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Abstract
We draw on the latest advancements in the physics
community to propose a novel method for discov-
ering the governing non-linear dynamics of physi-
cal systems in reinforcement learning (RL). We es-
tablish that this method is capable of discovering
the underlying dynamics using significantly fewer
trajectories (as little as one rollout with ≤ 30 time
steps) than state of the art model learning algo-
rithms. Further, the technique learns a model that
is accurate enough to induce near-optimal policies
given significantly fewer trajectories than those
required by model-free algorithms. It brings the
benefits of model-based RL without requiring a
model to be developed in advance, for systems
that have physics-based dynamics.

To establish the validity and applicability of this
algorithm, we conduct experiments on four clas-
sic control tasks. We found that an optimal pol-
icy trained on the discovered dynamics of the
underlying system can generalize well. Further,
the learned policy performs well when deployed
on the actual physical system, thus bridging the
model to real system gap. We further compare
our method to state-of-the-art model-based and
model-free approaches, and show that our method
requires fewer trajectories sampled on the true
physical system compared other methods. Ad-
ditionally, we explored approximate dynamics
models and found that they also can perform well.

1. Introduction
In reinforcement learning, it is generally held that model-
based approaches learn more quickly than do model-free
approaches assuming the model is accurate enough (Kael-
bling et al., 1996). However, it is well known that learning
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model is challenging in general. We show here that for sys-
tems with underlying physics dynamics, such as robotic con-
trol, one can often learn an accurate low-dimension model
quickly, using very little training data from the actual system.
Training with that model can result in asymptotic perfor-
mance comparable to model-free approaches, using models
with many fewer parameters and that are trained using less
data than state of the art model-based algorithms. Thus,
for systems with physics-like dynamics, we bridge the gap
between model-free and model-based RL.

2. SINDy
SINDy, which stands for Sparse Identification of Non-linear
Dynamics, is an approach developed in the physics commu-
nity for extracting equational models of physical systems
from time series data. Specifically, SINDy can extract differ-
ential equations (ODEs, PDEs) or difference equations from
data given a collection of possible equation terms (generally
called features in the ML community) that are functions
of the input values. Such terms might include polynomial
and trigonometric functions of the data values. The “Sparse”
of SINDy indicates that it tries to extract from a possibly
large space of terms the minimum number of ones neces-
sary for an accurate model. “Non-linear” indicates that
the terms (features) may be non-linear functions of one
or more input values. SINDy was introduced by Brunton
et al. (Brunton et al., 2016b), who showed it is powerful
enough to extract the physics even of chaotic systems such
as the True Lorentz System (Brunton et al., 2016b). Similar
forms apply to discrete-time and noisy systems (Brunton
et al., 2016b). Brunton et al. (2016a) extends that work by
extended SINDy to deal with force-driven systems (con-
trol), and (Boninsegna et al., 2018) developed a stochastic
version. To demonstrate the power of the force-driven ex-
tension they solved the Lotka-Volterra predator-prey model
and the Lorenz system with forcing and control.

SINDy extracts a dynamics model with applied actions by
solving the equation

ẋ(t) = f (x(t);a(t)) (1)

for f , where the vector

x(t) = [x1(t),x2(t), . . . ,xn(t)]T ∈ Rn (2)
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represents the observation of the system at time t, the vector

a(t) = [a1(t),a2(t), . . . ,ak(t)]T ∈ Rk (3)

the action (typically physical forces) applied to the system
at time t, the semicolon indicates vector concatenation, and
the (possibly nonlinear) function f (x(t);a(t)) represents the
dynamic constraints that define the equations of motion
of the system. We write fi for the function that defines
ẋi(t). SINDy uses a similar form for discrete-time difference
equations. SINDy can be extended to probabilistic models,
but that was not necessary in our application.

At the heart of SINDy lies a method for feature selection
and sparse regression, based on the principle that only a few
terms in the regression model will be important. By using
intuition about the model, the user proposes a collection of
feature functions, which may include polynomials, Fourier
terms, etc., that the user thinks might govern the dynamics.
Each feature is a possibly non-linear function of one of
more of the input variables, that is, of the xi and ai. SINDy
attempts to extract a model where each fi is a linear function
of the features.

To that end, SINDy defines

Θ̂ = [Θ1,Θ2, . . . ,ΘF ],where Θi ∈ Rn+k→ R, (4)

a vector of functions of the xi and ai that we will call feature
functions. While the Θi take n+ k arguments, they typically
depend on only a few elements of x(t);a(t). F is the number
of features. We further define

Θ(x;a) = [Θ1(x;a),Θ2(x;a), . . . ,ΘF(x;a)]. (5)

SINDY also defines an n×F matrix Ξ of real values ξ i. j in
order to define

fi(x;a) = Θ(x;a) ·Ξi. (6)

Thus the fi are indeed linear functions of the possibly non-
linear features, with Ξ giving the coefficients (weights) of
those features for each fi. We can now write

f (x;a) = Θ(x;a) ·Ξ (7)

for the overall definition of f .

We now proceed to define the optimization problem
that SINDy solves. Given a sequence of observa-
tions x(1),x(2), . . . ,x(N) and actions a(1),a(2), . . . ,a(N),
SINDy can compute actual derivatives ẋ(t) according to
several methods, and can also take user-supplied values for
those derivatives or a user-supplied derivative calculating
function. We used its built-in smoothed finite differencing
method. We can thus form pairs for training (ẋ(i),x(i);a(i)).
Note that the x(t);a(t) inputs are readily extracted from RL
trajectories of the typical (s,a,s′) form.

We aggregate the x and a values into arrays X and A, respec-
tively:

X =

state−−−−−−−−−−−−−−−−−−−−−→
x1(1) x2(1) · · · xn(1)
x1(2) x2(2) · · · xn(2)

...
...

. . .
...

x1(N) x2(N) · · · xn(N)


y

tim
e, (8)

A =

action−−−−−−−−−−−−−−−−−−−−−−→
a1(1) a2(1) · · · ak(1)
a1(2) a2(2) · · · ak(2)

...
...

. . .
...

a1(N) a2(N) · · · ak(N)


y

tim
e, (9)

and we write X ;A for the (n+ k)×N array formed by ap-
pending each a(i) to the corresponding x(i). We extend our
Θ notation to define

Θ(X ;A)= [Θ(x(1);a(1)),Θ(x(2);a(2)), . . . ,Θ(x(N);a(N))].
(10)

The optimization problem to be solved is then:

Ẋ = Θ(X ;A) ·Ξ, (11)

and we desire a solution where Ξ is sparse. Note that this is
now a sparse linear regression problem, in terms of the (pos-
sibly non-linear) functions Θ of the input data X ;A. SINDy
can apply any of a variety of sparse regression methods. We
use its Sequentially Thresholded Least Squares (STLSQ)
method, which uses Ridge regression, with a threshold of
0.0009. It iteratively solves the least squares regression
problem with a regularizer being the L2 norm of the weights
Ξ, masking out weights below the threshold (setting them
to 0).

Let us consider the very small example of a mass M moving
in one dimension x under a time varying action force g. (We
use g to avoid confusion with f .) Our observation are the
position x and velocity v. From Newton’s Law we know
that v̇ = g/M, so the equations of motion are:

[
ẋ
v̇

]
=

[
0 1 0
0 0 1/M

]
·

x
v
g

 (12)

In this case, given suitable data, and a collection of feature
functions Θ̂ that included λ (x,v,g).v and λ (x,v,g).g (or
more loosely, terms v and g), SINDy should arrive at a
solution Ξ whose non-zero elements are exactly the 1 and
1/M in the equations of motion, to within computational
error. Notice that SINDy in effect discovers the mass M, that
is, we knew the form of the equations, but not necesarily the
exact values of the coefficients. This is important with real
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world robots, each one of which will exhibit slight variations
from a desired specification, etc.

Here we knew the exact form in advance. If we were less
certain, we might include more functions in Θ̂, such as
terms of the form 1, x, x2, x ·v, sinx, etc., and SINDy would
still arrive at the same solution because of its accuracy and
sparseness.

The key insights of SINDy are:

• deriving a model of physics-based dynamics using
physically plausible (but possibly nonlinear) features
of the observations and actions; and

• assuming a model that has a simple equational form
rather than trying to learn a model via “brute force”
function approximation.

Together these insights allow learning of a highly accu-
rate model with a relatively small number of observations.
Further, the models have only a small number of parame-
ters (typically much less than the number of elements of Ξ,
which itself has orders of magnitude fewer weights than a
typical neural net model). One expects SINDy to do well if
the problem is physics based, that is, the problem admits of
solution as a relatively simple, possibly nonlinear, differen-
tial (or difference) equation. It is not a general solution for
extracting a model from an arbitrary data set.

3. Dyna-Style Learning with SINDy

Algorithm 1 Dyna-Style Model-Based RL with SINDy
Hyper-parameters: Integers Ne and N
Initialize Denv and DSINDy as empty data sets
Initialize policy π and SINDy parameters Ξ

to random values
for Ne rollouts do

Collect data (si, a, si+1) on real environment with
random or pseudo-random policy

DSINDy←DSINDy
⋃

(si, a, si+1)
end for
Train model Ξ on DSINDy using SINDy
while π is not optimal do

for N epochs do
Collect rollout rollsim from model Ξ

Train π on simulated rollsim using
model-free algorithm and known reward function

end for
Collect a single rollout rreal from real environment
Train π on rreal using an arbitrary model-free algorithm
DSINDy←DSINDy

⋃
rreal

end while

We propose a Dyna-style learning algorithm with SINDy
at its base. In this algorithm SINDy learns an accurate
sparse model of the non-linear dynamics of a physical RL
system. We define two hyper-parameters that can be chosen
depending on the complexity of the physical system we are
trying to learn:

• Ne: The number of rollouts for which the algorithms
collects data to train SINDy. The algorithm uses a
random or pseudo-random policy for these rollouts.
SINDy does not generally need much data, so Ne is
typically small, and in fact a value of 1 sufficed in our
experiments.

• N: The number of epochs to train using data generated
by the SINDy-induced model for each epoch of train-
ing using data from the actual system, i.e., the actual
system is used only one out of every N +1 epochs. If
the SINDy model is accurate over a wide enough part
of the state space, N can be set to an arbitrarily large
value, which worked for a number of our experiments.

Notice that we assume Θ̂ has been chosen in advance and
thus speak of the model as being Ξ, which strictly speaking
is the coefficients of the model. The Dyna-style algorithm
can readily be extended to retrain the SINDy model peri-
odically if there were benefit to doing so, but it was not
necessary in our experiments.

4. Experiments
We conducted experiments using four environments with
three levels of difficulty in mind: discrete actions (Cart
Pole), continuous actions (Mountain Car and Pendulum
Swing Up), and realistic Mujoco physics control problems
with damping and friction (Inverted Pendulum). We use
the Python package PySindy open sourced by Kaptanoglu
et al. (Kaptanoglu et al., 2021). We selected variants of
SINDy from among its continuous-time, discrete-time, and
driven models appropriate to each experiment. We use
a state of the art model-free algorithm, Soft Actor-Critic
(SAC), introduced by Haarnoja et al. (Haarnoja et al., 2018)
and extended by Christodoulou (Christodoulou, 2019), as
our basis for training on both the real system and the sim-
ulated rollouts described in Algorithm 3. We also com-
pare our results against Model-Based Policy Optimization
(MBPO), a state of the art model-based method introduced
by Janner et al. (Janner et al., 2019). MBPO and our model
differ primarily in that MBPO learns a model represented
by a neural net while SINDy learns a model represented
by a differential (or difference) equation. Our method out-
performs both other methods in all experiments, giving us
a 4–100×, 40×, and 200× speedup against MBPO, and
15–375×, 60×, 500×, and 5× speedup against SAC for the
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Inverted Pendulum, Pendulum Swing Up, Mountain Car,
and Cart Pole problems, respectively.

Figure 1 shows our experimental results. Each experiment
is averaged over 10 different seeds, with further averaging
performed by evaluating the agent 10 times for each seed.
All results involve running the true robotic system once for
a small designated number of time steps (Table 1) to obtain
samples for training the SINDy model, and then performing
further policy improvement steps based only on the SINDy
derived model. The plots for SINDy have been shifted right
by the number of time steps gathered to train SINDy based
on interactions with the real environment. We now offer
more details of each experiment.

Discrete Classic: Our discrete action case is the Cart Pole
environment. Data from a single rollout of 30 steps was
sufficient for SINDy to identify a high accuracy dynamics
model. To avoid rapid termination of an episode we applied
force in opposite directions at alternating time steps, with
occasional random actions taken for exploration.

We can summarize the dynamics of the Cart Pole system in
these equations:

θ̈ =
(g · sinθ − cosθ ·C)

l · ( 4
3 −

mp
mp+mc

· (cosθ)2)
,

ẍ = C− l
mp +mc

· θ̈ · cosθ (13)

where
C = (F + l · θ̇ 2 sinθ)/(mp +mc),

where l is the length of the pole, mp its mass, x the position
of the cart, mc its mass, θ the vertical angle between the two,
and F the force. Using a small θ assumption, since the pole
falls and the episode terminates if the θ is not small, we can
write sinθ ≈ θ and cosθ ≈ 1, resulting in these equations:

θ̈ =
(g ·θ −C)

l · ( 4
3 −

mp
mp+mc

)
,

ẍ = C− l
mp +mc

· θ̈ (14)

where
C = (F + l · θ̇ 2 ·θ)/(mp +mc),

Thus, substituting the right hand side of the equation for
θ̈ into the one for ẍ, the right hand sides of the system
of dynamics equations can be written in terms of θ , θ̇ ,
x, ẋ, and constants. The Θ̂ we provided to SINDy was[
1, a, a2, a ·b, a2 ·b

]
where a and b can be any of

θ , θ̇ , x, and ẋ. Figure 1 shows that the approximation is
accurate enough that quitting when we are optimal using

the SINDy model is still accurate in the real environment
and needs just two further episodes of training in the real
environment for fine tuning.

Continuous Classic: The equations governing the dynam-
ics for the continuous environments of Mountain Car and
Pendulum Swing Up are learned precisely by SINDy (to 4
decimal places), extracting appropriate features from among
a larger set. For example, for Mountain Car, the features
we used were 1, x, x2, and sinkx and coskx for k = 1,2,3.
The results of Figure 1 show that the policy that is optimal
on the SINDy dynamics is also optimal in the real envi-
ronment. In fact, when we examine the equations learned
by SINDy, we see that they match the true dynamics of
these environments. It is worth noting that the Mountain
Car domain has inelastic collisions, and our model is robust
in the face of those discontinuities when learning dynamics.
Furthermore SINDy learned these dynamics using a single
rollout of length 100 for Mountain Car and 20 for Pendulum
Swing Up.

Mujoco: We now consider the Inverted Pendulum domain
of the Mujoco physics simulator. This adds the challenge of
having damping on the controller and friction added to the
system. The dynamics that SINDy learned generalize well
to the true environment as can be seen in Figure 1 figure,
and it needed at most one additional training episode for
fine tuning the policy learned using the model so that it is
optimal with respect to the true physical system. We used
the same approximation here as for Equation 14 and used
the same policy for collecting the initial samples.
Discussion: As Table 1 shows, our approach learns models
that have a very small number of parameters, particularly
compared with those learned by MBPO (613,036 param-
eters). Furthermore, since our models represent physics
dynamics equations explicitly, they are highly interpretable,
while function approximation neural nets generally are not.
As previously discussed, the models are very accurate and
can be learned with only a small amount of training data.
The method works for a range of kinds of dynamics and
control, both continuous and discrete. We have further seen
that approximate dynamics, such as replacing sin(θ) by θ

when angles tend to be small in the region of the state space
that is of interest, can lead to dynamics models accurate
enough for training to result in optimal behavior.

5. Conclusions and Future Work
We presented a method for learning the model of physics
based RL systems. It is capable of learning either exact
or high-accuracy approximate non-linear dynamics from
small numbers of samples. We showed results from four
environments demonstrating how training with these models
results in asymptotic performance as good as that achieved
by state of the art model-free methods, while converging
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Figure 1. The results of our SINDy method compared to state of the art model-based (MBPO) and model-free (SAC) methods. Our
method outperforms current methods in discrete action, continuous action, and noisy/damped environments. We found 4–100×, 40×, and
200× speedup against MBPO and 15–375×, 60×, 500×, and 5× speedup against SAC for the Inverted Pendulum, Pendulum Swing Up,
Mountain Car, and Cart Pole, respectively.

significantly more rapidly and requiring less training data.
Our dynamics models are of low dimension, easy to extract,
and highly interpretable, advantages they have over state of
the art model-based methods.

In summary, our contributions are:

1. Our algorithm matches or exceeds the asymptotic per-
formance of existing state of the art model-based and
model-free learning methods on these tasks while re-
quiring significantly fewer time steps of interaction
with the real system. In our experiments, we needed at
most 50 time steps of interaction with the real system
to identify high accuracy models that allow induction
of near optimal policies. We reduced the time steps of
interaction with the real system necessary to conver-
gence by 4×–100×, 40×, and 200× against MBPO,
and 15×–375×, 60×, 500×, and 5× against SAC for
Inverted Pendulum, Pendulum Swing Up, Mountain
Car, and Cart Pole, respectively.

2. Our method requires significantly fewer parameters
than state of the art model-based methods. We need
at most (n+ k)2 ·F parameters, where n is the dimen-
sionality of the state space, k the dimensions of ac-
tions, and F the number of features from which SINDy
can choose. In comparison, the MBPO network used
613,036 parameters.

3. Our dynamics models are more interpretable, working
from intuitively selected or approximated kernel func-
tions, and extracting the governing physics dynamics
equations and their parameters (coefficients).

A future direction for this work is exploring more complex
robotic systems supported by the Mujoco physical simula-
tion framework.
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