Under review as a conference paper at ICLR 2026

COMPUTER AGENT ARENA: TOWARD HUMAN-
CENTRIC EVALUATION AND ANALYSIS OF COMPUTER-
USE AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

As Computer-Use Agents (CUAs) proliferate and grow increasingly capable, eval-
uation has become more challenging: static, manually curated benchmarks are
narrow in domain, contamination-prone, and environment-heavy, and they diverge
substantially from user-driven, real-world evaluation. We present COMPUTER
AGENT ARENA, an open-source platform for head-to-head CUA evaluation and a
dynamic methodology that converts human preferences into structured feedback
in realistic environments. The system (i) simulates real-world computer use via
cloud-hosted, diverse, and dynamic environment initializations and customizations;
(ii) ensures authentic, fair comparison by faithfully reproducing open-source CUAs
and executing anonymously in matched, controlled environments; and (iii) extends
evaluation beyond pairwise preference and correctness to capability- and behavior-
oriented signals. Across 2,201 high-quality votes over 12 agents—spanning multi-
app interactions, ambiguous instructions, and open-ended queries—we observe
striking ranking reversals relative to static benchmarks. Further analysis shows
that overall correctness mainly drives human preference; beyond that, agent-human
interaction and self-correction boost user preference, even when overall task com-
pletion is comparable. Our error analysis reveals agent behavior errors, such as
long-horizon memory and fine-grained action failures that static benchmarks fail to
evaluate. We also contrast pure GUI agents with universal digital agents capable of
tool use and coding, and discuss the trade-offs of these different design philoso-
phies. We open source the full platform, collected dataset, and code of COMPUTER
AGENT ARENA to support future research on the evaluation and development of
CUA.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) and Vision-Language Models (VLMs) have
demonstrated significant potential for building Computer-Use Agents (CUAs) (Anthropic, 2025c}
OpenAl, 2025d; [Qin et al., 2025} |Guo et al., 2025; [Team et al.l [2025). Such agents can perform
various computer-use tasks, from web browsing to professional applications (Xu et al., 2024bj Xie
et al., [2024a} |Li et al.| [2025a} Drouin et al., 2024} [Wang et al.| 2025). These systems are increasingly
positioned for real-world deployment, making human-centric evaluation grounded in user preferences,
safety, and reliability in open-ended settings a prerequisite rather than an afterthought.

Currently, CUA evaluations predominantly rely on static online and offline benchmarks (Xie et al.|
2024a; |Zhou et al., 2024; Xue et al., 2025} He et al., 2024} Xie et al., [2025b)) containing human-
written computer tasks with manually designed reward functions. However, these benchmarks
are increasingly unable to accurately assess CUA capabilities and systematically neglect human-
and real-world-centric evaluation. The static and limited task domain and evaluation environment
leave them vulnerable to contamination/overfitting and unable to capture real-world dynamism and
open-ended objectives. They also ignore personalization (different users value different outcomes
and interaction styles), underestimate safety/privacy risks, and lack robustness to environment drift
(software updates, network variability, unseen apps). Finally, their design often trades off authenticity
for reproducibility, offering little guidance on fair head-to-head comparisons or scalable human-
centric feedback collection.

Under review as a conference paper at ICLR 2026

Preset startup desktop & initial apps

R MBAO ¢ =

Website (b ;

o @ no@@ @ Compute.rA

) Coputer A

n

App Coding Professional
Customize the initial desktop :
User |20 Y |
Computer B () Mouse {G Chrome Open URL} {L Open GDrive File } Compoer®
1 > Keyboard
L G {O Github Clone Repo} [Upload Local File } Computers
@ Choose OS Fully Operable! with scenarios
@ Setup the initial desktop environment
Q User i
Correct or not? ! Upload “CVpdf” on
1 Upload "CV,pdf” on
A: Yes / No B:Yes / No aesncl aesitE 0 | the desktop to Slack

| and send it to the

i “Jobs” channel

Which one is better?
[Awbeser | [oo][7o

Safe or not

® Evaluate *

,,,,,,,,,,,,,

@ Write your task
prompt

AgentA : GPT-40 (20240806
Agent B : Claude 3.5 Sonnet (20241022

® Agent identities revealed post-evaluation @ Observe anonymized agents’ execution

+ Step-wise feedback with &/ F

Figure 1: COMPUTER AGENT ARENA evaluation workflow: Users select an operating system
(Windows/Ubuntu) and initialize the environment via preset or custom scripts. Two anonymized
CUAs execute tasks simultaneously in parallel virtual machines, with their recorded visual trajectories
presented for user evaluation. User preferences and correctness judgments are collected to generate
global agent rankings.

To address these limitations, we introduce COMPUTER AGENT ARENA, a novel evaluation frame-
work allowing evaluating CUAs on authentic computer tasks from real users and assessing agent
performance through direct human feedback. To ensure diversity and authenticity, we deploy a
cloud-hosted VM infrastructure with hundreds of prebuilt setups (e.g., preopened apps/web pages
and files) and support user-defined initializations and customizations to mimic realistic computer
use. To ensure fair comparison, two anonymous CUAs execute the user-proposed instruction in
parallel within identical environments, rendering a side-by-side execution trajectory for pairwise
evaluation. The accumulated preferences converge to a stable leaderboard through Bradley—Terry
ranking model (Bradley & Terry, |1952), following the Chatbot Arena (Chiang et al.| [2024). In
parallel, optional step-wise evaluations of grounding errors, privacy violations, and self-correction
behaviors are also collected to comprehensively evaluate CUAs capabilities.

We collected 2,201 filtered, high-quality votes from 1,058 users across 12 CUA models. The resulting
leaderboard diverges sharply from static benchmarks—most notably, several top performers on
OSWORLD (Xie et al.}2024b)) are inverted in our setting. Through analysis, we find this divergence
stems from (i) a broader, more heterogeneous task distribution and environment and (ii) human-centric
evaluation criteria that emphasize process quality in realistic environments. We first did rigorous
error study identifies systematic failure modes that static suites underexpose: (1) tool-integrated
agents, despite excelling on scripted benchmarks, often underperform in real-user tasks due to
tool-selection and tool-use errors; (2) long-horizon memory lapses and plan drift; (3) insufficient
information seeking and underuse of clarification; and (4) fine-grained grounding/action-precision
errors. Beyond agent performance, preference analysis from a human-centric perspective shows that
users evaluate the execution process, not just outcomes: agents earn preference through thoughtful
planning, meaningful partial progress, error recovery, responsiveness, and judicious CALL_USER
queries, even when full completion is not achieved. These effects are especially salient in open-ended
or subjective tasks, where correctness is inherently ambiguous and closely tied to process quality.
Together, the findings surface alignment signals beyond outcome correctness and clarify why agents
can both fail more often and still (or fail to) earn human preference.

In summary, COMPUTER AGENT ARENA establishes a human-centric methodology for evaluat-
ing computer-use agents by converting real-world tasks and real-user preferences into structured

Under review as a conference paper at ICLR 2026

signals and stable rankings. Our rigorous error study diagnoses current agent shortcomings (e.g.,
tool-selection/use errors, long-horizon memory failures and plan drift, and fine-grained action errors),
while our human-centric preference analysis identifies what users actually care about in deploy-
ment—process quality, responsiveness, judicious clarification queries, recovery from errors, and
privacy awareness. Beyond revealing ranking reversals relative to scripted benchmarks, we open-
source the platform, reference implementations, and a large, multimodal, human-labeled preference
dataset to facilitate CUA research. Rather than replacing benchmark-driven evaluation, our work
provides a complementary human-centric lens that should not be overlooked in agent design and
deployment.

2 COMPUTER AGENT ARENA SYSTEM DESIGN

We design the COMPUTER AGENT ARENA evaluation system as shown in Figure[I] In this section,
we detail the platform infrastructure, agent execution interface, and the ranking system that transforms
pairwise evaluations into a global leaderboard.

2.1 PLATFORM IMPLEMENTATION

Scalable online CUA evaluation requires infrastructure that (i) elastically serves many concurrent
sessions, (ii) presents diverse, realistic software and web contexts, and (iii) guarantees fair comparison
by running agents in matched environments. COMPUTER AGENT ARENA meets these requirements
with a cloud-based stack that exposes fully interactive desktops to general users via a web interface.

Scalable. We extend OSWorld (Xie et al.,2024b) by packaging a standardized AMI and deploying it
on AWS EC2 behind a dedicated backend service. The service provides on-demand provisioning of
preconfigured virtual machines (VMs), parallel allocation for crowd evaluations, and low-latency
startup through a managed pool. Each session streams a native desktop via a VNC window in the
browser, enabling real-time interaction without client-side installation (Figure E], Step (1)).

Diverse and open-domain. To replicate authentic computer use, we curated 600+ distinct initializa-
tions spanning both software and the web. Concretely, we sample popular sites from SimilarWeb and
expand coverage through popular subdomains; we install mainstream applications from Microsoft
Store and Snapcraft; and we preload 100+ heterogeneous files (e.g., . docx, .py) to instantiate
realistic workflows (Figure|l} Step (2)). To reduce overfitting to fixed contexts, file-system contents
are periodically refreshed. To further support customization, we provide quick-start tools that let users
configure environments with minimal friction—e.g., uploading files, pre-opening specific websites,
cloning GitHub repositories, and applying initialization recipes (packages, datasets, browser profiles)
in one click. These initializations and user-defined customizations keep scenarios flexible and aligned
with real user needs.

Fair. For head-to-head comparisons, two anonymized CUAs are instantiated in identical environ-
ments: same AMI, software versions, initialization recipe, and seeded configuration. The backend
records an environment fingerprint (AMI ID, package hashes, and initialization spec) with each
trial to support reproducibility checks. Agents execute in parallel to avoid temporal drift; their
full trajectories are captured via built-in OBS services and rendered as synchronized replays on the
evaluation interface. Users then submit pairwise preferences and structured labels (e.g., correctness,
safety, efficiency), producing comparable feedback across matched conditions (Figure|l} Step 4).

Observable and user-friendly. All interactions are logged at step level (screens, actions, timestamps)
and compiled into visual summaries for rater inspection. The browser-based workflow lowers the
barrier for non-technical participants while preserving a native desktop experience, enabling scalable,
diverse, and fair human-centric evaluation at crowd scale.

2.2 AGENT IMPLEMENTATION

CUAs interact with computers through a unified action space and API service to ensure cross-model
compatibility (Xu et al., 2024c}; Bai et al., 2025; |Guo et al., 2025} [Xu et al., [2024b; Zhang et al.,
2025; Wang et al., [2025). At each timestep, the agent receives a 1280x 720 desktop screenshot and
outputs a structured function call representing actions such as mouse movement, clicks, keyboard
typing, scrolling, or special signals (DONE, FATIL, CALL_USER). Each session begins with a natural

Under review as a conference paper at ICLR 2026

language instruction and proceeds as a trajectory of state—action pairs until termination, with full
action specifications in Appendix [B.3] For model integration, we adopt official frameworks when
available (e.g., OpenAl Operator (OpenAl, 2025d), Claude 3.7 Sonnet (Anthropic, [2025¢)) and
otherwise use a standardized baseline agent that handles screenshot ingestion, prompting, function-
call formatting, and environment interaction. This unified pipeline isolates model behavior and
ensures fair comparison under identical constraints, including fixed step limits, response windows,
and access to prior CoT outputs. To ensure fairness and reproducibility, all open-source CUAS
are instantiated verbatim from public repository, released checkpoints, default system prompts and
tools, inference parameters (e.g., temperature, max-tokens), and tool schemas—so that differences in
outcomes reflect model behavior rather than integration variance. This unified pipeline isolates the
model, equalizes interfaces and resources, and enables apples-to-apples comparison under identical
environments. The details of implemented CUA models are listed in Section[3.1]

2.3 AGENT RANKINGS

Each evaluation in COMPUTER AGENT ARENA results in a pairwise preference vote: two anonymized
CUAs execute the same task in identically initialized cloud computers, and the user selects the better-
performing agent or declares a tie. Following prior work on human preference evaluation (Chiang
et al., [2024;|Chi et al., 2025; |Li et al., 2025bj |Guertler et al., [2025)), we aggregate these votes into a
global leaderboard using an Elo ranking system derived from the Bradley—Terry model (Bradley &
Terry, |{1952).

Let z; = (mf, mf) € [M]? denote the agent pair in comparison 4, and y; € {1,0, 1} the correspond-

ing user preference. Each agent m is assigned a strength parameter (3,,,, and the probability that the
left agent wins is modeled as:

exp(ft)

L Ry __
Prim” = m") = o Bon) + exp (B

We optimize the log-likelihood of all votes to estimate 3, and convert scores to the standard Elo scale
via:

E,, = 4001og,,(e”™) + 1000.

To ensure leaderboard stability, we compute 95% confidence intervals via bootstrap and rank agents
by the lower bound of their interval. The Appendix [C] shows full optimization and leaderboard
details.

3 EXPERIMENTS

We present our experimental setup and leaderboard results, followed by analysis of task distribution,
data validation and cross-benchmark comparisons.

3.1 EXPERIMENTAL SETUP

Agent Models and Sampling. We evaluate 12 publicly accessible CUAs spanning three representa-
tive groups. (i) Proprietary computer-use agents with strong benchmark performance: Claude 4
Sonnet (Anthropic, [2025b)), Claude 3.7 Sonnet (Anthropic, |2025a), UI-TARS-1.5 (Qin et al.} |2025)),
Operator (OpenAlL2025d)), and Claude 3.5 Sonnet (New) (Anthropic}[2024). (ii) Open-source CUAs:
OpenCUA-32B (Wang et al., 2025), Qwen 2.5 VL 72B (Bai et al.,|[2025)), and CoAct-1 (Song et al.|
2025); notably, CoAct-1 is a universal digital agent integrating API tool calls and code execution. (3)
General foundation models. We additionally include strong general-purpose multimodal models not
previously tested in this setting (e.g., GPT-5 (OpenAl, 2025b)), GPT-4.1 (OpenAl 2025a), OpenAl
04-mini (OpenAl, 2025¢)), and Gemini 2.5 Pro (Google DeepMind, 2025))). All agents follow the
unified protocol in Section [2.2] and are sampled with uniform probability during evaluation. For
quality control, agents with < 10% correctness in their first 100 votes are removed to preserve data
quality and user experience.

Under review as a conference paper at ICLR 2026

Crowdsourcing Evaluation We collected evaluation data from two sources: (1) public users on
the COMPUTER AGENT ARENA platform and (2) paid crowd workers on Prolific (Peer et al.,2021),
a high-quality crowdsourcing platform. Prolific participants were pre-screened for prior experience
with LLM tools (e.g., ChatGPT, Claude) with details in Appendix All users had to submit real
computer-use tasks and evaluate anonymized agent trajectories via pairwise preference judgments
and other labels. To ensure that the resulting evaluations reflect realistic usage patterns, we recruited
annotators from diverse demographic backgrounds, spanning multiple countries, educational levels,
and professions, detailed statistics are reported in Appendix [B.3.1]

Data Filtering To ensure data quality, we applied post-hoc filtering to remove duplicate instructions,
off-topic queries (e.g., math problems, chit-chat), and tasks incompatible with GUI-based execution.
For further validation of annotation consistency, we conducted an inter-annotator agreement study,
sampling 100 human-labeled trajectories from the dataset and assigning them to three different
annotators for independent labeling. Krippendorff’s « scores were calculated for each label type,
yielding values of = (.72 for preferences, = 0.78 for correctness, = 0.68 for safety, and = 0.70 for
efficiency. These results demonstrate a moderate-to-strong level of agreement among annotators,
confirming the reliability and consistency of our labeled data. Full details of the filtering procedure,
including these consistency results, are provided in Appendix[B.3.2}

3.2 MAIN RESULTS

Rank Model Elo Votes Correct Rate 1200

1 Claude Sonnet 4 1167 416 52.0% { {

2 Claude 3.7 Sonnet 1140 507 52.3% 1100 }

3 UI-TARS-1.5 1092 533 49.9% o }

4 Operator 1064 511 37.4% g 1000] 1 {]

5 CoAct-1* 1043 110 41.8% °

6 OpenCUA* 1023 109 38.5% B [

7 Claude 3.5 Sonnet 1023 425 35.8%

8 GPT-5* 1002 108 34.3% { {

9 o4-mini 895 266 15.4% 800
10 Qwen2.5 VL 72B Instruct 895 504 15.9% oug'3uae 575 ReragoAc penSuad TS miten ST 5mi
Il GPT-4.1 837 432 8.6% e Songy S, Moz, 2P0
12 Gemini 2.5 Pro 829 377 11.8% Stru

CUA Model
(a) COMPUTER AGENT ARENA leaderboard with Elo

scores. vote counts. and correctness rates. (b) Bootstrapped Elo scores with 95% confidence in-

tervals.

Figure 2: Model performance on COMPUTER AGENT ARENA based on 2,201 pairwise user votes.
(a) presents the leaderboard; (b) shows bootstrapped Elo score distributions. (* denotes models with
limited votes; results will be updated in later versions.)

We collected a total of 3,418 evaluation votes, including 1,773 from public users and 1,645 from
Prolific participants. After filtering invalid submissions and removing low-performing models, we
retained 2,201 high-quality preference votes for analysis. In total, the platform engaged 1,058 unique
users, comprising 821 Prolific participants and 237 public users.

Leaderboard Results. Figure|2|shows the COMPUTER AGENT ARENA leaderboard based on over
2,201 pairwise votes from 1,058 users across 12 CUA models. Claude Sonnet 4 and Claude 3.7 Sonnet
dominate the rankings with a clear Elo margin, followed by UI-TARS-1.5 and OpenAl Operator.
In contrast, general-purpose models like GPT-5 and Gemini 2.5 Pro rank lower, suggesting that
strong multimodal capabilities do not necessarily translate to robust computer-use performance. We
also compare the COMPUTER AGENT ARENA leaderboard with four public benchmarks: OSWorld,
WebArena (Zhou et al., 2024), WebVoyager (He et al., [2024) and Online-Mind2Web (Xue et al.}
2025). Figure [3a|summarizes how existing models rank across all five leaderboards.

Statistical Validation We validate that observed model differences are not artifacts of sampling
variance using three complementary tests (details in Appendix D). Bootstrapped Elo scores provide
narrow 95% confidence intervals. Permutation tests, implemented by repeatedly shuffling preference
labels to form a null distribution, confirm that pairwise win-rate differences are highly significant
(p < 0.01) with medium-to-large effect sizes (Cohen’s d > 0.5). Power analysis, conducted by

Under review as a conference paper at ICLR 2026

Cross-Benchmark Rank Differences

o 6
OSWorld Ablation: Out vs. In-domain Tasks
Claude Sonnet 4
5 1080
Claude 3.7 Sonnet 2 3 3 3
1060
4 Claude 3.7 Sonnet
» 1040 UI-TARS-1.5
Operator 3 4] <]
=8
3 @« 1020
u_(j Operator
UITARSL.5 4 2
1000 Claude 3.5 Sonnet (New)
2
Qwen 2.5 VL 72B Instruct
5 5 a a 980
Claude 3.5 Sonnet Gemini 2.5 Pro (Experimental)
o 1 960 o4-mini
chh 05\N°‘\ e \Io\’agef. in d’L\Neb - ‘
onine Out-of-domain In-domain

(a) Relative ranks of 12 models across COMPUTER (b) Elo scores on COMPUTER AGENT ARENA after
AGENT ARENA and four public benchmarks. Green = splitting 1,000 tasks into OSWorld-In-domain (left)
higher (better); red = lower; blank = not evaluated. and OSWorld-OOD (right) subsets.

Figure 3: (a) Cross-benchmark comparison highlights rank inversions among top CUAs. (b) Ablation
confirms rankings shift once evaluation moves away from OSWorld templates.

simulating effect detection under varying sample sizes, shows that with typical data (>200 votes
per model pair) the probability of detecting medium effects (AElo ~ 50) exceeds 0.9. Together,
these results demonstrate that the ranking gaps reported in Figures[I0b] [ITa] and[5are statistically
significant and robust.

Task distribution strongly affects leaderboard rankings, revealing the fragility of static bench-
marks. To examine how task distribution influences agent rankings, we perform an ablation study
on the COMPUTER AGENT ARENA dataset. Using GPT-40 as a semantic classifier, we sampled 1,000
user-submitted tasks as either in-domain or out-of-domain. After manual verification, we recompute
Elo scores for each subset separately. As shown in Figure [3b} leaderboard orders shift markedly:
while Claude 3.7 Sonnet remains on top, models like UI-TARS-1.5 rise under in-domain tasks. These
findings highlight that static benchmarks often overestimate agent performance by overfitting to
narrow task distributions. In contrast, COMPUTER AGENT ARENA captures a broader task landscape
through crowd-sourced inputs, which is a more reliable reflection of model robustness in real-world
usage.

4 ANALYSIS

We analyze COMPUTER AGENT ARENA from four perspectives: task diversity, user preference,
agent behavior, and error study. This allows us to characterize how CUAs are evaluated in real-world
scenarios and to identify key divergences from static benchmarks.

4.1 TASK ANALYSIS

Tasks in COMPUTER AGENT ARENA feature broader semantic and domain coverage than prior
benchmarks. We analyze the semantic and linguistic characteristics of task instructions across
COMPUTER AGENT ARENA, OSWORLD, WEBARENA, and WEBVOYAGER. As shown in Figure[Dh,
a PCA projection indicates that COMPUTER AGENT ARENA occupies a broader and less clustered
semantic space, suggesting greater topical diversity. We further compare instruction-level features,
including instruction length, open-endedness, unigram perplexity, and reference-trajectory length.
FigureOp shows that COMPUTER AGENT ARENA tasks are shorter on average (mean ~ 17 words)
yet substantially more ambiguous—reflected by nearly double the perplexity—and more likely to
lack a canonical ground-truth answer. This pattern reflects a key trend: real users frequently issue
concise but underspecified queries, which require agents to infer implicit intent and reason iteratively
rather than converge on a fixed end state.

Under review as a conference paper at ICLR 2026

Instruction Length Open-ended Tasks
PCA Projection of Task Instructions 100
2800
80 5
- £
S 60 L 600
8 i
£ 40 £ 400
= 5
s
20 2200
o
0 0
CAA OSWorld WebVoyager WebArena CAA 0SWorld WebVoyagerWebArena
Instruction Perplexity Average Trajectory Length
2000 2
s g
E 515
£ 1500 £
) 5
s 10
51000 s
ComputerAgentArena g %
0osworld § 500 s 5
WebArena 3
WebVoyager 0

0

CAA 0SWorld WebVoyagerWebArena CAA OSWorld WebVoyager

(a) PCA projection of task instructions across bench- (b) Instruction-level statistics, where "CAA" denotes
marks. COMPUTER AGENT ARENA.

Figure 4: Comparison of task distributions across four CUA benchmarks. Figure (a) shows the
semantic projection of task instructions via PCA, highlighting coverage differences. Figure (b)
shows instruction length, open-endedness, perplexity, and trajectory length across benchmarks, with
COMPUTER AGENT ARENA ("CAA") exhibiting higher ambiguity and longer interaction sequences.

4.2 USER PREFERENCE ANALYSIS

We analyze behavioral features and outcome labels from 10
COMPUTER AGENT ARENA to identify the factors that
truly shape user preferences. 08
Los o : { {
Correctness is a leading predictor user preference, =
; 04

while execution length and latency have negligible im-
pact. Building on the prior observation that users value
coherent execution, we next quantify how correctness and
efficiency metrics correlate with user preference. Leverag- 00 1 , ,
ing explicit correctness labels from our evaluation pipeline, Number of Queries
we observe a strong linear relationship between model cor-

rectness and win rate (Figure [TTa), indicating that task Figure 5: Win rate grouped by number of
success is the most influential factor in shaping user judg- CALL_USER queries. Moderate query-
ments. To isolate the effect of execution efficiency, we ing (1-2 times) leads to higher user pref-
analyze sessions where both agents were marked “correct” erence, while excessive or no querying
and compare their step counts and average latencies. As lowers win rate.

shown in Figure[TTb} neither factor shows a consistent influence on user preference—users do not sys-
tematically prefer faster or shorter executions when outcome quality is held constant. Overall, these
results suggest that while concise or responsive behavior may offer slight advantages, correctness
remains the dominant signal guiding user preferences in current CUA systems.

0.2

User preferences are shaped more by turn-level completeness rather than by final state. We
conduct a quantitative case study of 100 selected cases to better understand why top-performing
agents diverge in real-world evaluation. Our analysis reveals that, unlike static benchmarks which
assess agents solely based on final states, users on COMPUTER AGENT ARENA often base their
preferences on holistic execution quality. As illustrated in Example 2 in Appendix |J| agents that fail
to complete the task may still be preferred if they demonstrate clear intent understanding, partial
progress, or thoughtful error recovery and self-correction attempts. This preference is especially
evident in open-ended tasks with no unique solution, where users value adaptive and coherent
behavior over rigid outcome success. These findings highlight the importance of evaluating how an
agent performs, not just what it accomplishes, emphasizing the need for turn-level assessment in
realistic human—agent evaluation.

Under review as a conference paper at ICLR 2026

Agent-human interaction improves agent preference, while excessive queries hinder perfor-
mance. Beyond execution correctness, human—agent interaction plays a key role in shaping pref-
erences. Unlike prior benchmarks that treat CUAs as fully autonomous systems (Xie et al.| 2024aj
Zhou et al., 2024), COMPUTER AGENT ARENA enables an explicit human—agent interface via
the CALL_USER action (Sec. [2.2)). Figure[5]|shows that moderate querying—typically one or two
calls—correlates with the highest win rates, whereas both zero and excessive queries are associated
with lower user preference. This inverted U-shaped pattern suggests that users value well-timed
clarification, especially for underspecified tasks, yet tend to penalize over-reliance on human input.
These results indicate that effective interaction is not merely about asking questions, but about
demonstrating autonomy and judgment—traits users increasingly expect from capable CUAs.

4.3 ToOL-INTEGRATED VS. PURE GUI CUASs

Recent CUA work emphasizes fool-augmented architectures that invoke code interpreters or APIs
to improve success on structured tasks. Although such agents often surpass GUI-only models on
scripted benchmarks, our human-centric evaluation reveals a different pattern in real use. For example,
CoAct-1 (Song et al., 2025)—a tool- and coding-integrated agent based on OpenAl 03 (OpenAl,
2025c))—reports state-of-the-art results on OSWORLD-VERIFIED (60.1% success), yet exhibits
substantially lower performance in COMPUTER AGENT ARENA, particularly on non-technical tasks.
This contrast underscores a benchmark-real-world gap: scripted suites tend to reward deterministic
tool pipelines, whereas real user instructions are often underspecified and not always tool-benefiting.

The evaluation results of CoAct-1 show two salient characteristics in our evaluation: (1) On tasks natu-
rally suited to tooling (e.g., code debugging, technical workflows), CoAct-1 is competitive—especially
among tech-savvy raters. (2) On general-purpose tasks, rool selection frequently misfires, producing
errors invisible in the GUI replay and leading to lower user preference. Notably, its successful trajec-
tories are very short (mean ~ 3 steps), suggesting that tool calls can solve narrow problems efficiently
but generalize poorly across open-ended tasks. We trace the gap to two factors: (i) Tool-selection
bias, where agents over-invoke coding tools on tasks better served by direct GUI actions; (ii) Error
amplification, where tool calls produce opaque, non-surfaced failures that undermine interpretability
and user trust.

Our findings indicate that adding more tools to CUAs does not inherently translate into better
real-world performance; misapplied tooling can degrade both accuracy and user satisfaction. Two
implications follow: (1) Tool definition and selection matter. Future designs should develop
adaptive policies that decide when, what, and how to invoke tools—including abstaining, clarifying
with the user, or falling back to direct GUI actions. (2) Mind the benchmark-real-world gap.
Benchmarks that overweight tool-centric pipelines risk misrepresenting user needs. By exposing
these discrepancies, COMPUTER AGENT ARENA offers a lens to study tool-use strategies and their
usability impact in open-ended environments.

4.4 ERROR ANALYSIS

While quantitative metrics such as Elo and correctness provide a global view of model performance,
they cannot reveal the nuanced behavioral failures that limit agent usability in realistic settings. A
key advantage of COMPUTER AGENT ARENA is that human preference annotations surface diverse
error modes that scripted benchmarks fail to capture. Many failed trajectories stem from common
issues such as grounding errors (e.g., mis-clicking a button) and planning errors (e.g., lacking a
clear execution strategy), which reflect base model limitations and can be mitigated with training.
Beyond these expected cases, however, we identify three insightful error types that are subtler, more
detrimental, and harder to expose with scripted tasks:

* Long-horizon memory failures. In tasks requiring long-horizon context or repetitive
workflows, CUAs often lose track of key information after many steps (e.g., converting
multiple files or compiling season-long statistics). Even state-of-the-art models such as
Claude 4 Sonnet frequently drift or forget intermediate goals.

» Information awareness. Real-world queries are often underspecified, omitting details
such as file paths or intention slots. Purely GUI-based agents typically issue speculative
commands rather than clarifying uncertainties, leading to compounding errors. By contrast,

Under review as a conference paper at ICLR 2026

models like Claude 4 Sonnet and Operator effectively invoke CALL_USER to resolve
ambiguity, underscoring the importance of interactive mechanisms.

* Fine-grained action failures. Even when intent is clear, execution breaks down due to fine-
grained control errors, including mishandled scrolling, clicks on non-interactive elements,
or faulty text editing (e.g., appending instead of replacing). These mistakes, sitting between
planning and grounding, often derail entire tasks and highlight the need for new training
signals on low-level action precision.

Together, these categories show how COMPUTER AGENT ARENA functions as a systematic error
discovery pipeline. By surfacing nuanced failure modes beyond correctness, our analysis provides
actionable insights for improving memory, uncertainty handling, and fine-grained grounding in future
CUAs.

5 RELATED WORK

Computer-Use Agent Benchmarks Recent advancements have fostered diverse benchmarks and
evaluation frameworks for assessing computer-use agents. Within GUI agent contexts, evaluations
mainly target scenarios involving web navigation (Zhou et al.| 2024; Deng et al., [2023} [Koh et al.|
2024; Drouin et al.| 2024) and computer-use (Xie et al.,|2024a}; [Bonatti et al., [2024; Davydova et al.,
2025; [Xie et al.l 2025a). OS-level benchmarks, such as OSWorld-Verified (Xie et al., [2024a;2025b)
and Windows Agent Arena (Bonatti et al.,|2024])), provide rule-based evaluations of desktop agents
performing various GUI tasks. Recent works like AgentCompany (Xu et al., [2024a)), AndroidWorld
(Rawles et al.| [2024), Online-Mind2Web (Xue et al., 2025), AgentNetBench (Wang et al., 2025) ex-
tend evaluations toward longer horizons, leveraging interactive and multi-modal scenarios. Although
these frameworks have significantly contributed toward standardized assessments, they remain largely
script-based and static. Our platform, COMPUTER AGENT ARENA, further expands upon these ideas
by crowd-sourcing authentic user-defined tasks and emphasizing dynamic, human-centric evaluations
of computer-use agents.

Human-centric Evaluation Human preference evaluation has become increasingly significant for
tasks lacking clearly defined ground truths, such as dialogue agents and interactive applications. Plat-
forms like Chatbot Arena (Chiang et al.,[2024) popularized large-scale, pairwise human comparisons
for evaluating language models, using Bradley—Terry—based Elo ranking systems. This paradigm was
subsequently adapted to domains like programming assistants (Copilot Arena (Chi et al.,2025)), large
audio models (L1 et al., [2025b)), and text-based gaming agents (TextArena (Guertler et al.| 2025))).
These arenas highlight the value of integrating human judgment into model assessment, enabling
nuanced distinctions that conventional benchmarks or scripted evaluations might overlook. Despite
their success, existing preference-based platforms primarily focus on isolated, context-independent
interactions without grounding evaluations within users’ real environments. By bridging the gap
between evaluation and deployment, our platform lays the groundwork for more ecologically valid
assessments and provides a foundation for future research on agents operating in the wild.

6 CONCLUSION

We present COMPUTER AGENT ARENA, a human-centric framework for evaluating Computer-
Use Agents (CUAs) that enables scalable, diverse, authentic, and fair head-to-head comparisons in
realistic, dynamic environments. We collect 2,201 filtered, high-quality votes across specialized CUA
models and general-purpose foundation models on diverse, open-ended tasks, uncovering insights
that static, scripted suites overlook. In particular, our error study surfaces systematic shortcomings
of current CUAs (e.g., tool-selection/use errors, long-horizon memory and plan drift, fine-grained
action/grounding issues), while our human preference analysis shows that users value process quality,
agent-human interaction, recovery from errors, and privacy awareness. We open-source the evaluation
platform, reference agent implementations, and a large, multimodal, human-labeled preference dataset
to facilitate future research on CUAs. Ultimately, we underscore the centrality of a human-centric
perspective for Al agent design and deployment in real-world use.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work involves the collection of human preference data through both public participation and paid
crowdworkers. All participants provided informed consent prior to participation: public users agreed
to the consent form before using the COMPUTER AGENT ARENA platform, and paid annotators
recruited via Prolific were required to read and accept an explicit consent statement before starting
tasks. Paid annotators interacted only through anonymized accounts, and no personally identifiable
information was collected or stored. For the final dataset release, we applied a sensitive data filtering
process to remove submissions containing personal or inappropriate content, ensuring that all data
remain anonymized and privacy-preserving.

We acknowledge that crowdsourced data may contain demographic and cultural biases. To assess
fairness, we conducted a demographic study of annotators, which confirmed a broad distribution
across countries, education levels, and professional backgrounds (Appendix [B.3.T).

The dataset and platform are released solely for academic research purposes. They are intended
to advance evaluation methodology and alignment for computer-use agents, and must not be used
for surveillance, discriminatory decision-making, or other potentially harmful applications. This
study was conducted in accordance with institutional ethical guidelines, and all authors confirm
compliance with the ICLR Code of Ethics. We declare that there are no conflicts of interest or external
sponsorships influencing this work.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility and transparency of our work. All code for the
COMPUTER AGENT ARENA platform, including frontend, backend, evaluation logic, and ranking
scripts, will be released under an open-source license. To guarantee consistent runtime environments,
we additionally provide pre-built Amazon Machine Images (AMIs) for both Windows and Ubuntu,
and a plug-and-play agent hub for integrating external models and enabling third-party leaderboard
participation (Sec.[2.2]and Appendix[B.2). Detailed descriptions of data filtering, annotation protocols,
and demographic studies are provided in Appendix[B.3.2]and Appendix ensuring transparency
in data collection and quality control. We also report evaluation cost and throughput analyses in
the Appendix [H] confirming that the framework is both affordable and scalable for community use.
Together, these efforts provide a reproducible end-to-end pipeline for benchmarking, training, and
behavioral diagnostics of computer-use agents in realistic environments.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude computer use. https://www.anthropic.com/news/
3-5-models—and-computer—use) 2024. Accessed: 2025-05-03.

Anthropic. Claude 3.7 sonnet and claude code. Technical report, Anthropic, Feb 2025a. URL
https://www.anthropic.com/news/claude—3-7-sonnet. Online; accessed 2025-
09-25.

Anthropic. Introducing claude 4, may 2025b. URL https://www.anthropic.com/news/
claude-4. Accessed 23 June 2025.

Anthropic. Claude’s extended thinking. https://www.anthropic.com/research/
visible-extended-thinking, 2025¢c. Accessed: 2025-05-03.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqiang
Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
CoRR, abs/2502.13923, 2025.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Fender C. Bucker, Lawrence Jang, and Zack Hui.
Windows agent arena: Evaluating multi-modal os agents at scale. ArXiv preprint, 2024. URL
https://api.semanticscholar.org/CorpusID:272600411.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39:324, 1952. URL https://api.semanticscholar.
org/CorpusID:125209808.

Canonical Ltd. Snap store — install linux apps using snaps, May 2025. URL jhttps://
snapcraft.io/store. Snapcraft.io Snap Store home page, accessed 10 May 2025.

Wayne Chi, Valerie Chen, Anastasios Nikolas Angelopoulos, Wei-Lin Chiang, Aditya Mittal, Naman
Jain, Tianjun Zhang, Ion Stoica, Chris Donahue, and Ameet Talwalkar. Copilot arena: A platform
for code 1lm evaluation in the wild, 2025. URL https://arxiv.org/abs/2502.09328.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena:
An open platform for evaluating llms by human preference, 2024. URL|https://arxiv.org/
abs/2403.04132.

Mariya Davydova, Daniel Jeffries, Patrick Barker, Arturo Marquez Flores, and Sinéad Ryan. Os-
universe: Benchmark for multimodal gui-navigation ai agents, 2025. URL https://arxiv,
org/abs/2505.03570.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091-28114, 2023.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados, and
Alexandre Lacoste. Workarena: How capable are web agents at solving common knowledge work
tasks?, 2024. URL https://arxiv.org/abs/2403.07718.

Google DeepMind. Gemini 2.5 pro: Our most advanced reasoning model, 2025.
Available at https://blog.google/technology/google—deepmind/
gemini-model-thinking-updates-march-2025/.

Leon Guertler, Bobby Cheng, Simon Yu, Bo Liu, Leshem Choshen, and Cheston Tan. Textarena,
2025. URL https://arxiv.org/abs/2504.11442.

11

https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/research/visible-extended-thinking
https://www.anthropic.com/research/visible-extended-thinking
https://api.semanticscholar.org/CorpusID:272600411
https://api.semanticscholar.org/CorpusID:125209808
https://api.semanticscholar.org/CorpusID:125209808
https://snapcraft.io/store
https://snapcraft.io/store
https://arxiv.org/abs/2502.09328
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2505.03570
https://arxiv.org/abs/2505.03570
https://arxiv.org/abs/2403.07718
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://arxiv.org/abs/2504.11442

Under review as a conference paper at ICLR 2026

Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
Jianyu Jiang, Jiawei Wang, Jingji Chen, Jingjia Huang, Kang Lei, Liping Yuan, Lishu Luo, Pengfei
Liu, Qinghao Ye, Rui Qian, Shen Yan, Shixiong Zhao, Shuai Peng, Shuangye Li, Sihang Yuan, Sijin
Wau, Tianheng Cheng, Weiwei Liu, Wengian Wang, Xianhan Zeng, Xiao Liu, Xiaobo Qin, Xiaohan
Ding, Xiaojun Xiao, Xiaoying Zhang, Xuanwei Zhang, Xuehan Xiong, Yanghua Peng, Yangrui
Chen, Yanwei Li, Yanxu Hu, Yi Lin, Yiyuan Hu, Yiyuan Zhang, Youbin Wu, Yu Li, Yudong
Liu, Yue Ling, Yujia Qin, Zanbo Wang, Zhiwu He, Aoxue Zhang, Bairen Yi, Bencheng Liao,
Can Huang, Can Zhang, Chaorui Deng, Chaoyi Deng, Cheng Lin, Cheng Yuan, Chenggang Li,
Chenhui Gou, Chenwei Lou, Chengzhi Wei, Chundian Liu, Chunyuan Li, Deyao Zhu, Donghong
Zhong, Feng Li, Feng Zhang, Gang Wu, Guodong Li, Guohong Xiao, Haibin Lin, Haihua Yang,
Haoming Wang, Heng Ji, Hongxiang Hao, Hui Shen, Huixia Li, Jiahao Li, Jialong Wu, Jianhua
Zhu, Jianpeng Jiao, Jiashi Feng, Jiaze Chen, Jianhui Duan, Jihao Liu, Jin Zeng, Jingqun Tang,
Jingyu Sun, Joya Chen, Jun Long, Junda Feng, Junfeng Zhan, Junjie Fang, Junting Lu, Kai Hua,
Kai Liu, Kai Shen, Kaiyuan Zhang, Ke Shen, Ke Wang, Keyu Pan, Kun Zhang, Kunchang Li,
Lanxin Li, Lei Li, Lei Shi, Li Han, Liang Xiang, Liangqgiang Chen, Lin Chen, Lin Li, Lin Yan,
Liying Chi, Longxiang Liu, Mengfei Du, Mingxuan Wang, Ningxin Pan, Peibin Chen, Pengfei
Chen, Pengfei Wu, Qingqging Yuan, Qingyao Shuai, Qiuyan Tao, Renjie Zheng, Renrui Zhang,
Ru Zhang, Rui Wang, Rui Yang, Rui Zhao, Shaogiang Xu, Shihao Liang, Shipeng Yan, Shu Zhong,
Shuaishuai Cao, Shuangzhi Wu, Shufan Liu, Shuhan Chang, Songhua Cai, Tenglong Ao, Tianhao
Yang, Tingting Zhang, Wanjun Zhong, Wei Jia, Wei Weng, Weihao Yu, Wenhao Huang, Wenjia
Zhu, Wenli Yang, Wenzhi Wang, Xiang Long, XiangRui Yin, Xiao Li, Xiaolei Zhu, Xiaoying Jia,
Xijin Zhang, Xin Liu, Xinchen Zhang, Xinyu Yang, Xiongcai Luo, Xiuli Chen, Xuantong Zhong,
Xuefeng Xiao, Xujing Li, Yan Wu, Yawei Wen, Yifan Du, Yihao Zhang, Yining Ye, Yonghui Wu,
Yu Liu, Yu Yue, Yufeng Zhou, Yufeng Yuan, Yuhang Xu, Yuhong Yang, Yun Zhang, Yunhao Fang,
Yuntao Li, Yurui Ren, Yuwen Xiong, Zehua Hong, Zehua Wang, Zewei Sun, Zeyu Wang, Zhao Cai,
Zhaoyue Zha, Zhecheng An, Zhehui Zhao, Zhengzhuo Xu, Zhipeng Chen, Zhiyong Wu, Zhuofan
Zheng, Zihao Wang, Zilong Huang, Ziyu Zhu, and Zuquan Song. Seedl.5-vl technical report,
2025. URLhttps://arxiv.org/abs/2505.07062.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models,
2024. URL https://arxiv.org/abs/2401.139109.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks, 2024. URL https://arxiv.org/abs/
2401.13649.

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use,
2025a. URL https://arxiv.org/abs/2504.07981.

Minzhi Li, William Barr Held, Michael J Ryan, Kunat Pipatanakul, Potsawee Manakul, Hao Zhu, and
Diyi Yang. Mind the gap! static and interactive evaluations of large audio models, 2025b. URL
https://arxiv.org/abs/2502.159109.

Microsoft Corporation. Microsoft store — download apps, games & more for windows pc,
May 2025. URL https://apps.microsoft.com/home?hl=en-US&gl=US| Microsoft
Store home page, accessed 10 May 2025.

OpenAl. Introducing gpt-4.1 in the api. Technical report, OpenAl, Apr 2025a. URL https:
//openai.com/index/gpt—4-1/. Online; accessed 2025-09-25.

OpenAl. Introducing gpt-5. Technical report, OpenAl, Aug 2025b. URL https://openai,
com/index/introducing—gpt—5/. Online; accessed 2025-09-23.

OpenAl Introducing openai 03 and o4-mini. Technical report, OpenAl, Apr 2025¢c. URL https:
//openai.com/index/introducing—-o3—-and-o4-mini/. Online; accessed 2025-09-
25.

OpenAl Operator, 2025d. URL https://openai.com/research/operator.

12

https://arxiv.org/abs/2505.07062
https://arxiv.org/abs/2401.13919
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2504.07981
https://arxiv.org/abs/2502.15919
https://apps.microsoft.com/home?hl=en-US&gl=US
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/research/operator

Under review as a conference paper at ICLR 2026

Eyal Peer, David Rothschild, Zak Evernden, Andrew Gordon, and Ekaterina Damer. Mturk, prolific
or panels? choosing the right audience for online research. SSRN Electronic Journal, 01 2021. doi:
10.2139/ssrn.3765448.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng,
Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng
Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui interaction
with native agents, 2025. URL https://arxiv.org/abs/2501.12326.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry,
Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A dynamic benchmarking
environment for autonomous agents, 2024. URL https://arxiv.org/abs/2405.14573\

Similarweb Ltd. Similarweb: Ai-powered digital data intelligence solutions, May 2025. URL
https://www.similarweb.com/, Corporate website, accessed 10 May 2025.

Linxin Song, Yutong Dai, Viraj Prabhu, Jieyu Zhang, Taiwei Shi, Li Li, Junnan Li, Silvio Savarese,
Zeyuan Chen, Jieyu Zhao, Ran Xu, and Caiming Xiong. Coact-1: Computer-using agents with
coding as actions, 2025. URL https://arxiv.org/abs/2508.03923|

Alex Tamkin, Miles McCain, Kunal Handa, Esin Durmus, Liane Lovitt, Ankur Rathi, Saffron Huang,
Alfred Mountfield, Jerry Hong, Stuart Ritchie, Michael Stern, Brian Clarke, Landon Goldberg,
Theodore R. Sumers, Jared Mueller, William McEachen, Wes Mitchell, Shan Carter, Jack Clark,
Jared Kaplan, and Deep Ganguli. Clio: Privacy-preserving insights into real-world ai use, 2024.
URLhttps://arxiv.org/abs/2412.13678.

Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. arXiv preprint arXiv:2504.07491,
2025.

Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole
Guo, Yiheng Xu, Chen Henry Wu, Zhennan Shen, Zhuokai Li, Ryan Li, Xiaochuan Li, Junda Chen,
Boyuan Zheng, Peihang Li, Fangyu Lei, Ruisheng Cao, Yeqiao Fu, Dongchan Shin, Martin Shin,
Jiarui Hu, Yuyan Wang, Jixuan Chen, Yuxiao Ye, Danyang Zhang, Dikang Du, Hao Hu, Huarong
Chen, Zaida Zhou, Haotian Yao, Ziwei Chen, Qizheng Gu, Yipu Wang, Heng Wang, Diyi Yang,
Victor Zhong, Flood Sung, Y. Charles, Zhilin Yang, and Tao Yu. Opencua: Open foundations for
computer-use agents, 2025. URL https://arxiv.org/abs/2508.09123.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024a.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. ArXiv preprint, 2024b. URL https:
//arxiv.org/abs/2404.07972.

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
Xinyuan Wang, Yuhui Xu, Zekun Wang, Yiheng Xu, Junli Wang, Doyen Sahoo, Tao Yu, and
Caiming Xiong. Scaling computer-use grounding via user interface decomposition and synthesis,
2025a. URL https://arxiv.org/abs/2505.13227.

Tianbao Xie, Mengqi Yuan, Danyang Zhang, Xinzhuang Xiong, Zhennan Shen, Zilong Zhou, Xinyuan
Wang, Yanxu Chen, Jiaqi Deng, Junda Chen, Bowen Wang, Haoyuan Wu, Jixuan Chen, Junli
Wang, Dunjie Lu, Hao Hu, and Tao Yu. Introducing osworld-verified. xlang.ai, July 2025b. URL
https://xlang.ai/blog/osworld-verified.

13

https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2405.14573
https://www.similarweb.com/
https://arxiv.org/abs/2508.03923
https://arxiv.org/abs/2412.13678
https://arxiv.org/abs/2508.09123
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2505.13227
https://xlang.ai/blog/osworld-verified

Under review as a conference paper at ICLR 2026

Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su,
Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiging Xie, Shuyan Zhou, and Graham
Neubig. Theagentcompany: Benchmarking 1lm agents on consequential real world tasks, 2024a.
URLhttps://arxiv.org/abs/2412.14161.

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, and
Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. arXiv preprint
arXiv:2412.09605, 2024b.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv
preprint arXiv:2412.04454, 2024c.

Tianci Xue, Weijian Qi, Tianneng Shi, Chan Hee Song, Boyu Gou, Dawn Song, Huan Sun, and Yu Su.
An illusion of progress? assessing the current state of web agents. arXiv preprint arXiv:2504.01382,
2025. URL https://arxiv.org/abs/2504.01382

Chaoyun Zhang, Shilin He, Liqun Li, Si Qin, Yu Kang, Qingwei Lin, and Dongmei Zhang. Api
agents vs. gui agents: Divergence and convergence, 2025. URL https://arxiv.org/abs/
2503.110609.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents. In International Conference on Learning
Representations, 2024.

14

https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2504.01382
https://arxiv.org/abs/2503.11069
https://arxiv.org/abs/2503.11069

Under review as a conference paper at ICLR 2026

TABLE OF CONTENTS IN APPENDIX

[A~ LLM Usage Statement|

[B~ System Details]|

IB.1 Platform Implementation Details|

IB.2 Imitial Setup Details|

IB.3 Agent Implementation Details|

IB.3.1 Crowd-sourcing Data Collection Details|.

IB.3.2 Evaluation Data Filtering Procedure|

[CElo Ranking Method]

[D " Statistical Validation of Rankings|

ID.1 Bootstrap Confidence Intervals|

ID.3 Power Analysis|
ID.4 " Inter-Annotator Agreement J1AA)| L o

ID.5 Noise Sensitivity Analysis| L
ID.6 Step-Limit Ablation Study|

[EAnalysis Details|

[E.1 Setup Distribution Analysis| oo

[E.2 Generalization Analysis|. L
[E.3 OSWORLD Ablation Study|.
|[E.4 Task Distribution Analysis Details|,

|[E.5 Instruction and Trajectory Metric Computation|

[E.6 Setup Distribution Analysis.| oo oo

[E.7 “Topic Clustering Details|

[FAgent Behavior Analysis Details|

[G_Software and Infrastructure Resources|

[Reproducibility and Cost Analysis|

T Addiional Results

J__Case Study Analysis|

15

16

16
16
17
18
24
25

25

26
26
26
27
27
27
27
27

27
27
28
29
30
31
32
32

33

34

34

34

34

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

We provide a disclosure of how LLMs were used in the preparation of this work. LLMs were
employed as a general-purpose assistive tool in the following ways:

* Writing support and refinement: LLMs were used to assist with phrasing, grammar
checking, and stylistic polishing of the manuscript to improve clarity and readability. All
technical content, claims, and arguments were conceived, verified, and finalized by the
authors.

» Data analysis assistance: LLMs were occasionally used to help with exploratory data
analysis (e.g., generating Python code snippets for statistical tests, summarizing results of
bootstrapping or agreement studies), with all outputs verified and validated by the authors.

LLMs were not used for the ideation of research questions, experimental design, or the generation
of novel scientific claims. All conceptual contributions, dataset collection, experiments, and final
interpretations are the sole responsibility of the authors. We emphasize that LLMs are not contributors
or authors, and that the authors take full responsibility for the correctness and integrity of all content
reported in this paper.

B SYSTEM DETAILS

B.1 PLATFORM IMPLEMENTATION DETAILS

Windows - A -] Windows - B (-]
can you use the snip tool to crop the image . can you use the snip tool to crop the image .
that contains the computer desktop only? that contains the computer desktop only?
Computer- N Computer- .
o =l P O Stop Conversation | ¢d Full Screen e =] P O Stop Conversation | £ Full Screen
Use Agent Use Agent

Step 4/5 ﬁ Step2/3
418) =

N 14.465
\

L
© Move to
(0,0) and

Drag to

(1277, 719)
over1
second.

o [=omow .o 1471s

2.83s

@ Drag:to
(870, 830) :

4.60s o

® Click: (137,

Figure 6: User interface of the COMPUTER AGENT ARENA platform. Users are presented with two
side-by-side VNC desktops representing anonymized CUA executions. Task instructions appear at
the top, while trajectory replays and voting options are shown below.

To support scalable evaluation of CUAs under realistic conditions, we extend the OSWorld image and
build a private Amazon Machine Image (AMI) deployed on AWS EC2. This AMI serves as the base
environment for launching on-demand virtual machines. Upon receiving a task execution request
from the frontend, our backend service either allocates two pre-warmed instances or dynamically
launches new EC2 instances depending on current load. Each evaluation session involves two such
virtual machines to facilitate parallel execution and pairwise comparison.

16

Under review as a conference paper at ICLR 2026

For real-time human interaction, we enable WebSocket Secure (WSS) communication to expose
VNC (Virtual Network Computing) interfaces. These interfaces are embedded in the frontend using
an iframe-based VNC viewer, allowing users to directly observe and interact with the virtual desktop
in real time. This mechanism ensures a high-fidelity, low-latency connection, even under concurrent
usage. To ensure performance robustness, the infrastructure supports multi-region deployment and
load balancing, which minimizes cold start latency and improves responsiveness during high-traffic
periods.

Figure [6] provides a visual overview of the COMPUTER AGENT ARENA evaluation interface. On
the frontend, we implement the entire user interface in React and TypeScript. We leverage built-in
OBS (Open Broadcaster Software) services installed within the VM to record agent trajectories.
Specifically, we capture key frames before and after each agent-issued action (e.g., mouse click,
keystroke, scroll) and compile these frames into animated .gif files. These gifs are rendered
sequentially on the user interface to form an interpretable execution timeline. Each frame is annotated
with overlays (e.g., bounding boxes for clicks, keyboard icons for typing) to help users understand
the agent’s interaction logic at each step.

Correctness A* (O Correct CorrectnessB* (O Correct
(O Partially Correct (O Partially Correct
(O Wrong O Wrong
Which one is A is better Tie Bis better Tie(both bad)
better? *
» Advanced Evaluation (Optional)

4 Submit Results

Figure 7: Evaluation form interface shown after users review the agent trajectories. Users select a
preferred agent (or tie), mark correctness labels for each agent, and can optionally provide comments.

To support pairwise evaluation, the two anonymous agent trajectories are rendered side-by-side. When
agents invoke the CALL_USER action during execution, the frontend renders a user-facing message
box to present the agent’s clarification query. After watching the side-by-side execution trajectories,
users are directed to the evaluation form (Figure[7). This form collects pairwise preference judgments
by asking users to indicate which agent performed better or whether both agents were equally good
or bad. Additionally, users assign correctness labels to each agent (Correct, Partially Correct, or
Wrong), allowing for fine-grained accuracy analysis. Optional text fields also enable users to explain
their decisions or report abnormal behavior. All evaluation artifacts, including task metadata, screen
recordings, and user responses, are logged for subsequent analysis and benchmarking.

B.2 INITIAL SETUP DETAILS

To ensure realistic diversity across evaluation environments and reduce duplication, we implement a
structured pipeline for configuring initial virtual machine states. Following the design philosophy of
OSWorld (Xie et al., 20244a)), we predefine a large number of environment setups through scripted
configuration files. When a user initiates an evaluation session, the backend randomly selects
and applies one of these predefined scripts to both virtual machines, ensuring a synchronized and
comprehensive starting state.

Website Configuration. We curate a diverse pool of popular websites by crawling the top 100
high-traffic domains from SimilarWeb (Similarweb Ltd., [2025)). After manual filtering to exclude
login-gated or geoblocked domains, we expand the pool by collecting up to 10 subdomains per
top-level site. These subdomains are injected into the browser history or opened as startup tabs
within the VM, providing agents with richer content structures and deeper navigation targets during
execution.

17

Under review as a conference paper at ICLR 2026

Table 1: Summary of Initial Environment Setup Components

Category Source Example Types Count
Websites SimilarWeb Wikipedia, YouTube, GitHub 89
Subdomains Manual Expansion en.wikipedia.org, studio.youtube.com 472
Applications Microsoft Store & Snapcraft LibreOffice, VLC, VS Code 12
Files Synthetic Corpus .docx, .xIsx, .pptx, .pdf, .py, .md 97

Application Configuration. To simulate realistic usage patterns, we preload the virtual machines
with over 20 frequently used desktop applications. These are sourced from the Microsoft App
Store (Microsoft Corporation, 2025) and Snapcraft (Canonical Ltd.|[2025)), spanning categories such
as document editing, media playback, messaging, and terminal utilities. Each application is installed
system-wide and accompanied by prewritten startup scripts to ensure reproducibility across instances.

File System Setup. We populate the virtual machine file system with over 100 heterogeneous
files, covering common formats such as . docx, .x1sx, .pptx, .pdf, .py, and .md. These files
simulate a working desktop environment and provide agents with realistic artifacts to manipulate
during task execution. To avoid agent overfitting, we update the file content monthly and apply
randomized filenames and folder structures at each session launch.

User Customization Interfaces. Beyond static setups, we implement a suite of “quick-start” APIs
that allow users to tailor the VM environment. Specifically:

* upload_file allows users to upload local files directly to both VMs.

* open_websites enables users to preload specific URLs into browsers.

* clone_repo automates the cloning of GitHub repositories via a single command.

These tools enhance fidelity and flexibility in modeling users’ native computing environments, making
the evaluation experience more aligned with realistic desktop usage scenarios.

B.3 AGENT IMPLEMENTATION DETAILS

Interaction Protocol. We model the agent-computer interaction as a sequential decision process:

(I, (so,ao),<31,a1>,...,(st,at>) (])

Here, [is the initial task instruction provided by the user; s; is the screenshot of the desktop at step ¢;
a; is the action taken by the agent at that step. The agent conditions its decisions on /, the current
observation s;, and a history buffer of n past state-action pairs (n = 5 by default), allowing limited
memory and context tracking.

Observation. Each observation s; is a full-color PNG screenshot of the entire virtual desktop,
captured at a fixed resolution of 1280x720. These raw pixels are encoded and sent to the agent model
without any additional metadata or structured Ul representations.

We do not provide DOM trees, accessibility layers, or pre-parsed UI elements, due to their inherent
latency and inconsistency across software stacks. By enforcing a vision-only interface, we ensure
that agents are robust to general GUI variation and layout changes.

Action Space. Our platform adopts a structured action format modeled after the PyAutoGUI API.
The action space includes:

e Mouse Interactions: click(x, y), double_click(x, y), move(x, V),
scroll (amount)

* Keyboard Interactions: type (text), press (key), hotkey ([keyl, key2,
. 1)

18

Under review as a conference paper at ICLR 2026

* Meta Actions: DONE (terminate when task is complete), FAIL (terminate if task is un-
achievable), CALL_USER (request user feedback or clarification)

All actions are serialized into a JSON-compatible function-call format that supports easy logging,
replay, and debugging.

Action Execution Workarounds. To ensure consistent and reliable agent behavior across diverse
operating systems and software environments, we introduce two key code-level workarounds that
address common compatibility and reliability issues in action execution.

On some systems, the pyautogui.write and typewrite functions suffer from unpredictable
behavior—especially for non-English input or special characters. To improve compatibility and
ensure multi-language text entry behaves consistently, we transform these commands into clipboard-
based pasting operations. Specifically, we use the pyperclip module to set clipboard contents
and then simulate a ct r1+v hotkey to inject the text. The original clipboard contents are saved and
restored to minimize side effects. The transformation logic is shown below:

def workaround_pyautogui_write (original_code: str) -> str:
import re
lines = original_code.splitlines (keepends=True)
pattern = re.compile (
r'~ (\s*)pyautogui\. (write|typewrite)\s*\ (\sx (["\']1) (.*2)\3\s* (.x)\)\sx$"'
)
has_write = any(pattern.match(line) for line in lines)
if has_write:
transformed_lines = ["import pyperclip\n",

"original_clipboard = pyperclip.paste()\n\n"]
for line in lines:
match = pattern.match(line)
if match is None:
transformed_lines.append(line)
else:
indent, _, _, text, _ = match.groups()
transformed_lines.append (f"{indent}pyperclip.copy ({repr (text)})\n")
transformed_lines.append(f"{indent}time.sleep(0.2)\n")
transformed_lines.append (f"{indent}pyautogui.hotkey ('ctrl','v')\n")
transformed_lines.append (f"{indent}pyperclip.copy (original_clipboard)\n")
return "".join(transformed_lines
return original_code

def workaround_pyautogui_scroll (original_code: str) -> str:
import re
lines = original_code.splitlines (keepends=True)
pattern =
— re.compile(r'” (\s*)pyautoguil.scroll\sx\ (\s* (\d+)\sx, \s* (\d+)\sx*,\s* (\d+) \s*\)\sx$")
has_scroll = any(pattern.match(line) for line in lines)
if has_scroll:
transformed_lines = ["import pyautoguil\n"]

for line in lines:
match = pattern.match(line)
if match is None:
transformed_lines.append(line)
else:
indent, clicks, x, y = match.groups()
transformed_lines.append (f"{indent}pyautogui.moveTo ({x}, {y})\n")
transformed_lines.append (f"{indent}pyautogui.scroll ({clicks})\n")
return "".join (transformed_lines)
return original_code

Listing 1: PyAutoGUI Workaround

In certain environments, pyautogui.scroll behaves inconsistently when used with three ar-
guments (e.g., scroll (clicks, x, y)), especially on Windows or within virtual desktops.
To ensure coordinate-aware scroll behavior works uniformly, we split the scroll into two atomic
operations: first, moving the mouse to the intended location, then performing the scroll. The adjusted
transformation is shown below:

19

Under review as a conference paper at ICLR 2026

These workarounds enable robust agent behavior under diverse conditions and reduce errors arising
from OS-specific inconsistencies. The transformation logic is applied automatically to all agent-
generated code prior to execution within the virtual environment.

Execution Interfaces. Agents interact with the virtual machine through two API calls:

¢ get_observation () — Returns a base64-encoded PNG screenshot
* step(action) — Executes the given action.

The interface is stateless and HTTP-based, allowing deployment across different VM backends and
containerized setups.

Model Integration. We support two modes of model integration:

1. Official Agent Implementation: For models such as OpenAl Operator or Claude-Sonnet-
CU, the agent logic is implemented and maintained by the model provider. We interface with
their inference server and wrap the input/output into our standardized protocol, translating
their tool calls into a unified action format.

2. Baseline Agent Implementation: For open-source models or checkpoints without official
implementations, we offer a default baseline wrapper. This wrapper is designed to handle
screenshot ingestion, instruction prompting, function call parsing, step-wise planning, and
tool-use execution across Ubuntu and Windows environments. The logic also includes
configurable termination criteria, retry-on-failure, and error reflection.

All logs, actions, screenshots, and intermediate CoTs are saved for every session to support evaluation
and visualization. The framework is open-sourced and modular, allowing easy integration of new
models.

Baseline Prompt Implementation. The default inference prompt used in our platform is structured
as follows:

System Prompt for Baseline Agent - Ubuntu

You are an agent performing desktop tasks as instructed, with
knowledge of computers and internet access. Your tool calls will
control mouse and keyboard actions on a computer.

Task Parameters:

— x*Instruction**: {task_instruction}

— x*Resolution*x: {resolution}

- xxPlatformx+: Ubuntu

- **System Passwordxx*: 'password' (for sudo rights if needed)

Ubuntu-Specific Instructions:
- xxDesktop Pathxx: ~/home/user/Desktop”

Observation Information:

Each step provides an observation that includes a screenshot with
these characteristics:

- If previous mouse actions didn't achieve the expected result, do
not repeat them, especially the last one - adjust the coordinate

based on the new screenshot

— Do not predict multiple clicks at once. Base each action on the
current screenshot; do not predict actions for elements or
events not yet visible in the screenshot.

- Launching applications may take some time to appear on the
desktop. If the screenshot indicates that the correct
application has already been clicked, do not click it again-wait

for it to open instead.

Tool Call Information:

20

Under review as a conference paper at ICLR 2026

.

You are provided with computer-use tools which are defined in the
tools clearly, you can use them to perform the task.

- REQUIRED: Accurate Positioning - Base each click/move/drag as
precisely as possible on the screenshot coordinates. Use visual
cues to approximate the exact location of the target.

— REQUIRED: Wait between multiple actions.

Response Structure:

- Current observation analysis

- Results of any previous actions

- Any adjustments needed based on feedback
— The tool call you will use

Requirements:

- YOU MUST USE THE PROVIDED TOOLS IN EVERY RESPONSE TO PERFORM THE
TASK IN COMPUTER. ONLY SKIP TOOL IF YOU HAVE FINISHED THE TASK.

- You are a computer-use agent - please keep executing on the
computer until the user's query is completely resolved, before
ending your turn and yielding back to the user. Only terminate
your turn when you are sure that the problem is solved.

- You MUST plan extensively before each function call, and reflect
extensively on the outcomes of the previous function calls. DO
NOT do this entire process by making function calls only, as
this can impair your ability to solve the problem and think
insightfully.

J

The system prompt implementation for Windows platform is similar to the Ubuntu platform, only
replacing "Platform-Specific Instructions’.

System Prompt for Baseline Agent - Windows

You are an agent performing desktop tasks as instructed, with
knowledge of computers and internet access. Your tool calls will
control mouse and keyboard actions on a computer.

Task Parameters:

— x*Instruction**: {task_instruction}
— x*Resolution*x: {resolution}

— *xPlatformx+*: Windows

Windows-Specific Instructions:

— *xxDesktop Path*x: “C:\\Users\\Administrator\\Desktop"

— **x0Open Terminal Commandxx: “Win+R", then type “cmd® and press
Enter”

— xxApplication Launchx*x*: Desktop applications require a double-
click to open

Observation Information:

Each step provides an observation that includes a screenshot with
these characteristics:

- If previous mouse actions didn't achieve the expected result, do
not repeat them, especially the last one - adjust the coordinate

based on the new screenshot

- Do not predict multiple clicks at once. Base each action on the
current screenshot; do not predict actions for elements or
events not yet visible in the screenshot.

— Launching applications may take some time to appear on the
desktop. If the screenshot indicates that the correct
application has already been clicked, do not click it
againwait for it to open instead.

21

Under review as a conference paper at ICLR 2026

Tool Call Information:

You are provided with computer-use tools which are defined in the
tools clearly, you can use them to perform the task.

— REQUIRED: Accurate Positioning - Base each click/move/drag as
precisely as possible on the screenshot coordinates. Use visual
cues to approximate the exact location of the target.

— REQUIRED: Wait between multiple actions.

Response Structure:

— Current observation analysis

- Results of any previous actions

- Any adjustments needed based on feedback
— The tool call you will use

Requirements:

— YOU MUST USE THE PROVIDED TOOLS IN EVERY RESPONSE TO PERFORM THE
TASK IN COMPUTER. ONLY SKIP TOOL IF YOU HAVE FINISHED THE TASK.

- You are a computer-use agent - please keep executing on the
computer until the users query is completely resolved, before

ending your turn and yielding back to the user. Only terminate
your turn when you are sure that the problem is solved.

- You MUST plan extensively before each function call, and reflect
extensively on the outcomes of the previous function calls. DO
NOT do this entire process by making function calls only, as
this can impair your ability to solve the problem and think
insightfully.

Function Call Tools Definition for Baseline Agent

tools = {
"type": "function",
"function": {
"name": "desktop_automation",
"description": "Perform desktop automation actions like mouse
movements, clicks, keyboard input, and more.",
"parameters": {
lltypell . "object",
"properties": {
"action": {
"type" H "String",
"enum": [
"key",
"hold_key",
"type",
"mouse_move",
"left_mouse_down",
"left_mouse_up",
"left_click",
"left_click_drag",
"right_click",
"middle_click",
"double_click",
"triple_click",
"scroll",
"wait",
llfailll,
"done",
"call_usezr"

22

Under review as a conference paper at ICLR 2026

"description": "The action to perform. Available
actions include keyboard input, mouse movements,
clicks, and system operations. call_user is
used to call the user for further query."
b
"coordinate": {
"type": "array",
"items": {
"type": "integer"
}l
"description": "The (x, y) pixel coordinates for
mouse actions. Required for mouse_move and
left_click_drag and scroll actions"
by

"duration": {
"type": "integer",
"description”: "Duration in seconds for hold_key

and wait actions."

}y

"scroll_amount": {
"type": "integer",
"description": "Number of 'clicks' to scroll.

Required for scroll action."

by

"scroll_direction": {
"type": "string",
"enum": ['lup", "down"’ l‘leftll, llright"] ,
"description": "Direction to scroll. Required for

scroll action."
b
"start_coordinate": {
"type": "array",
"items": {
"type": "integer"
}o
"description": "Starting (x, y) coordinates for
drag actions. Required for left_click_drag."
b

"text": {
"type": "string",
"description": "Text input for type, key, and

hold_key actions. Can also be used with click or
scroll actions to hold down keys while
performing the action."
}
br

"required": ["action"]

Agent Sampling To ensure a meaningful and balanced evaluation of CUA performance, we curated
a pool of 12 models from two categories: (1) public CUA implementations that have reported results
on existing computer-use benchmarks, and (2) general-purpose vision-language models (VLMs)
with sufficient instruction-following capabilities, included to assess their zero-shot utility in realistic
computer environments.

During each evaluation session, we sample two agents uniformly at random from the available pool.
To prevent sampling bias, newly added agents are temporarily upweighted until their total vote count
reaches parity with existing models. This ensures fair exposure in pairwise comparisons and stabilizes
Elo ranking calculations.

23

Under review as a conference paper at ICLR 2026

To safeguard the quality of user experience and filter out underperforming models, we apply a
lightweight correctness-based screening policy: if any model receives fewer than 10% correctness
ratings over a window of 100 user votes, it is automatically retired from the pool and excluded
from further evaluation. This policy mainly targets general VLMs lacking GUI grounding, whose
performance may be unreliable in visual desktop environments.

Through this hybrid sampling and filtering strategy, we maintain both the diversity and reliability of
agent comparisons while preserving fairness across the evaluation process.

B.3.1 CROWD-SOURCING DATA COLLECTION DETAILS

Consent and Ethical Compliance Before participating, all users—both Prolific-based and pub-
lic—were required to review and agree to a digital consent form that outlined the nature and scope of
data collection. The consent form clearly specified:

* The purpose of the study: to evaluate Al agents in realistic computer-use scenarios.

» The types of data collected: task instructions, screenshots, agent actions, user votes, and
optional comments.

* The intended use of the data: for academic research and potential release under a permissive
license (e.g., CC-BY 4.0).

* Voluntary participation and withdrawal: participants could exit at any time without providing
areason, and without loss of compensation or access.

* Anonymity and privacy: participants were instructed not to include any personally identifi-
able information in their submissions.

All study procedures were reviewed and deemed exempt by our institutional ethics board. For the
public deployment, the terms of service shown on the platform homepage served as a binding usage
agreement. The ToS reiterated the research purpose, prohibited inappropriate use, and informed users
that submitted data may be reused under open academic licenses.

Evaluation Crowdsourcing To collect human preference data for evaluating CUAs, we deployed
our study on two channels: (1) unpaid public users on the COMPUTER AGENT ARENA platform, and
(2) paid participants recruited via the Prolific platform (Peer et al.l 2021), a reputable crowdsourcing
service widely used for academic research.

For the Prolific-based study, we designed a structured evaluation task in which participants were
asked to: (i) submit real-world computer-use tasks they personally care about, and (ii) evaluate
anonymized trajectories from two competing agents using a pairwise preference interface. Before
starting, all participants were required to review and agree to a digital consent form clearly describing
the purpose of the study, data collected (task instructions, votes, optional comments), and their right
to withdraw at any time without penalty.

Participants were pre-screened through Prolific’s internal filters to ensure prior familiarity with large
language models (e.g., ChatGPT, Claude), ensuring informed judgments. In accordance with the
Prolific platform’s fair pay policy, we paid all participants with the price of £6/hour, which meets or
exceeds the legal minimum payment requirement on the platform.

In parallel, unpaid users accessing the public version of COMPUTER AGENT ARENA were offered
free usage of the platform and invited to contribute evaluation data on a voluntary basis. These users
also interacted with the same anonymized evaluation interface and followed the same task submission
and voting protocols.

In total, we collected 682 valid evaluation votes from Prolific, contributed by 481 unique participants
who successfully completed at least one voting task. These users spanned a range of demographic
backgrounds and were geographically distributed across English-speaking regions. Their contribu-
tions accounted for approximately one-third of the final evaluation dataset and provided a reliable
baseline of high-quality, vetted user judgments.

To quantify the resulting diversity, we conducted a post-task demographic survey of our Prolific
annotators, with the following results:

24

Under review as a conference paper at ICLR 2026

* Participants spanned 20+ countries across North America, Europe, and Asia

47% held a bachelor’s degree or higher, with the rest covering high school and associate-level
education

* Employment status included full-time (32%), part-time (21%), and student (26%) popula-
tions

» Age distribution was broad (mean == 33.2 years, SD = 9.6)
* Ethnic backgrounds included White (54%), Asian (13%), and Black (8%)

These findings suggest that our annotator pool reflects a wide range of real-world user perspectives.
We believe the resulting benchmark captures realistic and representative computer-use behaviors
across a broad population.

B.3.2 EVALUATION DATA FILTERING PROCEDURE

To ensure the reliability and relevance of the evaluation data, we performed a multi-stage post-hoc
filtering process combining automated heuristics with manual review. The goal was to retain only
high-quality, executable, and task-relevant sessions for leaderboard ranking and agent behavior
analysis.

Automated Filtering We first applied a set of automatic filters to remove:

* Duplicate or near-duplicate task instructions, based on normalized string matching and
embedding similarity using SentenceTransformers (cosine similarity > 0.98).

* Off-topic or irrelevant queries, such as:

— Non-computer-use tasks (e.g., “What is 2 + 277, “Tell me a joke”)
— Chit-chat or open-ended dialogue prompts
— Content requesting hallucinated data (e.g., “Give me a fake email address”)

* Tasks incompatible with GUI-based execution, including those requiring internet accounts,
payment, or system-level changes (e.g., rebooting).

Manual Review To further improve data quality, we conducted a manual verification pass over the
filtered dataset:

* 3 human reviewers (including one of the authors) independently reviewed randomly
sampled evaluation sessions (totaling ~600) to ensure task executability and validity.

* Sessions with technical problems—such as browser rendering failures, agent output trunca-
tion, or corrupted trajectory logs—were flagged and removed.

* Votes with both agent outputs missing, or showing formatting artifacts (e.g., empty responses,
code-only dumps without interaction), were discarded.

Resulting Dataset After filtering, we retained 2,201 high-quality pairwise votes, each associated
with a valid computer-use task and two successfully executed agent trajectories.

C ELO RANKING METHOD

To construct a dynamic and interpretable leaderboard based on human preference votes, we adopt an
Elo-style ranking system grounded in the Bradley—Terry model (Bradley & Terryl [1952), as widely
used in other pairwise evaluation settings (Chiang et al.,|2024; |Chi et al., [2025).

Each evaluation session results in a comparison outcome between two anonymized agents m} and
mR. We denote the i-th pairwise comparison result as:

xl:(mlz_7m$)7 yi€{1a07%}a

where y; = 1 indicates the left agent wins, O the right wins, and % denotes a tie (including both “tie”
and “tie (both bad)” responses, which make up roughly 33% of all votes).

25

Under review as a conference paper at ICLR 2026

We assign each agent m a real-valued strength score 3,,,, and model the win probability of the left
agent as:
exp(f,t)

exp(Bt) + exp(Br)

Pr(mt = mf) =

We then compute 3 € RM by maximizing the (regularized) log-likelihood over all recorded votes:

L(B) = logPr(y; | z:; 8),

i=1
where ties are modeled as the average of the two win probabilities.
For interpretability, we convert the strength scores to standard Elo ratings via:
E,, = 4001og,,(e”™) + 1000,
such that all agents begin with an Elo score of 1000 and adjust as more evidence accumulates.

To stabilize the leaderboard and report uncertainty, we compute 95% confidence intervals using
bootstrapping (1,000 resamples over vote logs). Agents are ranked by the lower bound of their Elo
confidence interval to ensure conservative movement and mitigate volatility when differences are not
statistically significant.

To better contextualize the Elo leaderboard results, we include several supplementary visualizations
that capture vote distribution, model correctness, and head-to-head performance dynamics. As
shown in Figure each CUA model received a reasonably balanced number of votes, with newly
added models temporarily boosted in sampling frequency to ensure coverage. Figure[I5|reports the
user-assessed correctness rate for each agent, reflecting how often their outputs were deemed valid
across all tasks.

To examine inter-model interactions in more detail, Figure [I6] presents a pairwise heatmap of vote
counts between agent pairs, illustrating the evaluation density across matchups. Building on this,
Figure|l'/|shows the empirical win rates between agents, highlighting not just the aggregate strength
but also performance asymmetries in specific matchups—for instance, some models consistently
outperform certain others while struggling elsewhere.

Lastly, Figure[I8]visualizes the pairwise win probabilities predicted from our fitted Elo model, offering
a smooth, interpretable estimate of how likely each agent is to win in head-to-head comparisons.
These analyses collectively validate the robustness of our ranking method and reveal fine-grained
interaction patterns that go beyond overall Elo scores.

D STATISTICAL VALIDATION OF RANKINGS

To ensure that the ranking differences reported in COMPUTER AGENT ARENA are robust and not
artifacts of sampling variance or annotator subjectivity, we conducted a series of statistical validation
experiments. Below we detail the methodology, results, and conclusions.

D.1 BOOTSTRAP CONFIDENCE INTERVALS

We applied bootstrap resampling (1,000 iterations) over the collected pairwise preference votes. Elo
scores were recomputed in each resample, and we report bias-corrected and accelerated (BCa) 95%
confidence intervals. These intervals, visualized in Figure 2b] quantify uncertainty in model rankings.
Notably, top-ranked models (e.g., Claude Sonnet 4 vs Claude 3.7 Sonnet) maintain non-overlapping
intervals, supporting the reliability of observed differences.

D.2 PERMUTATION TESTS AND EFFECT SIZES

To evaluate whether observed pairwise win-rate differences could arise by chance, we performed
permutation tests with 5,000 random shuffles of preference labels. This generated a null distribution
of Kendall’s 7 correlations and pairwise win rates. The observed global ranking achieved 7 = 1.0
compared to a null mean of 0.004 (std 0.276), yielding p = 2 X 10~%. In addition, we conducted

26

Under review as a conference paper at ICLR 2026

two-sided z-tests on all model pairs using bootstrap-estimated Elo and standard errors. After
Holm—Bonferroni correction, 95% comparisons remained significant at o = 0.05. We also report
effect sizes using Cohen’s d, which consistently indicated medium-to-large effects in the most critical
comparisons (e.g., Claude 3.7 Sonnet vs GPT-4.1).

D.3 POWER ANALYSIS

We performed a power analysis to assess whether the collected number of votes is sufficient to detect
meaningful effects. Assuming a conservative medium effect size (A Elo = 50, corresponding to 57%
win rate), our dataset with n = 1,661 votes provides ~ 0.90 power to detect differences at o = 0.05.
This analysis confirms that the study is well-powered for medium effects, though smaller differences
between closely-ranked models may require additional votes.

D.4 INTER-ANNOTATOR AGREEMENT (IAA)

To quantify annotation reliability, we randomly sampled 100 trajectories and had them independently
labeled by three annotators for multiple attributes: preferences, correctness, safety, and efficiency.
Agreement was measured using Krippendorff’s a:

* Preferences: o = 0.72
* Correctness: a = 0.78
o Safety: a = 0.68

* Efficiency: a = 0.70

These results indicate moderate-to-strong agreement even for open-ended GUI tasks, validating the
consistency of human judgments.

D.5 NOISE SENSITIVITY ANALYSIS

To examine robustness under noisy annotations, we randomly perturbed 10-30% of votes and
recomputed Elo scores. Kendall’s 7 correlation with the original ranking remained high: 7 = 0.87
(10% noise), 7 = 0.76 (20%), and 7 = 0.61 (30%). This suggests that rankings remain stable under
moderate subjectivity, though extreme noise can affect closely ranked models.

D.6 STEP-LIMIT ABLATION STUDY

Since agent trajectories are capped at 50 steps, we investigated whether this limit biases rankings
against long-horizon strategies. We truncated 100 pairwise trajectories to the first 15 steps and
recollected votes from three annotators. The recomputed Elo scores correlated with the original
ranking at p = 0.71 (Spearman), indicating moderate sensitivity to trajectory depth. This suggests
that step limits may underrepresent agents with strong long-term planning ability.

D.7 CONCLUSION

Together, these analyses provide convergent evidence that our reported ranking differences are
statistically significant, robust to sampling variance, and supported by consistent human judgments.
While sensitivity analyses highlight areas for future work—particularly around closely ranked models
and long-horizon tasks—the overall findings are reliable within the current evaluation design.

E ANALYSIS DETAILS

E.1 SETUP DISTRIBUTION ANALYSIS.

To better understand how real users define computer-use tasks, we analyzed the distribution of initial
environment setups selected on COMPUTER AGENT ARENA. The most frequently chosen setups
involved Chrome browsers, LibreOffice applications, and custom file uploads. A closer inspection of
Chrome-based sessions further reveals that users commonly visited domains related to web search

27

Under review as a conference paper at ICLR 2026

Domain Distribution for Chrome URLs

count

Chrome

45.5% 150
150
.
5 100
o
(] 100
) I I I I I
il ¥
0
® Chrome ® Uploaded File
 LibreOffice Google Workspace 6’7762 9’(/70"6'6 eﬁp/ @%/7}; %, /Z/g iﬁy,,, fey (‘:”/fc/yegg/ ¢, /%”77 s(c feq, ’Qs/? CO es;/r <
W Sett VSCod o, O /779)‘/' 0 °m,) C’77/7
n G?M!gs n ngc:/s Paint CO”? O/b 007 o € ” o, Co”7 C’77e 007 /7?
| VvLC PDF 07 o
L. . Top-Level Domains
(a) distribution of user-selected
environment setups. (b) Top domain categories accessed under Chrome setups.

Figure 8: User behavior analysis on COMPUTER AGENT ARENA. (a) Environment setup distribution.
(b) Domain categories in web browsing tasks.

(e.g., Google, Bing), e-commerce (e.g., Amazon, eBay), and technical resources (e.g., GitHub, Stack
Overflow). These patterns indicate that real users tend to evaluate CUAs on utility-driven work-
flows—such as web browsing, information retrieval, and document editing—rather than on creative
or leisure-oriented applications, which highlights a practical focus in current CUA expectations: users
prioritize performance in high-frequency, productivity-centric tasks, while evaluation in casual or
exploratory domains remains underexplored.

E.2 GENERALIZATION ANALYSIS

Agent Generalization Score GenScore vs Arena Score Correlation
Correlation: 0.949***
0530
05- s Cla '8“‘?7 onr}\
o 0.406 1100- UI-TARS-1.5
L3
< Operator
o 1050 -
O o3~
@ 0.266 v °
1] o Claude 3.5 Sonnet
O O
V) 1000 -
02- ph
0.148 S
o I 0.092 2 o
2012 _ e »
0.0- 0 008 M 0 04-mini Qwen 2.5 VL 72B
e,‘ ({\\(\‘
& P e
Q_) 7 w 850 3
b“o ,\‘o &) é\w o d GPT-4.1
RN G
> & & Gemini 2.5 Pro | | | |
® & & o oo o o2 os oe os
(@) C GenScore (Generalization Score)
(@ (b)

Figure 9: Generalization across topics. (a) Bar plot of GenScore for the top agents (sorted
descending). A higher GenScore indicates both strong mean correctness and low variance across
task categories. (b) Scatter of GenScore versus the arena-wide Elo-based Arena Score; we observe a
strong correlation (r = 0.949, p = 0.0001), suggesting that success on the crowdsourced platform
tightly tracks an agent’s cross-domain generalization ability.

While Elo captures pairwise preferences, it does not tell us whether a CUA is consistently good
across heterogeneous task types. Because COMPUTER AGENT ARENA crowdsources tasks from real
users, the resulting distribution is highly diverse (Sec.[I0a). An agent that overfits a few niches will
underperform in the arena as a whole. We therefore introduce a generalization score (GenScore) that
rewards both high accuracy and uniformity across topic categories.

28

Under review as a conference paper at ICLR 2026

Using the topic taxonomy derived by our clustering pipeline (Fig.[I0a), we compute, for each agent a
and topic t € T, a correctness rate

correct tasks of a in ¢
T = N .
ot # total tasks of ¢ in ¢

GenScore definition. Letr, = {, ;};c7 be the smoothed rate vector of agent a across K = |7 |
topics. We compute:

1 N
Ha = K zt:ra,h

1 Oq

= [Y (Far — pa)? CVq=—",

\/Kt(at a) a Lo
K

ag

2

HM; = =+,
>t 1/ Ta

Mg = MiNTq ¢

‘We then define m
GenScore, = HM, x max(0, 1 — CV,) x —=.
fa

This multiplicative form (i) uses HM to punish low-performing topics, (ii) rewards uniformity through
(1 — CV), and (iii) explicitly guards the worst-case via mg /f14.

Figure [Da]shows GenScore for top agents; Fig. [Ob] visualizes its relationship with the platform-wide
Elo-based Arena Score. We observe a strong Pearson correlation (r = 0.949, p = 0.0001) between
GenScore and Arena Score. This suggests that success on COMPUTER AGENT ARENA is tightly
linked to an agent’s ability to generalize across many real-world task types, rather than excelling in
a small subset. Concretely, models such as Claude 4 Sonnet and Claude 3.7 Sonnet achieve both
high mean correctness and low variance across topics, yielding the highest GenScores. In contrast,
lower-ranked models show not only lower average correctness but also high dispersion—indicating
pronounced weaknesses on certain categories (e.g., spreadsheet or document-editing tasks).

COMPUTER AGENT ARENA’s crowdsourcing pipeline naturally yields a broad, utility-driven task
mix, agents are implicitly required to be robust generalists. GenScore makes this requirement
explicit and provides a compact diagnostic: models that score well on the platform also maintain
balanced performance across categories. Going forward, we argue that reporting such generalization
metrics—alongside global Elo—better reflects what users actually need from CUAS in the wild.

CUA performance varies substantially by task category, with open-ended tasks amplifying
model differences. To examine task-specific performance, we cluster user-submitted instructions
into six semantic categories using the Cilo pipeline (Tamkin et al.,|2024). We then recompute Elo
scores per category across all models (Figure[I0), and observe substantial Elo margins depending
on task type. Open-ended categories like Information Retrieval and Content Creation yield the
largest performance gaps, Conversely, while more deterministic categories like Ul Navigation and
OS Operations yield tighter Elo differences. These findings underscore the importance of evaluating
CUAs across a broad spectrum of task types. Uniform benchmark scores may obscure large model
disparities that only emerge under complex, interactive, and underspecified conditions—precisely the
kinds of tasks real users often submit.

E.3 OSWORLD ABLATION STUDY

To examine the impact of task distribution on agent performance, we randomly sampled 1,000 user-
submitted tasks from COMPUTER AGENT ARENA and used GPT-40-mini to classify them according
to semantic similarity to OSWorld. We prompted the model with a binary choice prompt comparing
each task to a curated set of OSWorld exemplars. As shown in Table 2] only 20.7% of tasks were
deemed in-domain, while the majority (79.3%) were classified as out-of-domain, highlighting the
broader topical spread of real user inputs in COMPUTER AGENT ARENA.

29

Under review as a conference paper at ICLR 2026

C —@— Claude 3.7 Sonnet
Hierarchical Task Category Distribution 1100 Claude Sonnet 4
_~ Online Shopping ~@- UI-TARS-1.5
Assistance 1075 Claude 3.5 Sonnet
Online Media Search - ¥ Operator
® 1050 T Qwen 2.5 VL 728
Multilingual Online Actions 51
Information __Online Information o
Retrieval - Retrieval B 1025
K=}
]
Image Editing _ 1000 ;
Requests | \‘/
975
Content 05 Operations
Creati _ Document and
reation 8.2% File Management 950
Spreadsheet =
Creation - A
Desktop Customization N o &) WO &\0‘\9 N
?&\K\ O‘Q'a %96 “\ga e@ \ 'b‘\e'
J O N\ & Wo o® P
Presentation y P X0 W& W) =3 W
X — rask and ‘(\a o™ O [e)
Design Tasks Event Management y\o‘ © S
o A
Document Editing - X ((\09
Instructions P ~ “VLC Media Player Assistance "Zd(\
Spreadsheet Formatting Tasks "~ Coding and Development Environment
(a) Hierarchical topic clusters of user-submitted tasks. (b) Elo scores of models across task categories.

Figure 10: Analysis of task taxonomy and model performance by category. Figure (a) shows a
sunburst visualization of hierarchical task categories derived via topic modeling. Figure (b) presents
model Elo scores grouped by task type, illustrating how task taxonomy amplifies performance
differences across CUAs.

Table 2: Task distribution by semantic similarity to OSWorld (based on GPT-40-mini classification).

Category Count Percentage
In-Domain Tasks (similar to OSWorld) 207 20.7%
Out-of-Domain Tasks (diverse / open-ended) 793 79.3%
Total 1,000 100.0%

OSWorld Ablation Study Classification Prompt

Compare the following task with the set of tasks from OSWorld.
Task to analyze: "{task}"

Here is a whole set of OSWorld tasks:
{osworld_task_examples}

Rate the similarity of the task to analyze with the OSWorld tasks
on a scale:

1 - Similar (the task is very similar to some of the tasks in
OSWorld, maybe just a little different)

2 — Not similar (the task is different from tasks in OSWorld)

Provide only the number 1, 2 as your answer.

E.4 TASK DISTRIBUTION ANALYSIS DETAILS

To compare task distributions across benchmarks, we sample task instructions from COMPUTER
AGENT ARENA, OSWorld 2024a)), WebVoyager 2024), and WebArena (Zhou|
et al.|[2024). We embed all instructions using the text —embedding—-3-small model and project
them into a two-dimensional space via Principal Component Analysis (PCA) to visualize semantic
coverage. This highlights the broader and less clustered semantic spread of real user instructions in
COMPUTER AGENT ARENA.

30

Under review as a conference paper at ICLR 2026

Claude 3.7 Sonnet
Claude Sonnet 4 Step Difference Distribution (Winner minus Loser, Both Correct)

UL-TARS-1.5 Mean: -1.15
50.0% D)

40.0%

Operator
Claude 3.5 Sonnet ® 002
O

30.0% 000
50 -0 -0 - -10 o 0
Step Difference (+ means winner took MORE steps)

Correct Rate

Time Difference Distribution (Winner minus Loser, Both Correct)
20.0% Mean: -1.93 |
Quen 2.5 VL 728 Instruct 008 |

o4-mini
Gemini 2.5 Pro

2z
10.0% {7 2
8

GPT-4.1
)

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Win Rate -50

-a0 -3 -20 -10 0
Time Difference in seconds (+ means winner took MORE time)

(a) Scatter plot of agent win rate and correctness rate. (b) Distribution of step and latency differences for agent
pairs with both marked correct.

Figure 11: User preference analysis based on agent behavior. Figure (a) shows a positive correlation
between correctness rate and user win rate across agents. Figure (b) illustrates that differences
in trajectory length and response latency do not significantly affect user preference in correctness
controlled settings.

E.5 INSTRUCTION AND TRAJECTORY METRIC COMPUTATION

To compare the complexity and ambiguity of user instructions across benchmarks, we compute four
metrics uniformly for all tasks: instruction length, proportion of open-ended tasks, unigram perplexity,
and average trajectory length.

Instruction Length. We tokenize each task instruction using standard whitespace and punctuation
rules and count the number of tokens. The results are aggregated to compute the average instruction
length per benchmark.

Open-Ended Task Detection. To estimate the proportion of open-ended or subjective tasks, we
employ a GPT-40-mini classifier using the following prompt:

Open-ended Task Classification Prompt

You are an expert at analyzing computer-use task instructions to
determine if they are open-ended or subjective tasks.

A task is considered open-ended or subjective if:

1. It has multiple valid solutions or approaches

2. The success criteria are not strictly objective

3. It requires creative or subjective judgment

4. The outcome can vary based on personal interpretation

5. the answer cannot be evaluated by a simple rule-based judgement

Please analyze the given task instruction and respond in JSON
format with:
{
"is_open_ended": true/false,
"confidence": 0-1,
"explanation": "brief explanation of your reasoning"

For each task, we collect the binary open-endedness decision and compute the share of positive cases
within each benchmark.

31

Under review as a conference paper at ICLR 2026

Unigram Perplexity. We use a smoothed unigram model to measure the lexical ambiguity of task
instructions. The corpus-wide token distribution is first collected, and perplexity for each instruction
is computed as:

N
1
Perplexity(z) = exp N Z log Pr(w;)
i=1
where Pr(w;) = %, with V denoting the vocabulary size. Higher perplexity indicates more

unpredictable and context-dependent language, suggesting more ambiguous or under-specified input.

Trajectory Length. For COMPUTER AGENT ARENA, we compute the trajectory length of each
agent-task interaction as the number of executed steps (actions). We include only trajectories marked
as correct by human evaluators. For OSWorld and WebVoyager, we extract golden trajectory lengths
as reported in their official benchmarks. WebArena is excluded from this comparison due to its lack
of standardized trajectory ground-truth.

E.6 SETUP DISTRIBUTION ANALYSIS.

Domain Distribution for Chrome URLs

70 "
Chrome coun

42.9% 60

o
2
8
=i

50

40

€
El
[=} 40
O 30
30
20
I I I I 20
i I
10
o INEEEEm
rome ploaded File & S o
® LibreOffice vsCode a3 g"o ’%5’99 Pore {'Es *”fro éey %n °’9g f'tcof%&z/"e C"’c Zste ’% < % 9”6 ’7/7 fr,;,
® Google Workspace ® Settings o, 5'017, % ’h CIRCN 1,/?70 S,
= GIMP ® Windows Paint O ”7 Cop, 0y, on,
= ViC YouTube O,

. . . Top-Level Domains
(a) distribution of user-selected

environment setups. (b) Top domain categories accessed under Chrome setups.

Figure 12: User behavior analysis on COMPUTER AGENT ARENA. (a) Environment setup distribution.
(b) Domain categories in web browsing tasks.

To better understand how real users define computer-use tasks, we analyzed the distribution of initial
environment setups selected on COMPUTER AGENT ARENA. The most frequently chosen setups
involved Chrome browsers, LibreOffice applications, and custom file uploads. A closer inspection of
Chrome-based sessions further reveals that users commonly visited domains related to web search
(e.g., Google, Bing), e-commerce (e.g., Amazon, eBay), and technical resources (e.g., GitHub, Stack
Overflow). These patterns indicate that real users tend to evaluate CUAs on utility-driven work-
flows—such as web browsing, information retrieval, and document editing—rather than on creative
or leisure-oriented applications, which highlights a practical focus in current CUA expectations: users
prioritize performance in high-frequency, productivity-centric tasks, while evaluation in casual or
exploratory domains remains underexplored.

E.7 Topric CLUSTERING DETAILS
To investigate how model performance varies by task type, we apply unsupervised topic modeling to
group user-submitted instructions into semantic categories.

Following the Clio pipeline (Tamkin et al.,[2024)), we first encode all task instructions using Sentence-
BERT embeddings. These embeddings are then projected using PCA for dimensionality reduction.

32

Under review as a conference paper at ICLR 2026

We perform initial coarse-grained clustering with KMeans, using the Elbow Method to select the
optimal cluster count based on within-cluster variance. To refine results, we apply agglomerative
hierarchical clustering over the KMeans centroids using Ward’s linkage method, which enables the
construction of a dendrogram for topic hierarchy visualization.

Each final cluster is then manually reviewed to assign interpretable labels. This process results in a
six-category taxonomy:

 Information Retrieval (e.g., search, browse, summarize web content)

* Content Creation (e.g., writing, editing, preparing slides)

* Technical and Domain-Specific Tasks (e.g., code debugging, finance tools)

« UI Navigation (e.g., click, type, scroll workflows)

* OS Operations (e.g., file renaming, screenshot, task switching)

This hierarchical clustering approach provides a flexible way to capture semantic variation across
real user instructions, allowing us to conduct category-specific evaluations and better understand the
strengths and weaknesses of different CUAs across diverse task profiles.

Reflection Count vs Performance

Repetition Ratio vs Performance Win: slope=0.158, p=2.1e-08, pseudo R*=0.018
Logit slope=-1.912, p=1.8e-09, pseudo R#=0.043 Correct: slope=0.118, p=1.2e-05, pseudo R?=0.004

Win Rate
t

% 06y

£ ¢
04— 704; 0.4- -048
02- -02 02- -02

0.0~ -0.0 0.0- “00

1 0123456 7 8 91011121314 151617 18 19 20 21 22 23 24 25 26 27
Repeated Actions Ratio Reflection Count

(a) Impact of repeated action ratio on performance. (b) Impact of reflection frequency on performance.

Figure 13: Relationship between agent behavior patterns and performance metrics.

F AGENT BEHAVIOR ANALYSIS DETAILS

To better understand how users perceive different agent behaviors, we analyze two specific patterns
observable from execution trajectories: repetition and reflection.

Repetition Ratio. We define the repetition ratio as the proportion of actions within a trajectory
that belong to contiguous segments of near-identical steps. Specifically, we scan the action sequence
(a1,as,...,ar) and mark segments where three or more consecutive actions share high structural
and parametric similarity—e.g., repeated scrolls or identical clicks. Repetition often reflects failure
to adapt or unclear intent from the model.

Reflection Frequency. We count the number of steps whose Chain-of-Thought (CoT) outputs
contain introspective or self-corrective language (e.g., “think”, “retry”, “mistake”, “adjust”). These
steps are labeled as reflective, indicating the model is engaging in self-monitoring or explicit reasoning
before issuing commands.

Regression Analysis. For both behavioral metrics, we perform linear regression against model
win rate and correctness. Repetition negatively correlates with user preference and correctness,
confirming that users tend to penalize agents that exhibit stuck or redundant behavior. Conversely,
reflection is positively associated with both outcomes, suggesting that agents that appear deliberate
and thoughtful are better received, even if they do not fully solve the task.

This analysis complements the visual trends shown in Figure and supports the design implication
that lightweight behavioral signals can serve as useful proxies for assessing agent robustness and user
trust.

33

Under review as a conference paper at ICLR 2026

G SOFTWARE AND INFRASTRUCTURE RESOURCES

Our platform and experiments were built using a combination of open-source and proprietary software
components. Below, we list the key software tools and dependencies used throughout the development
and deployment of COMPUTER AGENT ARENA:

* AWS EC2: Hosts the virtual machines used for agent execution and screen recording.

* AWS S3: Stores large artifacts such as task logs, screen recordings, and agent-generated
output traces.

* OBS: OBS software for recording agent trajectories.

* Vision-Language Models (VLMs): Accessed via OpenAl, Google, Anthropic APIs; local
inference used for selected open models (e.g., MiniGPT-4, LLaVA)

* Frontend: React (TypeScript), TailwindCSS for styling
* Backend: FastAPI + PostgreSQL for logging, orchestration, and user/session management

* Data Analysis and Visualization: Python (NumPy, pandas, matplotlib, seaborn, scikit-
learn)

All custom components, orchestration scripts, and evaluation Uls will be released as part of our
open-sourced codebase to facilitate reproducibility and community adoption.

H REPRODUCIBILITY AND COST ANALYSIS

Full Reproducibility Commitment. We release all assets under an open-source license, including:

* End-to-end platform code (frontend/backend, evaluation logic, ranking scripts)

* Pre-built Amazon Machine Images (AMIs) for both Windows and Ubuntu, ensuring consis-
tent virtual machine environments

* A plug-and-play agent hub for integrating external models and enabling third-party leader-
board participation

Evaluation Cost and Throughput. We provide a detailed breakdown of the per-evaluation cost:
* Compute: Each comparison runs two agents on t 3 . medium EC2 instances for approxi-
mately 15 minutes, costing about $0.02 USD per session.

» API usage: Using Claude 3.7 Sonnet as a reference, each session consumes about $0.72
USD.

* Annotation: Paid annotators are compensated at $0.50 USD per qualified evaluation.

Therefore, the total estimated cost per evaluation is approximately $1.24 USD.

Summary. We believe COMPUTER AGENT ARENA delivers a reproducible and affordable evalua-
tion pipeline with high community utility for benchmarking, training, and behavioral diagnostics.

I ADDITIONAL RESULTS

J CASE STUDY ANALYSIS

To complement our quantitative evaluation, we present a qualitative case study showcasing how real
users interact with agents in complex, multi-step computer-use tasks. The example below illustrates a
scenario where the user requests the agent to encrypt a PDF document using a specific password. This
task requires not only navigating a real desktop interface but also verifying the success of encryption
through file reopening.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Battle Count for Each Model

500

483 483
452
400
o
£ 300
3
(s}
o
o
b=
©
@ 200
100
0 Q
One, 3y
°3
38 e
?gl ”Oet
5t
Uy

agent

Figure 14: Number of votes for each CUA model.

100.0%
80.0%
60.0%

40.0%

55.1%
39.2% 37.8% Een
20.0%
:
10.1%
0.0% -

G
/a“de ur T,qu Oer, ator "“Ue Qe 5y, Smin; 25 OFminy

017,7 On,, 22, Pro
et < (1 In, St

Correct Rate

Agent

Figure 15: Aggregate correctness rate for each agent judged by users.

35

Under review as a conference paper at ICLR 2026

agentl

Claude 3.7 Sonnet|

80
Qwen 2.5 VL 72B Instruct
70
Operator
P 60
o Claude 3.5 Sonnet (New) B89 50
€
&
© UI-TARS-1.5| 72 40
30
GPT-4.1
20

od-mini

Gemini 2.5 Pro|

Figure 16: Pairwise battle count heatmap: each cell (¢, j) indicates the number of votes conducted
between agent; and agent;.

Model B: Opponent

Claude 3.7 Sonnet 0.9

Operator| 0.8

UI-TARS-1.5 i

0.6
Claude 3.5 Sonnet (New)
0.5

Qwen 2.5 VL 72B Instruct|
0.4

Model A: Winner

0.3
0.2

Gemini 2.5 Pro bl

Figure 17: Pairwise win rate heatmap: each cell (i, j) indicates the proportion of wins where Model
A (row) outperformed Model B (column) based on user preferences.

36

Under review as a conference paper at ICLR 2026

Average Win Rate Against All Other Agents (Assuming Uniform Sampling and No Ties)

Average Win Rate
o
S

Model

Figure 18: Average win rate of each agent against all others under uniform sampling and no ties.

The case highlights several key agent behaviors: interpreting user intent, identifying relevant Ul
elements within a real application (PDF-XChange Editor), and executing sequential steps with
feedback loops (e.g., reopen to verify). Such real-world interactions are difficult to assess through
scripted benchmarks but are essential for evaluating robustness and usability in practical settings.

This case exemplifies how our platform supports in-the-wild evaluation by embedding agent actions,
user instructions, and full desktop context into a unified assessment flow.

Can you help me encrpyt this pdf file with password "jhsvcjvakj"? I want this contract file to keep a
secret, please help me do that and PLEASE HELP ME VERIFY THE ENCRYPTION BY OPENING
IT AGAIN.

Agent 1: UI-TARS-1.5 (Lose) Agent 2: Claude 3.7 Sonnet (Win)
Agent 1: Partial Correct Agent 2: Correct
Step 1 Step 1

ot e

Project Timeline Roadmap Project Timeline Roadmap

Phase2 Phase3 Phase4 Phase 1 Phase2 Phase3 Phase4
Define Gosls

coping.

SetOpjectives

TeamFormstion

Thought: In front of me is a PDF document titled "Project_Timeline_Roadmap," Thought: The user is asking me to encrypt a PDF file that appears to be a Project
and I need to password protect it. To begin, I should click on the File menu in the ~ Timeline Roadmap with a password "jhsvcjvakj". They want me to verify the
upper left corner, which is the first step in encrypting the file. From there, I willbe encryption works by reopening the file. Let me help with this task.

able to find the options related to encryption settings.

In PDF-XChange Editor, which is the application currently open, I need to: 1.
Save the PDF with password encryption 2. Close the file 3. Reopen it to verify the
pyautogui.click(47.702, 55.385, button="left’) encryption works

Step 2 The encryption option should be available in the "Protect”" menu or possibly under
File > Save As with security options.

<EUIE QB @ BB
HURNELZOEBS

37

Under review as a conference paper at ICLR 2026

2 tpe e 0 sewen 5 O me % o c

Thought: 1 just opened the File menu and I’'m currently searching for the export
option. Based on my experience, the encryption feature is usually tucked away
within the export function, so I'm going to click on export in the left sidebar now.

pyautogui.

Step 3

393.626, button="left")

A

L 2 teeneretoseaen

Thought: 1 took a close look at the contents of the export menu, and I realized
that this option doesn’t actually provide the PDF encryption feature we need. We
need to rethink our approach, so I'll close the current export menu and continue
searching for the correct encryption option in the File menu.

pyautogui.click(626.087, 253.187, button="left’)

T’ll help you encrypt this PDF file with a password. I can see you have PDF-
XChange Editor open with your Project Timeline Roadmap document. Let me
guide you through the steps to encrypt it and then verify the encryption works.
First, let’s take a screenshot to see the current state:

pyautogui.screenshot()

Step 2

[EeTr e P e U o

L}
B
4 Project Timeline Roadmap
°
s Phase 1 Phase2 Phase3 Phased
¢ Detin Goss
scapng
Week1:3

5 setOvjectives

Team Formation

38, oo+ WEHIER L . \F] —

P Tpe nere o search

Thought: 1 notice there’s a "Protect” tab in the menu bar. Let’s click on that first
to see the encryption options:

pyautogui.click(270, 55, button="left)

Step 3

Thought: Let’s take another screenshot to see the protection options:

pyautogui.screenshot()

Step 4
(The screenshot is the same as the previous one.)

Thought: Let me summarize the current situation: I’'m currently working in the
PDF-XChange Editor, and I just spent some time looking for the encryption feature
under the export menu, but it seems I was looking in the wrong place. Since I
can’t find the option in the File menu, I thought it might be a good idea to check
the "Protect" button in the toolbar at the top of the interface. This button should
help me find the functionality to add password protection to the PDF.

pyautogui.click(269.317, 56.374, button="left")

Step 5

L}

B

/ Project Timeline Roadmap
*

8 Phase 1 Phase2 | phases Phase4
@ [—

1 scoig

Week1:3

5 et Objectives
E fo—

© G oo v PSR L F ;] = T

Thought: 1 see the Protect tab is now open, but I don’t see a direct password
encryption option in this ribbon. Let’s try looking in the "Security Properties”
section:

pyautogui.click(963, 115, button="left’)

L]

\
& Project Timeline Roadmap
=
*
® Phase 1 Phase2 Phase3 Phased
¢ Octine Gosls

Scoping
Week1.3
5 SetObjectives
Tesm Formatin

P Typehere o seach

Thought: 1looked through the File menu and didn’t find the encryption option, but
then I noticed a "Document Security Properties" button on the toolbar, which was
exactly what I needed. Clicking on it opened the PDF encryption settings window,
allowing me to continue configuring password protection for the document.

pyautogui.click(964.969, 122.637, button="left")

Step 6

Step 5

Thought: Let’s take another screenshot to see what options appear:

pyautogui.screenshot()

S r————

Week

[Team Formation [[

S : :

Thought: Great! I see we're in the Document Properties dialog box and "Security"

3, o

38

Under review as a conference paper at ICLR 2026

-

= [ERR— O mO s = [:

Thought: 1 can see the document properties window right now, and the crucial next
step is to set the encryption method. To make this file more secure, I need to locate
the dropdown menu labeled "Security Method" and then choose an appropriate
encryption method from it. This way, I can effectively safeguard this important
document.

pyautogui.click(709.565, 200.769, button="

Step 7

eft’)

is already selected in the left panel. Now let’s click on "Change Settings..." to set
up password encryption:

pyautogui.click(917, 200, button="left’)

Step 7

Thought: Let’s see what security options we have now:

pyautogui.screenshot()

Step 8

hase 4

TeamFormtion

Thought: After going through all the setup menus, I've finally reached the crucial
step of selecting the encryption method. In the dropdown list for Security Method,
there are several encryption schemes available. Considering both security and
compatibility, I believe the Password Security option is the most suitable choice,

as it allows for precise control over access permissions. Next, I’ll click on this
option to proceed with setting up the password protection.

pyautogui.click(636.025, 245.275, butto:

Step 8

eft’)

et
s

Thought: 1 noticed that the password security settings window is now open. I
need to fill in the password "jhsvcjvakj" in the "Require password to open the
document" section. This password is a crucial step for protecting the document,
50 it’s important that I input it accurately. After that, I will also need to confirm
the password again, as this will ensure that the document’s encryption security is
properly established.

pyautogui.click(590.311, 333.297, butto:
Step 9

(The screenshot is the same as the previous one.)

Thought: T am currently in the process of setting a password, and the interface
is waiting for me to input the password "jhsvcjvakj." The password box labeled
"Require password to open the document" seems to be specifically designed for
protecting document access. I am focusing on entering this password accurately,
as it is crucial for the security of the document.

o ereer—
Thought: 1notice that even though I clicked "Change Settings...", the dialog didn’t

change. Let’s try clicking on the dropdown next to "Security Method:" where it
currently says "No Security":

pyautogui.click(827, 200, button="left’)

Step 9

Thought: Let’s see what security options are available:

pyautogui.screenshot()

5| YT ——

[Team Formation

Thought: Perfect! I can see the dropdown menu with security options. Let’s select
"Password Security":

pyautogui.click(671, 245, button="left’)

Step 11

Thought: Now let’s see if we get a password dialog:

pyautogui.screenshot()

Step 12

39

Under review as a conference paper at ICLR 2026

pyautogui.click(453.168, 392.637, button="left")

Step 10

(The screenshot is the same as the previous one.)

Thought: It seems that I need to enter the password in the correct order. I noticed
that the first password input box labeled "Document Open Password" is empty.
I should click on this box and type in "jhsvcjvakj" as the document opening
password. Once I've completed this step, I’ll be able to move on to setting the
permission password.

pyautogui.click(476.025, 389.67, button="left’)

Step 11

(The screenshot is the same as the previous one.)

Thought: Tjust accidentally clicked in the wrong spot, and that’s not good at all. Let
me start over - I need to set the password in the "Document Open Password" box.
This password will be used to open the document, so I should enter "jhsvcjvakj"
in there. I need to follow the correct order, and once I finish this step, I can move
on to setting the permission password.

pyautogui.click(664.845, 392.637, button="left")

Step 12

(The screenshot is the same as the previous one.)

Thought: 1t seems like there’s a little hiccup in the password setup process. I'm
staring at the empty input box on the screen, which is supposed to be for the
document’s opening password, but the system isn’t responding at all. This might
be due to some lag in the interface. I need to click on the "Document Open
Password" input box again to make sure it’s activated so I can continue entering
the password.

pyautogui.click(700.621, 309.56, button="left")

Step 13

(The screenshot is the same as the previous one.)

Thought: The password input box is finally set up and ready to go. Now, I need to
enter the specified password "jhsvcjvakj." It’s important that I input it correctly
since this is the first step in setting the password to protect the document.

pyautogui.typewrite(’jhsvcjvakj’)

Step 14

(The screenshot is the same as the previous one.)

Thought: Let me assess the situation here — I'm at the password security settings
interface, and the input box is still greyed out and unresponsive. It seems that the
system might be a bit slow, so I need to click on the "Document Open Password"
input box again to activate it. Only then can I enter the password "jhsvcjvakj."

pyautogui.click(663.851, 311.538, button="left")

Step 15

(The screenshot is the same as the previous one.)

Thought: T've already entered the password input interface, and now I need to
input "jhsvejvakj" into the "Document Open Password" field. This step is crucial
because this password will serve as the key to open the encrypted document later
on. Let me focus on this task and make sure to enter each character accurately.

pyautogui.typewrite(’jhsvcjvakj’)

Step 16

(The screenshot is the same as the previous one.)

Thought: Hmm, something feels off here. The password box is right in front of
me, but I've tried a few times and can’t seem to get the password entered correctly.
Upon closer inspection, it seems like the input field isn’t fully activated. Let me
click on the "Document Open Password" box once more to make sure it’s in an
input-ready state, and then I'll be able to enter the password "jhsvcjvakj" smoothly.

pyautogui.click(663.851, 332.308, button="left")

Step 17

£ typehere tasearch O mOe % —

Thought: Excellent! Now we need to: 1. Check "Require password to open the
document" 2. Enter the password "jhsvcjvakj" in the Document Open Password
field 3. Confirm the password in the Confirm field Let’s start by checking the
"Require password" option:

pyautogui.click(367, 282, button="left’)

Step 13

Thought: Now let’s click in the Document Open Password field:

pyautogui.click(755, 307, button="left’)

Step 14

Thought: Let’s type the password "jhsvcjvakj":

pyautogui.write("jhsvcjvakj")

Step 15

Thought: Now let’s click in the Confirm password field:

pyautogui.click(755, 335, button="left’)

Step 16

Thought: And type the confirmation password:

pyautogui.write("jhsvcjvakj")

Step 17

Thought: Now let’s click "OK" to apply the password security:

pyautogui.click(762, 629, button="left’)

Step 18

Thought: Now let’s click "OK" on the Document Properties dialog to apply all
settings:

pyautogui.click(851, 585, button="left’)

Step 19

Thought: Now that we’ve set the password security, let’s save the document. Let’s
click on File menu:

pyautogui.click(45, 55, button="left’)

Step 20

Thought: Let’s take a screenshot to see the File menu options:

pyautogui.screenshot()

Step 21

40

Under review as a conference paper at ICLR 2026

(The screenshot is the same as the previous one.)

Thought: 1 found myself stuck in a cycle of repeatedly entering the password, and
this was clearly pointless. Taking a step back, I realized that the current security
settings window was quite cluttered and hard to navigate, making it difficult for
me to operate effectively. Rather than wasting time here, it made more sense to
close this window and reevaluate a clearer method for encrypting the PDF file. So,
I decided to click the close button in the upper right corner and restart the entire
encryption process.

pyautogui.click(933.168, 33.626, button="left’)

TeamFormtion

Thought: 1 just closed the previous window, and now I'm staring at the document
properties interface. I took a quick glance at the dropdown menu labeled "Security
Method," which should allow me to select the appropriate encryption option.
After wasting time in the wrong place before, I want to make sure I don’t choose
incorrectly this time. So, I'll go ahead and click on that dropdown menu.

pyautogui.click(709.565, 200.769, button="left’)

Step 19

e

5 5 vt s, o =

I teanFormaton |

Thought: T just took a look around the properties window of the document and
finally found the right place! In the dropdown menu under Security Method, there
are several options, and now I need to select Password Security to add password
protection to the PDF. This option is clearly visible, so I'm going to click on it
right now to start configuring the encryption settings.

pyautogui.click(677.764, 244.286, button="left")

e A ;

omo % ma

= B

Thought: 1 see we have a notification that says "Security settings will not be
applied until the document is saved." Let’s click "OK" on this notification:

pyautogui.click(917, 389, button="left’)

Step 22

Thought: Now let’s click "OK" on the Document Properties dialog:

pyautogui.click(851, 585, button="left’)

Step 23

Thought: Now let’s try to save the document. Let’s click on the File menu again:

pyautogui.click(45, 55, button="left")

Step 24

Thought: Let’s take a screenshot to see the File menu:

pyautogui.screenshot()

[—— o

Pt Fom O Gt Shweion ity ekt i | o

Open
[ene

Recent Files

2 Typetere o search

Thought: 1 see the File menu is open. Let’s click on "Save" to save the document
with the security settings:

pyautogui.click(40, 149, button="left")

Step 26

Thought: Let’s take a screenshot to see if any confirmation dialog appears:

pyautogui.screenshot()

Step 20

41

Step 27

Under review as a conference paper at ICLR 2026

Thought: I'm now looking at the interface for password security settings, and it’s
time to enter the password "jhsvcjvakj." Let me first check the "Document Open
Password" input box to make sure it’s in a selected state, so that when I type on
the keyboard, the characters go directly into the box. With this preparation, I'm
confident that I won’t encounter any issues like I did last time.

pyautogui.click(700.621, 309.56, button="left’)

Step 21

(The screenshot is the same as the previous one.)

Thought: Tt looks like the password input field is all set up now. I'll go ahead and
enter "jhsvcjvakj" as the opening password for the document, so I can continue
with the encryption process. Since the previous steps have all been completed
properly, this step should go smoothly as well.

pyautogui.typewrite(’jhsvcjvakj’)

Step 22

(The screenshot is the same as the previous one.)

Thought: After several attempts just now, I realized that simply retyping the
password isn’t working. I took a moment to calm down and analyze the situation:
the input box is right in front of me, but it seems that the system hasn’t registered
my entries correctly. It looks like the issue is that the input box hasn’t been
activated properly. So, I should click on the "Document Open Password" input box
first to make sure it’s in a state ready for input, and then I can enter "jhsvcjvakj."
This time, I need to be patient and make sure I get it right on the first try.

pyautogui.click(663.851, 310.549, button="left’)

Step 23

(The screenshot is the same as the previous one.)

Thought: The password field is right in front of me, and after several attempts
earlier, I've figured out the correct approach. Now, I need to enter the password
"jhsvcjvakj" into the Document Open Password box, making sure to do it in one
go. The system is just waiting for me to input it, so let me focus and complete this
step accurately.

pyautogui.typewrite(’jhsvcjvakj’)

Step 24

(The screenshot is the same as the previous one.)

Thought: Thave now arrived at the confirmation step for the password setup. It’s
a bit annoying that the password box is not responding. However, based on my
previous experience, this issue is usually due to the input box not being properly
activated. So, I need to click on the "Document Open Password" box to gain focus,
which will allow me to enter the password. Once this step is completed, we can
proceed with encrypting the document.

pyautogui.click(364.72, 359.011, button="left")

Step 25

(The screenshot is the same as the previous one.)

Thought: 1 see that the checkbox for restricting editing and printing is already
checked, which is good. However, the main focus right now is the password input
field, as the PDF encryption can’t proceed without the password being set. Let me
concentrate on the "Document Open Password" box and click on it so I can enter
the password.

Project Timeline Roadmap

= Phase 1 Phase2 | Phases Phase 4

v Define Gosls
scoping
Week 13
5| SetOnjectves

Leam Formaton

© L o R

- CEREN DR =

£ typehere tasearch

Thought: Great! I can see that the document has been saved and is now showing
"(Secured)" in the title bar. This indicates that the password security has been
successfully applied. Now, let’s verify that the encryption works by closing and
reopening the file. First, let’s close the document by clicking the "X" on the
document tab:

pyautogui.click(192, 187, button="left’)

Step 28

Thought: Let’s see if we need to confirm closing:

pyautogui.screenshot()

Step 29

Thought: Great, the document is now closed. Now let’s reopen it to verify the
password protection works. Let’s click on the File menu:

pyautogui.click(45, 55, button="left’)

Step 30

Thought: Let’s take a screenshot to see the File menu:

Ppyautogui.screenshot()

Step 31

Recent Fils

Thought: Perfect! I can see the document in the Recent Files list. Let’s click on it
to open it:

pyautogui.click(673, 225, button="left)

Step 32

Thought: Let’s take a screenshot to see if a password prompt appears:

42

Under review as a conference paper at ICLR 2026

pyautogui.click(663.851, 333.297, button="left")

pyautogui.screenshot()

Step 26

(The screenshot is the same as the previous one.)

Thought: I’m currently setting up the confirmation password step, and the interface
feels a bit sluggish. However, this reminds me that the key to encrypting a PDF
lies in these two password inputs. Even though the system is responding slowly,
I need to stay patient and complete the entry of "jhsvcjvakj" in the confirmation
password field. Once this step is finished, the entire encryption process will be
nearly complete.

pyautogui.typewrite(’jhsvcjvakj’)

Step 27

(The screenshot is the same as the previous one.)

Thought: Hmm, let me analyze the current situation. I'm stuck in the PDF
encryption settings interface, where there’s a password input box that I just can’t
seem to get right. I've realized that I've been stuck in a vicious cycle—just
mindlessly repeating the input, but never actually getting anywhere. Now I've
come to understand the problem: the input box is there, but it hasn’t been activated
properly, which is why my input isn’t being registered. So here’s what I’ll do:
T’ll click on the "Document Open Password" box first to make sure it’s ready to
receive input, and then I'll enter "jhsvcjvakj" accurately. Sometimes, it really pays
to be a bit patient and tackle problems step by step.

pyautogui.click(685.714, 331.319, button="left")

Step 28

(The screenshot is the same as the previous one.)

Thought: T've come to realize that I've been repeating the same mistake over
and over again. Each time, I simply type in the password without giving much
thought to the actual issue at hand. The problem is quite simple: the input box
isn’t activated! It’s like talking to thin air; no matter how many times I try, it’s all
in vain. Right now, I need to pause for a moment and make sure to activate the
"Document Open Password" input box properly. Only then can we really begin
the password entry process. Let’s take it step by step and first resolve the issue of
the input box.

pyautogui.click(663.851, 310.549, button="left")

Step 29

[r—

Thought: The previous steps were a bit chaotic, and after analyzing the situation,
it seems I've fallen into a trap. I've been repeating the password entry process
without addressing the root issue. Looking back, I realized that I never properly
clicked on the "Document Open Password" input box. Now, the password security
settings window is still open, and I need to click on the input box to activate it
first. Only then will I be able to enter "jhsvcjvakj" as the password to enable the
document encryption feature.

pyautogui.typewrite(’jhsvcjvakj’)

Step 33

Thought: Perfect! We can see that the document is now password protected
- there’s a prompt asking for the password. Let’s enter the password we set
("jhsvejvakj"):

pyautogui.click(670, 371, button="left’)
pyautogui.write("jhsvcjvakj")

Step 34

Thought: Now let’s click "OK" to submit the password:

pyautogui.click(658, 413, button="left’)

Step 35

Thought: Let’s take a screenshot to see if the document opens:

Ppyautogui.screenshot()

Step 36

Thought: Perfect! The document has successfully opened after entering the correct
password. We can see that it still shows "(Secured)" in the title bar, confirming
that the password protection is working properly.

Summary of What We Did:

1. We successfully added password protection to your Project Timeline Roadmap
PDF with the password "jhsvcjvakj" 2. We saved the document with the security
settings applied 3. We verified that the protection works by: - Closing the
document - Reopening it, which prompted for a password - Successfully entering
the password to access the protected document

Your PDF is now encrypted and can only be opened by someone who knows the
password "jhsvcjvakj". The encryption uses 256-bit AES security, which is a
strong encryption standard. Anyone trying to open this document will need to
enter the correct password or they won’t be able to view the contents.

Is there anything else you’d like me to help you with regarding this document or
its security?

Due to work requirements, the following changes need to be made to the document. All "challenges"
are changed to "difficulties”, and the changed text is highlighted in red for my convenience to view.

Agent 1: 03 (Lose)

43

Agent 1: OpenAl Computer-Use Preview (Win)

Under review as a conference paper at ICLR 2026

Agent 1: Partial Correct

The impact of social networks on modern society and its challenges

introduction

HUOYDOHTE

Socery snd e challenges tey bring.

The socialimpact of social networks

"challenges" with "difficulties" in a LibreOffice Writer document, highlighting the
changes in red. I'm thinking I’ll use the Find & Replace dialog (Ctrl+H) and set it
up: find "challenges," replace with "difficulties," and format the replacement text
as red. Alternatively, I could find "difficulties" afterward and style it red. For now,
I'll open Find & Replace and proceed from there. It sounds straightforward!

import pyautogui import time pyautogui.keyDown(’ctr]’) pyauto-
gui.keyDown(’h’) pyautogui.keyUp(’h’) pyautogui.keyUp(’ctrl’)
[ElrY="l=13 ’

=ra e r—

import pyautogui import time
gui.typewrite(’challenges’, interval=0.01)

Lt 4 B L e B Q)

fTheim| ©

introdu

Asanimg

fthe sac|

[= .
Thought: Planning replace action The user wants to change "challenges" to

"difficulties" in LibreOffice Writer’s Find and Replace dialog, then highlight the
text in red. The immediate next step is to fill in the Replace field with "difficulties."
Tl also open the Format option to set the text color to red, and then click "Replace
AlL" Essentially, I'll need to click on the Replace entry box and type "difficulties,"
focusing on the approximate coordinates within the dialog. Let’s proceed with
that click action.

import pyautogui import time pyautogui.click(501, 254)

Step 4

Agent 1: Partial Correct

A% T B-EhE

“fe S[B] 1 U -

BELEERDER

e | X

rhe impact o social networks on modern sociaty and s chalonges

introduction

PUOYDOET@AN

Sociaty snd the challenges they brag,

The social impact of socil networks.

o2 EIrere—

R a—

Thought: Replacing "challenges" with "difficulties” in red

pyautogui.hotkey(ctrl’, *h”)

Step 2

‘B-De A%Y B-EBhE HB-
—1 T — | e R AL Y

The impact of social networks on modern socisty and its challenges

introduction

POYDOH A

Sociaty snd the challengesthey brag,
fThe social impact o social networks

— - o x

-0 A% B-BihE HB-
S5 7 o a1 u-s % xlalA-

The impact of saclal networks on modern saclety and Its challenges

=
4
@
®
[

v
2]

introduction

e-B8-10 AT B-EBhE HB-
— T — | e R AL Y

. i 5
&

4

(]

|rhe impact of socal networks on modern society and its challenges v
Iz

Socicy and th challengesthey bring.
fThe social impact of social networks

alosing information t spread quickly and widely o evry corne.

Y

£ ypeneretasearch

Thought: Reattempting shortcut for Replace dialog

pyautogui.hotkey(ctrl’, *h”)

44

Under review as a conference paper at ICLR 2026

Lt 4 Bl B HE-Q

R [

B
Thought: Executing find and replace I'm planning to replace all instances of
"challenges" with "difficulties" and highlight the replacements in red. First, I'll
use the Find & Replace dialog, ensuring "challenges" is in the Find field. For the
Replace field, I'll type "difficulties." Next, I need to set the character color to red
using the Format... button. After that, I'll click *Replace All.’ It’s crucial to note
it will only change "challenges" and not "challenge." Let’s get started! Adjusting
formatting settings In the screenshot, I noticed that the Format... button is not
greyed out after all, so it’s clickable! T'll start by typing "difficulties” into the
Replace input. Then, I'll click the Format... button to choose Font Effects, where
I'll change the Font color to red. After confirming, I'll hit Replace All to apply the
changes. The cursor is visible in the Replace field, indicating it’s active, so I can
just go ahead and type "difficulties."

import pyautogui import time pyautogui.typewrite(’difficulties’, interval=0.01)

AT E-WhERBE OB

BEELEE OB

S SN 2

o]

w

-

== 5

heim v

inrods I}
Py
ot

The soc| forme

allowing formation t spread Quickly and videly t every corner

[= R
Thought: Checking formatting options I'm looking into how to use ’Search for
Styles” and replace text with red font color. It seems like I need to change the
replaced words to red instead of highlighting the background. I think I’ll use the
Find and Replace feature to set “difficulties’ in the "Replace’ field, then replace
them all. After that, I can specify the font color red in formatting. Wait, the Format
button for Replace looks greyed out. I need to clarify that for using the *Format...”
option.Planning text formatting I'm figuring out how to highlight changed text
while replacing it. If the Format option is available, it makes sense to set it before
doing the Replace All so I can do both simultaneously. The next step involves
clicking "Format..." in the Replace field to set it to red. Looking at the screenshot,
T’ll need to estimate the coordinates for clicking the buttons. The Find/Replace
window shows the format button around (620, 501), but I might need to adjust if it
doesn’t work right away. Let’s stay flexible with the coordinates!

import pyautogui import time pyautogui.moveTo(620, 500, duration=0.5)

Lt 4B Ll e B C

MR UEBNC-B

Iz
[CR T A)

SRR)

o2 e Py

import pyautogui import time pyautogui.click(640,
505)

Step 7

— - o x

A% E-BihE HB-
B8l u-

&
ot A% W [om 5] o

[Pa— e X| =
N 5 o=l
%

@

®

[

The impact o social networks on modern society and its challenges k2

introduction 5

23

Socity and th challengesthy bring,

The soclal Impact of socll networks.

2 Type ere toseac

Thought: Dismissing banner to access tools

pyautogui.click(1218, 143, button="left’)

Step 6

3 AT B-WE SB8-Q-2ELRR DB
[t T e AeaFBl1 U-5 © xls AP B e
- ; T
=
Iy
4
fhe impact of scialnetuworks on modarn saclety and fs challenges D
introduction I v
G
: Iz

Socity snd th challengesthy bring,

The soclal Impact of socal networks

£ typetere tasearch

Thought: Opening "Find and Replace"

dialog

pyautogui.hotkey(ctrl’, *h”)

Step 7

3 A% T M-BiEHB-
Fr—— T a— | e T I »
5 s 5=
=]
vy
o
rhe impact o social networks on modern sociaty and s chalonges D
introduction v
[
I

Socicy and th challengesthey bring.
fThe social impact of social networks

£ Typeneretasearch

Thought: Opening "Find and Replace" dialog box

pyautogui.click(57, 35, button="left’)

Step 8

[}

= & AT B-WilhE S8
rrT—— Y —| R R A

=)

P

o

The mpactof scil networks on modern sciety and s challenges D

introduction k4

le

I

Sociaty snd the challengesthe brng,
fThe social impact o social networks

£ Type ereasearch

time.sleep(1)

Step 9

45

Under review as a conference paper at ICLR 2026

Lt 4 Bl B HE-Q

B
Thought: Executing find and replace The screenshot shows the "Find and Re-
place’ dialog in LibreOffice Writer. The user wants to change "challenges” to
"difficulties" and highlight the changes in red. The Find and Replace fields are
presumably set already. I need to configure the font color to red by clicking the
’Format” button. I'll approximate the button’s coordinates in the dialog, which
seems centered, around (618, 497), before clicking. Next, I'll proceed to click
’Replace All after setting the format.

import pyautogui import time pyautogui.click(617, 501)

Step 8

iThe im|

introduf

s snim

[=]
Thought: Adjusting Find & Replace settings It looks like I clicked on the wrong
option when trying to open Find & Replace, ending up in a "Replace with format-
ting" dialog instead. My current goal is to replace all instances of "challenges"
with "difficulties" and highlight them in red using LibreOffice Writer. I need to
check if highlighting means changing the font color, and I'll set the font color
to red in the format options. I'll set the "Replace with" field to "difficulties" and
adjust the formatting accordingly.Setting formatting for replacement I have the
"Replace with formatting” window open, which is helpful. Now, I need to set the
Font Effects by choosing red for the font color. The next step is to click the "Font
Effects" tab in this window. I’ll navigate to the tab row at the top and click on the
second tab. My mouse target will be around the "Font Effects" area, approximately
at coordinates 450, 182. Let’s proceed with that!

import pyautogui import time pyautogui.moveTo(455, 181, duration=0.5)

Step 9

A T E-EihE M O-B
“iaia

DB O

x G

o | e i i A Tl ity

The im|

introduf

E=RER RO T St N

The soc|

[=
Thought: Adjusting text in LibreOffice To help the user replace "challenges"
with "difficulties" and highlight those changes in red, I need to open the Find
and Replace dialog with Ctrl+H. Right now, I see the formatting modal open,
likely because the user double-clicked the "Format" button. First, I should close
that modal to return to the main dialog, where I can set "Find" to "challenges"
and "Replace” to "difficulties." I'll also check "Match case" and possibly “Whole
words.”Setting font color for changes To highlight the changed text in red, we need
to adjust the Font Color under the "Replace" area. Right now, the Font Effects tab
appears to be selected, but I'm seeing options that suggest the Font tab might be
active instead. I need to check if the Font Effects tab is indeed active. The goal is
to navigate to the Font Effects tab and set the Font Color to red. So, my next step
is to click on the Font Effects tab.

import pyautogui import time pyautogui.click(462, 181)

46

AT B-EHE =SB8-Q-
OEeEl[B] 1 u-5 ¢ x4 A

=
5
M

The impact of saclal networks on modern saciety and its challenges

introduction

POWDO

Socity snd th challengesthy bring,

e The soclal Impact of socal networks

Conmacted s commneatseven hen they ar n difarent placee.

£ typetere tasearch

AV - Nt & AY T B-WihE =8
[rT——c] — SR TP »
=]
w
o
N he mp D
introducti v
[
I

s
Sortaty sncthe chlenges

fthe socia

£ Type neretosesrn

time.sleep(1)
Step 11

nenr
H o

&Gl LB

The im|

introdu{ ~

alowin]

o2 Ererr

£ Type heretosearch

£ e nere oz

pyautogui.typewrite(’challenges’)
Step 13

Under review as a conference paper at ICLR 2026

B

[ERinRr

z 2
.
a
o
Theim| 9 v
introduf 3
seamim | 2 &
e] Wtz B

Lorem ipsum.

[= P
Thought: Planning text replacement in LibreOffice I need to help with the user’s
task of replacing all occurrences of "challenges” with "difficulties" in LibreOffice
Writer and highlighting these changes in red. We’ve opened the Find & Replace
dialog by pressing Ctrl+H, which shows the formatting details. The font color
dropdown is currently set to none. My next step is to select red from that dropdown
to ensure the replaced text appears in red. I need to carefully coordinate this
action based on the screenshot’s layout.Selecting font color in LibreOffice I'm
estimating the font color dropdown’s location roughly at coordinates (522, 238)
on the screenshot. The arrow points to the top of the dropdown, which looks to
be about 150 pixels wide. After this, I'll want to select the red color, which may
require another click. So, the next step is to click that dropdown list based on the
screenshot’s resolution of 1280x720. The "Font color" field is almost centered,
around 460 pixels wide. I’ll coordinate my clicks accordingly.

import pyautogui import time pyautogui.click(510, 238)

Step 11

A T @i E M
PN

DmE&E OB

O-B

x i | X| =

The im|

introduf

The soc|

-
Thought: Inspecting grid coordinates I'm taking a look at the screenshot. In the
grid, the third row looks to have yellowish colors, while the fourth has reds. I want
to focus on a strong red cell, possibly around row 5, column 3. I'll estimate the
coordinates, starting from the top left at about 514, 338. Since each cell is roughly
12x12 pixels, I calculate the coordinates for the red cell at row 3, column 6 to be
(586, 374). Now, I'll plan the action to click at that point.

import pyautogui import time pyautogui.click(586, 374)

L®

AT B-EWBE RBE-Q- 2

(]

O] -

Theim) |

introduf

=R]

fthe soc|

The e of
allowing ot

2 changesin

[= [T — -
Thought: Replacing text in LibreOffice The user instructed me to replace "chal-
lenges" with "difficulties" and highlight the text in red. I've opened LibreOffice
Writer and pressed Ctrl+H to access Find and Replace. It seems I'm in a "Replace
with formatting” dialog, where I can customize the format for the replacement.
The Font Effects tab shows Light Red 4, which is good for highlighting. I need
to confirm this red color and return to set the Find and Replace fields accord-
ingly.Confirming formatting changes I need to click the OK button in the bottom-
right corner of the "Replace with formatting" window. It looks like there are
buttons for "OK" and "Cancel." My cursor is probably in the Color field, so I just
need to do a left click on OK to confirm the changes. This should allow me to
finalize the formatting settings I'm adjusting. Let’s get this done!

47

8

L2

e =
Theim| | st | [rospmins e D
introdul k4
le

e

The soc|

Conmacted nc commneatseven hen they ar n difarent placee.

£ typehere tasearch

AT B-BE =S8-Q- 2203

@

The im|
introdu(

BOWD

fthe soc|

o
slowg]

£ Type neretosesrn

HD@R
i B % e

S

&Gl LB

the i) o | [st

introdu{ ~

HUWODOa ®H

alowin]

o2 Ererr

P T nera o search

£ e nere oz

time.sleep(1)
Step 17

Under review as a conference paper at ICLR 2026

import pyautogui import time pyautogui.click(859, 644)

Step 13

Rt [t g
005 25325

Fragn | [voammgnn | [rnanat | [e | oo
The im|

- Ot s
introdu

fThe soc| = Moot

it Sows e
Thought: Setting up text replacement The user wants to replace every occurrence
of "challenges" with "difficulties” and highlight the changes in red. I've opened the
Find & Replace dialog and filled in the fields with the appropriate words. There’s
a "Format..." button in the dialog for setting the text color. I see it’s highlighted but
hasn’t been configured yet. I need to click on this button to set the font color to red.
After that, T can confirm the changes!Preparing to set formatting In the screenshot,
I see the "Format..." button near the bottom right. To proceed, I need to click
on this button, set the font color to red, and then confirm with OK before using
"Replace All." I'm estimating the coordinates for the click since the screenshot
size is 1280x720. The button seems to be around x 620, y 519 based on my
estimation. The highlight indicates it’s ready to be clicked, so I’ll execute the
left-click at those coordinates.

import pyautogui import time pyautogui.click(631, 521)

Step 14

The im|

introduf

HUOWODOH® D

Society o

The soc|

o2 ot 123

P Tpehere toseacn

import pyautogui import time pyautogui.click(630,
501)

&
STE-EBMERE-Q-2DhiEE DB NO-®

The im|

introduf

HUYDOH®M@N

R
[= [

Thought: Executing text replacement I'm acting as a desktop automation agent,

and the task is to change occurrences of "challenges" to "difficulties” while high-

lighting the changed text in red. When I triggered the Find & Replace dialog
in LO Writer, I found that the "Replace with formatting" tab was open. Now, I

need to specify "Find" and "Replace" fields and set the font color to Light Red 4.

The next step is simply to click OK to confirm the formatting. After that, I can
proceed to complete the replacement.Determining click coordinates I'm reviewing
a screenshot that displays the "Replace with formatting” window, and I see the
OK button located at the bottom right corner, around the coordinates x 853, y
646. 1 think this is a good approximation for the location since it looks reasonably
accurate. My next step is to execute a left click at that position to confirm the
formatting changes. It’s a straightforward action, just following the visual cues
from the screenshot.

3-0-B-D8k & AT B-EBOE HB-Q-
(=21 3y W [. 1 - FENPEE
ot | st | s o | Mt | o | Wi 2
. &
B @
introduf k2
e = le
le

The soc|

comnecteda | s o ==

£ typehere tasearch

Thought: Selecting highlighting tab for formatting

pyautogui.click(889, 182, button="left")

Step 18

®

B0 A% T B-BhE HBQ-
Er—cr == . e s
P =]
= »
o
heim D
[
g I

fThe soc

£ Typeneretasearch

Thought: Selecting red color for highlighting

pyautogui.click(733, 219, button="left’)

Step 19

ST B-EhE HAB-0- 20 LB

og®mn

The im|
introduf
ssanim
i moder
socisl el
socieyel

@HOWD

Theree |
sl

£ Type ereasearch

Thought: Selecting standard red color shade

pyautogui.click(464, 344, button="left’)

Step 20

3

B Gl LB

H o

The im|
introduf

seanim

fthe soc
Theries |
alowing
2 changes

Soctalnacwo

o2 Ererr

£ Ty heretosearch

48

Under review as a conference paper at ICLR 2026

import pyautogui import time pyautogui.click(859, 645)

Step 16

Rt [t g
005 25325

Fragn | [voammgnn | [rnanat | [e | oo
The im|

- Ot s
introdu

fThe soc| = Moot

T r———
| = [E
Thought: Planning formatting steps The user wants to know the next step after
seeing a screenshot of the LibreOffice Find and Replace dialog. The task involves
changing the font color of the replacement text to red. First, I'll click the Format
button in the dialog. It should be located at the bottom center, around coordinates
(628, 520) based on my estimate from the screenshot. After that, I'll navigate to
Font Effects and choose the red color for the text. I'll also make sure to wait for
the dialog to respond after the click.

e T
9 ® - 5

import pyautogui import time pyautogui.click(633, 520)

Step 17

@
AT BE-EBNERE-Q-ARLEE DENO-B

The im|

introduf

PUYDOHT@

f
i

fthe so|

[= e
Thought: Clarifying Find and Replace Steps I see that we need to replace "chal-
lenges" with "difficulties” in LibreOffice Writer, and highlight the changes in red.
First, I'll use the Find & Replace feature—put "challenges" in the Find box and
"difficulties” in the Replace box. I should set the font color to light red in the
formatting options. Once that’s set, I can click "Replace AlL" Afterward, I'll close
the character formatting dialog to complete the process.Confirming Formatting
Changes I need to wrap this process up effectively. Instead of just hitting *Enter,’
it’s safer to click *OK’ in the Format window since pressing ’Enter’ might initiate
an unwanted action. The OK button is located near the bottom center of the
window, approximately at coordinates (850, 640). I'll confirm my click there,
and once that window closes, I can proceed to click *Replace All” in the Find &
Replace tool. Let’s finalize this plan!

import pyautogui import time pyautogui.click(857, 641)

3. 08R s B% T E-BHED HD-Q-2ELREEDE
== Ty e - s EE. »
S e e T s =
= BB Iy
a
—_— | | D
o] B
sk F [
ke le
e o]
e G
b = =

£ typehere tasearch

Thought: Selecting red color, confirming choice

pyautogui.click(472, 335, button="left")

Step 22

®

AT B-WihE =SB-Q-

The im)

HOYDOH®@E

socisldel

fThe soc

£ Typeneretasearch

Thought: Changing color selection to red.

pyautogui.click(483, 366, button="left’)

Step 23

ST B-EhE HAB-0- 20 LB

=]
&
o
introduf | k4
e I8

socieyel

Theree |
sl

£ Type ereasearch

Thought: Selecting red paint instead of orange

pyautogui.click(473, 327, button="left’)

Step 18

introdu

=S

»

i @

iz, 215,29 @

Fina g Find Preyious Find Nest Beplce Fepisce Al o

e =

fthe sac|

| o R -
Thought: Approximating button coordinates I'm looking at the screenshot size of
1280x720, focusing on the dialog positioned around 361. The Format button is
near the bottom right of the dialog. I’ll estimate its coordinates: the button seems
to be highlighted just above the bottom area. For the vertical positioning, the
dialog top appears to be around y=112, while the Format button might be around
y=480 to y=515 and x around 650. So, my next action is to left-click the Format
button to apply the font formatting.

Step 24

3

A9 Bl = HE-0 B Gl LB
B3 % o S
The im|
introduf
seanim
i moder
cocial de
socieyal
fthe soc
Theries |
alowing
2 changes
Soctalnacwo
o2 Ererr

£ Ty heretosearch

49

Under review as a conference paper at ICLR 2026

import pyautogui import time pyautogui.click(640, 512)

Step 19

AsTE-EnE H

Theim| |
introduf

s snm

T r——— T
| = [E m © -
Thought: Analyzing text replacement process The user has a screenshot from

LibreOffice Writer, focusing on the Find and Replace dialog, with the Font Effects
tab showing a Light Red 4 font color. They’re aiming to replace "challenges" with
"difficulties" while highlighting the new text in red. The next steps involve con-
firming the formatting by clicking “OK” in the Replace with formatting window,
then setting up the Find and Replace dialog to replace all instances. Checking
the coordinates at the bottom right, I should approximate them within the given
screenshot resolution.Confirming formatting action The Replace with formatting
window is centered, and I see the OK button at the bottom right. My next step
is clear: I'll click the OK button to confirm the changes. This will finalize the
formatting for the text replacement. It’s a straightforward action, but important for
ensuring everything is set up correctly for the user’s needs. Once I click OK, I can
proceed to execute the replacement.

import pyautogui import time pyautogui.click(859, 642)

Step 20

The il

introdu

The soc

[= PR
Thought: Executing text replacement in LibreOffice The user wants to change
all instances of "challenges" to "difficulties" in their document, and they need
that text highlighted in red. Since the document is already open in LibreOffice
Writer, I see that the Find & Replace window is prepared with the correct terms. I
need to click the Format button, choose the red font color in the Font Effects tab,
and then hit "Replace All" to apply these changes. After that, I'll quickly check
for the highlighted text.Choosing text formatting options I realize that the phrase
"highlighted in red" could mean either font color or background color. Since the
user mentioned highlighting, I’ll opt for the font color red to avoid confusion.
LibreOffice allows me to set this through the Format menu, so I'll focus on that.
Next, I'll click the Format button, which is at approximately (626, 520) based on
my screenshot estimation. This should help me apply the red font color to the
replaced text effectively.

import pyautogui import time pyautogui.click(626, 520)

AT BE-EWOERE-Q- 200 R

Theim|

introduf

e

50

AT B-WBE =SB8-Q-2BC0LhR&B DB

(= iy A [. - - = o
e s =
=1- @
a
" e v
ol Bl I 2

TEE
] o] &

hesod =G

comnectedaf | tios

£ typeheretasearcn t

Thought: Selecting predefined dark red shade

pyautogui.click(482, 365, button="left")

Step 26

& @
ST EB-EE S8-Q-

5

The im)

HOYDOH®@E

socislel

fThe soc

£ Typeneretasearch

Thought: Confirming user’s preferred red shade

pyautogui.screenshot()

Step 27

5 b

TB-EhEAB-0- 8005

og®mn

The im|

introduf

ssanim
i moder
socisl el
socieyal

@O D

Therse |
sl

£ Type ereasearcn

Thought: Hovering over red shades, confirming selection

pyautogui.moveTo(464, 344)

Step 28

3

B Gl LB

H o

The im|
introduf

seanim

fthe soc
Theries |
alowing

Soctalnacwo

o2 Ererr

£ Ty heretosearch

pyautogui.moveTo(489, 322)

Step 29

Under review as a conference paper at ICLR 2026

AT B-EWiE =S8-Q-

BELEERDER

import pyautogui import time pyautogui.click(859, -

=

= BB w

a

fheim D

introduf v

o0 le
Iz

A% TE-B0EHE-C

EO0MEE OENO-B

The soc|

comnecteda | s o ==

s

The im| 2 typeneretoseach

.)

) = 4

introd 3
: I

[=
Thought: Analyzing find and replace steps I need to set up the Find & Replace E DGR X B T @ EihE HRO-
dialog to find "challenges" and replace it with "difficulties," maybe considering P e o
case sensitivity since there might be plurals. Afterward, I want to confirm format- - 3 et
ting by clicking OK in the small window, which has the previously selected Light
Red 4 format. I'll also identify the approximate coordinates for the OK button
— it seems to be around (857, 644) relative to the screenshot. So, I'll need to
click that. Approximating button coordinates I'm estimating the coordinates for
the OK button in the small window. The left border seems to be around 360 px
and the right border maybe 880 px, making the window width about 500 px. So, soctade
I’m thinking the OK button is likely around (805, 646). Alternatively, checking he soe|
the bottom row of buttons could help. It seems like the Reset button is near x 740,
the Cancel button at x 880, so the OK button could be around x 800 and y 645. I'll
use these coordinates for clicking.

_ e
import pyautogui import time pyautogui.click(800, 645)

Step 23

The im)

HOYDOH®@E

4 RN

e =

] [P

heim | o
o] e - °
gam | T he m |] o
fvesoc semmim le
B

=ra e rr—

Thought: Planning text replacement I need to replace every instance of "chal-
lenges" with "difficulties" in LibreOffice Writer and highlight the changes in light
red. I see a "Find and Replace" dialog with a formatting pane. Next, I'll confirm
the font color to light red. After that, I'll ensure the “Find” field has "challenges"
and the “Replace” field has "difficulties.” It’s essential to select "Replace all" and
then click OK to apply the formatting. Finally, I'll proceed with the replacement.

import pyautogui import time pyautogui.

The im)

introdu(

o | [it Sl fthe soc

The im|

introdu Therice |

o = P Tpeneretoseach

The e

it o i
| =
Thought: Planning text replacement steps I've got LibreOffice Writer open with
the Find and Replace dialog ready. The "Find" field has "challenges" and the Step 33
"Replace" field has "difficulties." The next step is to highlight the changed text in
red. I see I need to click the Format button under Replace, choose Font Effects,
and set the font color to red. I'll need to click this button at the bottom center of
the dialog, which I've noted has a blue focus border. The approximate coordinates
are (614, 520).

pyautogui.typewrite(’255”)

51

Under review as a conference paper at ICLR 2026

Step 25

At T B-EWihEH

- Fnd Feplac Replace Al D

he im) £

ot £

introduf S

Asanim) =3
oot
voade

£ Tyneneretoseach

import pyautogui import time pyautogui.click(640,
521)

[ERinRT

Lt 9B Ll W BB C

Z Sosien indens & Spacing Mgrment Tetflow Highishing. pR=]
o
(u]
frheim| | >
Asanim] &

[< P ERGEEEY —

Thought: Detailing find and replace steps I need to describe the next step for
replacing "challenges" with "difficulties” and applying red color formatting in
LibreOffice Writer. The screenshot indicates that the "Replace with formatting"
dialog is open, and it appears to have multiple category tabs like Font, Font Effects,
and Position. The Font Effects tab is likely active, showing the "Font Color"
section, which indicates that the chosen color is currently Light Red 4. Now,
I need to set the font color to red.Explaining text replacement steps We need
to change the replaced text to red since the user’s requirement is to highlight it
that way. In the "Replace with formatting” dialog, we should confirm the color
selection. The next step is to click OK to apply the Light Red 4 color. After that,
in the main Find & Replace dialog, we’ll enter "challenges" as the text to find
and "difficulties” as the text to replace it with. We should ensure the search is
case-insensitive and then click Replace All. Let’s put this into clear steps for the
user!

import pyautogui import time pyautogui.click(865, 644)

Step 27

e

The im|
O s

ety o

The soc|

o2 Bt 105 i

| = =

import pyautogui import time pyautogui.click(650,
519)

Step 28

The im)

introduf

The soc|

connacted

2 typeneretoseach

=
5
M

PFOY D

The im)

introdu(

o
slowig]

£ Type neretosesrn

oge@mn

BOWD

i B % e

“H-D&R &

=Y

Vo2 I =R TR e

The im)
introdul

seanim

alowin

P Ty heretosearch

fThe im)

N introduf

Soctsl narwo
connected s

P Tpenere o seach

pyautogui.click(907, 411, button="left’)

Step 37

52

Under review as a conference paper at ICLR 2026

&

EADHRBAE DEINO-B

R [

The im|
© Ot st
introduf

HOYDOHTE

inmode
socsl el
socery o

The soc|

sl

B -
Thought: Configuring find and replace I need to replace all instances of "chal-
lenges" with "difficulties" and highlight the changes in red. The user specified to
find "challenges" and replace with "difficulties." In LibreOffice Writer, I can set
the font color to red during the replacement. I see the "Format..." button in the
Replace options, so I'll click that to open formatting options. Then I'll choose
Font Effects, set the font color to red, and finally click "Replace All."Planning
mouse click coordinates I need to plan to use a mouse click around the coordinates
(613, 523) to access the Format button under the Replace field. I'm estimating the
right spot as about 610x520 based on the screenshot. It seems like specifying a
left click at that Format button will help me proceed more accurately. Hopefully,
that’ll get me to the next step without any hiccups!

import pyautogui import time pyautogui.click(642, 520)

Step 29

n ks D

Lt B EHEC

fthe soc|

The I|

introdu

fthe sod|

[«
Thought: Adjusting text formatting The user is working in LibreOffice Writer and
wants to replace "challenges" with "difficulties," highlighting the change in red.
1 see that there’s a Format button for setting font color in the Find and Replace
dialog. It’s important to ensure we select the correct color. The screenshot shows a
light pink color instead of red, which could mean the user picked the wrong shade
earlier. Let’s go ahead and open the Format option again to select red (#FF0000)
for the text.Preparing to click The next step is to click the Format button, which
is currently highlighted. Clicking this button will open the Character Format
dialog. I'll need to simulate a left-click at the approximate coordinates of the
button. Based on the screenshot, I estimate the coordinates to be around (640, 513)
because the button is near the bottom center of the dialog. I'll prepare the tool call
for a left-click at these coordinates.

import pyautogui import time pyautogui.click(640, 513)

Step 31

53

AT B-WBWE =SB8-Q-2C0LhR&E DB

[Sy W ([e e - - . »
=1 Py
-
introdul W] v
cb 1l e
== L= 5
commorwin] [T = ==

£ typehere tasearch

o
N slowig]

B0 @ B BhE HB-Q- 28D B

=}
&
o
introduf | v
o le
g I8

£ Type neretosesrn

N alowin

‘H-D&R -
. H e S

At 9 B Ll = A C &Gl LB

The im|
introdul

seanim

fthe soc

o2 Ererr

P Ty heretosearch

Under review as a conference paper at ICLR 2026

R [

The im|
O pns
introduf

inmode
socsl el
socery o

The soc| 1 e oo

foge 102 0 wort, 1825 characer:
[= [,
Thought: Setting replacement formatting The user wants to replace "challenges"
with "difficulties” and highlight the changes in red, so I'm opening Find and
Replace in LibreOffice Writer. I've entered "challenges” as the text to find and
"difficulties" as the replacement. Next, I have to set the formatting to highlight the
replacements in red. The "Format..." button is available to do this. I'll click on it to
set the font color red for the replacement text, focusing on getting the coordinates
right to click correctly.

import pyautogui import time pyautogui.click(629, 525)

Step 32

The im|

introduf

FUYDOEH®

The soc|

The im|

introdu

The so

o2 Bt 105 i

P Tpehere tosearch

import pyautogui import time pyautogui.click(646,
520)

@
ADMRBRE DEINO-B

AT BE-WhERE

The im|

introduf

HUYDOH®M@N

o2 e rr—

[= [

54

Under review as a conference paper at ICLR 2026

import pyautogui import time pyautogui.click(850,
640)

A% TE-B0EHE-C

[= PR
Thought: Updating text formatting I need to change all instances of "challenges"
to "difficulties” and highlight those changes in red. I've opened the Find and
Replace feature and entered the words correctly. I need to make sure to format
the replacement text to be red. I'll click on the Format button next to the Replace
field, and in the dialog, I'll set the font color to red. After that, I can click Replace
All to finalize the changes.Planning formatting steps I've noticed that the Format
button is highlighted in blue, indicating it’s potentially selected but hasn’t been
clicked yet. I need to click that Format button, then navigate to the Font Effects
tab to choose the font color red. This seems straightforward, so I'll plan my next
steps, starting with that first click on the Format button. It’s all about getting those
settings right for the best results!

import pyautogui import time pyautogui.click(644, 521)

Step 36

POl I R TN = I

T @

Fras | [envminn | | pnane | [oo | [moscons

Theim|

introduf

[u)
B
&

Acanim

B Tynenere o seach

import pyautogui import time pyautogui.click(629,
521)

O e @

fThe im|

introdul

SRR)

Acanim

| «
Thought: Handling Find and Replace I've got the LO Writer open and I need
to replace "challenges" with "difficulties," highlighting the changes in red. After
pressing Ctrl+H, I see the "Find and Replace” dialog with a section for formatting
where I've set the font color to Light Red 4. Now, I need to confirm this and close
the formatting window, then enter "challenges" in the search box and "difficulties"
as the replacement term. I'll ensure the red formatting is applied before clicking
OK.Confirming the action I've identified that the OK button is located at the
bottom right of the sub-dialog, positioned between Reset and Cancel. I plan to
click OK, estimating its coordinates to be around (866,645) based on the screenshot
dimensions of 1280x720. The button is the third one from the left in the bottom
row. Next, I'll proceed with the click and monitor to ensure that the action registers
correctly.

55

Under review as a conference paper at ICLR 2026

import pyautogui import time pyautogui.click(870, 645)

Step 38

Theim|

introdu

HWYUe

= ra = = CETTI eiee——y

£ Tyneneretoseach H 9 ¥ v

Thought: Determining text replacement format I need to replace all occurrences
of "challenges" with "difficulties" and highlight the new text in red. I've opened
the Find and Replace window. The "Find" field is already filled with "challenges",
and "Replace" has "difficulties". Now, I must set the formatting to red. I'm unsure
if "highlighted" means the text color should be red or the background color should
be a highlight. Typically, "highlight" refers to background color, but the formatting
options may clarify this.Finalizing text replacement settings The replacement
section shows "difficulties" and a highlight color of RGB(255, 215, 215), which
looks like a light red or pink. This suggests that the highlighting may already be
set. Next, I need to click "Replace All" to execute the changes. The "Replace
All" button is situated near the right side of the window. I should ensure that the
background is highlighted in the correct color—perhaps adjusting it to a true red if
needed. Let’s use the Format option to confirm and set the color to red.Adjusting
highlight settings It might be simpler to accept that the highlight is already set.
Looking at the snippet, the "Replace" area shows "difficulties" with a highlight
color of RGB(255, 215, 215). This seems lighter than a typical strong red. I should
adjust it to a standard red color instead. My plan is to click on Format, then go to
the Font Effects tab, select red, and then execute "Replace AlL" I’ll pinpoint the
coordinates for the Format button and proceed with the click.

import pyautogui import time pyautogui.click(623, 512)

Step 39

[ERinRE

Lt G Bl B HEQ

iThe im|

introduf

WY Ueg @

e anim

and my task is to replace "challenges" with "difficulties" while highlighting the
changed text in red. I see the Find and Replace dialog is up, and I need to specify
"Find: challenges" and "Replace: difficulties.” For the formatting, I need to click
the Format button to set the font color to red. Once that’s done, I'll select Replace
All. T'm checking that format button to ensure I'm clicking the right one.Setting
font color in document I need to set the font color to red in the document. To do
this, I'll click the Format... button under the Replace section. This action will
open the Character Format menu where I can choose the red foreground color. I'll
need to be sure I'm clicking the right button at the correct coordinates to ensure it
opens properly. Once that’s done, I can proceed with the text replacement easily.

import pyautogui import time pyautogui.click(630, 523)

Step 40

56

Under review as a conference paper at ICLR 2026

Theim| |
introduf
inmode
socsl el
socery o
The soc|

sl

B
Thought: Configuring text replacement I'm working on replacing all instances
of "challenges" with "difficulties" and changing the font color to red. I opened
the Replace with Formatting window and saw that the Font Effects tab is selected,
which shows Light Red 4 as the current color. Now I need to finalize the formatting
by clicking OK in the dialog. After that, I'll set up the search terms to replace the
text. Then I'll check "Find All" or "Replace All" for a complete update.Clicking
the OK button Alright, my next action is to click the OK button at the bottom
right of the window. I've checked the screenshot, and it seems that the button is
situated there. I'm estimating I need to aim for the center of the OK button. I'll go
ahead and do that now. This should confirm my formatting choices and allow me
to move on to the next step in the process. Let’s get this done!

import pyautogui import time pyautogui.click(866, 645)

Step 41

kG DB

Fater || e | e

[= PR
Thought: Setting text color in Find and Replace The user wants me to change all
occurrences of "challenges" to "difficulties” and highlight the changes in red. I've
opened the Find and Replace dialog, and the fields are set correctly. Now, I need
to ensure that the changed text is highlighted in red. There’s a *Format...” button
I need to click to set the font color. I'll locate and click this button to adjust the
color. The coordinates suggest it’s in the middle bottom of the window.

import pyautogui import time pyautogui.click(630, 518)

Step 42

om0

T &

2

LB N

iThe im|

introduf

EEYODOE®E

Acanim

s = — =8 et

| = R E 5
Thought: Analyzing Find and Replace interface I see a "Replace" label in the
translucent overlay, which might be obstructing earlier clicks. Let’s analyze the
"Find and Replace" window more closely. At the top, there are fields for Find
and Replace, followed by buttons: Find All, Find Previous, Find Next, Replace,
and Replace All. The "Other options" group has checkboxes, and at the bottom,
there are buttons for Attributes, Format, No Format, and Close. There’s a small
drop-down arrow next to the Replace field for formatting settings, similar to the
format button in Writer 7.6.Estimating dialog layout I'm estimating the dialog’s
positioning, with the top-left around (350, 110) and the Replace field near (412,
258), making the width about 300. There’s an arrow on the right, likely at (715,
258). After clicking this arrow, I expect a drop-down with "Format..." to appear;
though it might be small, we could also click "Format..." from the bottom row. I
plan to click the arrow at (765, 256) using a left click and then wait for the next
action.

import pyautogui import time pyautogui.click(765, 256)

57

Under review as a conference paper at ICLR 2026

E0mMEE OB

x i X

The im|

introduf

The soc|

[= P
Thought: Analyzing the screenshot task The user provided a screenshot and wants
me to help with a task involving replacing "challenges" with "difficulties” and
highlighting the changes in red. They’ve opened the Find and Replace dialog in
LibreOffice Writer, which shows the formatting options ready to go. The next
step needs to be confirming the search for "challenges" and inputting "difficulties"
as the replacement term. I'll make sure to apply the Light Red 4 color for the
changes!Confirming formatting choices Now that the formatting dialog is open,
the immediate next step is to click OK to confirm the color selection. After that,
I need to return to the Find & Replace dialog and set the search and replace
terms. So, first, I'll click the OK button at the bottom right of the "Replace with
formatting" dialog. I'm estimating the coordinates for the click, focusing on that
area. Once that’s done, I’ll move forward with the task.

import pyautogui import time pyautogui.click(864, 643)

AT BE-EWERE-Q-2A3LEE DEINO-B

T

yem

Theim|

introdu

[FRCRCEwiC)

The e
allowingformacion t spread quickly and videly t evry corner

2 changesin

B
Thought: Adjusting text in LibreOffice The user is working in LibreOffice Writer
and needs to replace "challenges” with "difficulties," highlighting the changes in
red. I've opened the find and replace window with the terms already filled in. I'll
need to click the Format button to set the character font color to red by navigating
through the options. However, I'm wondering if the request is for a highlight
color instead of just changing the font color. Since highlighting typically means
changing the background, setting the font color to red feels like the simpler choice.

import pyautogui import time pyautogui.click(615, 518)

t O m @

Step 45

e [[

The im|

introduf

HUOYDOHTE

socety o

The soc| = R

Thought: Clarifying text replacement I realize I need to replace all instances of
"challenges" with "difficulties” and highlight them in red. I opened the Find &
Replace dialog and noticed the "Find" field has "challenges" while the "Replace"
field shows "difficulties" in a light pink color instead of red. It seems the back-
ground color was previously set using the Format button, but I need to adjust it
for proper red highlighting, specifically with the RGB value of 255,0,0 to achieve
that.Setting highlight color I need to set the highlight color for the replaced text to
red. There’s an option in LibreOffice for either Font Color or Highlighting. The
user wants the text to be highlighted in red, which usually implies a background
color. However, I'm also considering that they might just prefer the font itself to
be red. Since the manual suggests highlight is typically yellow, I'm interpreting
"highlight in red" as background highlight. So, I'll adjust the Replace field format

58

Under review as a conference paper at ICLR 2026

to ensure it reflects the change properly by selecting the red highlight option. Time
to click on the Format button!Estimating dialog position I'm trying to approximate
the location of the dialog box. It appears to be centered horizontally at around 580,
518. By estimating, it seems the dialog is mid-screen, starting around x 400 px
and has a width of about 400 px. The Format button likely sits near the bottom
center at around 540, 300. After looking at the screenshot dimensions, I'll set my
click at roughly (600, 510) to target the Format button effectively. Time to click!

import pyautogui import time pyautogui.click(598, 520)

Step 46

The Im|

introduf

The soc|

[= P
Thought: Executing find and replace I’'m currently working in LibreOffice Writer.
The user’s request is to replace all instances of "challenges" with "difficulties"
and to highlight those changes in red. I've opened the Find and Replace window
and have the formatting box ready to go. It mentions "Light Red 4," which works
for my purposes. I need to confirm the color by clicking the "OK" button in the
formatting dialog. Once I do that, I can proceed with the replacement.

import pyautogui import time pyautogui.click(867, 644)

Step 47

>ZEEN [aTo———

Thought: Planning text replacement I need to make some changes: replacing all
instances of "challenges” with "difficulties” and highlighting that changed text in
red. The Find and Replace dialog has the correct fields ready, with "challenges"
and "difficulties" set up. Now, I need to format the replacement text to show in red.
I'll click the Format... button which is currently highlighted. I'll use my mouse to
do this and approximate the coordinates for clicking around (615, 517). Let’s do
that!

import pyautogui import time pyautogui.click(628, 515)

Step 48

iThe im|

introdul
[e
[

fthe soc|

e

Thares |

| o R E

Thought: Planning the next steps The user has asked me to analyze a screenshot
related to changing all occurrences of "challenges” to "difficulties" and highlighting
the changes in red. They’ve opened the Find and Replace window, which shows
a formatting option for the replacements. I see that in this secondary "Format"
selection window, "Font Color" is set to Light Red 4, which is excellent. My next
step is to confirm the replacement and apply this formatting to ensure the text is
correctly updated.Confirming format changes I need to click the "OK" button on

59

Under review as a conference paper at ICLR 2026

the Format window to apply the red font color. After that, in the main Find and
Replace, I'll enter "challenges" as the term to find and "difficulties" to replace it.
It seems the Find and Replace window is overshadowed by the Format window,
making it look faded. I can see the buttons at the bottom of the Format window,
and I need to click "OK" to confirm. I'm estimating the coordinates for the button
since it’s not fully clear. Let’s proceed!Confirming the action I see the buttons
"Reset," "OK," and "Cancel" in the screenshot, and I'm estimating the coordinate
for the "OK" button to be around (847, 641). My next step is to perform a left-click
on that button to confirm the Light Red 4 color for the replacement text. After that,
"1l regain focus on the main window. Then I should respond with the appropriate
next steps. Let’s keep moving forward!

import pyautogui import time pyautogui.click(842, 641)

Step 49

mEt UENO-&

@& ® @

SRR)

R ——

import pyautogui import time pyautogui.click(623,
515)

[«
Thought: Checking Find and Replace setup The user wants to replace "challenges"
with "difficulties" and highlight them in red. I’ve opened the Find and Replace
tool and set it up, with “Find: challenges” and “Replace: difficulties.” Now, I need
to apply the highlight formatting for the replacement text. In LibreOffice Writer,
there’s a "Format..." button next to the Replace field that I'll need to click. I see
something about RGB(255, 215, 215) in the screenshot, indicating that the light
red highlight might already be selected. Let’s double-check that formatting!Setting
highlight formatting I see options like "Attributes..." and "Format..." under the
Replace area. There’s a button for "Format..." that I need to click to open the
Character Format dialog for setting the highlight color to red. The user wants the
changed text highlighted, which I assume means a font color of red. So, I'll click
the Format button, navigate to Font Effects, select Font Color, and choose red.
Then, I'll confirm and click Replace All. Let’s get started by clicking that Format
button!

import pyautogui import time pyautogui.click(627, 522)

60

	Introduction
	Computer Agent Arena System Design
	Platform Implementation
	Agent Implementation
	Agent Rankings

	Experiments
	Experimental Setup
	Main Results

	Analysis
	Task Analysis
	User Preference Analysis
	Tool-Integrated vs. Pure GUI CUAs
	Error Analysis

	Related Work
	Conclusion
	LLM Usage Statement
	System Details
	Platform Implementation Details
	Initial Setup Details
	Agent Implementation Details
	Crowd-sourcing Data Collection Details
	Evaluation Data Filtering Procedure

	Elo Ranking Method
	Statistical Validation of Rankings
	Bootstrap Confidence Intervals
	Permutation Tests and Effect Sizes
	Power Analysis
	Inter-Annotator Agreement (IAA)
	Noise Sensitivity Analysis
	Step-Limit Ablation Study
	Conclusion

	Analysis Details
	Setup Distribution Analysis.
	Generalization Analysis
	OSWorld Ablation Study
	Task Distribution Analysis Details
	Instruction and Trajectory Metric Computation
	Setup Distribution Analysis.
	Topic Clustering Details

	Agent Behavior Analysis Details
	Software and Infrastructure Resources
	Reproducibility and Cost Analysis
	Additional Results
	Case Study Analysis

