task.

This analysis complements the visual trends shown in Figure E.7 and supports the design implication
that lightweight behavioral signals can serve as useful proxies for assessing agent robustness and user
trust.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

G SOFTWARE AND INFRASTRUCTURE RESOURCES

Our platform and experiments were built using a combination of open-source and proprietary software
components. Below, we list the key software tools and dependencies used throughout the development
and deployment of COMPUTER AGENT ARENA:

• AWS EC2: Hosts the virtual machines used for agent execution and screen recording.

• AWS S3: Stores large artifacts such as task logs, screen recordings, and agent-generated
output traces.

• OBS: OBS software for recording agent trajectories.

• Vision-Language Models (VLMs): Accessed via OpenAI, Google, Anthropic APIs; local
inference used for selected open models (e.g., MiniGPT-4, LLaVA)

• Frontend: React (TypeScript), TailwindCSS for styling

• Backend: FastAPI + PostgreSQL for logging, orchestration, and user/session management

• Data Analysis and Visualization: Python (NumPy, pandas, matplotlib, seaborn, scikit-
learn)

All custom components, orchestration scripts, and evaluation UIs will be released as part of our
open-sourced codebase to facilitate reproducibility and community adoption.

H REPRODUCIBILITY AND COST ANALYSIS

Full Reproducibility Commitment. We release all assets under an open-source license, including:

• End-to-end platform code (frontend/backend, evaluation logic, ranking scripts)

• Pre-built Amazon Machine Images (AMIs) for both Windows and Ubuntu, ensuring consis-
tent virtual machine environments

• A plug-and-play agent hub for integrating external models and enabling third-party leader-
board participation

Evaluation Cost and Throughput. We provide a detailed breakdown of the per-evaluation cost:

• Compute: Each comparison runs two agents on t3.medium EC2 instances for approxi-
mately 15 minutes, costing about $0.02 USD per session.

• API usage: Using Claude 3.7 Sonnet as a reference, each session consumes about $0.72
USD.

• Annotation: Paid annotators are compensated at $0.50 USD per qualified evaluation.

Therefore, the total estimated cost per evaluation is approximately $1.24 USD.

Summary. We believe COMPUTER AGENT ARENA delivers a reproducible and affordable evalua-
tion pipeline with high community utility for benchmarking, training, and behavioral diagnostics.

I ADDITIONAL RESULTS

J CASE STUDY ANALYSIS

To complement our quantitative evaluation, we present a qualitative case study showcasing how real
users interact with agents in complex, multi-step computer-use tasks. The example below illustrates a
scenario where the user requests the agent to encrypt a PDF document using a specific password. This
task requires not only navigating a real desktop interface but also verifying the success of encryption
through file reopening.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

483 483

452
436 434

375

334 325

Qwen 2.5 VL 72B Instruct

Claude 3.7 Sonnet

Operator

Claude 3.5 Sonnet (New)

UI-TARS-1.5

GPT-4.1

o4-mini

Gemini 2.5 Pro

0

100

200

300

400

500

Battle Count for Each Model

agent

B
at

tl
e

C
ou

nt

Figure 14: Number of votes for each CUA model.

55.1%

39.2% 37.8% 36.2%

19.9%
15.4% 14.4%

10.1%

Claude 3.7 Sonnet

UI-TARS-1.5

Operator
Claude 3.5 Sonnet (New)

Qwen 2.5 VL 72B Instruct

Gemini 2.5 Pro

o4-mini
GPT-4.1

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Agent

C
or

re
ct

 R
at

e

Figure 15: Aggregate correctness rate for each agent judged by users.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Figure 16: Pairwise battle count heatmap: each cell (i, j) indicates the number of votes conducted
between agenti and agentj .

Figure 17: Pairwise win rate heatmap: each cell (i, j) indicates the proportion of wins where Model
A (row) outperformed Model B (column) based on user preferences.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

0.79

0.69 0.68

0.62

0.40
0.36

0.25
0.21

Claude 3.7 Sonnet

Operator

UI-TARS-1.5

Claude 3.5 Sonnet (New)

Qwen 2.5 VL 72B Instruct

o4-mini

GPT-4.1

Gemini 2.5 Pro

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Average Win Rate Against All Other Agents (Assuming Uniform Sampling and No Ties)

Model

A
ve

ra
ge

 W
in

 R
at

e

Figure 18: Average win rate of each agent against all others under uniform sampling and no ties.

The case highlights several key agent behaviors: interpreting user intent, identifying relevant UI
elements within a real application (PDF-XChange Editor), and executing sequential steps with
feedback loops (e.g., reopen to verify). Such real-world interactions are difficult to assess through
scripted benchmarks but are essential for evaluating robustness and usability in practical settings.

This case exemplifies how our platform supports in-the-wild evaluation by embedding agent actions,
user instructions, and full desktop context into a unified assessment flow.

Example 1:

Can you help me encrpyt this pdf file with password "jhsvcjvakj"? I want this contract file to keep a
secret, please help me do that and PLEASE HELP ME VERIFY THE ENCRYPTION BY OPENING
IT AGAIN.

Agent 1: UI-TARS-1.5 (Lose)

Agent 1: Partial Correct

Step 1

Thought: In front of me is a PDF document titled "Project_Timeline_Roadmap,"
and I need to password protect it. To begin, I should click on the File menu in the
upper left corner, which is the first step in encrypting the file. From there, I will be
able to find the options related to encryption settings.

Action
pyautogui.click(47.702, 55.385, button=’left’)

Step 2

Agent 2: Claude 3.7 Sonnet (Win)

Agent 2: Correct

Step 1

Thought: The user is asking me to encrypt a PDF file that appears to be a Project
Timeline Roadmap with a password "jhsvcjvakj". They want me to verify the
encryption works by reopening the file. Let me help with this task.

In PDF-XChange Editor, which is the application currently open, I need to: 1.
Save the PDF with password encryption 2. Close the file 3. Reopen it to verify the
encryption works

The encryption option should be available in the "Protect" menu or possibly under
File > Save As with security options.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Thought: I just opened the File menu and I’m currently searching for the export
option. Based on my experience, the encryption feature is usually tucked away
within the export function, so I’m going to click on export in the left sidebar now.

Action
pyautogui.click(49.689, 393.626, button=’left’)

Step 3

Thought: I took a close look at the contents of the export menu, and I realized
that this option doesn’t actually provide the PDF encryption feature we need. We
need to rethink our approach, so I’ll close the current export menu and continue
searching for the correct encryption option in the File menu.

Action
pyautogui.click(626.087, 253.187, button=’left’)

Step 4
(The screenshot is the same as the previous one.)

Thought: Let me summarize the current situation: I’m currently working in the
PDF-XChange Editor, and I just spent some time looking for the encryption feature
under the export menu, but it seems I was looking in the wrong place. Since I
can’t find the option in the File menu, I thought it might be a good idea to check
the "Protect" button in the toolbar at the top of the interface. This button should
help me find the functionality to add password protection to the PDF.

Action
pyautogui.click(269.317, 56.374, button=’left’)

Step 5

Thought: I looked through the File menu and didn’t find the encryption option, but
then I noticed a "Document Security Properties" button on the toolbar, which was
exactly what I needed. Clicking on it opened the PDF encryption settings window,
allowing me to continue configuring password protection for the document.

Action
pyautogui.click(964.969, 122.637, button=’left’)

Step 6

I’ll help you encrypt this PDF file with a password. I can see you have PDF-
XChange Editor open with your Project Timeline Roadmap document. Let me
guide you through the steps to encrypt it and then verify the encryption works.
First, let’s take a screenshot to see the current state:

Action
pyautogui.screenshot()

Step 2

Thought: I notice there’s a "Protect" tab in the menu bar. Let’s click on that first
to see the encryption options:

Action
pyautogui.click(270, 55, button=’left’)

Step 3
Thought: Let’s take another screenshot to see the protection options:

Action
pyautogui.screenshot()

Step 4

Thought: I see the Protect tab is now open, but I don’t see a direct password
encryption option in this ribbon. Let’s try looking in the "Security Properties"
section:

Action
pyautogui.click(963, 115, button=’left’)

Step 5
Thought: Let’s take another screenshot to see what options appear:

Action
pyautogui.screenshot()

Step 6

Thought: Great! I see we’re in the Document Properties dialog box and "Security"

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Thought: I can see the document properties window right now, and the crucial next
step is to set the encryption method. To make this file more secure, I need to locate
the dropdown menu labeled "Security Method" and then choose an appropriate
encryption method from it. This way, I can effectively safeguard this important
document.

Action
pyautogui.click(709.565, 200.769, button=’left’)

Step 7

Thought: After going through all the setup menus, I’ve finally reached the crucial
step of selecting the encryption method. In the dropdown list for Security Method,
there are several encryption schemes available. Considering both security and
compatibility, I believe the Password Security option is the most suitable choice,
as it allows for precise control over access permissions. Next, I’ll click on this
option to proceed with setting up the password protection.

Action
pyautogui.click(636.025, 245.275, button=’left’)

Step 8

Thought: I noticed that the password security settings window is now open. I
need to fill in the password "jhsvcjvakj" in the "Require password to open the
document" section. This password is a crucial step for protecting the document,
so it’s important that I input it accurately. After that, I will also need to confirm
the password again, as this will ensure that the document’s encryption security is
properly established.

Action
pyautogui.click(590.311, 333.297, button=’left’)

Step 9
(The screenshot is the same as the previous one.)

Thought: I am currently in the process of setting a password, and the interface
is waiting for me to input the password "jhsvcjvakj." The password box labeled
"Require password to open the document" seems to be specifically designed for
protecting document access. I am focusing on entering this password accurately,
as it is crucial for the security of the document.

is already selected in the left panel. Now let’s click on "Change Settings..." to set
up password encryption:

Action
pyautogui.click(917, 200, button=’left’)

Step 7
Thought: Let’s see what security options we have now:

Action
pyautogui.screenshot()

Step 8

Thought: I notice that even though I clicked "Change Settings...", the dialog didn’t
change. Let’s try clicking on the dropdown next to "Security Method:" where it
currently says "No Security":

Action
pyautogui.click(827, 200, button=’left’)

Step 9
Thought: Let’s see what security options are available:

Action
pyautogui.screenshot()

Step 10

Thought: Perfect! I can see the dropdown menu with security options. Let’s select
"Password Security":

Action
pyautogui.click(671, 245, button=’left’)

Step 11
Thought: Now let’s see if we get a password dialog:

Action
pyautogui.screenshot()

Step 12

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Action
pyautogui.click(453.168, 392.637, button=’left’)

Step 10
(The screenshot is the same as the previous one.)

Thought: It seems that I need to enter the password in the correct order. I noticed
that the first password input box labeled "Document Open Password" is empty.
I should click on this box and type in "jhsvcjvakj" as the document opening
password. Once I’ve completed this step, I’ll be able to move on to setting the
permission password.

Action
pyautogui.click(476.025, 389.67, button=’left’)

Step 11
(The screenshot is the same as the previous one.)

Thought: I just accidentally clicked in the wrong spot, and that’s not good at all. Let
me start over - I need to set the password in the "Document Open Password" box.
This password will be used to open the document, so I should enter "jhsvcjvakj"
in there. I need to follow the correct order, and once I finish this step, I can move
on to setting the permission password.

Action
pyautogui.click(664.845, 392.637, button=’left’)

Step 12
(The screenshot is the same as the previous one.)

Thought: It seems like there’s a little hiccup in the password setup process. I’m
staring at the empty input box on the screen, which is supposed to be for the
document’s opening password, but the system isn’t responding at all. This might
be due to some lag in the interface. I need to click on the "Document Open
Password" input box again to make sure it’s activated so I can continue entering
the password.

Action
pyautogui.click(700.621, 309.56, button=’left’)

Step 13
(The screenshot is the same as the previous one.)

Thought: The password input box is finally set up and ready to go. Now, I need to
enter the specified password "jhsvcjvakj." It’s important that I input it correctly
since this is the first step in setting the password to protect the document.

Action
pyautogui.typewrite(’jhsvcjvakj’)

Step 14
(The screenshot is the same as the previous one.)

Thought: Let me assess the situation here – I’m at the password security settings
interface, and the input box is still greyed out and unresponsive. It seems that the
system might be a bit slow, so I need to click on the "Document Open Password"
input box again to activate it. Only then can I enter the password "jhsvcjvakj."

Action
pyautogui.click(663.851, 311.538, button=’left’)

Step 15
(The screenshot is the same as the previous one.)

Thought: I’ve already entered the password input interface, and now I need to
input "jhsvcjvakj" into the "Document Open Password" field. This step is crucial
because this password will serve as the key to open the encrypted document later
on. Let me focus on this task and make sure to enter each character accurately.

Action
pyautogui.typewrite(’jhsvcjvakj’)

Step 16
(The screenshot is the same as the previous one.)

Thought: Hmm, something feels off here. The password box is right in front of
me, but I’ve tried a few times and can’t seem to get the password entered correctly.
Upon closer inspection, it seems like the input field isn’t fully activated. Let me
click on the "Document Open Password" box once more to make sure it’s in an
input-ready state, and then I’ll be able to enter the password "jhsvcjvakj" smoothly.

Action
pyautogui.click(663.851, 332.308, button=’left’)

Step 17

Thought: Excellent! Now we need to: 1. Check "Require password to open the
document" 2. Enter the password "jhsvcjvakj" in the Document Open Password
field 3. Confirm the password in the Confirm field Let’s start by checking the
"Require password" option:

Action
pyautogui.click(367, 282, button=’left’)

Step 13
Thought: Now let’s click in the Document Open Password field:

Action
pyautogui.click(755, 307, button=’left’)

Step 14
Thought: Let’s type the password "jhsvcjvakj":

Action
pyautogui.write("jhsvcjvakj")

Step 15
Thought: Now let’s click in the Confirm password field:

Action
pyautogui.click(755, 335, button=’left’)

Step 16
Thought: And type the confirmation password:

Action
pyautogui.write("jhsvcjvakj")

Step 17
Thought: Now let’s click "OK" to apply the password security:

Action
pyautogui.click(762, 629, button=’left’)

Step 18
Thought: Now let’s click "OK" on the Document Properties dialog to apply all
settings:

Action
pyautogui.click(851, 585, button=’left’)

Step 19
Thought: Now that we’ve set the password security, let’s save the document. Let’s
click on File menu:

Action
pyautogui.click(45, 55, button=’left’)

Step 20
Thought: Let’s take a screenshot to see the File menu options:

Action
pyautogui.screenshot()

Step 21

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

(The screenshot is the same as the previous one.)

Thought: I found myself stuck in a cycle of repeatedly entering the password, and
this was clearly pointless. Taking a step back, I realized that the current security
settings window was quite cluttered and hard to navigate, making it difficult for
me to operate effectively. Rather than wasting time here, it made more sense to
close this window and reevaluate a clearer method for encrypting the PDF file. So,
I decided to click the close button in the upper right corner and restart the entire
encryption process.

Action
pyautogui.click(933.168, 33.626, button=’left’)

Thought: I see we have a notification that says "Security settings will not be
applied until the document is saved." Let’s click "OK" on this notification:

Action
pyautogui.click(917, 389, button=’left’)

Step 18

Thought: I just closed the previous window, and now I’m staring at the document
properties interface. I took a quick glance at the dropdown menu labeled "Security
Method," which should allow me to select the appropriate encryption option.
After wasting time in the wrong place before, I want to make sure I don’t choose
incorrectly this time. So, I’ll go ahead and click on that dropdown menu.

Action
pyautogui.click(709.565, 200.769, button=’left’)

Step 19

Thought: I just took a look around the properties window of the document and
finally found the right place! In the dropdown menu under Security Method, there
are several options, and now I need to select Password Security to add password
protection to the PDF. This option is clearly visible, so I’m going to click on it
right now to start configuring the encryption settings.

Action
pyautogui.click(677.764, 244.286, button=’left’)

Step 20

Step 22
Thought: Now let’s click "OK" on the Document Properties dialog:

Action
pyautogui.click(851, 585, button=’left’)

Step 23
Thought: Now let’s try to save the document. Let’s click on the File menu again:

Action
pyautogui.click(45, 55, button=’left’)

Step 24
Thought: Let’s take a screenshot to see the File menu:

Action
pyautogui.screenshot()

Step 25

Thought: I see the File menu is open. Let’s click on "Save" to save the document
with the security settings:

Action
pyautogui.click(40, 149, button=’left’)

Step 26
Thought: Let’s take a screenshot to see if any confirmation dialog appears:

Action
pyautogui.screenshot()

Step 27

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Thought: I’m now looking at the interface for password security settings, and it’s
time to enter the password "jhsvcjvakj." Let me first check the "Document Open
Password" input box to make sure it’s in a selected state, so that when I type on
the keyboard, the characters go directly into the box. With this preparation, I’m
confident that I won’t encounter any issues like I did last time.

Action
pyautogui.click(700.621, 309.56, button=’left’)

Step 21
(The screenshot is the same as the previous one.)

Thought: It looks like the password input field is all set up now. I’ll go ahead and
enter "jhsvcjvakj" as the opening password for the document, so I can continue
with the encryption process. Since the previous steps have all been completed
properly, this step should go smoothly as well.

Action
pyautogui.typewrite(’jhsvcjvakj’)

Step 22
(The screenshot is the same as the previous one.)

Thought: After several attempts just now, I realized that simply retyping the
password isn’t working. I took a moment to calm down and analyze the situation:
the input box is right in front of me, but it seems that the system hasn’t registered
my entries correctly. It looks like the issue is that the input box hasn’t been
activated properly. So, I should click on the "Document Open Password" input box
first to make sure it’s in a state ready for input, and then I can enter "jhsvcjvakj."
This time, I need to be patient and make sure I get it right on the first try.

Action
pyautogui.click(663.851, 310.549, button=’left’)

Step 23
(The screenshot is the same as the previous one.)

Thought: The password field is right in front of me, and after several attempts
earlier, I’ve figured out the correct approach. Now, I need to enter the password
"jhsvcjvakj" into the Document Open Password box, making sure to do it in one
go. The system is just waiting for me to input it, so let me focus and complete this
step accurately.

Action
pyautogui.typewrite(’jhsvcjvakj’)

Step 24
(The screenshot is the same as the previous one.)

Thought: I have now arrived at the confirmation step for the password setup. It’s
a bit annoying that the password box is not responding. However, based on my
previous experience, this issue is usually due to the input box not being properly
activated. So, I need to click on the "Document Open Password" box to gain focus,
which will allow me to enter the password. Once this step is completed, we can
proceed with encrypting the document.

Action
pyautogui.click(364.72, 359.011, button=’left’)

Step 25
(The screenshot is the same as the previous one.)

Thought: I see that the checkbox for restricting editing and printing is already
checked, which is good. However, the main focus right now is the password input
field, as the PDF encryption can’t proceed without the password being set. Let me
concentrate on the "Document Open Password" box and click on it so I can enter
the password.

Thought: Great! I can see that the document has been saved and is now showing
"(Secured)" in the title bar. This indicates that the password security has been
successfully applied. Now, let’s verify that the encryption works by closing and
reopening the file. First, let’s close the document by clicking the "X" on the
document tab:

Action
pyautogui.click(192, 187, button=’left’)

Step 28
Thought: Let’s see if we need to confirm closing:

Action
pyautogui.screenshot()

Step 29

Thought: Great, the document is now closed. Now let’s reopen it to verify the
password protection works. Let’s click on the File menu:

Action
pyautogui.click(45, 55, button=’left’)

Step 30
Thought: Let’s take a screenshot to see the File menu:

Action
pyautogui.screenshot()

Step 31

Thought: Perfect! I can see the document in the Recent Files list. Let’s click on it
to open it:

Action
pyautogui.click(673, 225, button=’left’)

Step 32
Thought: Let’s take a screenshot to see if a password prompt appears:

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Action
pyautogui.click(663.851, 333.297, button=’left’)

Step 26
(The screenshot is the same as the previous one.)

Thought: I’m currently setting up the confirmation password step, and the interface
feels a bit sluggish. However, this reminds me that the key to encrypting a PDF
lies in these two password inputs. Even though the system is responding slowly,
I need to stay patient and complete the entry of "jhsvcjvakj" in the confirmation
password field. Once this step is finished, the entire encryption process will be
nearly complete.

Action
pyautogui.typewrite(’jhsvcjvakj’)

Step 27
(The screenshot is the same as the previous one.)

Thought: Hmm, let me analyze the current situation. I’m stuck in the PDF
encryption settings interface, where there’s a password input box that I just can’t
seem to get right. I’ve realized that I’ve been stuck in a vicious cycle—just
mindlessly repeating the input, but never actually getting anywhere. Now I’ve
come to understand the problem: the input box is there, but it hasn’t been activated
properly, which is why my input isn’t being registered. So here’s what I’ll do:
I’ll click on the "Document Open Password" box first to make sure it’s ready to
receive input, and then I’ll enter "jhsvcjvakj" accurately. Sometimes, it really pays
to be a bit patient and tackle problems step by step.

Action
pyautogui.click(685.714, 331.319, button=’left’)

Step 28
(The screenshot is the same as the previous one.)

Thought: I’ve come to realize that I’ve been repeating the same mistake over
and over again. Each time, I simply type in the password without giving much
thought to the actual issue at hand. The problem is quite simple: the input box
isn’t activated! It’s like talking to thin air; no matter how many times I try, it’s all
in vain. Right now, I need to pause for a moment and make sure to activate the
"Document Open Password" input box properly. Only then can we really begin
the password entry process. Let’s take it step by step and first resolve the issue of
the input box.

Action
pyautogui.click(663.851, 310.549, button=’left’)

Step 29

Thought: The previous steps were a bit chaotic, and after analyzing the situation,
it seems I’ve fallen into a trap. I’ve been repeating the password entry process
without addressing the root issue. Looking back, I realized that I never properly
clicked on the "Document Open Password" input box. Now, the password security
settings window is still open, and I need to click on the input box to activate it
first. Only then will I be able to enter "jhsvcjvakj" as the password to enable the
document encryption feature.

Action
pyautogui.typewrite(’jhsvcjvakj’)

Action
pyautogui.screenshot()

Step 33

Thought: Perfect! We can see that the document is now password protected
- there’s a prompt asking for the password. Let’s enter the password we set
("jhsvcjvakj"):

Action
pyautogui.click(670, 371, button=’left’)
pyautogui.write("jhsvcjvakj")

Step 34
Thought: Now let’s click "OK" to submit the password:

Action
pyautogui.click(658, 413, button=’left’)

Step 35
Thought: Let’s take a screenshot to see if the document opens:

Action
pyautogui.screenshot()

Step 36
Thought: Perfect! The document has successfully opened after entering the correct
password. We can see that it still shows "(Secured)" in the title bar, confirming
that the password protection is working properly.

Action
Summary of What We Did:
1. We successfully added password protection to your Project Timeline Roadmap
PDF with the password "jhsvcjvakj" 2. We saved the document with the security
settings applied 3. We verified that the protection works by: - Closing the
document - Reopening it, which prompted for a password - Successfully entering
the password to access the protected document
Your PDF is now encrypted and can only be opened by someone who knows the
password "jhsvcjvakj". The encryption uses 256-bit AES security, which is a
strong encryption standard. Anyone trying to open this document will need to
enter the correct password or they won’t be able to view the contents.
Is there anything else you’d like me to help you with regarding this document or
its security?

Example 2:

Due to work requirements, the following changes need to be made to the document. All "challenges"
are changed to "difficulties", and the changed text is highlighted in red for my convenience to view.

Agent 1: o3 (Lose) Agent 1: OpenAI Computer-Use Preview (Win)

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Agent 1: Partial Correct

Step 1

Thought: Planning find/replace task The user wants to replace all occurrences of
"challenges" with "difficulties" in a LibreOffice Writer document, highlighting the
changes in red. I’m thinking I’ll use the Find & Replace dialog (Ctrl+H) and set it
up: find "challenges," replace with "difficulties," and format the replacement text
as red. Alternatively, I could find "difficulties" afterward and style it red. For now,
I’ll open Find & Replace and proceed from there. It sounds straightforward!

Action
import pyautogui import time pyautogui.keyDown(’ctrl’) pyauto-
gui.keyDown(’h’) pyautogui.keyUp(’h’) pyautogui.keyUp(’ctrl’)

Step 2

Action
import pyautogui import time pyauto-
gui.typewrite(’challenges’, interval=0.01)

Step 3

Thought: Planning replace action The user wants to change "challenges" to
"difficulties" in LibreOffice Writer’s Find and Replace dialog, then highlight the
text in red. The immediate next step is to fill in the Replace field with "difficulties."
I’ll also open the Format option to set the text color to red, and then click "Replace
All." Essentially, I’ll need to click on the Replace entry box and type "difficulties,"
focusing on the approximate coordinates within the dialog. Let’s proceed with
that click action.

Action
import pyautogui import time pyautogui.click(501, 254)

Step 4

Agent 1: Partial Correct

Step 1

Thought: Replacing "challenges" with "difficulties" in red

Action
pyautogui.hotkey(’ctrl’, ’h’)

Step 2

Action
time.sleep(1)

Step 3

Action
pyautogui.hotkey(’ctrl’, ’f’)

Step 4

Thought: Reattempting shortcut for Replace dialog

Action
pyautogui.hotkey(’ctrl’, ’h’)

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Thought: Executing find and replace I’m planning to replace all instances of
"challenges" with "difficulties" and highlight the replacements in red. First, I’ll
use the Find & Replace dialog, ensuring "challenges" is in the Find field. For the
Replace field, I’ll type "difficulties." Next, I need to set the character color to red
using the Format... button. After that, I’ll click ’Replace All.’ It’s crucial to note
it will only change "challenges" and not "challenge." Let’s get started!Adjusting
formatting settings In the screenshot, I noticed that the Format... button is not
greyed out after all, so it’s clickable! I’ll start by typing "difficulties" into the
Replace input. Then, I’ll click the Format... button to choose Font Effects, where
I’ll change the Font color to red. After confirming, I’ll hit Replace All to apply the
changes. The cursor is visible in the Replace field, indicating it’s active, so I can
just go ahead and type "difficulties."

Action
import pyautogui import time pyautogui.typewrite(’difficulties’, interval=0.01)

Step 5

Thought: Checking formatting options I’m looking into how to use ’Search for
Styles’ and replace text with red font color. It seems like I need to change the
replaced words to red instead of highlighting the background. I think I’ll use the
Find and Replace feature to set ’difficulties’ in the ’Replace’ field, then replace
them all. After that, I can specify the font color red in formatting. Wait, the Format
button for Replace looks greyed out. I need to clarify that for using the ’Format...’
option.Planning text formatting I’m figuring out how to highlight changed text
while replacing it. If the Format option is available, it makes sense to set it before
doing the Replace All so I can do both simultaneously. The next step involves
clicking "Format..." in the Replace field to set it to red. Looking at the screenshot,
I’ll need to estimate the coordinates for clicking the buttons. The Find/Replace
window shows the format button around (620, 501), but I might need to adjust if it
doesn’t work right away. Let’s stay flexible with the coordinates!

Action
import pyautogui import time pyautogui.moveTo(620, 500, duration=0.5)

Step 6

Action
import pyautogui import time pyautogui.click(640,
505)

Step 7

Step 5

Thought: Dismissing banner to access tools

Action
pyautogui.click(1218, 143, button=’left’)

Step 6

Thought: Opening "Find and Replace" dialog

Action
pyautogui.hotkey(’ctrl’, ’h’)

Step 7

Thought: Opening "Find and Replace" dialog box

Action
pyautogui.click(57, 35, button=’left’)

Step 8

Action
time.sleep(1)

Step 9

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Thought: Executing find and replace The screenshot shows the ’Find and Re-
place’ dialog in LibreOffice Writer. The user wants to change "challenges" to
"difficulties" and highlight the changes in red. The Find and Replace fields are
presumably set already. I need to configure the font color to red by clicking the
’Format’ button. I’ll approximate the button’s coordinates in the dialog, which
seems centered, around (618, 497), before clicking. Next, I’ll proceed to click
’Replace All’ after setting the format.

Action
import pyautogui import time pyautogui.click(617, 501)

Step 8

Thought: Adjusting Find & Replace settings It looks like I clicked on the wrong
option when trying to open Find & Replace, ending up in a "Replace with format-
ting" dialog instead. My current goal is to replace all instances of "challenges"
with "difficulties" and highlight them in red using LibreOffice Writer. I need to
check if highlighting means changing the font color, and I’ll set the font color
to red in the format options. I’ll set the "Replace with" field to "difficulties" and
adjust the formatting accordingly.Setting formatting for replacement I have the
"Replace with formatting" window open, which is helpful. Now, I need to set the
Font Effects by choosing red for the font color. The next step is to click the "Font
Effects" tab in this window. I’ll navigate to the tab row at the top and click on the
second tab. My mouse target will be around the "Font Effects" area, approximately
at coordinates 450, 182. Let’s proceed with that!

Action
import pyautogui import time pyautogui.moveTo(455, 181, duration=0.5)

Step 9

Thought: Adjusting text in LibreOffice To help the user replace "challenges"
with "difficulties" and highlight those changes in red, I need to open the Find
and Replace dialog with Ctrl+H. Right now, I see the formatting modal open,
likely because the user double-clicked the "Format" button. First, I should close
that modal to return to the main dialog, where I can set "Find" to "challenges"
and "Replace" to "difficulties." I’ll also check "Match case" and possibly “Whole
words.”Setting font color for changes To highlight the changed text in red, we need
to adjust the Font Color under the "Replace" area. Right now, the Font Effects tab
appears to be selected, but I’m seeing options that suggest the Font tab might be
active instead. I need to check if the Font Effects tab is indeed active. The goal is
to navigate to the Font Effects tab and set the Font Color to red. So, my next step
is to click on the Font Effects tab.

Action
import pyautogui import time pyautogui.click(462, 181)

Action
pyautogui.click(114, 319, button=’left’)

Step 10

Action
time.sleep(1)

Step 11

Thought: Inputting find and replace terms

Action
pyautogui.click(457, 159, button=’left’)

Step 12

Action
pyautogui.typewrite(’challenges’)

Step 13

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Step 10

Thought: Planning text replacement in LibreOffice I need to help with the user’s
task of replacing all occurrences of "challenges" with "difficulties" in LibreOffice
Writer and highlighting these changes in red. We’ve opened the Find & Replace
dialog by pressing Ctrl+H, which shows the formatting details. The font color
dropdown is currently set to none. My next step is to select red from that dropdown
to ensure the replaced text appears in red. I need to carefully coordinate this
action based on the screenshot’s layout.Selecting font color in LibreOffice I’m
estimating the font color dropdown’s location roughly at coordinates (522, 238)
on the screenshot. The arrow points to the top of the dropdown, which looks to
be about 150 pixels wide. After this, I’ll want to select the red color, which may
require another click. So, the next step is to click that dropdown list based on the
screenshot’s resolution of 1280x720. The "Font color" field is almost centered,
around 460 pixels wide. I’ll coordinate my clicks accordingly.

Action
import pyautogui import time pyautogui.click(510, 238)

Step 11

Thought: Inspecting grid coordinates I’m taking a look at the screenshot. In the
grid, the third row looks to have yellowish colors, while the fourth has reds. I want
to focus on a strong red cell, possibly around row 5, column 3. I’ll estimate the
coordinates, starting from the top left at about 514, 338. Since each cell is roughly
12x12 pixels, I calculate the coordinates for the red cell at row 3, column 6 to be
(586, 374). Now, I’ll plan the action to click at that point.

Action
import pyautogui import time pyautogui.click(586, 374)

Step 12

Thought: Replacing text in LibreOffice The user instructed me to replace "chal-
lenges" with "difficulties" and highlight the text in red. I’ve opened LibreOffice
Writer and pressed Ctrl+H to access Find and Replace. It seems I’m in a "Replace
with formatting" dialog, where I can customize the format for the replacement.
The Font Effects tab shows Light Red 4, which is good for highlighting. I need
to confirm this red color and return to set the Find and Replace fields accord-
ingly.Confirming formatting changes I need to click the OK button in the bottom-
right corner of the "Replace with formatting" window. It looks like there are
buttons for "OK" and "Cancel." My cursor is probably in the Color field, so I just
need to do a left click on OK to confirm the changes. This should allow me to
finalize the formatting settings I’m adjusting. Let’s get this done!

Action
pyautogui.click(493, 252, button=’left’)

Step 14

Action
pyautogui.typewrite(’difficulties’)

Step 15

Thought: Clicking "Format" to set highlighting

Action
pyautogui.click(658, 497, button=’left’)

Step 16

Action
time.sleep(1)

Step 17

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Action
import pyautogui import time pyautogui.click(859, 644)

Step 13

Thought: Setting up text replacement The user wants to replace every occurrence
of "challenges" with "difficulties" and highlight the changes in red. I’ve opened the
Find & Replace dialog and filled in the fields with the appropriate words. There’s
a "Format..." button in the dialog for setting the text color. I see it’s highlighted but
hasn’t been configured yet. I need to click on this button to set the font color to red.
After that, I can confirm the changes!Preparing to set formatting In the screenshot,
I see the "Format..." button near the bottom right. To proceed, I need to click
on this button, set the font color to red, and then confirm with OK before using
"Replace All." I’m estimating the coordinates for the click since the screenshot
size is 1280x720. The button seems to be around x 620, y 519 based on my
estimation. The highlight indicates it’s ready to be clicked, so I’ll execute the
left-click at those coordinates.

Action
import pyautogui import time pyautogui.click(631, 521)

Step 14

Action
import pyautogui import time pyautogui.click(630,
501)

Step 15

Thought: Executing text replacement I’m acting as a desktop automation agent,
and the task is to change occurrences of "challenges" to "difficulties" while high-
lighting the changed text in red. When I triggered the Find & Replace dialog
in LO Writer, I found that the "Replace with formatting" tab was open. Now, I
need to specify "Find" and "Replace" fields and set the font color to Light Red 4.
The next step is simply to click OK to confirm the formatting. After that, I can
proceed to complete the replacement.Determining click coordinates I’m reviewing
a screenshot that displays the "Replace with formatting" window, and I see the
OK button located at the bottom right corner, around the coordinates x 853, y
646. I think this is a good approximation for the location since it looks reasonably
accurate. My next step is to execute a left click at that position to confirm the
formatting changes. It’s a straightforward action, just following the visual cues
from the screenshot.

Thought: Selecting highlighting tab for formatting

Action
pyautogui.click(889, 182, button=’left’)

Step 18

Thought: Selecting red color for highlighting

Action
pyautogui.click(733, 219, button=’left’)

Step 19

Thought: Selecting standard red color shade

Action
pyautogui.click(464, 344, button=’left’)

Step 20

Thought: Correcting selection to red shade.

Action
pyautogui.click(473, 363, button=’left’)

Step 21

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Action
import pyautogui import time pyautogui.click(859, 645)

Step 16

Thought: Planning formatting steps The user wants to know the next step after
seeing a screenshot of the LibreOffice Find and Replace dialog. The task involves
changing the font color of the replacement text to red. First, I’ll click the Format
button in the dialog. It should be located at the bottom center, around coordinates
(628, 520) based on my estimate from the screenshot. After that, I’ll navigate to
Font Effects and choose the red color for the text. I’ll also make sure to wait for
the dialog to respond after the click.

Action
import pyautogui import time pyautogui.click(633, 520)

Step 17

Thought: Clarifying Find and Replace Steps I see that we need to replace "chal-
lenges" with "difficulties" in LibreOffice Writer, and highlight the changes in red.
First, I’ll use the Find & Replace feature—put "challenges" in the Find box and
"difficulties" in the Replace box. I should set the font color to light red in the
formatting options. Once that’s set, I can click "Replace All." Afterward, I’ll close
the character formatting dialog to complete the process.Confirming Formatting
Changes I need to wrap this process up effectively. Instead of just hitting ’Enter,’
it’s safer to click ’OK’ in the Format window since pressing ’Enter’ might initiate
an unwanted action. The OK button is located near the bottom center of the
window, approximately at coordinates (850, 640). I’ll confirm my click there,
and once that window closes, I can proceed to click ’Replace All’ in the Find &
Replace tool. Let’s finalize this plan!

Action
import pyautogui import time pyautogui.click(857, 641)

Step 18

Thought: Approximating button coordinates I’m looking at the screenshot size of
1280x720, focusing on the dialog positioned around 361. The Format button is
near the bottom right of the dialog. I’ll estimate its coordinates: the button seems
to be highlighted just above the bottom area. For the vertical positioning, the
dialog top appears to be around y=112, while the Format button might be around
y=480 to y=515 and x around 650. So, my next action is to left-click the Format
button to apply the font formatting.

Thought: Selecting red color, confirming choice

Action
pyautogui.click(472, 335, button=’left’)

Step 22

Thought: Changing color selection to red.

Action
pyautogui.click(483, 366, button=’left’)

Step 23

Thought: Selecting red paint instead of orange

Action
pyautogui.click(473, 327, button=’left’)

Step 24

Thought: Selecting red shade, confirming choice

Action
pyautogui.click(500, 326, button=’left’)

Step 25

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Action
import pyautogui import time pyautogui.click(640, 512)

Step 19

Thought: Analyzing text replacement process The user has a screenshot from
LibreOffice Writer, focusing on the Find and Replace dialog, with the Font Effects
tab showing a Light Red 4 font color. They’re aiming to replace "challenges" with
"difficulties" while highlighting the new text in red. The next steps involve con-
firming the formatting by clicking “OK” in the Replace with formatting window,
then setting up the Find and Replace dialog to replace all instances. Checking
the coordinates at the bottom right, I should approximate them within the given
screenshot resolution.Confirming formatting action The Replace with formatting
window is centered, and I see the OK button at the bottom right. My next step
is clear: I’ll click the OK button to confirm the changes. This will finalize the
formatting for the text replacement. It’s a straightforward action, but important for
ensuring everything is set up correctly for the user’s needs. Once I click OK, I can
proceed to execute the replacement.

Action
import pyautogui import time pyautogui.click(859, 642)

Step 20

Thought: Executing text replacement in LibreOffice The user wants to change
all instances of "challenges" to "difficulties" in their document, and they need
that text highlighted in red. Since the document is already open in LibreOffice
Writer, I see that the Find & Replace window is prepared with the correct terms. I
need to click the Format button, choose the red font color in the Font Effects tab,
and then hit "Replace All" to apply these changes. After that, I’ll quickly check
for the highlighted text.Choosing text formatting options I realize that the phrase
"highlighted in red" could mean either font color or background color. Since the
user mentioned highlighting, I’ll opt for the font color red to avoid confusion.
LibreOffice allows me to set this through the Format menu, so I’ll focus on that.
Next, I’ll click the Format button, which is at approximately (626, 520) based on
my screenshot estimation. This should help me apply the red font color to the
replaced text effectively.

Action
import pyautogui import time pyautogui.click(626, 520)

Step 21

Thought: Selecting predefined dark red shade

Action
pyautogui.click(482, 365, button=’left’)

Step 26

Thought: Confirming user’s preferred red shade

Action
pyautogui.screenshot()

Step 27

Thought: Hovering over red shades, confirming selection

Action
pyautogui.moveTo(464, 344)

Step 28

Action
pyautogui.moveTo(489, 322)

Step 29

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Action
import pyautogui import time pyautogui.click(859,
333)

Step 22

Thought: Analyzing find and replace steps I need to set up the Find & Replace
dialog to find "challenges" and replace it with "difficulties," maybe considering
case sensitivity since there might be plurals. Afterward, I want to confirm format-
ting by clicking OK in the small window, which has the previously selected Light
Red 4 format. I’ll also identify the approximate coordinates for the OK button
— it seems to be around (857, 644) relative to the screenshot. So, I’ll need to
click that.Approximating button coordinates I’m estimating the coordinates for
the OK button in the small window. The left border seems to be around 360 px
and the right border maybe 880 px, making the window width about 500 px. So,
I’m thinking the OK button is likely around (805, 646). Alternatively, checking
the bottom row of buttons could help. It seems like the Reset button is near x 740,
the Cancel button at x 880, so the OK button could be around x 800 and y 645. I’ll
use these coordinates for clicking.

Action
import pyautogui import time pyautogui.click(800, 645)

Step 23

Thought: Planning text replacement I need to replace every instance of "chal-
lenges" with "difficulties" in LibreOffice Writer and highlight the changes in light
red. I see a "Find and Replace" dialog with a formatting pane. Next, I’ll confirm
the font color to light red. After that, I’ll ensure the “Find” field has "challenges"
and the “Replace” field has "difficulties." It’s essential to select "Replace all" and
then click OK to apply the formatting. Finally, I’ll proceed with the replacement.

Action
import pyautogui import time pyautogui.click(866, 644)

Step 24

Thought: Planning text replacement steps I’ve got LibreOffice Writer open with
the Find and Replace dialog ready. The "Find" field has "challenges" and the
"Replace" field has "difficulties." The next step is to highlight the changed text in
red. I see I need to click the Format button under Replace, choose Font Effects,
and set the font color to red. I’ll need to click this button at the bottom center of
the dialog, which I’ve noted has a blue focus border. The approximate coordinates
are (614, 520).

Thought: Inputting RGB values for red

Action
pyautogui.click(799, 353, button=’left’)

Step 30

Action
pyautogui.click(905, 356, button=’left’)

Step 31

Action
pyautogui.hotkey(’ctrl’, ’a’)

Step 32

Action
pyautogui.typewrite(’255’)

Step 33

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Action
import pyautogui import time pyautogui.click(640, 520)

Step 25

Action
import pyautogui import time pyautogui.click(640,
521)

Step 26

Thought: Detailing find and replace steps I need to describe the next step for
replacing "challenges" with "difficulties" and applying red color formatting in
LibreOffice Writer. The screenshot indicates that the "Replace with formatting"
dialog is open, and it appears to have multiple category tabs like Font, Font Effects,
and Position. The Font Effects tab is likely active, showing the "Font Color"
section, which indicates that the chosen color is currently Light Red 4. Now,
I need to set the font color to red.Explaining text replacement steps We need
to change the replaced text to red since the user’s requirement is to highlight it
that way. In the "Replace with formatting" dialog, we should confirm the color
selection. The next step is to click OK to apply the Light Red 4 color. After that,
in the main Find & Replace dialog, we’ll enter "challenges" as the text to find
and "difficulties" as the text to replace it with. We should ensure the search is
case-insensitive and then click Replace All. Let’s put this into clear steps for the
user!

Action
import pyautogui import time pyautogui.click(865, 644)

Step 27

Action
import pyautogui import time pyautogui.click(650,
519)

Step 28

Action
pyautogui.click(903, 381, button=’left’)

Step 34

Action
pyautogui.hotkey(’ctrl’, ’a’)

Step 35

Action
pyautogui.typewrite(’0’)

Step 36

Action
pyautogui.click(907, 411, button=’left’)

Step 37

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Thought: Configuring find and replace I need to replace all instances of "chal-
lenges" with "difficulties" and highlight the changes in red. The user specified to
find "challenges" and replace with "difficulties." In LibreOffice Writer, I can set
the font color to red during the replacement. I see the "Format..." button in the
Replace options, so I’ll click that to open formatting options. Then I’ll choose
Font Effects, set the font color to red, and finally click "Replace All."Planning
mouse click coordinates I need to plan to use a mouse click around the coordinates
(613, 523) to access the Format button under the Replace field. I’m estimating the
right spot as about 610x520 based on the screenshot. It seems like specifying a
left click at that Format button will help me proceed more accurately. Hopefully,
that’ll get me to the next step without any hiccups!

Action
import pyautogui import time pyautogui.click(642, 520)

Step 29

Action
import pyautogui import time pyautogui.click(864,
645)

Step 30

Thought: Adjusting text formatting The user is working in LibreOffice Writer and
wants to replace "challenges" with "difficulties," highlighting the change in red.
I see that there’s a Format button for setting font color in the Find and Replace
dialog. It’s important to ensure we select the correct color. The screenshot shows a
light pink color instead of red, which could mean the user picked the wrong shade
earlier. Let’s go ahead and open the Format option again to select red (#FF0000)
for the text.Preparing to click The next step is to click the Format button, which
is currently highlighted. Clicking this button will open the Character Format
dialog. I’ll need to simulate a left-click at the approximate coordinates of the
button. Based on the screenshot, I estimate the coordinates to be around (640, 513)
because the button is near the bottom center of the dialog. I’ll prepare the tool call
for a left-click at these coordinates.

Action
import pyautogui import time pyautogui.click(640, 513)

Step 31

Action
pyautogui.hotkey(’ctrl’, ’a’)

Step 38

Action
pyautogui.typewrite(’0’)

Step 39

Thought: Applying red color, clicking "OK"

Action
pyautogui.click(875, 644, button=’left’)

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Thought: Setting replacement formatting The user wants to replace "challenges"
with "difficulties" and highlight the changes in red, so I’m opening Find and
Replace in LibreOffice Writer. I’ve entered "challenges" as the text to find and
"difficulties" as the replacement. Next, I have to set the formatting to highlight the
replacements in red. The "Format..." button is available to do this. I’ll click on it to
set the font color red for the replacement text, focusing on getting the coordinates
right to click correctly.

Action
import pyautogui import time pyautogui.click(629, 525)

Step 32

Action
import pyautogui import time pyautogui.click(863,
646)

Step 33

Action
import pyautogui import time pyautogui.click(646,
520)

Step 34

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

Action
import pyautogui import time pyautogui.click(850,
640)

Step 35

Thought: Updating text formatting I need to change all instances of "challenges"
to "difficulties" and highlight those changes in red. I’ve opened the Find and
Replace feature and entered the words correctly. I need to make sure to format
the replacement text to be red. I’ll click on the Format button next to the Replace
field, and in the dialog, I’ll set the font color to red. After that, I can click Replace
All to finalize the changes.Planning formatting steps I’ve noticed that the Format
button is highlighted in blue, indicating it’s potentially selected but hasn’t been
clicked yet. I need to click that Format button, then navigate to the Font Effects
tab to choose the font color red. This seems straightforward, so I’ll plan my next
steps, starting with that first click on the Format button. It’s all about getting those
settings right for the best results!

Action
import pyautogui import time pyautogui.click(644, 521)

Step 36

Action
import pyautogui import time pyautogui.click(629,
521)

Step 37

Thought: Handling Find and Replace I’ve got the LO Writer open and I need
to replace "challenges" with "difficulties," highlighting the changes in red. After
pressing Ctrl+H, I see the "Find and Replace" dialog with a section for formatting
where I’ve set the font color to Light Red 4. Now, I need to confirm this and close
the formatting window, then enter "challenges" in the search box and "difficulties"
as the replacement term. I’ll ensure the red formatting is applied before clicking
OK.Confirming the action I’ve identified that the OK button is located at the
bottom right of the sub-dialog, positioned between Reset and Cancel. I plan to
click OK, estimating its coordinates to be around (866,645) based on the screenshot
dimensions of 1280x720. The button is the third one from the left in the bottom
row. Next, I’ll proceed with the click and monitor to ensure that the action registers
correctly.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

Action
import pyautogui import time pyautogui.click(870, 645)

Step 38

Thought: Determining text replacement format I need to replace all occurrences
of "challenges" with "difficulties" and highlight the new text in red. I’ve opened
the Find and Replace window. The "Find" field is already filled with "challenges",
and "Replace" has "difficulties". Now, I must set the formatting to red. I’m unsure
if "highlighted" means the text color should be red or the background color should
be a highlight. Typically, "highlight" refers to background color, but the formatting
options may clarify this.Finalizing text replacement settings The replacement
section shows "difficulties" and a highlight color of RGB(255, 215, 215), which
looks like a light red or pink. This suggests that the highlighting may already be
set. Next, I need to click "Replace All" to execute the changes. The "Replace
All" button is situated near the right side of the window. I should ensure that the
background is highlighted in the correct color—perhaps adjusting it to a true red if
needed. Let’s use the Format option to confirm and set the color to red.Adjusting
highlight settings It might be simpler to accept that the highlight is already set.
Looking at the snippet, the "Replace" area shows "difficulties" with a highlight
color of RGB(255, 215, 215). This seems lighter than a typical strong red. I should
adjust it to a standard red color instead. My plan is to click on Format, then go to
the Font Effects tab, select red, and then execute "Replace All." I’ll pinpoint the
coordinates for the Format button and proceed with the click.

Action
import pyautogui import time pyautogui.click(623, 512)

Step 39

Thought: Changing text in document I’ve got a LibreOffice Writer document open,
and my task is to replace "challenges" with "difficulties" while highlighting the
changed text in red. I see the Find and Replace dialog is up, and I need to specify
"Find: challenges" and "Replace: difficulties." For the formatting, I need to click
the Format button to set the font color to red. Once that’s done, I’ll select Replace
All. I’m checking that format button to ensure I’m clicking the right one.Setting
font color in document I need to set the font color to red in the document. To do
this, I’ll click the Format... button under the Replace section. This action will
open the Character Format menu where I can choose the red foreground color. I’ll
need to be sure I’m clicking the right button at the correct coordinates to ensure it
opens properly. Once that’s done, I can proceed with the text replacement easily.

Action
import pyautogui import time pyautogui.click(630, 523)

Step 40

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

Thought: Configuring text replacement I’m working on replacing all instances
of "challenges" with "difficulties" and changing the font color to red. I opened
the Replace with Formatting window and saw that the Font Effects tab is selected,
which shows Light Red 4 as the current color. Now I need to finalize the formatting
by clicking OK in the dialog. After that, I’ll set up the search terms to replace the
text. Then I’ll check "Find All" or "Replace All" for a complete update.Clicking
the OK button Alright, my next action is to click the OK button at the bottom
right of the window. I’ve checked the screenshot, and it seems that the button is
situated there. I’m estimating I need to aim for the center of the OK button. I’ll go
ahead and do that now. This should confirm my formatting choices and allow me
to move on to the next step in the process. Let’s get this done!

Action
import pyautogui import time pyautogui.click(866, 645)

Step 41

Thought: Setting text color in Find and Replace The user wants me to change all
occurrences of "challenges" to "difficulties" and highlight the changes in red. I’ve
opened the Find and Replace dialog, and the fields are set correctly. Now, I need
to ensure that the changed text is highlighted in red. There’s a ’Format...’ button
I need to click to set the font color. I’ll locate and click this button to adjust the
color. The coordinates suggest it’s in the middle bottom of the window.

Action
import pyautogui import time pyautogui.click(630, 518)

Step 42

Thought: Analyzing Find and Replace interface I see a "Replace" label in the
translucent overlay, which might be obstructing earlier clicks. Let’s analyze the
"Find and Replace" window more closely. At the top, there are fields for Find
and Replace, followed by buttons: Find All, Find Previous, Find Next, Replace,
and Replace All. The "Other options" group has checkboxes, and at the bottom,
there are buttons for Attributes, Format, No Format, and Close. There’s a small
drop-down arrow next to the Replace field for formatting settings, similar to the
format button in Writer 7.6.Estimating dialog layout I’m estimating the dialog’s
positioning, with the top-left around (350, 110) and the Replace field near (412,
258), making the width about 300. There’s an arrow on the right, likely at (715,
258). After clicking this arrow, I expect a drop-down with "Format..." to appear;
though it might be small, we could also click "Format..." from the bottom row. I
plan to click the arrow at (765, 256) using a left click and then wait for the next
action.

Action
import pyautogui import time pyautogui.click(765, 256)

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

Step 43

Thought: Analyzing the screenshot task The user provided a screenshot and wants
me to help with a task involving replacing "challenges" with "difficulties" and
highlighting the changes in red. They’ve opened the Find and Replace dialog in
LibreOffice Writer, which shows the formatting options ready to go. The next
step needs to be confirming the search for "challenges" and inputting "difficulties"
as the replacement term. I’ll make sure to apply the Light Red 4 color for the
changes!Confirming formatting choices Now that the formatting dialog is open,
the immediate next step is to click OK to confirm the color selection. After that,
I need to return to the Find & Replace dialog and set the search and replace
terms. So, first, I’ll click the OK button at the bottom right of the "Replace with
formatting" dialog. I’m estimating the coordinates for the click, focusing on that
area. Once that’s done, I’ll move forward with the task.

Action
import pyautogui import time pyautogui.click(864, 643)

Step 44

Thought: Adjusting text in LibreOffice The user is working in LibreOffice Writer
and needs to replace "challenges" with "difficulties," highlighting the changes in
red. I’ve opened the find and replace window with the terms already filled in. I’ll
need to click the Format button to set the character font color to red by navigating
through the options. However, I’m wondering if the request is for a highlight
color instead of just changing the font color. Since highlighting typically means
changing the background, setting the font color to red feels like the simpler choice.

Action
import pyautogui import time pyautogui.click(615, 518)

Step 45

Thought: Clarifying text replacement I realize I need to replace all instances of
"challenges" with "difficulties" and highlight them in red. I opened the Find &
Replace dialog and noticed the "Find" field has "challenges" while the "Replace"
field shows "difficulties" in a light pink color instead of red. It seems the back-
ground color was previously set using the Format button, but I need to adjust it
for proper red highlighting, specifically with the RGB value of 255,0,0 to achieve
that.Setting highlight color I need to set the highlight color for the replaced text to
red. There’s an option in LibreOffice for either Font Color or Highlighting. The
user wants the text to be highlighted in red, which usually implies a background
color. However, I’m also considering that they might just prefer the font itself to
be red. Since the manual suggests highlight is typically yellow, I’m interpreting
"highlight in red" as background highlight. So, I’ll adjust the Replace field format

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

to ensure it reflects the change properly by selecting the red highlight option. Time
to click on the Format button!Estimating dialog position I’m trying to approximate
the location of the dialog box. It appears to be centered horizontally at around 580,
518. By estimating, it seems the dialog is mid-screen, starting around x 400 px
and has a width of about 400 px. The Format button likely sits near the bottom
center at around 540, 300. After looking at the screenshot dimensions, I’ll set my
click at roughly (600, 510) to target the Format button effectively. Time to click!

Action
import pyautogui import time pyautogui.click(598, 520)

Step 46

Thought: Executing find and replace I’m currently working in LibreOffice Writer.
The user’s request is to replace all instances of "challenges" with "difficulties"
and to highlight those changes in red. I’ve opened the Find and Replace window
and have the formatting box ready to go. It mentions "Light Red 4," which works
for my purposes. I need to confirm the color by clicking the "OK" button in the
formatting dialog. Once I do that, I can proceed with the replacement.

Action
import pyautogui import time pyautogui.click(867, 644)

Step 47

Thought: Planning text replacement I need to make some changes: replacing all
instances of "challenges" with "difficulties" and highlighting that changed text in
red. The Find and Replace dialog has the correct fields ready, with "challenges"
and "difficulties" set up. Now, I need to format the replacement text to show in red.
I’ll click the Format... button which is currently highlighted. I’ll use my mouse to
do this and approximate the coordinates for clicking around (615, 517). Let’s do
that!

Action
import pyautogui import time pyautogui.click(628, 515)

Step 48

Thought: Planning the next steps The user has asked me to analyze a screenshot
related to changing all occurrences of "challenges" to "difficulties" and highlighting
the changes in red. They’ve opened the Find and Replace window, which shows
a formatting option for the replacements. I see that in this secondary "Format"
selection window, "Font Color" is set to Light Red 4, which is excellent. My next
step is to confirm the replacement and apply this formatting to ensure the text is
correctly updated.Confirming format changes I need to click the "OK" button on

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

the Format window to apply the red font color. After that, in the main Find and
Replace, I’ll enter "challenges" as the term to find and "difficulties" to replace it.
It seems the Find and Replace window is overshadowed by the Format window,
making it look faded. I can see the buttons at the bottom of the Format window,
and I need to click "OK" to confirm. I’m estimating the coordinates for the button
since it’s not fully clear. Let’s proceed!Confirming the action I see the buttons
"Reset," "OK," and "Cancel" in the screenshot, and I’m estimating the coordinate
for the "OK" button to be around (847, 641). My next step is to perform a left-click
on that button to confirm the Light Red 4 color for the replacement text. After that,
I’ll regain focus on the main window. Then I should respond with the appropriate
next steps. Let’s keep moving forward!

Action
import pyautogui import time pyautogui.click(842, 641)

Step 49

Action
import pyautogui import time pyautogui.click(623,
515)

Step 50

Thought: Checking Find and Replace setup The user wants to replace "challenges"
with "difficulties" and highlight them in red. I’ve opened the Find and Replace
tool and set it up, with “Find: challenges” and “Replace: difficulties.” Now, I need
to apply the highlight formatting for the replacement text. In LibreOffice Writer,
there’s a "Format..." button next to the Replace field that I’ll need to click. I see
something about RGB(255, 215, 215) in the screenshot, indicating that the light
red highlight might already be selected. Let’s double-check that formatting!Setting
highlight formatting I see options like "Attributes..." and "Format..." under the
Replace area. There’s a button for "Format..." that I need to click to open the
Character Format dialog for setting the highlight color to red. The user wants the
changed text highlighted, which I assume means a font color of red. So, I’ll click
the Format button, navigate to Font Effects, select Font Color, and choose red.
Then, I’ll confirm and click Replace All. Let’s get started by clicking that Format
button!

Action
import pyautogui import time pyautogui.click(627, 522)

60

	Introduction
	Computer Agent Arena System Design
	Platform Implementation
	Agent Implementation
	Agent Rankings

	Experiments
	Experimental Setup
	Main Results

	Analysis
	Task Analysis
	User Preference Analysis
	Tool-Integrated vs. Pure GUI CUAs
	Error Analysis

	Related Work
	Conclusion
	LLM Usage Statement
	System Details
	Platform Implementation Details
	Initial Setup Details
	Agent Implementation Details
	Crowd-sourcing Data Collection Details
	Evaluation Data Filtering Procedure

	Elo Ranking Method
	Statistical Validation of Rankings
	Bootstrap Confidence Intervals
	Permutation Tests and Effect Sizes
	Power Analysis
	Inter-Annotator Agreement (IAA)
	Noise Sensitivity Analysis
	Step-Limit Ablation Study
	Conclusion

	Analysis Details
	Setup Distribution Analysis.
	Generalization Analysis
	OSWorld Ablation Study
	Task Distribution Analysis Details
	Instruction and Trajectory Metric Computation
	Setup Distribution Analysis.
	Topic Clustering Details

	Agent Behavior Analysis Details
	Software and Infrastructure Resources
	Reproducibility and Cost Analysis
	Additional Results
	Case Study Analysis

